
MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1

MPC5646C Microcontroller
Reference Manual

Devices Supported:
MPC5644B
MPC5644C
MPC5645B
MPC5645C
MPC5646B
MPC5646C

MPC5646CRM
Rev. 5

14 Nov 2013

MPC5646C Microcontroller Reference Manual, Rev. 5

2 Freescale Semiconductor

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 3

Chapter 1
Preface

1.1 Overview . 11
1.2 Audience . 11
1.3 Guide to this reference manual . 11
1.4 Register description conventions . 15
1.5 References . 16
1.6 How to use the MPC5646C documents . 16
1.7 Using the MPC5646C . 18

Chapter 2
Introduction

2.1 The MPC5646C microcontroller family . 23
2.2 MPC5646C device comparison . 23
2.3 Device block diagram . 25
2.4 Feature summary . 28

Chapter 3
Memory Map

Chapter 4
Signal Description

4.1 Package pinouts . 55
4.2 Pad configuration during reset phases . 58
4.3 Pad configuration during standby mode exit . 59
4.4 Voltage supply pins . 59
4.5 Pad types . 60
4.6 System pins . 60
4.7 Functional ports . 61
4.8 Nexus 3+ pins . 87

Chapter 5
Microcontroller Boot

5.1 Boot mechanism . 89
5.2 Boot Assist Module (BAM) . 98
5.3 System Status and Configuration Module (SSCM) . 109

Chapter 6
Clock Description

6.1 Clock architecture . 125
6.2 Clock gating . 127
6.3 Fast external crystal oscillator (FXOSC) digital interface . 129
6.4 Slow external crystal oscillator (SXOSC) digital interface . 131
6.5 Slow internal RC oscillator (SIRC) digital interface . 133
6.6 Fast internal RC oscillator (FIRC) digital interface . 135
6.7 Frequency-modulated phase-locked loop (FMPLL) . 137
6.8 Clock monitor unit (CMU) . 145

Chapter 7
Clock Generation Module (MC_CGM)

7.1 Introduction . 155
7.2 Features . 156

MPC5646C Microcontroller Reference Manual, Rev. 5

4 Freescale Semiconductor

7.3 External signal description . 157
7.4 Memory Map and Register Definition . 157
7.5 Functional description . 171

Chapter 8
Mode Entry Module (MC_ME)

8.1 Introduction . 177
8.2 External signal description . 181
8.3 Memory map and register definition . 181
8.4 Functional description . 215

Chapter 9
Reset Generation Module (MC_RGM)

9.1 Introduction . 237
9.2 External signal description . 240
9.3 Memory map and register definition . 240
9.4 Functional description . 253

Chapter 10
Power Control Unit (MC_PCU)

10.1 Introduction . 261
10.2 External Signal Description . 262
10.3 Memory Map and Register Definition . 263
10.4 Functional description . 268
10.5 Initialization information . 271
10.6 Application information . 272

Chapter 11
Voltage Regulators and Power Supplies

11.1 Voltage regulators . 273
11.2 Power supply strategy . 277
11.3 Power domain organization . 277

Chapter 12
Wakeup Unit (WKPU)

12.1 Overview . 279
12.2 Features . 281
12.3 Memory map and register description . 282
12.4 Functional description . 290

Chapter 13
Real Time Clock / Autonomous Periodic Interrupt (RTC/API)

13.1 Overview . 295
13.2 Features . 295
13.3 Modes of operation . 297
13.4 Register descriptions . 298
13.5 RTC functional description . 302
13.6 API functional description . 303

Chapter 14
CAN Sampler

14.1 Introduction . 305

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 5

14.2 Main features . 305
14.3 Memory map and register description . 306
14.4 Functional description . 307

Chapter 15
e200z0h Core

15.1 Overview . 313
15.2 Features . 313
15.3 Core registers and programmer’s model . 316
15.4 Instruction summary . 320

Chapter 16
e200z4d Core

16.1 Features . 322
16.2 Programming model . 326
16.3 Microarchitecture summary . 331
16.4 Availability of detailed documentation . 332

Chapter 17
Enhanced Direct Memory Access (eDMA)

17.1 Introduction . 333
17.2 General features . 334
17.3 Device-specific features . 334
17.4 Memory map/register definition . 335
17.5 Functional description . 359
17.6 Initialization / Application Information . 367

Chapter 18
eDMA Channel Multiplexer (DMA_MUX)

18.1 Introduction . 381
18.2 Features . 381
18.3 External signal description . 382
18.4 Memory map and register definition . 382
18.5 Functional description . 386
18.6 Initialization/Application Information . 389

Chapter 19
Interrupt Controller (INTC)

19.1 Introduction . 393
19.2 Features . 393
19.3 Block diagram . 395
19.4 Modes of operation . 397
19.5 Memory map and register description . 401
19.6 Functional description . 412
19.7 SIUL external interrupts . 428
19.8 Wakeup line interrupts . 428
19.9 Non-maskable interrupt (NMI) . 428
19.10 Initialization/Application Information . 434

Chapter 20
Crossbar Switch (XBAR)

20.1 Features . 445
20.2 Introduction . 446
20.3 XBAR registers . 449

MPC5646C Microcontroller Reference Manual, Rev. 5

6 Freescale Semiconductor

20.4 Function . 454
20.5 Initialization/Application Information . 466
20.6 Interface . 466

Chapter 21
Memory protection unit (MPU)

21.1 Introduction . 469
21.2 Memory map and register description . 471
21.3 Functional description . 487
21.4 Initialization information . 489
21.5 Application information . 489

Chapter 22
Semaphores

22.1 Introduction . 491
22.2 Signal description . 493
22.3 Memory map and registers . 493
22.4 Functional description . 499
22.5 Initialization information . 501
22.6 Application information . 501
22.7 DMA requests . 503
22.8 Interrupt requests . 503

Chapter 23
Performance Optimization

23.1 Introduction . 505
23.2 Features . 505
23.3 Configuring hardware features . 506
23.4 Application software . 512
23.5 Peripherals and general application guidelines . 514
23.6 Performance optimization checklist . 515

Chapter 24
System Integration Unit Lite (SIUL)

24.1 Introduction . 517
24.2 Overview . 517
24.3 Features . 519
24.4 External signal description . 519
24.5 Memory map and register description . 520
24.6 Functional description . 553
24.7 Pin muxing . 555

Chapter 25
Inter-Integrated Circuit Bus Controller Module (I2C)

25.1 Introduction . 559
25.2 External signal description . 560
25.3 Memory map and register description . 560
25.4 DMA Interface . 571
25.5 Functional description . 573
25.6 Initialization/application information . 577

Chapter 26
LIN Controller (LINFlexD)

26.1 Introduction . 587

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 7

26.2 Main features . 587
26.3 The LIN protocol . 589
26.4 LINFlexD and software intervention . 592
26.5 Summary of operating modes . 592
26.6 Controller-level operating modes . 593
26.7 LIN modes . 594
26.8 Test modes . 603
26.9 UART mode . 604
26.10 Memory map and register description . 609
26.11 DMA interface . 641
26.12 Functional description . 659
26.13 Programming considerations . 664

Chapter 27
FlexCAN

27.1 Information specific to this device . 671
27.2 Introduction . 671
27.3 External signal description . 674
27.4 Memory map/register definition . 675
27.5 Functional description . 700
27.6 Initialization/application information . 712

Chapter 28
Deserial Serial Peripheral Interface (DSPI)

28.1 Introduction . 717
28.2 External signal description . 721
28.3 Memory map and register definition . 723
28.4 Functional Description . 750
28.5 Initialization/Application Information . 780

Chapter 29
FlexRay Communication Controller (FLEXRAY)

29.1 Introduction . 785
29.2 External Signal Description . 790
29.3 Controller Host Interface Clocking . 791
29.4 Protocol Engine Clocking . 791
29.5 Memory Map and Register Description . 792
29.6 Functional Description . 871
29.7 Application Information . 946

Chapter 30
Fast Ethernet Controller (FEC)

30.1 Overview . 955
30.2 Modes of Operation . 955
30.3 FEC Top-Level Functional Diagram . 956
30.4 Functional Description . 958
30.5 Programming Model . 971
30.6 Buffer Descriptors . 991

Chapter 31
Timers

31.1 Technical overview . 999
31.2 System Timer Module (STM) . 1004
31.3 Enhanced Modular IO Subsystem (eMIOS) . 1009
31.4 Periodic Interrupt Timer with Real-Time Interrupt (PIT_RTI) . 1057

MPC5646C Microcontroller Reference Manual, Rev. 5

8 Freescale Semiconductor

Chapter 32
Analog-to-Digital Converter (ADC)

32.1 Overview . 1069
32.2 Introduction . 1074
32.3 Register descriptions . 1075
32.4 Functional description . 1123

Chapter 33
Cross Triggering Unit (CTU)

33.1 Introduction . 1135
33.2 Main features . 1135
33.3 Block diagram . 1135
33.4 Memory map and register descriptions . 1135
33.5 Functional description . 1137

Chapter 34
Static RAM (SRAM)

34.1 Introduction . 1145
34.2 SRAM operating mode . 1145
34.3 Register memory map . 1145
34.4 SRAM ECC mechanism . 1145
34.5 Functional description . 1147
34.6 Initialization and application information . 1147

Chapter 35
Flash Memory

35.1 Introduction . 1151
35.2 Code flash memory . 1151
35.3 Data flash memory . 1207
35.4 Platform Flash Controller . 1237

Chapter 36
Register Protection

36.1 Introduction . 1267
36.2 External signal description . 1268
36.3 Memory map and register description . 1268
36.4 Functional description . 1272
36.5 Reset . 1277
36.6 Protected registers . 1277

Chapter 37
Software Watchdog Timer (SWT)

37.1 Introduction . 1289
37.2 Features . 1289
37.3 Modes of operation . 1289
37.4 External signal description . 1289
37.5 Memory map and register definition . 1289
37.6 Functional Description . 1295

Chapter 38
Error Correction Status Module (ECSM)

38.1 Introduction . 1297

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 9

38.2 Overview . 1297
38.3 Features . 1297
38.4 Memory map and register description . 1297

Chapter 39
Self-Test Control Unit (STCU)

39.1 Introduction . 1319
39.2 STCU main features . 1320
39.3 Block diagram and components . 1320
39.4 The Safety Integrity Subsystem . 1322
39.5 Memory map and register definition . 1330

Chapter 40
Cryptographic Services Engine (CSE)

40.1 Introduction . 1349
40.2 External signal description . 1350
40.3 Memory map and register definition . 1350
40.4 CSE functional description . 1357
40.5 CSE Commands . 1363

Chapter 41
JTAG Controller (JTAGC)

41.1 Introduction . 1375
41.2 External signal description . 1377
41.3 Register definition . 1378
41.4 Functional Description . 1380
41.5 Initialization/Application Information . 1385

Chapter 42
Nexus Development Interface (NDI)

42.1 Introduction . 1387
42.2 Block diagram . 1387
42.3 External Signal Description . 1392
42.4 Memory Map and Registers . 1393
42.5 Nexus Port Controller (NPC) . 1398
42.6 Nexus3+ Module . 1412
42.7 Debug Implementation . 1444
42.8 Debug Capabilities . 1444
42.9 Debug Port . 1445

Appendix A
Revision History
A.1 Changes between revisions 4 and 5 . 1447
A.2 Changes between revisions 3 and 4 . 1448
A.3 Changes between revisions 2 and 3 . 1448
A.4 Changes between revisions 2 and 2.1 . 1452
A.5 Changes between revisions 1 and 2 . 1452

MPC5646C Microcontroller Reference Manual, Rev. 5

10 Freescale Semiconductor

Chapter 1 Preface

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 11

Chapter 1
Preface

1.1 Overview
The primary objective of this document is to define the functionality of the MPC5646C microcontroller
for use by software and hardware developers. The MPC5646C is built on Power Architecture® technology
and integrates technologies that are important for today’s automotive vehicle body applications.

The information in this book is subject to change without notice, as described in the disclaimers on the title
page. As with any technical documentation, it is the reader’s responsibility to be sure he or she is using the
most recent version of the documentation.

To locate any published errata or updates for this document, visit the Freescale Web site at
http://www.freescale.com/.

1.2 Audience
This manual is intended for system software and hardware developers and applications programmers who
want to develop products with the MPC5646C device. It is assumed that the reader understands operating
systems, microprocessor system design, basic principles of software and hardware, and basic details of the
Power Architecture.

1.3 Guide to this reference manual
Table 1-1. Guide to this reference manual

Chapter
Description Functional group

Title

2 Introduction General overview, family description, feature list and
information on how to use the reference manual in
conjunction with other available documents.

Introductory
material

3 Memory Map Memory map of all peripherals and memory. Memory map

4 Signal Description Pinout diagrams and descriptions of all pads. Signals

5 Microcontroller Boot Boot

 • Microcontroller Boot • Describes what configuration is required by the
user and what processes are involved when the
microcontroller boots from flash memory or serial
boot modes.

 • Describes censorship.

 • Boot Assist Module (BAM) Features of BAM code and when it's used.

 • System Status and
Configuration Module
(SSCM)

Reports information about current state and
configuration of the microcontroller.

http://www.freescale.com/

Chapter 1 Preface

MPC5646C Microcontroller Reference Manual, Rev. 5

12 Freescale Semiconductor

6 Clock Description • Covers configuration of all of the clock sources in
the system.

 • Describes the Clock Monitor Unit (CMU).

Clocks and power

(includes operating
mode configuration
and how to wake up

from low power
mode)

7 Clock Generation Module
(MC_CGM)

Determines how the clock sources are used (including
clock dividers) to generate the reference clocks for all
of the modules and peripherals.

8 Mode Entry Module (MC_ME) Determines the clock source, memory, power and
peripherals that are available in each operating mode.

9 Reset Generation Module
(MC_RGM)

Manages the process of entering and exiting reset,
allows reset sources to be configured (including
LVD's) and provides status reporting.

10 Power Control Unit (MC_PCU) Controls the power to different power domains within
the microcontroller (allowing SRAM to be selectively
powered in STANDBY mode).

11 Voltage Regulators and Power
Supplies

Information on voltage regulator implementation.
Includes enable bit for 5 V LVD (see also MC_RGM).

12 Wakeup Unit (WKPU) Always-active analog block. Details configuration of 2
internal (API/RTC) and 30 external (pin) low power
mode wakeup sources.

13 Real Time Clock / Autonomous
Periodic Interrupt (RTC/API)

Details configuration and operation of timers that are
predominately used for system wakeup.

14 CAN Sampler Details on how to configure the CAN sampler which is
used to capture the identifier frame of a CAN message
when the microcontroller is in low power mode.

Table 1-1. Guide to this reference manual (continued)

Chapter
Description Functional group

Title

Chapter 1 Preface

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 13

15 e200z0h Core Overview on cores. For more details consult the core
reference manuals available on www.freescale.com.

Core platform
modules

16 e200z4d Core

17 Enhanced Direct Memory
Access (eDMA)

Operation and configuration information on the
32-channel direct memory access that can be used to
transfer data between any memory mapped locations.
Certain peripherals have eDMA triggers that can be
used to feed configuration data to, or read results from
the peripherals.

18 eDMA Channel Multiplexer
(DMA_MUX)

Operation and configuration information for the eDMA
multiplexer, which takes the 56 possible eDMA
sources (triggers from the DSPI, eMIOS, I2C, ADC
and LINFlexD_) and multiplexes them onto the 32
eDMA channels.

19 Interrupt Controller (INTC) Provides the configuration and control of all of the
external interrupts (non-core) that are then routed to
the IVOR4 core interrupt vector.

20 Crossbar Switch (XBAR) The 8-way Master / Slave crossbar switch can be
highly configured to maximize performance based on
your application requirements.

21 Memory protection unit (MPU) The MPU sits on the slave side of the XBAR and
allows highly configurable control over all master
accesses to the memory.

22 Semaphores Semaphores can be configured as described in this
section to ensure memory coherency in multi core
microcontrollers.

23 Performance Optimization Details the configurations that are possible in order to
maximize the performance of the cores and system.

Performance

24 System Integration Unit Lite
(SIUL)

How to configure the pins or ports for input or output
functions including external interrupts and DSI
serialization.

Ports

25 Inter-Integrated Circuit Bus
Controller Module (I2C)

These chapters describe the configuration and
operation of the various communication modules.
Some of these modules support DMA requests to fill /
empty buffer queues to minimize CPU overhead.

Communication
modules

26 LIN Controller (LINFlexD)

27 FlexCAN

28 Deserial Serial Peripheral
Interface (DSPI)

29 FlexRay Communication
Controller (FLEXRAY)

30 Fast Ethernet Controller (FEC)

Table 1-1. Guide to this reference manual (continued)

Chapter
Description Functional group

Title

Chapter 1 Preface

MPC5646C Microcontroller Reference Manual, Rev. 5

14 Freescale Semiconductor

31 Timers Timer modules

 • Technical overview Gives an overview of the available system timer
modules showing links to other modules as well as
tables detailing the external pins associated with
eMIOS timer channels.

 • System Timer Module
(STM)

A simple 32-bit free running counter with 4 compare
channels with interrupt on match. It can be read at any
time; this is very useful for measuring execution times.

 • Enhanced Modular IO
Subsystem (eMIOS)

Highly configurable timer module(s) supporting PWM,
output compare and input capture features. Includes
interrupt and eDMA support.

 • Periodic Interrupt Timer with
Real-Time Interrupt
(PIT_RTI)

Set of 32-bit count down timers that provide periodic
events (which can trigger an interrupt) with automatic
re-load. The RTI can be used for generating a periodic
system wakeup event.

32 Analog-to-Digital Converter
(ADC)

Details the configuration and operation of the ADC
modules as well as detailing the channels that are
shared between the 10-bit and 12-bit ADC. The ADC
is tightly linked to the INTC, eDMA, PIT_RTI and CTU.
When used in conjunction with these other modules,
the CPU overhead for an ADC conversion is
significantly reduced.

ADC system

33 Cross Triggering Unit (CTU) The CTU allows an ADC conversion to be
automatically triggered based on an eMIOS event (like
a PWM output going high) or a PIT_RTI event with no
CPU intervention.

35 Flash Memory Details the code and data flash memory structure
(with ECC), block sizes and the flash memory port
configuration, including wait states, line buffer
configuration and pre-fetch control.

Memory

34 Static RAM (SRAM) Details the structure of the SRAM (with ECC). There
are no user configurable registers associated with the
SRAM.

Table 1-1. Guide to this reference manual (continued)

Chapter
Description Functional group

Title

Chapter 1 Preface

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 15

1.4 Register description conventions
The register information for MPC5646C is presented in:

• Memory maps containing:

— An offset from the module’s base address

— The name and acronym/abbreviation of each register

— The page number on which each register is described

• Register figures

• Field-description tables

• Associated text

The register figures show the field structure using the conventions in Figure 1-1.

36 Register Protection Certain registers in each peripheral can be protected
from further writes using the register protection
mechanism detailed in this section. Registers can
either be configured to be unlocked via a soft lock bit
or locked unit the next reset.

Integrity

37 Software Watchdog Timer
(SWT)

The SWT offers a selection of configurable modes that
can be used to monitor the operation of the
microcontroller and /or reset the device or trigger an
interrupt if the SWT is not correctly serviced. The SWT
is enabled out of reset.

38 Error Correction Status Module
(ECSM)

Provides information about the last reset, general
device information, system fault information and
detailed ECC error information.

39 Self-Test Control Unit (STCU) Details how to configure the Memory Built In Self Test
(MBIST), which checks the operational status of the
memories at system boot time (according to SIL
requirements) and reports accordingly.

40 Cryptographic Services Engine
(CSE)

Implements security features as defined by the SHE
specification, providing secure boot authentication
and additional AES security features.

41 JTAG Controller (JTAGC) Used for boundary scan as well as device debug. Debug

42 Nexus Development Interface
(NDI)

Provides advanced debug features including non
intrusive trace capabilities.

A Revision History Summarizes the changes between each successive
revision of this reference manual

Revision history
information

Table 1-1. Guide to this reference manual (continued)

Chapter
Description Functional group

Title

Chapter 1 Preface

MPC5646C Microcontroller Reference Manual, Rev. 5

16 Freescale Semiconductor

Figure 1-1. Register figure conventions

The numbering of register bits and fields on MPC5646C is as follows:

• Register bit numbers, shown at the top of each figure, use the standard Power Architecture bit
ordering (0, 1, 2, ...) where bit 0 is the most significant bit (MSB).

• Multi-bit fields within a register use conventional bit ordering (..., 2, 1, 0) where bit 0 is the least
significant bit (LSB).

1.5 References
In addition to this reference manual, the following documents provide additional information on the
operation of the MPC5646C:

• IEEE-ISTO 5001-2003 Standard for a Global Embedded Processor Interface (Nexus)

• IEEE 1149.1-2001 standard - IEEE Standard Test Access Port and Boundary-Scan Architecture

• Power Architecture Book E V1.0
(http://www.freescale.com/files/32bit/doc/user_guide/BOOK_EUM.pdf)

1.6 How to use the MPC5646C documents
This section:

• Describes how the MPC5646C documents provide information on the microcontroller

• Makes recommendations on how to use the documents in a system design

1.6.1 The MPC5646C document set

The MPC5646C document set comprises:

• This reference manual (provides information on the features of the logical blocks on the device and
how they are integrated with each other)

• The device data sheet (specifies the electrical characteristics of the device)

• The device product brief

The following reference documents (available online at www.freescale.com) are also available to support
the CPU on this device:

R 0 1

W

R FIELD1 FIELD2

W

R
FIELD

W

Reserved bits Read-only fields Read/write fields

R FIELD

W w1c

“Write 1 to clear” field
(field will always read 0)

R 0 0 0

W FIELD1 FIELD2

Write-only fields

http://www.freescale.com/files/32bit/doc/user_guide/BOOK_EUM.pdf

Chapter 1 Preface

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 17

• Programmer’s Reference Manual for Freescale Embedded Processors

• e200z0 Power Architecture Core Reference Manual

• e200z4 Power Architecture Core Reference Manual

• Variable-Length Encoding (VLE) Programming Environments Manual

The aforementioned documents describe all of the functional and electrical characteristics of the
MPC5646C microcontroller.

Depending on your task, you may need to refer to multiple documents to make design decisions. However,
in general the use of the documents can be divided up as follows:

• Use the reference manual (this document) during software development and when allocating
functions during system design.

• Use the data sheet when designing hardware and optimizing power consumption.

• Use the CPU reference documents when:

— Configuring CPU memory, branch and cache optimizations

— Doing detailed software development in assembly language

— Debugging complex software interactions

1.6.2 Reference manual content

The content in this document focuses on the functionality of the microcontroller rather than its
performance. Most chapters describe the functionality of a particular on-chip module, such as a CAN
controller or timer. The remaining chapters describe how these modules are integrated into the memory
map, how they are powered and clocked, and the pin-out of the device.

In general, when an individual module is enabled for use all of the detail required to configure and operate
it is contained in the dedicated chapter. In some cases there are multiple implementations of this module,
however, there is only one chapter for each type of module in use. For this reason, the address of registers
in each module is normally provided as an offset from a base address which can be found in Chapter 3,
Memory Map. The benefit of this approach is that software developed for a particular module can be easily
reused on this device and on other related devices that use the same modules.

The steps to enable a module for use varies but typically these require configuration of the integration
features of the microcontroller. The module will normally have to be powered and enabled at system level,
then a clock may have to be explicitly chosen and finally if required the input and output connections to
the external system must be configured.

The primary integration chapters of the reference manual contain most of the information required to
enable the modules. There are special cases where a chapter may describe module functionality and some
integration features for convenience — for example, the microcontroller input/output (SIUL) module.
Integration and functional content is provided in the manual as shown in Table 1-2.

Chapter 1 Preface

MPC5646C Microcontroller Reference Manual, Rev. 5

18 Freescale Semiconductor

1.7 Using the MPC5646C
There are many different approaches to designing a system using the MPC5646C so the guidance in this
section is provided as an example of how the documents can be applied in this task.

Familiarity with the MPC5646C modules can help ensure that its features are being optimally used in a
system design. Therefore, the current chapter is a good starting point. Further information on the detailed
features of a module are provided within the module chapters. These, combined with the current chapter,
should provide a good introduction to the functions available on the MCU.

Table 1-2. Reference manual integration and functional content

Chapter Integration content Functional content

Introduction • The main features on chip
 • A summary of the functions provided by

each module

—

Memory Map How the memory map is allocated,
including:
 • Internal RAM
 • Flash memory
 • External memory-mapped resources

and the location of the registers used by
the peripherals1

1 To find the address of a register in a particular module take the start address of the module given in the memory
map and add the offset for the register given in the module chapter.

—

Signal Description How the signals from each of the modules
are combined and brought to a particular
pin on a package

—

Boot Assist Module CPU boot sequence from reset
Implementation of the boot options if
internal flash memory is not used

Clock Description Clocking architecture of the device (which
clock is available for the system and each
peripheral)

Description of operation of different clock
sources

eDMA Channel Multiplexer Source values for module eDMA channels How to connect a module eDMA channel
to the eDMA module

Interrupt Controller Interrupt vector table Operation of the module

Mode Entry Module Module numbering for control and status Operation of operating modes

System Integration Unit
Lite

How input signals are mapped to individual
modules including external interrupt pins

Operation of GPIO

Voltage regulators and
power supplies

Power distribution to the MCU —

Wakeup Unit Allocation of inputs to the Wakeup Unit Operation of the wakeup feature

Chapter 1 Preface

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 19

1.7.1 Hardware design

The MPC5646C requires that certain pins are connected to particular power supplies, system functions and
other voltage levels for operation.

The MPC5646C internal logic operates from 1.2 V (nominal) supplies that are normally supplied by the
on-chip voltage regulator from a 5 V or 3.3 V supply. The 3.3–5 V (±10%) supply is also used to supply
the input/output pins on the MCU. Chapter 4, Signal Description, describes the power supply pin names,
numbers and their purpose. For more detail on the voltage supply of each pin, see Chapter 11, Voltage
Regulators and Power Supplies. For specifications of the voltage ranges and limits and decoupling of the
power supplies see the MPC5646C data sheet.

Certain pins have dedicated functions that affect the behavior of the MCU after reset. These include pins
to force test or alternate boot conditions and debug features. These are described in Chapter 4, Signal
Description, and a hardware designer should take care that these pins are connected to allow correct
operation.

Beyond power supply and pins that have special functions there are also pins that have special system
purposes such as oscillator and reset pins. These are also described in Chapter 4, Signal Description. The
reset pin is bidirectional and its function is closely tied to the reset generation module [Chapter 9, Reset
Generation Module (MC_RGM)”]. The crystal oscillator pins are dedicated to this function but the
oscillator is not started automatically after reset. The oscillator module is described in Section 6.3, Fast
external crystal oscillator (FXOSC) digital interface, along with the internal clock architecture and the
other oscillator sources on chip.

1.7.2 Input/output pins

The majority of the pins on the MCU are input/output pins which may either operate as general purpose
pins or be connected to a particular on-chip module. The arrangement allows a function to be available on
several pins. The system designer should allocate the function for the pin before connecting to external
hardware. The software should then choose the correct function to match the hardware. The pad
characteristics can vary depending on the functions on the pad. Chapter 4, Signal Description, describes
each pad type (for example, S, M, or J). Two pads may be able to carry the same function but have different
pad types. The electrical specification of the pads is described in the data sheet dependent on the function
enabled and the pad type.

There are three modules that configure the various functions available:

• System Integration Unit Lite (SIUL)

• Wakeup Unit (WKPU)

• 32 KHz oscillator (SXOSC)

The SIUL configures the digital pin functions. Each pin has a register (PCR) in the module that allows
selection of the output functions that is connected to the pin. The available settings for the PCR are
described in Section 4.7, Functional ports. Inputs are selected using the PSMI registers; these are described
in Chapter 24, System Integration Unit Lite (SIUL). (PSMI registers connect a module to one of several
pins, whereas the PCR registers connect a pin to one of several modules).

Chapter 1 Preface

MPC5646C Microcontroller Reference Manual, Rev. 5

20 Freescale Semiconductor

The WKPU provides the ability to cause interrupts and wake the MCU from low power modes and
operates independently from the SIUL.

In addition to digital I/O functions, the SXOSC is a "special function" that provides a slow external crystal.
The SXOSC is enabled independently from the digital I/O which means that the digital function on the pin
must be disabled when the SXOSC is active.

The ADC functions are enabled using the PCRs.

1.7.3 Software design

Certain modules provide system integration functions, and other modules (such as timers) provide specific
functions.

From reset, the modules involved in configuring the system for application software are:

• Boot Assist Module (BAM) — determines the selected boot source

• Reset Generation Module (MC_RGM) — determines the behavior of the MCU when various reset
sources are triggered and reports the source of the reset

• Mode Entry Module (MC_ME) — controls which operating mode the MCU is in and configures
the peripherals and clocks and power supplies for each of the modes

• Power Control Unit (MC_PCU) — determines which power domains are active

• Clock Generation Module (MC_CGM) — chooses the clock source for the system and many
peripherals

After reset, the MCU will automatically select the appropriate reset source and begin to execute code. At
this point the system clock is the 16 MHz FIRC oscillator, the CPU is in supervisor mode and all the
memory is available. Initialization is required before most peripherals may be used and before the SRAM
can be read (since the SRAM is protected by ECC, the syndrome will generally be uninitialized after reset
and reads would fail the check). Accessing disabled features causes error conditions or interrupts.

A typical startup routine would involve initializing the software environment including stacks, heaps,
variable initialization and so on and configuring the MCU for the application.

The MMU translates physical memory addresses for use by the CPU and it must be configured before any
peripherals or memories are available for use by the CPU. See the e200z4 Power Architecture Core
Reference Manual for details on how to configure the MMU.

The MC_ME module enables the modules and other features like clocks. It is therefore an essential part
of the initialization and operation software. In general, the software will configure an MC_ME mode to
make certain peripherals, clocks, and memory active and then switch to that mode.

Chapter 6, Clock Description, includes a graphic of the clock architecture of the MCU. This can be used
to determine how to configure the MC_CGM module. In general software will configure the module to
enable the required clocks and PLLs and route these to the active modules.

After these steps are complete it is possible to configure the input/output pins and the modules for the
application.

Chapter 1 Preface

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 21

1.7.4 Other features

The MC_ME module manages low power modes and so it is likely that it will be used to switch into
different configurations (module sets, clocks) depending on the application requirements.

The MCU includes two other features to improve the integrity of the application:

• It is possible to enable a software watchdog (SWT) immediately at reset or afterwards to help
detect code runaway.

• Individual register settings can be protected from unintended writes using the features of the
Register Protection module. The protected registers are shown in Chapter 36, Register Protection.

Other integration functionality is provided by the System Status and Configuration Module (SSCM).

Chapter 1 Preface

MPC5646C Microcontroller Reference Manual, Rev. 5

22 Freescale Semiconductor

THE PAGE IS INTENTIONALLY LEFT BLANK

Chapter 2 Introduction

MPC5646C Microcontroller Reference Manual, Rev. 5

23 Freescale Semiconductor

Chapter 2
Introduction

2.1 The MPC5646C microcontroller family
The MPC5646C is a family of Power Architecturebased microcontrollers that target automotive vehicle
body and gateway applications such as:

• Central body controller

• Smart junction boxes

• Front modules

• High end gateway

• Combined body controller and gateway

The MPC5646C family expands the range of the MPC560xB microcontroller family. It provides the
scalability needed to implement platform approaches and delivers the performance required by
increasingly sophisticated software architectures. The advanced and cost-efficient host processor cores of
the MPC5646C automotive controller family comply with the Power Architecture embedded category,
which is 100 percent user-mode compatible with the original Power Architecture user instruction set
architecture (UISA). It operates at speeds of up to 120 MHz and offers high performance processing
optimized for low power consumption. It also capitalizes on the nominal available development
infrastructure of current Power Architecture devices and is supported with software drivers, operating
systems and configuration code to assist with users implementations.

2.2 MPC5646C device comparison
Table 2-1 summarizes the MPC5646C family of microcontrollers.

M
P

C
5646C

 d
evice co

m
p

ariso
n

M
P

C
5646C

 M
icro

co
n

tro
ller R

eferen
ce M

an
u

al, R
ev. 5

F
reescale S

em
iconductor

24

Table 2-1. MPC5646C family comparison1

Feature MPC5644B MPC5644C MPC5645B MPC5645C MPC5646B MPC5646C

Package 176
LQFP

208
LQFP

176
LQFP

208
LQFP

256
BGA

176
LQFP

208
LQFP

176
LQFP

208
LQFP

256
BGA

176
LQFP

208
LQFP

176
LQFP

208
LQFP

256
BGA

CPU e200z4d e200z4d + e200z0h e200z4d e200z4d + e200z0h e200z4d e200z4d + e200z0h

Execution speed2 Up to
120 MHz
(e200z4d)

Up to 120 MHz
(e200z4d)

Up to 80 MHz
(e200z0h)3

Up to
120 MHz
(e200z4d)

Up to 120 MHz
(e200z4d)

Up to 80 MHz
(e200z0h)3

Up to
120 MHz
(e200z4d)

Up to 120 MHz
(e200z4d)

Up to 80 MHz
(e200z0h)3

Code flash memory 1.5 MB 2 MB 3 MB

Data flash memory 4 x16 KB

SRAM 128 KB 192 KB 160 KB 256 KB 192 KB 256 KB

MPU 16-entry

eDMA4 32 ch

10-bit ADC

27 ch 33 ch 27 ch 33 ch 27 ch 33 ch 27 ch 33 ch 27 ch 33 ch 27 ch 33 chdedicated5,6

shared with
12-bit ADC7 19 ch

12-bit ADC

5 ch 10 ch 5 ch 10 ch 5 ch 10 ch 5 ch 10 ch 5 ch 10 ch 5 ch 10 chdedicated8

shared with
10-bit ADC7 19 ch

CTU 64 ch

Total timer I/O9 eMIOS 64 ch, 16-bit

SCI (LINFlexD) 10

SPI (DSPI) 8

CAN (FlexCAN)10 6

FlexRay Yes

D
evice b

lo
ck d

iag
ram

M
P

C
5646C

 M
icro

co
n

tro
ller R

eferen
ce M

an
u

al, R
ev. 5

F
reescale S

em
iconductor

25

2.3 Device block diagram
Figure 2-1 shows a top-level block diagram of the MPC5646C.

STCU11 Yes

Ethernet No Yes No Yes No Yes

I2C 1

32 kHz oscillator
(SXOSC)

Yes

GPIO12 147 177 147 177 199 147 177 147 177 199 147 177 147 177 199

Debug JTAG Nexus
3+

JTAG Nexus
3+

JTAG Nexus
3+

Cryptographic Services
Engine (CSE)

Optional

1 Feature set dependent on selected peripheral multiplexing; table shows example.
2 Based on 125 C ambient operating temperature and subject to full device characterisation.
3 The e200z0h can run at speeds up to 80 MHz. However, if system frequency is >80 MHz (e.g., e200z4d running at 120 MHz) the e200z0h needs

to run at 1/2 system frequency. There is a configurable e200z0 system clock divider for this purpose.
4 DMAMUX also included that allows for software selection of 32 out of a possible 57 sources.
5 Not shared with 12-bit ADC, but possibly shared with other alternate functions.
6 There are 23 dedicated ANS plus 4 dedicated ANX channels on LQPF176. For higher pin count packages, there are 29 dedicated ANS plus 4

dedicated ANX channels.
7 16x precision channels (ANP) and 3x standard (ANS).
8 Not shared with 10-bit ADC, but possibly shared with other alternate functions.
9 As a minimum, all timer channels can function as PWM or Input Capture and Output Control. Refer to the eMIOS section of the device reference

manual for information on the channel configuration and functions.
10 CAN Sampler also included that allows ID of CAN message to be captured when in low power mode.
11 STCU controls MBIST activation and reporting.
12 Estimated I/O count for proposed packages based on multiplexing with peripherals.

Table 2-1. MPC5646C family comparison1 (continued)

Feature MPC5644B MPC5644C MPC5645B MPC5645C MPC5646B MPC5646C

Package 176
LQFP

208
LQFP

176
LQFP

208
LQFP

256
BGA

176
LQFP

208
LQFP

176
LQFP

208
LQFP

256
BGA

176
LQFP

208
LQFP

176
LQFP

208
LQFP

256
BGA

Chapter 2 Introduction

MPC5646C Microcontroller Reference Manual, Rev. 5

26 Freescale Semiconductor

Figure 2-1. MPC5646C block diagram

8 
DSPI

FMPLL

Nexus 3+

SRAM

 SIUL
Reset Control

2  128 KB

External

IMUX

GPIO &

 JTAGC

Pad Control

JTAG Port

Nexus Port

e200z0h

Interrupt requests

64
-b

it
8

x
5

cr
os

sb
ar

 s
w

itc
h

6 
FlexCAN

Peripheral Bridge

Interrupt
Request

Interrupt
Request

I/O

Clocks

Instructions

Data

Voltage
regulator

NMI1

SWT

8

4  STM

NMI1

INTC

I2C
10 

LINFlexD
27 ch or 33 ch (2)

M
P

U

CMU

2  SRAM Flash memory

Code Flash
2  1.5 MB

Data Flash
64 KB

MC_PCUMC_MEMC_CGMMC_RGM BAM

CTU

RTC/API SSCM

(Master)

(Master)

(Slave)

(Slave)

(Slave)

controllercontroller

ADC Analog-to-Digital Converter
BAM Boot Assist Module
CSE Cryptographic Services Engine
CAN Controller Area Network (FlexCAN)
CMU Clock Monitor Unit
CTU Cross Triggering Unit
DMAMUX DMA Channel Multiplexer
DSPI Deserial Serial Peripheral Interface
eDMA enhanced Direct Memory Access
FlexCAN Controller Area Network controller modules
FEC Fast Ethenet Controller
eMIOS Enhanced Modular Input Output System
ECSM Error Correction Status Module
FMPLL Frequency-Modulated Phase-Locked Loop
FlexRay FlexRay Communication Controller
I2C Inter-integrated Circuit Bus
IMUX Internal Multiplexer
INTC Interrupt Controller

MPU

ECSM

from peripheral

registers

blocks

eMIOS

e200z4d

Nexus 3+
Nexus

 CSE

FEC

 FlexRay

WKPU
16 x

Semaphores

STCU

NMI0

NMI0

Instructions
(Master)

Data
(Master)

ADC
1  10-bit

CAN
Sampler

ADC

10 ch(1)

1  12-bit

PIT RTI

2  32 ch

DMAMUX

(3) (3)

Notes: 1) 10 dedicated channels plus up to 19 shared channels. See the device-comparison table.
2) Package dependent. 27 or 33 dedicated channels plus up to 19 shared channels. See the device-comparison table.
3)

(Master)

eDMA

16 x precision channels (ANP) are mapped on input only I/O cells.

JTAGC JTAG controller
LINFlexD Local Interconnect Network Flexible with DMA support
MC_ME Mode Entry Module
MC_CGM Clock Generation Module
MC_PCU Power Control Unit
MC_RGM Reset Generation Module
MPU Memory Protection Unit
Nexus Nexus Development Interface
NMI Non-Maskable Interrupt
PIT_RTI Periodic Interrupt Timer with Real-Time Interrupt
RTC/API Real-Time Clock/ Autonomous Periodic Interrupt
SIUL System Integration Unit Lite
SRAM Static Random-Access Memory
SSCM System Status Configuration Module
STM System Timer Module
SWT Software Watchdog Timer
STCU Self Test Control Unit
WKPU Wakeup Unit

Legend:

Chapter 2 Introduction

MPC5646C Microcontroller Reference Manual, Rev. 5

27 Freescale Semiconductor

2.4 Feature summary

2.4.1 High-performance e200z4d core processor

The e200z4d core includes the following features:

• Dual issue, 32-bit Power Architecture CPU

• Implements the VLE APU for reduced code footprint

• In-order execution and retirement

• Precise exception handling

• Branch processing unit

— Dedicated branch address calculation adder

— Branch target prefetching using 8-entry BTB

• Supports independent instruction and data accesses to different memory subsystems, such as
SRAM and flash memory via independent Instruction and Data BIUs

• Load/store unit

— 2 cycle load latency

— Fully pipelined

— Big- and little-endian support

— Misaligned access support

• 64-bit General Purpose Register file

• Dual AHB 2.v6 64-bit system buses

• Memory Management Unit (MMU) with 16-entry fully-associative translation lookaside buffer
(TLB) and multiple page size support

• 4 KB, 2/4-way set associative instruction cache

• Embedded Floating-Point APU (EFPU) supporting scalar single-precision floating-point
operations

• Signal Processing Extension (SPE1.1) APU supporting SIMD fixed-point operations using the
64-bit General Purpose Register file.

• Embedded Floating-Point (EFP2) APU supporting scalar and vector SIMD single-precision
floating-point operations, using the 64-bit General Purpose Register file.

• Nexus Class 3+ real-time development unit

• Power management

— Low power design–extensive clock gating

— Power saving modes: nap, sleep, wait

— Dynamic power management of execution units, cache and MMU

Chapter 2 Introduction

MPC5646C Microcontroller Reference Manual, Rev. 5

28 Freescale Semiconductor

2.4.2 e200z0h core processor

The e200z0h core includes the following features:

• High performance, low-cost e200z0h core processor for managing peripherals and interrupts

• Single issue 4-stage pipelined in-order execution, 32-bit Power Architecture CPU

• Variable length encoding (VLE), allowing mixed 16-bit and 32-bit instructions

— Results in efficient code size footprint

— Minimizes impact on performance

• Branch processing acceleration using lookahead instruction buffer

• Load/store unit

— 1-cycle load latency

— Misaligned access support

— No load-to-use pipeline bubbles

• 32-bit general purpose registers (GPRs)

• Separate instruction bus and load/store bus Harvard architecture

• Hardware vectored interrupt support

• Reservation instructions for implementing read-modify-write constructs

• Multi-cycle divide word (divw) and load multiple word (lmw) store multiple word (smw) multiple
class instructions, can be interrupted to prevent increases in interrupt latency

• Extensive system development support through Nexus 3 debug port

2.4.3 Memory Built-In Self Test (MBIST)
• User selectable MBIST that can be enabled to run out of various reset conditions. User MBIST can

also be disabled.

• Configurable fault response (Critical fault and non-critical fault)

2.4.4 Enhanced Direct Memory Access Controller (eDMA)

The following summarizes the MPC5646C implementation of the eDMA controller:

• 32 channels support independent 8, 16 or 32-bit single value or block transfers

• Supports variable sized queues and circular queues

• Source and destination address registers are independently configured to post-increment or remain
constant

• Each transfer is initiated by a peripheral, CPU, periodic timer interrupt or eDMA channel request

• Peripheral DMA request sources possible from DSPI’s, I2C, 10-bit ADC, 12-bit ADC, eMIOS,
GPIOs and LINFlexD.

• Each eDMA channel can optionally send an interrupt request to the CPU on completion of a single
value or block transfer

Chapter 2 Introduction

MPC5646C Microcontroller Reference Manual, Rev. 5

29 Freescale Semiconductor

• DMA transfers is possible between system memories and all accessible memory mapped locations
including peripheral and registers.

• Programmable DMA Channel Mux allows assignment of any DMA source to any available DMA
channel with up to a total of 64 potential request sources.

2.4.5 Error Correction Status Module (ECSM)

The ECSM on this device manages the ECC configuration and reporting for the platform memories (flash
memory and SRAM). It does not implement the actual ECC calculation. The following errors and
indications are reported into the ECSM dedicated registers:

• ECC error status and configuration for flash memory and SRAM

• ECC error reporting for flash memory

• ECC error reporting for SRAM

• ECC error injection for SRAM

2.4.6 Crossbar Switch (XBAR)

The following summarizes the MPC5646C’s implementation of the crossbar switch:

• Eight master ports

— Masters: e200z0h and e200z4d instruction buses, e200z0h and e200z4d data buses, eDMA,
FlexRay, Ethernet and CSE

• Multiple bus slaves to enable access to flash memory, SRAM, PBridge

• Fully concurrent transfers between independent master and slave port

• Fixed priority and round robin arbitration independently programmable for each slave

2.4.7 Memory Protection Unit (MPU)

The following list summarizes the MPU features:

• 16 region descriptors for per-master protection

• Start and end address defined with 32-byte granularity

• Overlapping regions supported

• Protection attributes can optionally include process ID

• Protection offered for 5 concurrent read ports

• Read and write attributes for all masters

• Execute and supervisor/user mode attributes for processor masters

2.4.8 Interrupt Controller (INTC)

The MPC5646C implements an interrupt controller that features the following:

• Unique 9-bit vector for each of the 246 separate interrupt sources

• Dual core interrupt controller

Chapter 2 Introduction

MPC5646C Microcontroller Reference Manual, Rev. 5

30 Freescale Semiconductor

— Each interrupt can be targeted to e200z4d, e200z0h or both

• 8 software triggerable interrupt sources

• 16 priority levels with fixed hardware arbitration within priority levels for each interrupt source

• Ability to modify the ISR or task priority.

— Modifying the priority can be used to implement the Priority Ceiling Protocol for accessing
shared resources.

• External high priority interrupts directly accessing the e200z0h core and e200z4d core critical
interrupt mechanism

2.4.9 System clocks and clock generation

The following list summarizes the system clock and clock generation on the MPC5646C:

• System clock can be derived from the following sources

— External crystal oscillator (4–40 MHz)

— FMPLL

— 16 MHz internal RC oscillator

• Programmable divider for output clock

• Separate programmable peripheral bus clock dividers for each peripheral domain

• Frequency Modulated Phase-Locked Loop (FMPLL)

— Input clock frequency from 4 MHz to 40 MHz

— Selectable clock source from external oscillator or internal 16 MHz RC oscillator

— Lock detect circuitry continuously monitors lock status

— Loss of clock (LOC) detection for reference and feedback clocks

— On-chip loop filter (for improved electromagnetic interference performance and reduces
number of external components required)

— Auxiliary output that can be used to clock FlexRay

— Progressive clock switching to reduce current surge at FMPLL startup

• On-chip crystal oscillator supporting 4 MHz to 40 MHz crystals.

• Dedicated 16 MHz internal RC oscillator

— Used as default clock source out of reset

— Provides a clock for rapid start-up from low power modes

— Provides a back-up clock in the event of PLL or External oscillator clock failure

— 5% accuracy over the operating temperature range

— Trimming registers to support frequency adjustment with in-application calibration facilitated
by the CMU

• Dedicated internal 128 kHz internal RC oscillator for low power mode operation and self wake-up

— 5% accuracy

— Trimming registers to support improved accuracy with in-application calibration facilitated by
the CMU

Chapter 2 Introduction

MPC5646C Microcontroller Reference Manual, Rev. 5

31 Freescale Semiconductor

• 32 kHz low power external oscillator for accurate low-power real time clock

2.4.10 System Integration Unit Lite (SIUL)

The SIUL features the following:

• Up to five levels of internal pin muliplexing, allowing exceptional flexibility in the allocation of
device functions for each package

• Centralized general purpose input output (GPIO) control of up to 199 input/output pins (package
dependent)

• All GPIO pins can be independently configured to support pull-up, pull down, or no pull.

• Reading and writing to GPIO supported both as individual pins and 16-bit wide ports

• All peripheral pins, with the exception of precision ADC channels, can be configured as either
general purpose input or output pins. Precision ADC channels can only be configured as general
purpose inputs.

• Direct readback of the pin value supported on all digital output pins through the SIU

• Configurable digital input filter that can be applied to up to 24 general purpose input pins for noise
elimination on external interrupts.

• Register configuration protected against change with soft lock for temporary guard or hard lock to
prevent modification until next reset.

• Support for 4 parallel input select muxes

2.4.11 Software Watchdog Timer (SWT)

The SWT on the MPC5646C features the following:

• 32-bit time-out register to set the time-out period

• Programmable selection of window mode or regular servicing

• Programmable selection of reset or interrupt on an initial time-out

• Programmable selection of fixed or keyed servicing

• Master access protection

• Hard and soft configuration lock bits

2.4.12 Flash memory

The on-chip flash memory on the MPC5646C features the following:

• 3 MB burst flash memory

• Single dual port PFlash controller and Flash BIU shared with the data flash memory

• Flash memory partitioning:

— 1.5 MB code flash memory module 1

– 1  512 KB (2  16 KB, 3  32 KB, 3  128 KB, 2  16 KB (reserved))

– 2  512 KB (4  128 KB)

Chapter 2 Introduction

MPC5646C Microcontroller Reference Manual, Rev. 5

32 Freescale Semiconductor

— 1.5 MB code flash memory module 2

– 1  512 KB (2  16 KB, 3  32 KB, 3  128 KB, 2  16 KB (reserved))

– 2  512 KB (4  128 KB)

— 64 KB data flash memory

– 4  16 KB, 1  8 KB (reserved)

• RWW is supported between both the 1.5M code flash memory and data flash memory modules, to
facilitate the EEPROM emulation capability. RWW is not supported between the 512 KB arrays
within the 1.5M code flash memory.

• Typical code flash memory access time: 40 ns

— 0 wait-state for buffer hits

— 5 additional wait-states for page buffer miss at 120+2% MHz

• Typical data flash memory access time is 120 ns: up to 13 wait-states for page buffer miss at
120+2% MHz.

• Page buffers can be allocated for code-only, fixed partitions of code and data, all available for any
access

• 64-bit ECC with single-bit correction, double-bit detection for data integrity in code flash memory

• 32-bit ECC with single-bit correction, double-bit detection for data integrity in data flash memory

• Censorship protection scheme to prevent flash content visibility
• Supports flash writes using internal 16 MHz RC oscillator

• Margin read for flash array supported for initial program verification

• Flash memory partitioning as shown in Table 2-2

Chapter 2 Introduction

MPC5646C Microcontroller Reference Manual, Rev. 5

33 Freescale Semiconductor

Table 2-2. MPC5646C flash memory partitioning

Array Address

MPC5644B MPC5644C
MPC5645B

MPC5645C MPC5646B MPC5646C

1.5 MB 2 MB 3 MB

Array_A Flash Base 
0x0000_0000

32 KB 32 KB 32 KB

Flash Base 
0x0000_8000

16 KB 16 KB 16 KB

Flash Base 
0x0000_C000

16 KB 16 KB 16 KB

Flash Base 
0x0001_0000

32 KB 32 KB 32 KB

Flash Base 
0x0001_8000

32 KB 32 KB 32 KB

Flash Base 
0x0002_0000

128 KB 128 KB 128 KB

Flash Base 
0x0004_0000

128 KB 128 KB 128 KB

Flash Base 
0x0006_0000

128 KB 128 KB 128 KB

Array_B Flash Base 
0x0008_0000

128 KB 128 KB 128 KB

Flash Base 
0x000A_0000

128 KB 128 KB 128 KB

Flash Base +
0x000C_0000

128 KB 128 KB 128 KB

Flash Base 
0x000E_0000

128 KB 128 KB 128 KB

Array_C Flash Block 
0x0010_0000

128 KB 128 KB 128 KB

Flash Base 
0x0012_0000

128 KB 128 KB 128 KB

Flash Base 
0x0014_0000

128 KB 128 KB 128 KB

Flash Base 
0x0016_0000

128 KB 128 KB 128 KB

Chapter 2 Introduction

MPC5646C Microcontroller Reference Manual, Rev. 5

34 Freescale Semiconductor

Array_D Flash Base 
0x0018_0000

— 128 KB 128 KB

Flash Base 
0x001A_0000

— 128 KB 128 KB

Flash Base 
0x001C_0000

— 128 KB 128 KB

Flash Base 
0x001E_0000

— 128 KB 128 KB

Array_E Flash Base 
0x0020_0000

— — 128 KB

Flash Base 
0x0022_0000

— — 128 KB

Flash Base 
0x0024_0000

— — 128 KB

Flash Base 
0x0026_0000

— — 128 KB

Array_F Flash Base 
0x0028_0000

— —
32 KB

Flash Base 
0x0028_8000

— —
16 KB

Flash Base 
0x0028_C000

— —
16 KB

Flash Base 
0x0029_0000

— —
32 KB

Flash Base 
0x0029_8000

— —
32 KB

Flash Base 
0x002A_0000

— —
128 KB

Flash Base 
0x002C_0000

— —
128 KB

Flash Base 
0x002E_0000

— —
128 KB

Table 2-2. MPC5646C flash memory partitioning (continued)

Array Address

MPC5644B MPC5644C
MPC5645B

MPC5645C MPC5646B MPC5646C

1.5 MB 2 MB 3 MB

Chapter 2 Introduction

MPC5646C Microcontroller Reference Manual, Rev. 5

35 Freescale Semiconductor

2.4.13 On-chip SRAM

On-chip SRAM on the MPC5646C features the following:

• 256 KB in total

— 2 separate 128 KB blocks on different slave ports (for maximum performance)

• 8 KB, 40 KB, 64 KB or 96 KB of RAM can be retained in standby mode

• 64-bit RAM organization with ECC, and redundancy

• Available for data and program

• 0 wait state for 64-bit accesses (64-bit aligned) up to 64 MHz, after which 1 wait state is
compulsory for operations above 64 MHz.

• Typical SRAM access time at less than 64 MHz: 0 wait-state for reads and 32-bit writes; 1
wait-state for 8- and 16-bit writes if back to back with a read to same memory block. Above 64
MHz + 4%, additional RAM wait state needs to be added.

• 32-bit ECC with single-bit correction, double bit detection for data integrity

• Supports byte (8-bit), half word (16-bit), and word (32-bit) writes for optimal use of memory. User
transparent ECC encoding and decoding for byte, half word, and word accesses

2.4.14 Boot Assist Module (BAM)

The MPC5646C BAM is implemented as follows:

• Block of read-only memory containing VLE code which is executed according to boot mode of the
device

• Download of code into internal SRAM possible via FlexCAN or LINFlexD, after which code can
be executed

Array_G Data Flash
Base 
0x0000_0000

16 KB 16 KB 16 KB

Data Flash
Base 
0x0000_4000

16 KB 16 KB 16 KB

Data Flash
Base 
0x0000_8000

16 KB 16 KB 16 KB

Data Flash
Base 
0x0000_C000

16 KB 16 KB 16 KB

Table 2-2. MPC5646C flash memory partitioning (continued)

Array Address

MPC5644B MPC5644C
MPC5645B

MPC5645C MPC5646B MPC5646C

1.5 MB 2 MB 3 MB

Chapter 2 Introduction

MPC5646C Microcontroller Reference Manual, Rev. 5

36 Freescale Semiconductor

2.4.15 System Status and Configuration Module (SSCM)

The SSCM includes these distinctive features:

• System Configuration and Status1

— Memory sizes/status

— Device Mode and Security Status

— Determine boot vector

— Search Code Flash for bootable sector

• Device identification information (MCU ID Registers)

• Debug Status Port enable and selection

• Bus and peripheral abort enable/disable

2.4.16 Enhanced Modular Input Output System (eMIOS)

The MPC5646C implements a scaled-down version of the eMIOS module:

• Up to 64 (2 x 32 ch) timed I/O channels with 16-bit counter resolution

• Buffered updates

• Support for shifted PWM outputs to minimize occurrence of concurrent edges

• Supports configurable trigger outputs for ADC conversion for synchronization to channel output
waveforms

• Edge-aligned output pulse width modulation

— Programmable pulse period and duty cycle

— Supports 0% and 100% duty cycle

— Shared or independent time bases

• DMA transfer support available

Table 2-3 shows the supported eMIOS modes.

1.When MBIST is enabled, SSCM reads STCU self test parameters from NVM and copies into STCU. (See
Section 35.2.5.27, “Nonvolatile User Options register (NVUSRO)).
When CSE is supported, the SSCM logic issues the SECURE_BOOT command to the CSE which starts the secure
boot process.

Table 2-3. Supported eMIOS channel modes

Mode Channel type

Description Name
Counter /
OPWM /

ICOC

O(I)PWM /
OPWFMB /
OPWMCB /

ICOC

O(I)PWM /
ICOC

OPWM /
ICOC

Double action output compare DAOC x x x —

General purpose input / output GPIO x x x x

Input filter IPF x x x x

Chapter 2 Introduction

MPC5646C Microcontroller Reference Manual, Rev. 5

37 Freescale Semiconductor

Table 2-4 shows the maximum eMIOS channel allocation.

Input period measurement IPM x x x —

Input pulse width measurement IPWM x x x —

Modulus counter MC x — — —

Modulus counter buffered (up / down) MCB x x — —

Output pulse width and frequency modulation
buffered

OPWFMB x x — —

Output pulse width modulation buffered OPWMB — x x x

Center aligned output PWM buffered with dead time OPWMCB — x — —

Output pulse width modulation trigger OPWMT x x x x

Pulse edge accumulation PEA x — — —

Pulse edge counting PEC x — — —

Quadrature decode QDEC x — — —

Single action input capture SAIC x x x x

Single action output compare SAOC x x x x

Table 2-4. eMIOS configuration

Channel type
Maximum number of channels

Total
eMIOS_0 eMIOS_1

Counter / OPWM / ICOC1

1 Each channel supports a range of modes including Modulus counters, PWM generation, Input
Capture, Output Compare.

5 5 10

O(I)PWM / OPWFMB / OPWMCB / ICOC2

2 Each channel supports a range of modes including PWM generation with dead time, Input Capture,
Output Compare.

7 0 7

O(I)PWM / ICOC3

3 Each channel supports a range of modes including PWM generation, Input Capture, Output
Compare, Period and Pulse width measurement.

7 7 14

OPWM / ICOC4

4 Each channel supports a range of modes including PWM generation, Input Capture, Output
Compare.

13 20 33

Table 2-3. Supported eMIOS channel modes (continued)

Mode Channel type

Description Name
Counter /
OPWM /

ICOC

O(I)PWM /
OPWFMB /
OPWMCB /

ICOC

O(I)PWM /
ICOC

OPWM /
ICOC

Chapter 2 Introduction

MPC5646C Microcontroller Reference Manual, Rev. 5

38 Freescale Semiconductor

2.4.17 Analog-to-Digital Converter (ADC)

The ADC features the following:

• 2 ADC modules, one 10-bit resolution (ADC0) and one 12-bit resolution (ADC1) supporting
synchronous conversions on channels

• 0–VDD common mode conversion range

• Independent reference supplies for each ADC

• Conversions times of < 1 µs available

• Up to 19 shared channels, of which 16 are high-precision on dedicated pins (called ANP) and are
not multiplexed with any other function in order to improve the accuracy. All other channels are
multiplexed with other functions.

— 19 channels shared between 10-bit and 12-bit ADC

— 10 channel 12-bit ADC

— Up to 29 channel 10-bit ADC (for 176-pin LQFP) or up to 33 channel 10-bit ADC (208-pin
LQFP, and BGA256)

• Externally multiplexed channels (ANX)

— Internal control to support generation of external analog multiplexor selection

— 4 internal channels optionally used to support externally multiplex inputs, providing
transparent control for additional ADC channels

— Each of the 4 channels supports up to 8 externally muxed inputs

— Individual dedicated result register also available for externally muxed conversion channels

— 3 independently configurable sample and conversion times for high occurrence channels,
internally muxed channels and externally muxed channels

• Configurable right-aligned or left-aligned result formats

• Support for one-shot, scan and injection conversion modes

• Independently configurable parameters for channels:

— Offset refresh

— Sampling

• Conversion triggering support

— Internal conversion triggering from PIT_RTI or timed I/O module (eMIOS) through cross
triggering unit (CTU)

• Up to 6 (for ADC0) and up to 3 (for ADC1) configurable analog comparator channels offering
range comparison with triggered alarm

— Greater than

— Less than

— Out of range

• All unused analog pins (16 ANP) available as general purpose input pins

• Unused 10-bit ADC analog pins, with the with exception of the 16 ANP shared channels available
as general purpose input/output pins

Chapter 2 Introduction

MPC5646C Microcontroller Reference Manual, Rev. 5

39 Freescale Semiconductor

• Power-down mode

• Supports DMA transfer of results based on end of conversion chain or each conversion

2.4.18 Cross Triggering Unit (CTU)

The CTU enables the synchronization of ADC conversions with a timer event. Its key features are:

• Single cycle delayed trigger output; trigger output is a combination of 64 (generic value) input
flags/events connected to different timers in the system

• Triggers ADC conversions from any eMIOS channel

• Triggers ADC conversions from up to 2 dedicated PIT_RTIs

• Maskable interrupt generation whenever a trigger output is generated

• 1 event configuration register dedicated to each timer event allows to define the corresponding
ADC channel

• Acknowledgment signal to eMIOS/PIT_RTI for clearing the flag

• Synchronization with ADC to avoid collision

2.4.19 Deserial Serial Peripheral Interface (DSPI)

The DSPI features the following:

• 8 DSPI modules supported

• Full duplex, synchronous transfers

• Master or slave operation

• Programmable master bit rates

• Programmable clock polarity and phase

• End-of-transmission interrupt flag

• Programmable baud rate

• Programmable data frames from 4 to 32-bits

• Support for serial chaining of several DSPI modules

• Pin serialization with interleaved SPI frames for control and diagnostics

• Continuous serial communications clock

• Parity control

• Support for the downstream Micro Second Channel with Timed Serial Bus (TSB) configuration.

• Up to 6 chip select lines available, depending on package and pin multiplexing, enable 64 external
devices to be selected using external muxing from a single DSPI

• Up to 8 independently configurable transfer types can be configured for each DSPI using the clock
and transfer attributes registers

• Chip select strobe available as alternate function on one of the chip select pins for de-glitching

• FIFOs for buffering up to 4 transfers on the transmit and receive side

• General purpose I/O functionality on pins when not used for SPI

Chapter 2 Introduction

MPC5646C Microcontroller Reference Manual, Rev. 5

40 Freescale Semiconductor

• Queueing operation possible through use of eDMA

• DSI mode (allows the serialization of eMIOS waveforms)

2.4.20 Serial communication interface (LINFlexD)

The LINFlexD features the following:

• 10 LINFlexD modules supported

• Supports LIN Master mode, LIN Slave mode and UART mode

• One module supporting LIN Master and Slave mode, 9 modules supporting LIN Master only mode

• LIN state machine compliant to LIN1.3, 2.0 and 2.1 Specifications

• Handles LIN frame transmission and reception without CPU intervention

• LIN features

— Autonomous LIN frame handling

— Message buffer to store Identified and up to eight data bytes

— Supports message length of up to 64bytes

— Detection and flagging of LIN errors

– Sync field; Delimiter; ID parity; Bit, Framing; Checksum and Timeout errors

— Classic or extended checksum calculation

— Configurable break duration of up to 50 bit times

— Programmable Baud rate prescalers (13-bit mantissa, 4-bit fractional)

— Diagnostic features

– Loop back; Self Test; LIN bus stuck dominant detection

— Interrupt driven operation with 16 interrupt sources

• LIN slave mode features

— Autonomous LIN header handling

— Autonomous LIN response handling

— 16 ID filters for discarding of irrelevant LIN responses

• UART mode

— Full-duplex operation

— Standard non return-to-zero (NRZ) mark/space format

— Data buffers with 4-bytes receive, 4-bytes transmit

— Configurable word length (8-bit, 9-bit, 16-bit or 17-bit words)

— Error detection and flagging

– Parity, Noise and Framing errors

— Interrupt driven operation with four interrupts sources

— Separate transmitter and receiver CPU interrupt sources

— 16-bit programmable baud-rate modulus counter and 16-bit fractional

— Two receiver wake-up methods

Chapter 2 Introduction

MPC5646C Microcontroller Reference Manual, Rev. 5

41 Freescale Semiconductor

• Support for DMA enabled transfers on all LIN modules

2.4.21 Controller Area Network (FlexCAN)

The enhanced FlexCAN module features the following:

• 6 FlexCAN modules supported

• Compliant with CAN protocol specification, Version 2.0B active

• 64 mailboxes, each configurable as transmit or receive

— Mailboxes configurable while module remains syncronised to CAN bus

• Transmit features

— Arbitration scheme according to message ID or message buffer number and local priority

— Internal arbitration to guarantee no inner priority inversion

— Multiple transmit buffers to avoid outer priority inversion

— Transmit abort procedure and notification

• Receive features

— Individual programmable filters for each mailbox

— Hardware FIFO can be enabled

— 8 mailboxes can be configured to provide a 6-entry receive FIFO and 8 programmable
acceptance filters

• Programmable clock source

— system clock

— Direct oscillator clock to avoid PLL jitter

• Listen only mode capabilities

• CAN Sampler available to be connected to one of the available CAN module pads

— supports capturing of first message’s identifier while in STOP mode

2.4.22 Fast Ethernet Controller (FEC)

The FEC incorporates the following features

• Support for 3 different physical interfaces

— 100-Mbps IEEE 802.3 MII

— 10-Mbps IEEE 802.3 MII

— 10-Mbps 7-wire interface (industry standard)

• Built in FIFO and DMA controller

• IEEE 802.3 MAC (compliant with IEEE 802.3 1998 edition)

• Programmable max frame length supports IEEE 802.1 VLAN tags and priority

• IEEE 802.3 full duplex flow control

• Support for full duplex operation (200 Mbps throughput) with a system clock of 100 MHz using
the external TX_CLK or RX_CLK

Chapter 2 Introduction

MPC5646C Microcontroller Reference Manual, Rev. 5

42 Freescale Semiconductor

• Support for full duplex operation(100 Mbps throughput) with a system clock of 50 MHz using the
external TX_CLK or RX_CLK

• Retransmission from transmit FIFO following a collision (no system bus utilization)

• Automatic internal flushing of the receive FIFO for runts (collision fragments) and address
recognition rejects (no system bus utilization)

• Address recognition

— Frames with broadcast address may be always accepted or always rejected

— Exact match for single 48-bit individual (unicast) address

— Hash (64-bit hash) check of individual (unicast) addresses

— Hash (64-bit hash) check of group (multicast) addresses

— Promiscuous mode

• RMON and IEEE statistics

• Interrupts for network activity and error conditions

2.4.23 Cryptographic Services Engine (CSE)

The CSE is a cryptographic module which supports the encoding and decoding of any kind of data. The
module fulfills all requirements of the SHE specification.

Potential use-cases of the CSE module are:

• Secure Boot

• Software Update, Software and “Know-How” protection

• Prevent “chip tuning”

• Immobilizer

• Component Protection

• Secure Network

• Digital Right Management

The CSE has the following features:

• Secure storage for cryptographic keys

• AES-128 encryption and decryption

• AES-128 CMAC authentication

• Random number generation

• Secure boot mode

• System bus master interface

2.4.24 Dual-Channel FlexRay Controller

The FlexRay controller provides the following features:

• FlexRay Communications System Protocol Specification, Version 2.1 Rev A compliant protocol
implementation

Chapter 2 Introduction

MPC5646C Microcontroller Reference Manual, Rev. 5

43 Freescale Semiconductor

• FlexRay Communications System Electrical Physical Layer Specification, Version 2.1 Rev A
compliant bus driver interface

• Single channel support

— FlexRay Port A can be configured to be connected either to physical FlexRay channel A or
physical FlexRay channel B.

• FlexRay bus data rates of 10 Mbit/s, 8 Mbit/s, 5Mbit/s and 2.5 Mbit/s supported.

• Up to 128 configurable message buffers with

— Individual frame ID filtering

— Individual channel ID filtering

— Individual cycle counter filtering

• Message buffer header, status and payload data stored in dedicated FlexRay memory

— Allows for flexible and efficient message buffer implementation

— Consistent data access ensured by means of buffer locking scheme

— Application can lock multiple buffers at the same time

• Size of message buffer payload data section configurable from 0 up to 254 bytes

• Two independent message buffer segments with configurable size of payload data section

— Each segment can contain message buffers assigned to the static segment and message buffers
assigned to the dynamic segment at the same time

• Zero padding for transmit message buffers in static segment

— Applied when the frame payload length exceeds the size of the message buffer data section

• Transmit message buffers configurable with state/event semantics

• Message buffers can be configured as:

— Receive message buffer

— Single buffered transmit message buffer

— Double buffered transmit message buffer (combines two single buffered message buffers.

• Individual message buffer reconfiguration supported

— means provided to safely disable individual message buffers
— disabled message buffers can be reconfigured

• Two independent receive FIFOs

— One receive FIFO per channel

— Up to 255 entries for each FIFO

— Global frame ID filtering, based on both value/mask filters and range filters

— Global channel ID filtering

— Global message ID filtering for dynamic segment

• Four configurable slot error counters

• Four dedicated slot status indicators

— Used to observe slots without using receive message buffers

• Measured value indicators for the clock synchronization

Chapter 2 Introduction

MPC5646C Microcontroller Reference Manual, Rev. 5

44 Freescale Semiconductor

— Internal synchronization frame ID and synchronization frame measurement tables can be
copied into the FlexRay memory

• Fractional macroticks are supported for clock correction

• Maskable interrupt sources provided via individual and combined interrupt lines

• One absolute timer

• One timer that can be configured to absolute or relative

• SECDED for protocol engine data RAM

• SEDDED for chi lookup table RAM

• ECC supported on internal RAMs

• Can be clocked from external 40 MHz crystal or on-chip PLL

2.4.25 Inter-IC Communications (I2C) module

The I2C module features the following:

• One I2C module supported

• Two-wire bi-directional serial bus for on-board communications

• Compatibility with I2C bus standard

• Multimaster operation

• Software-programmable for one of 256 different serial clock frequencies

• Software-selectable acknowledge bit

• Interrupt-driven, byte-by-byte data transfer

• Arbitration-lost interrupt with automatic mode switching from master to slave

• Calling address identification interrupt

• Start and stop signal generation/detection

• Repeated START signal generation

• Acknowledge bit generation/detection

• Bus-busy detection

2.4.26 Periodic Interrupt Timer with Real-Time Interrupt (PIT_RTI)

The PIT_RTI features the following:

• General purpose interrupt timers

• Interrupt timers for triggering ADC conversions

• Interrupt timers for triggering DMA transfers

• 32-bit counter resolution

• RTI support

• Clocked by system clock frequency

• Real Time Interrupt (RTI)

— RTI can be clocked by 4-40 MHz crystal

Chapter 2 Introduction

MPC5646C Microcontroller Reference Manual, Rev. 5

45 Freescale Semiconductor

2.4.27 System Timer Module (STM)

One STM supports the following:

• One 32-bit up counter with 8-bit prescaler

• Four 32-bit compare channels running off the same up-counter

• Independent interrupt source for each channel

• Clocked by the main system clock

• Counter can be stopped in debug mode

2.4.28 Real Time Counter/ Autonomous Periodic Interrupt (RTC/API)

The RTC/API features the following:

• Local 512 and 32 clock dividers

• Configurable resolution for different timeout periods

— 1 s resolution for > 1 hour period

— 1 ms resolution for 2 second period

• Selectable clock sources (all sources pass through clock dividers)

— 32 kHz slow external crystal oscillator

— 128 kHz slow internal RC oscillator

— 16 MHz fast internal RC oscillator

— High frequency crystal oscillator supporting external crystals in the range of 4 MHz to 40 MHz

2.4.29 Nexus Development Interface (NDI)

Nexus features the following:

• 21-bit full duplex pin interface for high throughput, including existing four JTAG pins

— Two modes are supported: full port mode (FPM) and reduced port mode (RPM). FPM
comprises 12 MDO pins. RPM comprises 8 MDO pins, and can be used to increase the number
of GPIOs. Care must be taken as bandwidth will be limited in RPM.

— Auxiliary output port

– One MCKO (Message clock out) pin

– 12 MDO (Message data out) pins

– One MSEO (Message start/end out) pins

– One EVTO (Event out) pin

— Auxiliary input port uses one EVTI (Event in) pin

— JTAG port uses four pins (TDI, TDO, TMS, and TCK)

• The NPC block performs the following functions:

— Controls arbitration for ownership of the Nexus Auxiliary Output Port between e200z0h and
e200z4d Nexus

— Nexus Device Identification Register and Messaging

Chapter 2 Introduction

MPC5646C Microcontroller Reference Manual, Rev. 5

46 Freescale Semiconductor

— Generates MCKO enable and frequency division control signals

— Controls sharing of EVTO between e200z0h and e200z4d cores.

— Generates an MCKO clock gating control signal to enable gating of MCKO when the auxiliary
output port is idle.

— Control of the device-wide debug mode

— Generates asynchronous reset signal for Nexus blocks

• Host processor (e200z4d) and secondary processor (e200z0h) development support features:

— IEEE-ISTO 5001-2010 standard class 3+ compliant.

– Program trace via Branch Trace Messaging (BTM), with the option of using Branch history
messaging to enhance message throughput.

– Data trace via data write messaging (DWM) and data read messaging (DRM). This allows
the development tool to trace reads and/or writes to selected internal memory resources.

– Ownership trace via ownership trace messaging (OTM). OTM facilitates ownership trace
by providing visibility of which process ID or operating system task is activated. An
ownership trace message is transmitted when a new process/task is activated, allowing
development tools to trace ownership flow.

– Run-time access to the on-chip memory map via the JTAG port.

– Watchpoint messaging (WPM) via the auxiliary port. This allows a watchpoint to be set,
which then sends a watchpoint message each time the watchpoint is hit. Unlike watchpoint
triggering, WPM does not stop the core or start trace.

– Registers for Program Trace, Data Trace, Ownership Trace and Watchpoint Trigger.

— Additional class 4 features

– Watchpoint trigger enable of program and/or data trace messaging. This is an extension of
WPM to allow a watchpoint to stop or start program or data trace.

– Processor overrun control

— All features controllable and configurable via JTAG port.

• Cross triggering — The capability for an EVTO (event out) signal from either the e200z4d or
e200z0h Nexus3+ to generate a debug request to the other core, thus allowing both cores to enter
debug mode within a short period of each other.

2.4.30 JTAG controller (JTAGC)

JTAG features the following:

• JTAG low pin count interface (IEEE 1149.1) test access port (TAP) interface

• Backward compatible to standard JTAG IEEE 1149.1-2001 test access port (TAP) interface

• Supporting boundary scan testing

2.4.31 On-chip voltage regulator (VREG)

The on-chip voltage regulator includes the following features:

• Support for external ballast transistor

Chapter 2 Introduction

MPC5646C Microcontroller Reference Manual, Rev. 5

47 Freescale Semiconductor

• Regulates 3V to 5V input to generate all internal supplies for internal control

• Manages power gating

• Low power regulators supports operation when in STOP and STANDBY modes to minimize
power consumption

• Fast startup on-chip regulators for rapid exit of low power modes

• Low voltage reset supported on all internal supplies

Chapter 2 Introduction

MPC5646C Microcontroller Reference Manual, Rev. 5

48 Freescale Semiconductor

Chapter 3 Memory Map

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 49

Chapter 3
Memory Map
Table 3-1 shows the memory map for the MPC5646C. All addresses on the device, including those that
are reserved, are identified in the table. The addresses represent the physical addresses assigned to each IP
block.

Table 3-1. MPC5646C memory map

Start address End address Size (KB) Region name

0x0000_0000 0x0000_7FFF 32 Code flash memory 0 array 0

0x0000_8000 0x0000_BFFF 16

0x0000_C000 0x0000_FFFF 16

0x0001_0000 0x0001_7FFF 32

0x0001_8000 0x0001_FFFF 32

0x0002_0000 0x0003_FFFF 128

0x0004_0000 0x0005_FFFF 128

0x0006_0000 0x0007_FFFF 128

0x0008_0000 0x0009_FFFF 128 Code flash memory 0 array 1

0x000A_0000 0x000B_FFFF 128

0x000C_0000 0x000D_FFFF 128

0x000E_0000 0x000F_FFFF 128

0x0010_0000 0x0011_FFFF 128 Code flash memory 0 array 2

0x0012_0000 0x0013_FFFF 128

0x0014_0000 0x0015_FFFF 128

0x0016_0000 0x017_FFFF 128

0x0018_0000 0x0019_FFFF 128 Code flash memory 1 array 2

0x001A_0000 0x001B_FFFF 128

0x001C_0000 0x001D_FFFF 128

0x001E_0000 0x001F_FFFF 128

0x0020_0000 0x0021_FFFF 128 Code flash memory 1 array 1

0x0022_0000 0x0023_FFFF 128

0x0024_0000 0x0025_FFFF 128

0x0026_0000 0x0027_FFFF 128

Chapter 3 Memory Map

MPC5646C Microcontroller Reference Manual, Rev. 5

50 Freescale Semiconductor

0x0028_0000 0x0028_7FFF 32 Code flash memory 1 array 0

0x0028_8000 0x0028_BFFF 16

0x0028_C000 0x0028_FFFF 16

0x0029_0000 0x0029_7FFF 32

0x0029_8000 0x0029_FFFF 32

0x002A_0000 0x002B_FFFF 128

0x002C_0000 0x002D_FFFF 128

0x002E_0000 0x002F_FFFF 128

0x0030_0000 0x007F_FFFF 5120 Reserved

0x0080_0000 0x0080_3FFF 16 Data flash memory array 0

0x0080_4000 0x0080_7FFF 16

0x0080_8000 0x0080_BFFF 16

0x0080_C000 0x0080_FFFF 16

0x0081_0000 0x00E0_7FFF 10214 Reserved

0x00E0_8000 0x00E0_BFFF 16 Code flash memory array 1 test sector

0x00FF_C000 0x00FF_FFFF 16 Code flash memory array 0 shadow sector

0x0100_0000 0x1FFF_FFFF 507,904 Flash memory emulation mapping

0x2000_0000 0x3FFF_FFFF 524,288 Reserved

0x4000_0000 0x4001_FFFF 128 SRAM_1

0x4002_0000 0x4003_FFFF 128 SRAM_2

0x4004_0000 0xBFFF_FFFF 2,096,960 Reserved

Off-platform peripherals (PBRIDGE)

0xC000_0000 0xC3F8_7FFF 65,056 Reserved

0xC3F8_8000 0xC3F8_BFFF 16 Code flash memory 0 configuration

0xC3F8_C000 0xC3F8_FFFF 16 Data flash memory configuration

0xC3F9_0000 0xC3F9_3FFF 16 SIUL

0xC3F9_4000 0xC3F9_7FFF 16 WKPU

0xC3F9_8000 0xC3F9_FFFF 32 Reserved

0xC3FA_0000 0xC3FA_3FFF 16 eMIOS_0

0xC3FA_4000 0xC3FA_7FFF 16 eMIOS_1

0xC3FA_8000 0xC3FA_FFFF 32 Reserved

0xC3FB_0000 0xC3FB_3FFF 16 Code flash memory 1 configuration

Table 3-1. MPC5646C memory map (continued)

Start address End address Size (KB) Region name

Chapter 3 Memory Map

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 51

0xC3FB_4000 0xC3FD_7FFF 144 Reserved

0xC3FD_8000 0xC3FD_BFFF 16 SSCM

0xC3FD_C000 0xC3FD_FFFF 16 MC_ME

0xC3FE_0000 0xC3FE_3FFF 16 MC_CGM

0xC3FE_4000 0xC3FE_7FFF 16 MC_RGM

0xC3FE_8000 0xC3FE_BFFF 16 MC_PCU

0xC3FE_C000 0xC3FE_FFFF 16 RTC/API

0xC3FF_0000 0xC3FF_3FFF 16 PIT_RTI

0xC3FF_4000 0xC3FF_7FFF 16 STCU

0xC3FF_8000 0xFFDF_FFFF 981,024 Reserved

0xFFE0_0000 0xFFE0_3FFF 16 ADC_0

0xFFE0_4000 0xFFE0_7FFF 16 ADC_1

0xFFE0_C000 0xFFE2_FFFF 176 Reserved

0xFFE3_0000 0xFFE3_3FFF 16 I2C

0xFFE3_4000 0xFFE3_FFFF 48 Reserved

0xFFE4_0000 0xFFE4_3FFF 16 LINFlexD_0

0xFFE4_4000 0xFFE4_7FFF 16 LINFlexD_1

0xFFE4_8000 0xFFE4_BFFF 16 LINFlexD_2

0xFFE4_C000 0xFFE4_FFFF 16 LINFlexD_3

0xFFE5_0000 0xFFE5_3FFF 16 LINFlexD_4

0xFFE5_4000 0xFFE5_7FFF 16 LINFlexD_5

0xFFE5_8000 0xFFE5_BFFF 16 LINFlexD_6

0xFFE5_C000 0xFFE5_FFFF 16 LINFlexD_7

0xFFE6_0000 0xFFE6_3FFF 16 Reserved

0xFFE6_4000 0xFFE6_7FFF 16 CTU

0xFFE6_8000 0xFFE6_FFFF 32 Reserved

0xFFE7_0000 0xFFE7_3FFF 16 CAN Sampler

0xFFE7_4000 0xFFE7_FFFF 48 Reserved

0xFFE8_0000 0xFFEF_FFFF 512 Mirrored range
0xC3F8_0000 — 0xC3FF_FFFF

0xFFF0_0000 0xFFF0_3FFF 16 Reserved

0xFFF0_4000 0xFFF0_7FFF 16 XBAR

0xFFF0_8000 0xFFF0_FFFF 32 Reserved

Table 3-1. MPC5646C memory map (continued)

Start address End address Size (KB) Region name

Chapter 3 Memory Map

MPC5646C Microcontroller Reference Manual, Rev. 5

52 Freescale Semiconductor

0xFFF1_0000 0xFFF1_3FFF 16 MPU

0xFFF1_4000 0xFFF1_BFFF 32 Reserved

0xFFF1_C000 0xFFF1_FFFF 16 CSE

0xFFF2_0000 0xFFF2_3FFF 16 Reserved

0xFFF2_4000 0xFFF2_7FFF 16 Semaphore

0xFFF2_8000 0xFFF3_7FFF 64 Reserved

0xFFF3_8000 0xFFF3_BFFF 16 SWT

0xFFF3_C000 0xFFF3_FFFF 16 STM

0xFFF4_0000 0xFFF4_3FFF 16 ECSM

0xFFF4_4000 0xFFF4_7FFF 16 eDMA

0xFFF4_8000 0xFFF4_BFFF 16 INTC

0xFFF4_C000 0xFFF4_FFFF 16 FEC

0xFFF5_0000 0xFFF8_FFFF 256 Reserved

0xFFF9_0000 0xFFF9_3FFF 16 DSPI_0

0xFFF9_4000 0xFFF9_7FFF 16 DSPI_1

0xFFF9_8000 0xFFF9_BFFF 16 DSPI_2

0xFFF9_C000 0xFFF9_FFFF 16 DSPI_3

0xFFFA_0000 0xFFFA_3FFF 16 DSPI_4

0xFFFA_4000 0xFFFA_7FFF 16 DSPI_5

0xFFFA_8000 0xFFFA_BFFF 16 DSPI_6

0xFFFA_C000 0xFFFA_FFFF 16 DSPI_7

0xFFFB_0000 0xFFFB_3FFF 16 LINFlexD_8

0xFFFB_4000 0xFFFB_7FFF 16 LINFlexD_9

0xFFFB_8000 0xFFFB_FFFF 32 Reserved

0xFFFC_0000 0xFFFC_3FFF 16 FlexCAN_0

0xFFFC_4000 0xFFFC_7FFF 16 FlexCAN_1

0xFFFC_8000 0xFFFC_BFFF 16 FlexCAN_2

0xFFFC_C000 0xFFFC_FFFF 16 FlexCAN_3

0xFFFD_0000 0xFFFD_3FFF 16 FlexCAN_4

0xFFFD_4000 0xFFFD_7FFF 16 FlexCAN_5

0xFFFD_8000 0xFFFD_BFFF 16 Reserved

0xFFFD_C000 0xFFFD_FFFF 16 DMA_MUX

0xFFFE_0000 0xFFFE_3FFF 16 FlexRay

Table 3-1. MPC5646C memory map (continued)

Start address End address Size (KB) Region name

Chapter 3 Memory Map

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 53

0xFFFE_4000 0xFFFF_BFFF 96 Reserved

0xFFFF_C000 0xFFFF_FFFF 16 BAM

Table 3-1. MPC5646C memory map (continued)

Start address End address Size (KB) Region name

Chapter 3 Memory Map

MPC5646C Microcontroller Reference Manual, Rev. 5

54 Freescale Semiconductor

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 55

Chapter 4
Signal Description

4.1 Package pinouts
The following figures show the location of the signals on the available device packages.

For more information on pin multiplexing on this device, see Table 4-1 through Table 4-3.

Figure 4-1. 176-pin LQFP configuration

176 LQFP
Top view

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

17
6

17
5

17
4

17
3

17
2

17
1

17
0

16
9

16
8

16
7

16
6

16
5

16
4

16
3

16
2

16
1

16
0

15
9

15
8

15
7

15
6

15
5

15
4

15
3

15
2

15
1

15
0

14
9

14
8

14
7

14
6

14
5

14
4

14
3

14
2

14
1

14
0

13
9

13
8

13
7

13
6

13
5

13
4

13
3

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100

99
98
97
96
95
94
93
92
91
90
89

P
B

[2
]

P
C

[8
]

P
C

[1
3]

P
C

[1
2]

P
I[0

]
P

I[1
]

P
I[2

]
P

I[3
]

P
E

[7
]

P
E

[6
]

P
H

[8
]

P
H

[7
]

P
H

[6
]

P
H

[5
]

P
H

[4
]

P
E

[5
]

P
E

[4
]

P
C

[4
]

P
C

[5
]

P
E

[3
]

P
E

[2
]

P
H

[9
]

P
C

[0
]

V
S

S_
LV

V
D

D
_L

V
V

D
D

_H
V

_A
V

S
S_

H
V

P
C

[1
]

P
H

[1
0]

PA
[6

]
PA

[5
]

P
C

[2
]

P
C

[3
]

P
I[4

]
P

I[5
]

P
H

[1
2]

P
H

[1
1]

P
G

[1
1]

P
G

[1
0]

P
E

[1
5]

P
E

[1
4]

P
G

[1
5]

P
G

[1
4]

P
E

[1
2]

P
C

[7
]

PF
[1

0]
P

F[
11

]
PA

[1
5]

PF
[1

3]
PA

[1
4]

PA
[4

]
PA

[1
3]

PA
[1

2]
VD

D
_L

V
V

SS
_L

V
XT

AL
V

S
S_

H
V

E
XT

AL
V

D
D

_H
V

_A
P

B[
9]

P
B[

8]
P

B[
10

]
P

F[
0]

P
F[

1]
P

F[
2]

P
F[

3]
P

F[
4]

P
F[

5]
P

F[
6]

P
F[

7]
P

J[
3]

P
J[

2]
P

J[
1]

P
J[

0]
PI

[1
5]

PI
[1

4]
P

D
[0

]
P

D
[1

]
P

D
[2

]
P

D
[3

]
P

D
[4

]
P

D
[5

]
P

D
[6

]
P

D
[7

]
V

D
D

_H
V

_A
V

S
S_

H
V

P
D

[8
]

P
B[

4]

PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
PE[13]
PF[14]
PF[15]
VDD_HV_B
VSS_HV
PG[0]
PG[1]
PH[3]
PH[2]
PH[1]
PH[0]
PG[12]
PG[13]
PA[3]
PI[13]
PI[12]
PI[11]
VDD_LV
VSS_LV
PI[8]
PB[15]
PD[15]
PB[14]
PD[14]
PB[13]
PD[13]
PB[12]
PD[12]
VDD_HV_ADC1
VSS_HV_ADC1
PB[11]
PD[11]
PD[10]
PD[9]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC0
VSS_HV_ADC0

PB[3]
PC[9]

PC[14]
PC[15]

PJ[4]
VDD_HV_A

VSS_HV
PH[15]
PH[13]
PH[14]

PI[6]
PI[7]

PG[5]
PG[4]
PG[3]
PG[2]
PA[2]
PE[0]
PA[1]
PE[1]
PE[8]
PE[9]

PE[10]
PA[0]

PE[11]
VSS_HV

VDD_HV_A
VSS_HV

RESET
VSS_LV
VDD_LV

VRC_CTRL
PG[9]
PG[8]

PC[11]
PC[10]
PG[7]
PG[6]
PB[0]
PB[1]
PF[9]
PF[8]

PF[12]
PC[6]

NOTE
1) VDD_HV_B supplies the IO voltage domain for the
pins PE[12], PA[11], PA[10], PA[9], PA[8], PA[7],
PE[13], PF[14], PF[15], PG[0], PG[1], PH[3], PH[2],
PH[1], PH[0], PG[12], PG[13], and PA[3].

2)Availability of port pin
alternate functions depends

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

56 Freescale Semiconductor

Figure 4-2. 208-pin LQFP configuration

208 LQFP
Top view

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

20
8

20
7

20
6

20
5

20
4

20
3

20
2

20
1

20
0

19
9

19
8

19
7

19
6

19
5

19
4

19
3

19
2

19
1

19
0

18
9

18
8

18
7

18
6

18
5

18
4

18
3

18
2

18
1

18
0

17
9

17
8

17
7

17
6

17
5

17
4

17
3

17
2

17
1

17
0

16
9

16
8

16
7

16
6

16
5

16
4

16
3

16
2

16
1

16
0

15
9

15
8

15
7

156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
10553 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10

0
10

1
10

2
10

3
10

4

PB[3]
PC[9]

PC[14]
PC[15]

PJ[4]
VDD_HV_A

VSS_HV
PH[15]
PH[13]
PH[14]

P[I6]
P[I7]

PG[5]
PG[4]
PG[3]
PG[2]
PA[2]
PE[0]
PA[1]
PE[1]
PE[8]
PE[9]

PE[10]
PA[0]

PE[11]
VSS_HV

VDD_HV_A
VSS_HV

RESET
VSS_LV
VDD_LV

VRC_CTRL
PG[9]
PG[8]

PC[11]
PC[10]
PG[7]
PG[6]
PB[0]
PB[1]
PK[1]
PK[2]
PK[3]
PK[4]
PK[5]
PK[6]
PK[7]
PK[8]
PF[9]
PF[8]

PF[12]
PC[6]

PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
PE[13]
PF[14]
PF[15]
VDD_HV_B
VSS_HV
PG[0]
PG[1]
PH[3]
PH[2]
PH[1]
PH[0]
PG[12]
PG[13]
PA[3]
PI[13]
PI[12]
PI[11]
PI[10]
VDD_LV
VSS_LV
PI[9]
PI[8]
PB[15]
PD[15]
PB[14]
PD[14]
PB[13]
PD[13]
PB[12]
VDD_HV_A
VSS_HV
PD[12]
VDD_HV_ADC1
VSS_HV_ADC1
PB[11]
PD[11]
PD[10]
PD[9]
PJ[5]
PJ[6]
PJ[7]
PJ[8]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC0
VSS_HV_ADC0

P
C

[7
]

P
F

[1
0]

P
F

[1
1]

PA
[1

5]
P

F
[1

3]
PA

[1
4]

P
J[

12
]

P
J[

11
]

PA
[4

]
P

K
[0

]
P

J[
15

]
P

J[
14

]
P

J[
13

]
PA

[1
3]

P
J[

10
]

P
J[

9]
PA

[1
2]

V
D

D
_L

V
V

S
S

_L
V

X
TA

L
V

S
S

_H
V

E
X

TA
L

V
D

D
_H

V
_A

P
B

[9
]

P
B

[8
]

P
B

[1
0]

P
F

[0
]

P
F

[1
]

P
F

[2
]

P
F

[3
]

P
F

[4
]

P
F

[5
]

P
F

[6
]

P
F

[7
]

P
J[

3]
P

J[
2]

P
J[

1]
P

J[
0]

P
I[1

5]
P

I[1
4]

P
D

[0
]

P
D

[1
]

P
D

[2
]

P
D

[3
]

P
D

[4
]

P
D

[5
]

P
D

[6
]

P
D

[7
]

V
D

D
_H

V
_A

V
S

S
_H

V
P

D
[8

]
P

B
[4

]

P
B

[2
]

P
C

[8
]

P
C

[1
3]

P
C

[1
2]

P
L[

0]
P

K
[1

5]
P

K
[1

4]
P

K
[1

3]
P

K
[1

2]
P

K
[1

1]
P

K
[1

0]
P

K
[9

]
P

I[0
]

P
I[1

]
P

I[2
]

P
I[3

]
P

E
[7

]
P

E
[6

]
P

H
[8

]
P

H
[7

]
P

H
[6

]
P

H
[5

]
P

H
[4

]
P

E
[5

]
P

E
[4

]
P

C
[4

]
P

C
[5

]
P

E
[3

]
P

E
[2

]
P

H
[9

]
P

C
[0

]
V

S
S

_L
V

V
D

D
_L

V
V

D
D

_H
V

_A
V

S
S

_H
V

P
C

[1
]

P
H

[1
0]

PA
[6

]
PA

[5
]

P
C

[2
]

P
C

[3
]

P
I[4

]
P

I[5
]

P
H

[1
2]

P
H

[1
1]

P
G

[1
1]

P
G

[1
0]

P
E

[1
5]

P
E

[1
4]

P
G

[1
5]

P
G

[1
4]

P
E

[1
2]

NOTE
1) VDD_HV_B supplies the IO voltage domain for the pins PE[12], PA[11],
PA[10], PA[9], PA[8], PA[7], PE[13], PF[14], PF[15], PG[0], PG[1], PH[3],
PH[2], PH[1], PH[0], PG[12], PG[13], and PA[3].
2) Availability of port pin alternate functions depends on product selection.

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 57

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
PC[15] PB[2] PC[13] PI[1] PE[7] PH[8] PE[2] PE[4] PC[4] PE[3] PH[9] PI[4] PH[11] PE[14] PA[10] PG[11]

A

B
PH[13] PC[14] PC[8] PC[12] PI[3] PE[6] PH[5] PE[5] PC[5] PC[0] PC[2] PH[12] PG[10] PA[11] PA[9] PA[8]

B

C
PH[14] VDD_H

V_A
PC[9] PL[0] PI[0] PH[7] PH[6] VSS_LV VDD_H

V_A
PA[5] PC[3] PE[15] PG[14] PE[12] PA[7] PE[13]

C

D
PG[5] PI[6] PJ[4] PB[3] PK[15] PI[2] PH[4] VDD_LV PC[1] PH[10] PA[6] PI[5] PG[15] PF[14] PF[15] PH[2]

D

E
PG[3] PI[7] PH[15] PG[2] PG[0] PG[1] PH[0] VDD_H

V_A E

F
PA[2] PG[4] PA[1] PE[1] PH[1] PH[3] PG[12] PG[13]

F

G
PE[8] PE[0] PE[10] PA[0] VSS_HV VSS_HV VSS_HV VSS_HV VDD_H

V_B
PI[13] PI[12] PA[3]

G

H
PE[9] VDD_H

V_A
PE[11] PK[1] VSS_LV VSS_HV VSS_HV VSS_HV VDD_H

V_A
VDD_LV VSS_LV PI[11]

H

J
VSS_HV VRC_C

TRL
VDD_LV PG[9] VSS_LV VSS_LV VSS_HV VSS_HV PD[15] PI[8] PI[9] PI[10]

J

K
RESET VSS_LV PG[8] PC[11] VSS_LV VSS_LV VSS_LV VDD_LV PD[14] PD[13] PB[14] PB[15]

K

L
PC[10] PG[7] PB[0] PK[2] PD[12] PB[12] PB[13] VDD_H

V_ADC1 L

M
PG[6] PB[1] PK[4] PF[9] PB[11] PD[10] PD[11] VSS_HV

_ADC1 M

N
PK[3] PF[8] PC[6] PC[7] PJ[13] VDD_H

V_A
PB[10] PF[6] VDD_H

V_A
PJ[1] PD[2] PJ[5] PB[5] PB[6] PJ[6] PD[9]

N

P
PF[12] PF[10] PF[13] PA[14] PJ[9] PA[12] PF[0] PF[5] PF[7] PJ[3] PI[15] PD[4] PD[7] PD[8] PJ[8] PJ[7]

P

R
PF[11] PA[15] PJ[11] PJ[15] PA[13] PF[2] PF[3] PF[4] VDD_LV PJ[2] PJ[0] PD[0] PD[3] PD[6] VDD_H

V_ADC0
PB[7]

R

T
PJ[12] PA[4] PK[0] PJ[14] PJ[10] PF[1] XTAL EXTAL VSS_LV PB[9] PB[8] PI[14] PD[1] PD[5] VSS_HV

_ADC0
PB[4]

T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Notes:
1) VDD_HV_B supplies the IO voltage domain for the pins PE[12], PA[11], PA[10], PA[9], PA[8], PA[7], PE[13], PF[14], PF[15], PG[0],
PG[1], PH[3], PH[2], PH[1], PH[0], PG[12], PG[13], and PA[3].
2) Availability of port pin alternate functions depends on product selection.

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

58 Freescale Semiconductor

Figure 4-3. 256-pin BGA configuration

4.2 Pad configuration during reset phases
All pads have a fixed configuration under reset. During the power-up phase, all pads are forced to tristate.

After power-up phase, all pads are tristate with the following exceptions:

• PA[9] (FAB) is pull-down. Without external strong pull-up the device starts fetching from flash.

• PA[8], PC[0], PL[8], and PH[9:10] are in input weak pull-up when out of reset.

• RESET pad is driven low. This is released only after PHASE2 reset completion.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
PC[15] PB[2] PC[13] PI[1] PE[7] PH[8] PE[2] PE[4] PC[4] PE[3] PH[9] PI[4] PH[11] PE[14] PA[10] PG[11]

A

B
PH[13] PC[14] PC[8] PC[12] PI[3] PE[6] PH[5] PE[5] PC[5] PC[0] PC[2] PH[12] PG[10] PA[11] PA[9] PA[8]

B

C
PH[14] VDD_HV

_A
PC[9] PL[0] PI[0] PH[7] PH[6] VSS_LV VDD_HV

_A
PA[5] PC[3] PE[15] PG[14] PE[12] PA[7] PE[13]

C

D
PG[5] PI[6] PJ[4] PB[3] PK[15] PI[2] PH[4] VDD_LV PC[1] PH[10] PA[6] PI[5] PG[15] PF[14] PF[15] PH[2]

D

E
PG[3] PI[7] PH[15] PG[2] VDD_LV VSS_LV PK[10] PK[9] PM[1] PM[0] PL[15] PL[14] PG[0] PG[1] PH[0] VDD_HV

_A E

F
PA[2] PG[4] PA[1] PE[1] PL[2] PM[6] PL[1] PK[11] PM[5] PL[13] PL[12] PM[2] PH[1] PH[3] PG[12] PG[13]

F

G
PE[8] PE[0] PE[10] PA[0] PL[3] VSS_HV VSS_HV VSS_HV VSS_HV VSS_HV VSS_HV PK[12] VDD_HV

_B
PI[13] PI[12] PA[3]

G

H
PE[9] VDD_HV

_A
PE[11] PK[1] PL[4] VSS_LV VSS_LV VSS_HV VSS_HV VSS_HV VSS_HV PK[13] VDD_HV

_A
VDD_LV VSS_LV PI[11]

H

J
VSS_HV VRC_CT

RL
VDD_LV PG[9] PL[5] VSS_LV VSS_LV VSS_LV VSS_HV VSS_HV VSS_HV PK[14] PD[15] PI[8] PI[9] PI[10]

J

K
RESET VSS_LV PG[8] PC[11] PL[6] VSS_LV VSS_LV VSS_LV VSS_LV VDD_LV VDD_LV PM[3] PD[14] PD[13] PB[14] PB[15]

K

L
PC[10] PG[7] PB[0] PK[2] PL[7] VSS_LV VSS_LV VSS_LV VSS_LV VDD_LV VDD_LV PM[4] PD[12] PB[12] PB[13] VDD_HV

_ADC1 L

M
PG[6] PB[1] PK[4] PF[9] PK[5] PK[6] PK[7] PK[8] PL[8] PL[9] PL[10] PL[11] PB[11] PD[10] PD[11] VSS_HV_

ADC1 M

N
PK[3] PF[8] PC[6] PC[7] PJ[13] VDD_HV

_A
PB[10] PF[6] VDD_HV

_A
PJ[1] PD[2] PJ[5] PB[5] PB[6] PJ[6] PD[9]

N

P
PF[12] PF[10] PF[13] PA[14] PJ[9] PA[12] PF[0] PF[5] PF[7] PJ[3] PI[15] PD[4] PD[7] PD[8] PJ[8] PJ[7]

P

R
PF[11] PA[15] PJ[11] PJ[15] PA[13] PF[2] PF[3] PF[4] VDD_LV PJ[2] PJ[0] PD[0] PD[3] PD[6] VDD_HV

_ADC0
PB[7]

R

T
PJ[12] PA[4] PK[0] PJ[14] PJ[10] PF[1] XTAL EXTAL VSS_LV PB[9] PB[8] PI[14] PD[1] PD[5] VSS_HV_

ADC0
PB[4]

T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Notes:
1) VDD_HV_B supplies the IO voltage domain for the pins PE[12], PA[11], PA[10], PA[9], PA[8], PA[7], PE[13], PF[14], PF[15], PG[0],
PG[1], PH[3], PH[2], PH[1], PH[0], PG[12], PG[13], PA[3], PM[3], and PM[4].
2)Availability of port pin alternate functions depends on product selection.

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 59

4.3 Pad configuration during standby mode exit
During standby mode exit, all pads are configured as reset mode exit with the exception of low power
wakeup pads (PA[0, 1, 2, 4, 15], PB[1, 3, 8, 9, 10], PC[7, 9, 11], PD[0, 1], PE[0, 3, 5, 9, 11], PF[9, 11, 13],

PG[3, 5, 7, 21], PI[1, 3], and PJ[13]1, which will be configured according to their respective configuration
done in wakeup module.

4.4 Voltage supply pins
Voltage supply pins are used to provide power to the device. Two dedicated pins are used for 1.2 V
regulator stabilization.

1.PJ[13] is not available on 176 pin package. However, it should be configured with weak pull device to minimize
leakage. See the WKPU chapter for details.

Table 4-1. Voltage supply pin descriptions

Port pin Function
Pin number

176 LQFP 208 LQFP 256 MAPBGA

VDD_HV_A Digital supply voltage for
I/O domain A

6, 27, 59, 85,
151

6, 27, 75, 101,
122, 175

C2, C9, H2, N6,
N9, H13, E16

VDD_HV_B Digital supply voltage for
I/O domain B

124 148 G13

VSS_HV Digital ground 7, 26, 28, 57, 86,
123, 150

7, 26, 28, 73,
102, 121, 147,
174

G6, G7, G8, G9,
G10, G11, H8,
H9, H10, H11, J1,
J9, J10, J11

VDD_LV1 1.2 V supply pins 31, 54, 110, 152 31, 70, 133, 176 J3, E5, D8, H14,
K10, K11, L10,
L11, R9

VSS_LV1 1.2 V supply pins 30, 55, 109, 153 30, 71, 132, 177 K2, C8, E6, H6,
H7, J6, K6, L6,
J7, K7, L7, J8,
K8, L8, K9, L9,
H15, T9

VRC_CTRL2 Base control voltage for
external NPN device

32 32 J2

VSS_HV_ADC
0

Reference ground and
analog ground for the A/D

converter 0 (10 bit)

89 105 T15

VDD_HV_ADC
0

Reference voltage and
analog supply for the A/D

converter 0 (10 bit)

90 106 R15

VSS_HV_ADC
1

Reference ground and
analog ground for the A/D

converter 1 (12 bit)

98 118 M16

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

60 Freescale Semiconductor

4.5 Pad types
In the device the following types of pads are available for system pins and functional port pins:

S = Slow1

M = Medium1, 2

F = Fast1, 2

I = Input only with analog feature1

A = Analog

4.6 System pins
The system pins are listed in Table 4-2.

VDD_HV_ADC
1

Reference voltage and
analog supply for the A/D

converter 1 (12-bit)

99 119 L16

1 Decoupling capacitor must be connected between each VDD_LV/VSS_LV supply pair to ensure
stable voltage.

2 This voltage is generated by the device and no external voltage should be supplied.

1. See the I/O pad electrical characteristics in the device data sheet for details.
2. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium. For example,
Fast/Medium pad will be Medium by default at reset. Similarly, Slow/Medium pad will be Slow by default. Only exception is PC[1]
which is in medium configuration by default (refer to PCR.SRC in the reference manual, Pad Configuration Registers
(PCR0—PCR198)).

Table 4-2. System pin descriptions

Port pin Function
I/O

direction
Pad
type

RESET
config.

Pin number
17

6
L

Q
F

P

20
8

L
Q

F
P

25
6

M
A

P
B

G
A

RESET Bidirectional reset with Schmitt-Trigger
characteristics and noise filter.

I/O M Input, weak
pull-up only
after
PHASE2

29 29 K1

EXTAL Analog input of the oscillator amplifier
circuit. Needs to be grounded if oscillator
bypass mode is used.

I A1 — 58 74 T8

Table 4-1. Voltage supply pin descriptions (continued)

Port pin Function
Pin number

176 LQFP 208 LQFP 256 MAPBGA

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 61

4.7 Functional ports
The functional port pins are listed in Table 4-3.

XTAL Analog output of the oscillator amplifier
circuit, when the oscillator is not in bypass
mode.
Analog input for the clock generator when
the oscillator is in bypass mode.

I/O A1 — 56 72 T7

1 For analog pads, it is not recommended to enable IBE if APC is enabled to avoid extra current in middle range
voltage.

Table 4-3. Functional port pin descriptions

Port
pin

PCR

A
lt

er
n

at
e

fu
n

ct
io

n
1

Function

P
er

ip
h

er
al

I/O
d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
co

n
fi

g
.

Pin number

17
6

L
Q

F
P

20
8

L
Q

F
P

25
6

M
A

P
B

G
A

PA[0] PCR[0] AF0
AF1
AF2
AF3
—
—

GPIO[0]
E0UC[0]
CLKOUT
E0UC[13]
WKPU[19]
CAN1RX

SIUL
eMIOS_0
MC_CGM
eMIOS_0

WKPU
FlexCAN_1

I/O
I/O
O
I/O
I
I

M/S Tristate 24 24 G4

PA[1] PCR[1] AF0
AF1
AF2
AF3
—
—
—

GPIO[1]
E0UC[1]

—
—

WKPU[2]
CAN3RX
NMI[0]3

SIUL
eMIOS_0

—
—

WKPU
FlexCAN_3

WKPU

I/O
I/O
—
—
I
I
I

S Tristate 19 19 F3

PA[2] PCR[2] AF0
AF1
AF2
AF3
—
—

GPIO[2]
E0UC[2]

—
MA[2]

WKPU[3]
NMI[1]3

SIUL
eMIOS_0

—
ADC_0
WKPU
WKPU

I/O
I/O
—
O
I
I

S Tristate 17 17 F1

Table 4-2. System pin descriptions (continued)

Port pin Function
I/O

direction
Pad
type

RESET
config.

Pin number

17
6

L
Q

F
P

20
8

L
Q

F
P

25
6

M
A

P
B

G
A

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

62 Freescale Semiconductor

PA[3] PCR[3] AF0
AF1
AF2
AF3
—
—
—

GPIO[3]
E0UC[3]
LIN5TX
CS4_1

RX_ER_CLK
EIRQ[0]

ADC1_S[0]

SIUL
eMIOS_0

LINFlexD_5
DSPI_1

FEC
SIUL

ADC_1

I/O
I/O
O
O
I
I
I

M/S Tristate 114 138 G16

PA[4] PCR[4] AF0
AF1
AF2
AF3
—
—

GPIO[4]
E0UC[4]

—
CS0_1
LIN5RX

WKPU[9]

SIUL
eMIOS_0

—
DSPI_1

LINFlexD_5
WKPU

I/O
I/O
—
I/O
I
I

S Tristate 51 61 T2

PA[5] PCR[5] AF0
AF1
AF2

GPIO[5]
E0UC[5]
LIN4TX

SIUL
eMIOS_0

LINFlexD_4

I/O
I/O
O

M/S Tristate 146 170 C10

PA[6] PCR[6] AF0
AF1
AF2
AF3
—
—

GPIO[6]
E0UC[6]

—
CS1_1
LIN4RX
EIRQ[1]

SIUL
eMIOS_0

—
DSPI_1

LINFlexD_4
SIUL

I/O
I/O
—
O
I
I

S Tristate 147 171 D11

PA[7] PCR[7] AF0
AF1
AF2
AF3
—
—
—

GPIO[7]
E0UC[7]
LIN3TX

—
RXD[2]
EIRQ[2]

ADC1_S[1]

SIUL
eMIOS_0

LINFlexD_3
—

FEC
SIUL

ADC_1

I/O
I/O
O
—
I
I
I

M/S Tristate 128 152 C15

PA[8] PCR[8] AF0
AF1
AF2
AF3
—
—
—
—

GPIO[8]
E0UC[8]

E0UC[14]
—

RXD[1]
EIRQ[3]
ABS[0]
LIN3RX

SIUL
eMIOS_0
eMIOS_0

—
FEC
SIUL

MC_RGM
LINFlexD_3

I/O
I/O
I/O
—
I
I
I
I

M/S Input,
weak

pull-up

129 153 B16

PA[9] PCR[9] AF0
AF1
AF2
AF3
—
—

GPIO[9]
E0UC[9]

—
CS2_1
RXD[0]

FAB

SIUL
eMIOS_0

—
DSPI1
FEC

MC_RGM

I/O
I/O
—
O
I
I

M/S Pull-
down

130 154 B15

Table 4-3. Functional port pin descriptions (continued)

Port
pin

PCR

A
lt

er
n

at
e

fu
n

ct
io

n
1

Function

P
er

ip
h

er
al

I/O
d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
co

n
fi

g
.

Pin number

17
6

L
Q

F
P

20
8

L
Q

F
P

25
6

M
A

P
B

G
A

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 63

PA[10] PCR[10] AF0
AF1
AF2
AF3
—
—
—

GPIO[10]
E0UC[10]

SDA
LIN2TX

COL
ADC1_S[2]

SIN_1

SIUL
eMIOS_0

I2C
LINFlexD_2

FEC
ADC_1
DSPI_1

I/O
I/O
I/O
O
I
I
I

M/S Tristate 131 155 A15

PA[11] PCR[11] AF0
AF1
AF2
AF3
—
—
—
—

GPIO[11]
E0UC[11]

SCL
—

RX_ER
EIRQ[16]
LIN2RX

ADC1_S[3]

SIUL
eMIOS_0

I2C
—

FEC
SIUL

LINFlexD_2
ADC_1

I/O
I/O
I/O
—
I
I
I
I

M/S Tristate 132 156 B14

PA[12] PCR[12] AF0
AF1
AF2
AF3
—
—

GPIO[12]
—

E0UC[28]
CS3_1

EIRQ[17]
SIN_0

SIUL
—

eMIOS_0
DSPI1
SIUL

DSPI_0

I/O
—
I/O
O
I
I

S Tristate 53 69 P6

PA[13] PCR[13] AF0
AF1
AF2
AF3

GPIO[13]
SOUT_0
E0UC[29]

—

SIUL
DSPI_0

eMIOS_0
—

I/O
O
I/O
—

M/S Tristate 52 66 R5

PA[14] PCR[14] AF0
AF1
AF2
AF3
—

GPIO[14]
SCK_0
CS0_0

E0UC[0]
EIRQ[4]

SIUL
DSPI_0
DSPI_0

eMIOS_0
SIUL

I/O
I/O
I/O
I/O
I

M/S Tristate 50 58 P4

PA[15] PCR[15] AF0
AF1
AF2
AF3
—

GPIO[15]
CS0_0
SCK_0

E0UC[1]
WKPU[10]

SIUL
DSPI_0
DSPI_0

eMIOS_0
WKPU

I/O
I/O
I/O
I/O
I

M/S Tristate 48 56 R2

PB[0] PCR[16] AF0
AF1
AF2
AF3

GPIO[16]
CAN0TX
E0UC[30]
LIN0TX

SIUL
FlexCAN_0
eMIOS_0

LINFlexD_0

I/O
O
I/O
I

M/S Tristate 39 39 L3

Table 4-3. Functional port pin descriptions (continued)

Port
pin

PCR

A
lt

er
n

at
e

fu
n

ct
io

n
1

Function

P
er

ip
h

er
al

I/O
d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
co

n
fi

g
.

Pin number

17
6

L
Q

F
P

20
8

L
Q

F
P

25
6

M
A

P
B

G
A

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

64 Freescale Semiconductor

PB[1] PCR[17] AF0
AF1
AF2
—
—
—

GPIO[17]
—

E0UC[31]
LIN0RX

WKPU[4]
CAN0RX

SIUL
—

eMIOS_0
LINFlexD_0

WKPU
FlexCAN_0

I/O
—
I/O
I
I
I

S Tristate 40 40 M2

PB[2] PCR[18] AF0
AF1
AF2
AF3

GPIO[18]
LIN0TX

SDA
E0UC[30]

SIUL
LINFlexD_0

I2C
eMIOS_0

I/O
O
I/O
I/O

M/S Tristate 176 208 A2

PB[3] PCR[19] AF0
AF1
AF2
AF3
—
—

GPIO[19]
E0UC[31]

SCL
—

WKPU[11]
LIN0RX

SIUL
eMIOS_0

I2C
—

WKPU
LINFlexD_0

I/O
I/O
I/O
—
I
I

S Tristate 1 1 D4

PB[4] PCR[20] AF0
AF1
AF2
AF3
—
—

GPI[20]
—
—
—

ADC0_P[0]
ADC1_P[0]

SIUL
—
—
—

ADC_0
ADC_1

I
—
—
—
I
I

I Tristate 88 104 T16

PB[5] PCR[21] AF0
AF1
AF2
AF3
—
—

GPI[21]
—
—
—

ADC0_P[1]
ADC1_P[1]

SIUL
—
—
—

ADC_0
ADC_1

I
—
—
—
I
I

I Tristate 91 107 N13

PB[6] PCR[22] AF0
AF1
AF2
AF3
—
—

GPI[22]
—
—
—

ADC0_P[2]
ADC1_P[2]

SIUL
—
—
—

ADC_0
ADC_1

I
—
—
—
I
I

I Tristate 92 108 N14

PB[7] PCR[23] AF0
AF1
AF2
AF3
—
—

GPI[23]
—
—
—

ADC0_P[3]
ADC1_P[3]

SIUL
—
—
—

ADC_0
ADC_1

I
—
—
—
I
I

I Tristate 93 109 R16

Table 4-3. Functional port pin descriptions (continued)

Port
pin

PCR

A
lt

er
n

at
e

fu
n

ct
io

n
1

Function

P
er

ip
h

er
al

I/O
d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
co

n
fi

g
.

Pin number

17
6

L
Q

F
P

20
8

L
Q

F
P

25
6

M
A

P
B

G
A

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 65

PB[8] PCR[24] AF0
AF1
AF2
AF3
—
—
—
—

GPI[24]
—
—
—

ADC0_S[0]
ADC1_S[4]
WKPU[25]

OSC32k_XTAL4

SIUL
—
—
—

ADC_0
ADC_1
WKPU
SXOSC

I
—
—
—
I
I
I
I

I — 61 77 T11

PB[9]5 PCR[25] AF0
AF1
AF2
AF3
—
—
—
—

GPI[25]
—
—
—

ADC0_S[1]
ADC1_S[5]
WKPU[26]

OSC32k_EXTAL
4

SIUL
—
—
—

ADC_0
ADC_1
WKPU
SXOSC

I
—
—
—
I
I
I
I

I — 60 76 T10

PB[10] PCR[26] AF0
AF1
AF2
AF3
—
—
—

GPIO[26]
SOUT_1
CAN3TX

—
ADC0_S[2]
ADC1_S[6]
WKPU[8]

SIUL
DSPI_1

FlexCAN_3
—

ADC_0
ADC_1
WKPU

I/O
O
—
—
I
I
I

S Tristate 62 78 N7

PB[11] PCR[27] AF0
AF1
AF2
AF3
—

GPIO[27]
E0UC[3]

—
CS0_0

ADC0_S[3]

SIUL
eMIOS_0

—
DSPI_0
ADC_0

I/O
I/O
—
I/O
I

S Tristate 97 117 M13

PB[12] PCR[28] AF0
AF1
AF2
AF3
—

GPIO[28]
E0UC[4]

—
CS1_0

ADC0_X[0]

SIUL
eMIOS_0

—
DSPI_0
ADC_0

I/O
I/O
—
O
I

S Tristate 101 123 L14

PB[13] PCR[29] AF0
AF1
AF2
AF3
—

GPIO[29]
E0UC[5]

—
CS2_0

ADC0_X[1]

SIUL
eMIOS_0

—
DSPI_0
ADC_0

I/O
I/O
—
O
I

S Tristate 103 125 L15

PB[14] PCR[30] AF0
AF1
AF2
AF3
—

GPIO[30]
E0UC[6]

—
CS3_0

ADC0_X[2]

SIUL
eMIOS_0

—
DSPI_0
ADC_0

I/O
I/O
—
O
I

S Tristate 105 127 K15

Table 4-3. Functional port pin descriptions (continued)

Port
pin

PCR

A
lt

er
n

at
e

fu
n

ct
io

n
1

Function

P
er

ip
h

er
al

I/O
d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
co

n
fi

g
.

Pin number

17
6

L
Q

F
P

20
8

L
Q

F
P

25
6

M
A

P
B

G
A

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

66 Freescale Semiconductor

PB[15] PCR[31] AF0
AF1
AF2
AF3
—

GPIO[31]
E0UC[7]

—
CS4_0

ADC0_X[3]

SIUL
eMIOS_0

—
DSPI_0
ADC_0

I/O
I/O
—
O
I

S Tristate 107 129 K16

PC[0]6 PCR[32] AF0
AF1
AF2
AF3

GPIO[32]
—

TDI
—

SIUL
—

JTAGC
—

I/O
—
I

—

M/S Input,
weak

pull-up

154 178 B10

PC[1]6 PCR[33] AF0
AF1
AF2
AF3

GPIO[33]
—

TDO
—

SIUL
—

JTAGC
—

I/O
—
O
—

F/M Tristate 149 173 D9

PC[2] PCR[34] AF0
AF1
AF2
AF3
—

GPIO[34]
SCK_1

CAN4TX
—

EIRQ[5]

SIUL
DSPI_1

FlexCAN_4
—

SIUL

I/O
I/O
O
—
I

M/S Tristate 145 169 B11

PC[3] PCR[35] AF0
AF1
AF2
AF3
—
—
—

GPIO[35]
CS0_1
MA[0]

—
CAN1RX
CAN4RX
EIRQ[6]

SIUL
DSPI_1
ADC_0

—
FlexCAN_1
FlexCAN_4

SIUL

I/O
I/O
O

I
I
I

S Tristate 144 168 C11

PC[4] PCR[36] AF0
AF1
AF2
AF3
ALT4

—
—
—

GPIO[36]
E1UC[31]

—

FR_B_TX_EN
SIN_1

CAN3RX
EIRQ[18]

SIUL
eMIOS_1

—

Flexray
DSPI_1

FlexCAN_3
SIUL

I/O
I/O
—

O
I
I
I

M/S Tristate 159 183 A9

PC[5] PCR[37] AF0
AF1
AF2
AF3
ALT4

—

GPIO[37]
SOUT_1
CAN3TX

—
FR_A_TX
EIRQ[7]

SIUL
DSPI_1

FlexCAN_3
—

Flexray
SIUL

I/O
O
O
—
O
I

M/S Tristate 158 182 B9

PC[6] PCR[38] AF0
AF1
AF2
AF3

GPIO[38]
LIN1TX

E1UC[28]
—

SIUL
LINFlexD_1
eMIOS_1

—

I/O
O
I/O
—

S Tristate 44 52 N3

Table 4-3. Functional port pin descriptions (continued)

Port
pin

PCR

A
lt

er
n

at
e

fu
n

ct
io

n
1

Function

P
er

ip
h

er
al

I/O
d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
co

n
fi

g
.

Pin number

17
6

L
Q

F
P

20
8

L
Q

F
P

25
6

M
A

P
B

G
A

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 67

PC[7] PCR[39] AF0
AF1
AF2
AF3
—
—

GPIO[39]
—

E1UC[29]
—

LIN1RX
WKPU[12]

SIUL
—

eMIOS_1
—

LINFlexD_1
WKPU

I/O
—
I/O
—
I
I

S Tristate 45 53 N4

PC[8] PCR[40] AF0
AF1
AF2
AF3

GPIO[40]
LIN2TX
E0UC[3]

—

SIUL
LINFlexD_2
eMIOS_0

—

I/O
O
I/O
—

S Tristate 175 207 B3

PC[9] PCR[41] AF0
AF1
AF2
AF3
—
—

GPIO[41]
—

E0UC[7]
—

LIN2RX
WKPU[13]

SIUL
—

eMIOS_0
—

LINFlexD_2
WKPU

I/O
—
I/O
—
I
I

S Tristate 2 2 C3

PC[10] PCR[42] AF0
AF1
AF2
AF3

GPIO[42]
CAN1TX
CAN4TX

MA[1]

SIUL
FlexCAN_1
FlexCAN_4

ADC_0

I/O
O
O
O

M/S Tristate 36 36 L1

PC[11] PCR[43] AF0
AF1
AF2
AF3
—
—
—

GPIO[43]
—
—

MA[2]
CAN1RX
CAN4RX
WKPU[5]

SIUL
—
—

ADC_0
FlexCAN_1
FlexCAN_4

WKPU

I/O
—
—
O
I
I
I

S Tristate 35 35 K4

PC[12] PCR[44] AF0
AF1
AF2
AF3
ALT4

—
—

GPIO[44]
E0UC[12]

—
—

FR_DBG[0]
SIN_2

EIRQ[19]

SIUL
eMIOS_0

—
—

Flexray
DSPI_2

SIUL

I/O
I/O
—
—
O
I
I

M/S Tristate 173 205 B4

PC[13] PCR[45] AF0
AF1
AF2
AF3
ALT4

GPIO[45]
E0UC[13]
SOUT_2

—
FR_DBG[1]

SIUL
eMIOS_0
DSPI_2

—
Flexray

I/O
I/O
O
—
O

M/S Tristate 174 206 A3

Table 4-3. Functional port pin descriptions (continued)

Port
pin

PCR

A
lt

er
n

at
e

fu
n

ct
io

n
1

Function

P
er

ip
h

er
al

I/O
d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
co

n
fi

g
.

Pin number

17
6

L
Q

F
P

20
8

L
Q

F
P

25
6

M
A

P
B

G
A

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

68 Freescale Semiconductor

PC[14] PCR[46] AF0
AF1
AF2
AF3
ALT4

—

GPIO[46]
E0UC[14]

SCK_2
—

FR_DBG[2]
EIRQ[8]

SIUL
eMIOS_0
DSPI_2

—
Flexray
SIUL

I/O
I/O
I/O
—
O
I

M/S Tristate 3 3 B2

PC[15] PCR[47] AF0
AF1
AF2
AF3
ALT4

GPIO[47]
E0UC[15]

CS0_2
—

FR_DBG[3]
EIRQ[20]

SIUL
eMIOS_0
DSPI_2

—
Flexray
SIUL

I/O
I/O
I/O
—
O
I

M/S Tristate 4 4 A1

PD[0] PCR[48] AF0
AF1
AF2
AF3
—
—
—

GPI[48]
—
—
—

ADC0_P[4]
ADC1_P[4]
WKPU[27]

SIUL
—
—
—

ADC_0
ADC_1
WKPU

I
—
—
—
I
I
I

I Tristate 77 93 R12

PD[1] PCR[49] AF0
AF1
AF2
AF3
—
—
—

GPI[49]
—
—
—

ADC0_P[5]
ADC1_P[5]
WKPU[28]

SIUL
—
—
—

ADC_0
ADC_1
WKPU

I
—
—
—
I
I
I

I Tristate 78 94 T13

PD[2] PCR[50] AF0
AF1
AF2
AF3
—
—

GPI[50]
—
—
—

ADC0_P[6]
ADC1_P[6]

SIUL
—
—
—

ADC_0
ADC_1

I
—
—
—
I
I

I Tristate 79 95 N11

PD[3] PCR[51] AF0
AF1
AF2
AF3
—
—

GPI[51]
—
—
—

ADC0_P[7]
ADC1_P[7]

SIUL
—
—
—

ADC_0
ADC_1

I
—
—
—
I
I

I Tristate 80 96 R13

PD[4] PCR[52] AF0
AF1
AF2
AF3
—
—

GPI[52]
—
—
—

ADC0_P[8]
ADC1_P[8]

SIUL
—
—
—

ADC_0
ADC_1

I
—
—
—
I
I

I Tristate 81 97 P12

Table 4-3. Functional port pin descriptions (continued)

Port
pin

PCR

A
lt

er
n

at
e

fu
n

ct
io

n
1

Function

P
er

ip
h

er
al

I/O
d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
co

n
fi

g
.

Pin number

17
6

L
Q

F
P

20
8

L
Q

F
P

25
6

M
A

P
B

G
A

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 69

PD[5] PCR[53] AF0
AF1
AF2
AF3
—
—

GPI[53]
—
—
—

ADC0_P[9]
ADC1_P[9]

SIUL
—
—
—

ADC_0
ADC_1

I
—
—
—
I
I

I Tristate 82 98 T14

PD[6] PCR[54] AF0
AF1
AF2
AF3
—
—

GPI[54]
—
—
—

ADC0_P[10]
ADC1_P[10]

SIUL
—
—
—

ADC_0
ADC_1

I
—
—
—
I
I

I Tristate 83 99 R14

PD[7] PCR[55] AF0
AF1
AF2
AF3
—
—

GPI[55]
—
—
—

ADC0_P[11]
ADC1_P[11]

SIUL
—
—
—

ADC_0
ADC_1

I
—
—
—
I
I

I Tristate 84 100 P13

PD[8] PCR[56] AF0
AF1
AF2
AF3
—
—

GPI[56]
—
—
—

ADC0_P[12]
ADC1_P[12]

SIUL
—
—
—

ADC_0
ADC_1

I
—
—
—
I
I

I Tristate 87 103 P14

PD[9] PCR[57] AF0
AF1
AF2
AF3
—
—

GPI[57]
—
—
—

ADC0_P[13]
ADC1_P[13]

SIUL
—
—
—

ADC_0
ADC_1

I
—
—
—
I
I

I Tristate 94 114 N16

PD[10] PCR[58] AF0
AF1
AF2
AF3
—
—

GPI[58]
—
—
—

ADC0_P[14]
ADC1_P[14]

SIUL
—
—
—

ADC_0
ADC_1

I
—
—
—
I
I

I Tristate 95 115 M14

PD[11] PCR[59] AF0
AF1
AF2
AF3
—
—

GPI[59]
—
—
—

ADC0_P[15]
ADC1_P[15]

SIUL
—
—
—

ADC_0
ADC_1

I
—
—
—
I
I

I Tristate 96 116 M15

Table 4-3. Functional port pin descriptions (continued)

Port
pin

PCR

A
lt

er
n

at
e

fu
n

ct
io

n
1

Function

P
er

ip
h

er
al

I/O
d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
co

n
fi

g
.

Pin number

17
6

L
Q

F
P

20
8

L
Q

F
P

25
6

M
A

P
B

G
A

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

70 Freescale Semiconductor

PD[12] PCR[60] AF0
AF1
AF2
AF3
—

GPIO[60]
CS5_0

E0UC[24]
—

ADC0_S[4]

SIUL
DSPI_0

eMIOS_0
—

ADC_0

I/O
O
I/O
—
I

S Tristate 100 120 L13

PD[13] PCR[61] AF0
AF1
AF2
AF3
—

GPIO[61]
CS0_1

E0UC[25]
—

ADC0_S[5]

SIUL
DSPI_1

eMIOS_0
—

ADC_0

I/O
I/O
I/O
—
I

S Tristate 102 124 K14

PD[14] PCR[62] AF0
AF1
AF2
AF3
ALT4

—

GPIO[62]
CS1_1

E0UC[26]
—

FR_DBG[0]
ADC0_S[6]

SIUL
DSPI_1

eMIOS_0
—

Flexray
ADC_0

I/O
O
I/O
—
O
I

S Tristate 104 126 K13

PD[15] PCR[63] AF0
AF1
AF2
AF3
ALT4

—

GPIO[63]
CS2_1

E0UC[27]
—

FR_DBG[1]
ADC0_S[7]

SIUL
DSPI_1

eMIOS_0
—

Flexray
ADC_0

I/O
O
I/O
—
O
I

S Tristate 106 128 J13

PE[0] PCR[64] AF0
AF1
AF2
AF3
—
—

GPIO[64]
E0UC[16]

—
—

CAN5RX
WKPU[6]

SIUL
eMIOS_0

—
—

FlexCAN_5
WKPU

I/O
I/O
—
—
I
I

S Tristate 18 18 G2

PE[1] PCR[65] AF0
AF1
AF2
AF3

GPIO[65]
E0UC[17]
CAN5TX

—

SIUL
eMIOS_0

FlexCAN_5
—

I/O
I/O
O
—

M/S Tristate 20 20 F4

PE[2] PCR[66] AF0
AF1
AF2
AF3
ALT4

—
—

GPIO[66]
E0UC[18]

—
—

FR_A_TX_EN
SIN_1

EIRQ[21]

SIUL
eMIOS_0

—
—

Flexray
DSPI_1

SIUL

I/O
I/O
—
—
O
I
I

M/S Tristate 156 180 A7

Table 4-3. Functional port pin descriptions (continued)

Port
pin

PCR

A
lt

er
n

at
e

fu
n

ct
io

n
1

Function

P
er

ip
h

er
al

I/O
d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
co

n
fi

g
.

Pin number

17
6

L
Q

F
P

20
8

L
Q

F
P

25
6

M
A

P
B

G
A

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 71

PE[3] PCR[67] AF0
AF1
AF2
AF3
—
—

GPIO[67]
E0UC[19]
SOUT_1

—
FR_A_RX
WKPU[29]

SIUL
eMIOS_0
DSPI_1

—
Flexray
WKPU

I/O
I/O
O
—
I
I

M/S Tristate 157 181 A10

PE[4] PCR[68] AF0
AF1
AF2
AF3
ALT4

—

GPIO[68]
E0UC[20]

SCK_1
—

FR_B_TX
EIRQ[9]

SIUL
eMIOS_0
DSPI_1

—
Flexray
SIUL

I/O
I/O
I/O
—
O
I

M/S Tristate 160 184 A8

PE[5] PCR[69] AF0
AF1
AF2
AF3
—
—

GPIO[69]
E0UC[21]

CS0_1
MA[2]

FR_B_RX
WKPU[30]

SIUL
eMIOS_0
DSPI_1
ADC_0
Flexray
WKPU

I/O
I/O
I/O
O
I
I

M/S Tristate 161 185 B8

PE[6] PCR[70] AF0
AF1
AF2
AF3
—

GPIO[70]
E0UC[22]

CS3_0
MA[1]

EIRQ[22]

SIUL
eMIOS_0
DSPI_0
ADC_0
SIUL

I/O
I/O
O
O
I

M/S Tristate 167 191 B6

PE[7] PCR[71] AF0
AF1
AF2
AF3
—

GPIO[71]
E0UC[23]

CS2_0
MA[0]

EIRQ[23]

SIUL
eMIOS_0
DSPI_0
ADC_0
SIUL

I/O
I/O
O
O
I

M/S Tristate 168 192 A5

PE[8] PCR[72] AF0
AF1
AF2
AF3

GPIO[72]
CAN2TX
E0UC[22]
CAN3TX

SIUL
FlexCAN_2
eMIOS_0

FlexCAN_3

I/O
O
I/O
O

M/S Tristate 21 21 G1

PE[9] PCR[73] AF0
AF1
AF2
AF3
—
—
—

GPIO[73]
—

E0UC[23]
—

WKPU[7]
CAN2RX
CAN3RX

SIUL
—

eMIOS_0
—

WKPU
FlexCAN_2
FlexCAN_3

I/O
—
I/O
—
I
I
I

S Tristate 22 22 H1

Table 4-3. Functional port pin descriptions (continued)

Port
pin

PCR

A
lt

er
n

at
e

fu
n

ct
io

n
1

Function

P
er

ip
h

er
al

I/O
d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
co

n
fi

g
.

Pin number

17
6

L
Q

F
P

20
8

L
Q

F
P

25
6

M
A

P
B

G
A

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

72 Freescale Semiconductor

PE[10] PCR[74] AF0
AF1
AF2
AF3
—

GPIO[74]
LIN3TX
CS3_1

E1UC[30]
EIRQ[10]

SIUL
LINFlexD_3

DSPI_1
eMIOS_1

SIUL

I/O
O
O
I/O
I

S Tristate 23 23 G3

PE[11] PCR[75] AF0
AF1
AF2
AF3
—
—

GPIO[75]
E0UC[24]

CS4_1
—

LIN3RX
WKPU[14]

SIUL
eMIOS_0
DSPI_1

—
LINFlexD_3

WKPU

I/O
I/O
O
—
I
I

S Tristate 25 25 H3

PE[12] PCR[76] AF0
AF1
AF2
AF3
—
—
—
—

GPIO[76]
—

E1UC[19]
—

CRS
SIN_2

EIRQ[11]
ADC1_S[7]

SIUL
—

eMIOS_1
—

FEC
DSPI_2

SIUL
ADC_1

I/O
—
I/O
—
I
I
I
I

M/S Tristate 133 157 C14

PE[13] PCR[77] AF0
AF1
AF2
AF3
—

GPIO[77]
SOUT_2
E1UC[20]

—
RXD[3]

SIUL
DSPI_2

eMIOS_1
—

FEC

I/O
O
I/O
—
I

M/S Tristate 127 151 C16

PE[14] PCR[78] AF0
AF1
AF2
AF3
—

GPIO[78]
SCK_2

E1UC[21]
—

EIRQ[12]

SIUL
DSPI_2

eMIOS_1
—

SIUL

I/O
I/O
I/O
—
I

M/S Tristate 136 160 A14

PE[15] PCR[79] AF0
AF1
AF2
AF3

GPIO[79]
CS0_2

E1UC[22]
SCK_6

SIUL
DSPI_2

eMIOS_1
DSPI_6

I/O
I/O
I/O
I/O

M/S Tristate 137 161 C12

PF[0] PCR[80] AF0
AF1
AF2
AF3
—

GPIO[80]
E0UC[10]

CS3_1
—

ADC0_S[8]

SIUL
eMIOS_0
DSPI_1

—
ADC_0

I/O
I/O
O
—
I

S Tristate 63 79 P7

PF[1] PCR[81] AF0
AF1
AF2
AF3
—

GPIO[81]
E0UC[11]

CS4_1
—

ADC0_S[9]

SIUL
eMIOS_0
DSPI_1

—
ADC_0

I/O
I/O
O
—
I

S Tristate 64 80 T6

Table 4-3. Functional port pin descriptions (continued)

Port
pin

PCR

A
lt

er
n

at
e

fu
n

ct
io

n
1

Function

P
er

ip
h

er
al

I/O
d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
co

n
fi

g
.

Pin number

17
6

L
Q

F
P

20
8

L
Q

F
P

25
6

M
A

P
B

G
A

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 73

PF[2] PCR[82] AF0
AF1
AF2
AF3
—

GPIO[82]
E0UC[12]

CS0_2
—

ADC0_S[10]

SIUL
eMIOS_0
DSPI_2

—
ADC_0

I/O
I/O
I/O
—
I

S Tristate 65 81 R6

PF[3] PCR[83] AF0
AF1
AF2
AF3
—

GPIO[83]
E0UC[13]

CS1_2
—

ADC0_S[11]

SIUL
eMIOS_0
DSPI_2

—
ADC_0

I/O
I/O
O
—
I

S Tristate 66 82 R7

PF[4] PCR[84] AF0
AF1
AF2
AF3
—

GPIO[84]
E0UC[14]

CS2_2
—

ADC0_S[12]

SIUL
eMIOS_0
DSPI_2

—
ADC_0

I/O
I/O
O
—
I

S Tristate 67 83 R8

PF[5] PCR[85] AF0
AF1
AF2
AF3
—

GPIO[85]
E0UC[22]

CS3_2
—

ADC0_S[13]

SIUL
eMIOS_0
DSPI_2

—
ADC_0

I/O
I/O
O
—
I

S Tristate 68 84 P8

PF[6] PCR[86] AF0
AF1
AF2
AF3
—

GPIO[86]
E0UC[23]

CS1_1
—

ADC0_S[14]

SIUL
eMIOS_0
DSPI_1

—
ADC_0

I/O
I/O
O
—
I

S Tristate 69 85 N8

PF[7] PCR[87] AF0
AF1
AF2
AF3
—

GPIO[87]
—

CS2_1
—

ADC0_S[15]

SIUL
—

DSPI_1
—

ADC_0

I/O
—
O
—
I

S Tristate 70 86 P9

PF[8] PCR[88] AF0
AF1
AF2
AF3

GPIO[88]
CAN3TX
CS4_0

CAN2TX

SIUL
FlexCAN_3

DSPI_0
FlexCAN_2

I/O
O
O
O

M/S Tristate 42 50 N2

PF[9] PCR[89] AF0
AF1
AF2
AF3
—
—
—

GPIO[89]
E1UC[1]
CS5_0

—
CAN2RX
CAN3RX

WKPU[22]

SIUL
eMIOS_1
DSPI_0

—
FlexCAN_2
FlexCAN_3

WKPU

I/O
I/O
O
—
I
I
I

S Tristate 41 49 M4

Table 4-3. Functional port pin descriptions (continued)

Port
pin

PCR

A
lt

er
n

at
e

fu
n

ct
io

n
1

Function

P
er

ip
h

er
al

I/O
d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
co

n
fi

g
.

Pin number

17
6

L
Q

F
P

20
8

L
Q

F
P

25
6

M
A

P
B

G
A

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

74 Freescale Semiconductor

PF[10] PCR[90] AF0
AF1
AF2
AF3

GPIO[90]
CS1_0
LIN4TX
E1UC[2]

SIUL
DSPI_0

LINFlexD_4
eMIOS_1

I/O
O
O
I/O

M/S Tristate 46 54 P2

PF[11] PCR[91] AF0
AF1
AF2
AF3
—
—

GPIO[91]
CS2_0

E1UC[3]
—

LIN4RX
WKPU[15]

SIUL
DSPI_0

eMIOS_1
—

LINFlexD_4
WKPU

I/O
O
I/O
—
I
I

S Tristate 47 55 R1

PF[12] PCR[92] AF0
AF1
AF2
AF3

GPIO[92]
E1UC[25]
LIN5TX

—

SIUL
eMIOS_1

LINFlexD_5
—

I/O
I/O
O
—

M/S Tristate 43 51 P1

PF[13] PCR[93] AF0
AF1
AF2
AF3
—
—

GPIO[93]
E1UC[26]

—
—

LIN5RX
WKPU[16]

SIUL
eMIOS_1

—
—

LINFlexD_5
WKPU

I/O
I/O
—
—
I
I

S Tristate 49 57 P3

PF[14] PCR[94] AF0
AF1
AF2
AF3
ALT4

GPIO[94]
CAN4TX
E1UC[27]
CAN1TX

MDIO

SIUL
FlexCAN_4
eMIOS_1

FlexCAN_1
FEC

I/O
O
I/O
O
I/O

M/S Tristate 126 150 D14

PF[15] PCR[95] AF0
AF1
AF2
AF3
—
—
—
—

GPIO[95]
E1UC[4]

—
—

RX_DV
CAN1RX
CAN4RX
EIRQ[13]

SIUL
eMIOS_1

—
—

FEC
FlexCAN_1
FlexCAN_4

SIUL

I/O
I/O
—
—
I
I
I
I

M/S Tristate 125 149 D15

PG[0] PCR[96] AF0
AF1
AF2
AF3
ALT4

GPIO[96]
CAN5TX
E1UC[23]

—
MDC

SIUL
FlexCAN_5
eMIOS_1

—
FEC

I/O
O
I/O
—
O

F Tristate 122 146 E13

Table 4-3. Functional port pin descriptions (continued)

Port
pin

PCR

A
lt

er
n

at
e

fu
n

ct
io

n
1

Function

P
er

ip
h

er
al

I/O
d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
co

n
fi

g
.

Pin number

17
6

L
Q

F
P

20
8

L
Q

F
P

25
6

M
A

P
B

G
A

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 75

PG[1] PCR[97] AF0
AF1
AF2
AF3
—
—
—

GPIO[97]
—

E1UC[24]
—

TX_CLK
CAN5RX
EIRQ[14]

SIUL
—

eMIOS_1
—

FEC
FlexCAN_5

SIUL

I/O
—
I/O
—
I
I
I

M Tristate 121 145 E14

PG[2] PCR[98] AF0
AF1
AF2
AF3

GPIO[98]
E1UC[11]
SOUT_3

—

SIUL
eMIOS_1
DSPI_3

—

I/O
I/O
O
—

M/S Tristate 16 16 E4

PG[3] PCR[99] AF0
AF1
AF2
AF3
—

GPIO[99]
E1UC[12]

CS0_3
—

WKPU[17]

SIUL
eMIOS_1
DSPI_3

—
WKPU

I/O
I/O
I/O
—
I

S Tristate 15 15 E1

PG[4] PCR[100] AF0
AF1
AF2
AF3

GPIO[100]
E1UC[13]

SCK_3
—

SIUL
eMIOS_1
DSPI_3

—

I/O
I/O
I/O
—

M/S Tristate 14 14 F2

PG[5] PCR[101] AF0
AF1
AF2
AF3
—
—

GPIO[101]
E1UC[14]

—
—

WKPU[18]
SIN_3

SIUL
eMIOS_1

—
—

WKPU
DSPI_3

I/O
I/O
—
—
I
I

S Tristate 13 13 D1

PG[6] PCR[102] AF0
AF1
AF2
AF3

GPIO[102]
E1UC[15]
LIN6TX

—

SIUL
eMIOS_1

LINFlexD_6
—

I/O
I/O
O
—

M/S Tristate 38 38 M1

PG[7] PCR[103] AF0
AF1
AF2
AF3
—
—

GPIO[103]
E1UC[16]
E1UC[30]

—
LIN6RX

WKPU[20]

SIUL
eMIOS_1
eMIOS_1

—
LINFlexD_6

WKPU

I/O
I/O
I/O
—
I
I

S Tristate 37 37 L2

PG[8] PCR[104] AF0
AF1
AF2
AF3
—

GPIO[104]
E1UC[17]
LIN7TX
CS0_2

EIRQ[15]

SIUL
eMIOS_1

LINFlexD_7
DSPI_2

SIUL

I/O
I/O
O
I/O
I

S Tristate 34 34 K3

Table 4-3. Functional port pin descriptions (continued)

Port
pin

PCR

A
lt

er
n

at
e

fu
n

ct
io

n
1

Function

P
er

ip
h

er
al

I/O
d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
co

n
fi

g
.

Pin number

17
6

L
Q

F
P

20
8

L
Q

F
P

25
6

M
A

P
B

G
A

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

76 Freescale Semiconductor

PG[9] PCR[105] AF0
AF1
AF2
AF3
—
—

GPIO[105]
E1UC[18]

—
SCK_2
LIN7RX

WKPU[21]

SIUL
eMIOS_1

—
DSPI_2

LINFlexD_7
WKPU

I/O
I/O
—
I/O
I
I

S Tristate 33 33 J4

PG[10] PCR[106] AF0
AF1
AF2
AF3
—

GPIO[106]
E0UC[24]
E1UC[31]

—
SIN_4

SIUL
eMIOS_0
eMIOS_1

—
DSPI_4

I/O
I/O
I/O
—
I

S Tristate 138 162 B13

PG[11] PCR[107] AF0
AF1
AF2
AF3

GPIO[107]
E0UC[25]

CS0_4
CS0_6

SIUL
eMIOS_0
DSPI_4
DSPI_6

I/O
I/O
I/O
I/O

M/S Tristate 139 163 A16

PG[12] PCR[108] AF0
AF1
AF2
AF3
ALT4

GPIO[108]
E0UC[26]
SOUT_4

—
TXD[2]

SIUL
eMIOS_0
DSPI_4

—
FEC

I/O
I/O
O
—
O

M/S Tristate 116 140 F15

PG[13] PCR[109] AF0
AF1
AF2
AF3
ALT4

GPIO[109]
E0UC[27]

SCK_4
—

TXD[3]

SIUL
eMIOS_0
DSPI_4

—
FEC

I/O
I/O
I/O
—
O

M/S Tristate 115 139 F16

PG[14] PCR[110] AF0
AF1
AF2
AF3
—

GPIO[110]
E1UC[0]
LIN8TX

—
SIN_6

SIUL
eMIOS_1

LINFlexD_8
—

DSPI_6

I/O
I/O
O
—
I

S Tristate 134 158 C13

PG[15] PCR[111] AF0
AF1
AF2
AF3
—

GPIO[111]
E1UC[1]
SOUT_6

—
LIN8RX

SIUL
eMIOS_1
DSPI_6

—
LINFlexD_8

I/O
I/O
O
—
I

M/S Tristate 135 159 D13

PH[0] PCR[112] AF0
AF1
AF2
AF3
ALT4

—

GPIO[112]
E1UC[2]

—
—

TXD[1]
SIN_1

SIUL
eMIOS_1

—
—

FEC
DSPI_1

I/O
I/O
—
—
O
I

M/S Tristate 117 141 E15

Table 4-3. Functional port pin descriptions (continued)

Port
pin

PCR

A
lt

er
n

at
e

fu
n

ct
io

n
1

Function

P
er

ip
h

er
al

I/O
d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
co

n
fi

g
.

Pin number

17
6

L
Q

F
P

20
8

L
Q

F
P

25
6

M
A

P
B

G
A

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 77

PH[1] PCR[113] AF0
AF1
AF2
AF3
ALT4

GPIO[113]
E1UC[3]
SOUT_1

—
TXD[0]

SIUL
eMIOS_1
DSPI_1

—
FEC

I/O
I/O
O
—
O

M/S Tristate 118 142 F13

PH[2] PCR[114] AF0
AF1
AF2
AF3
ALT4

GPIO[114]
E1UC[4]
SCK_1

—
TX_EN

SIUL
eMIOS_1
DSPI_1

—
FEC

I/O
I/O
I/O
—
O

M/S Tristate 119 143 D16

PH[3] PCR[115] AF0
AF1
AF2
AF3
ALT4

GPIO[115]
E1UC[5]
CS0_1

—
TX_ER

SIUL
eMIOS_1
DSPI_1

—
FEC

I/O
I/O
I/O
—
O

M/S Tristate 120 144 F14

PH[4] PCR[116] AF0
AF1
AF2
AF3

GPIO[116]
E1UC[6]
SOUT_7

—

SIUL
eMIOS_1
DSPI_7

—

I/O
I/O
O
—

M/S Tristate 162 186 D7

PH[5] PCR[117] AF0
AF1
AF2
AF3
—

GPIO[117]
E1UC[7]

—
—

SIN_7

SIUL
eMIOS_1

—
—

DSPI_7

I/O
I/O
—
—
I

S Tristate 163 187 B7

PH[6] PCR[118] AF0
AF1
AF2
AF3

GPIO[118]
E1UC[8]
SCK_7
MA[2]

SIUL
eMIOS_1
DSPI_7
ADC_0

I/O
I/O
I/O
O

M/S Tristate 164 188 C7

PH[7] PCR[119] AF0
AF1
AF2
AF3
ALT4

GPIO[119]
E1UC[9]
CS3_2
MA[1]
CS0_7

SIUL
eMIOS_1
DSPI_2
ADC_0
DSPI_7

I/O
I/O
O
O
I/O

M/S Tristate 165 189 C6

PH[8] PCR[120] AF0
AF1
AF2
AF3

GPIO[120]
E1UC[10]

CS2_2
MA[0]

SIUL
eMIOS_1
DSPI_2
ADC_0

I/O
I/O
O
O

M/S Tristate 166 190 A6

PH[9]6 PCR[121] AF0
AF1
AF2
AF3
—

GPIO[121]
—
—
—

TCK

SIUL
—
—
—

JTAGC

I/O
—
—
—
I

S Input,
weak

pull-up

155 179 A11

Table 4-3. Functional port pin descriptions (continued)

Port
pin

PCR

A
lt

er
n

at
e

fu
n

ct
io

n
1

Function

P
er

ip
h

er
al

I/O
d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
co

n
fi

g
.

Pin number

17
6

L
Q

F
P

20
8

L
Q

F
P

25
6

M
A

P
B

G
A

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

78 Freescale Semiconductor

PH[10]6 PCR[122] AF0
AF1
AF2
AF3
—

GPIO[122]
—
—
—

TMS

SIUL
—
—
—

JTAGC

I/O
—
—
—
I

M/S Input,
weak

pull-up

148 172 D10

PH[11] PCR[123] AF0
AF1
AF2
AF3

GPIO[123]
SOUT_3
CS0_4

E1UC[5]

SIUL
DSPI_3
DSPI_4

eMIOS_1

I/O
O
I/O
I/O

M/S Tristate 140 164 A13

PH[12] PCR[124] AF0
AF1
AF2
AF3

GPIO[124]
SCK_3
CS1_4

E1UC[25]

SIUL
DSPI_3
DSPI_4

eMIOS_1

I/O
I/O
O
I/O

M/S Tristate 141 165 B12

PH[13] PCR[125] AF0
AF1
AF2
AF3

GPIO[125]
SOUT_4
CS0_3

E1UC[26]

SIUL
DSPI_4
DSPI_3

eMIOS_1

I/O
O
I/O
I/O

M/S Tristate 9 9 B1

PH[14] PCR[126] AF0
AF1
AF2
AF3

GPIO[126]
SCK_4
CS1_3

E1UC[27]

SIUL
DSPI_4
DSPI_3

eMIOS_1

I/O
I/O
O
I/O

M/S Tristate 10 10 C1

PH[15] PCR[127] AF0
AF1
AF2
AF3

GPIO[127]
SOUT_5

—
E1UC[17]

SIUL
DSPI_5

—
eMIOS_1

I/O
O
—
I/O

M/S Tristate 8 8 E3

PI[0] PCR[128] AF0
AF1
AF2
AF3

GPIO[128]
E0UC[28]
LIN8TX

—

SIUL
eMIOS_0

LINFlexD_8
—

I/O
I/O
O
—

S Tristate 172 196 C5

PI[1] PCR[129] AF0
AF1
AF2
AF3
—
—

GPIO[129]
E0UC[29]

—
—

WKPU[24]
LIN8RX

SIUL
eMIOS_0

—
—

WKPU
LINFlexD_8

I/O
I/O
—
—
I
I

S Tristate 171 195 A4

PI[2] PCR[130] AF0
AF1
AF2
AF3

GPIO[130]
E0UC[30]
LIN9TX

—

SIUL
eMIOS_0

LINFlexD_9
—

I/O
I/O
O
—

S Tristate 170 194 D6

Table 4-3. Functional port pin descriptions (continued)

Port
pin

PCR

A
lt

er
n

at
e

fu
n

ct
io

n
1

Function

P
er

ip
h

er
al

I/O
d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
co

n
fi

g
.

Pin number

17
6

L
Q

F
P

20
8

L
Q

F
P

25
6

M
A

P
B

G
A

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 79

PI[3] PCR[131] AF0
AF1
AF2
AF3
—
—

GPIO[131]
E0UC[31]

—
—

WKPU[23]
LIN9RX

SIUL
eMIOS_0

—
—

WKPU
LINFlexD_9

I/O
I/O
—
—
I
I

S Tristate 169 193 B5

PI[4] PCR[132] AF0
AF1
AF2
AF3

GPIO[132]
E1UC[28]
SOUT_4

—

SIUL
eMIOS_1
DSPI_4

—

I/O
I/O
O
—

M/S Tristate 143 167 A12

PI[5] PCR[133] AF0
AF1
AF2
AF3
ALT4

GPIO[133]
E1UC[29]

SCK_4
CS2_5
CS2_6

SIUL
eMIOS_1
DSPI_4
DSPI_5
DSPI_6

I/O
I/O
I/O
O
O

M/S Tristate 142 166 D12

PI[6] PCR[134] AF0
AF1
AF2
AF3
ALT4

GPIO[134]
E1UC[30]

CS0_4
CS0_5
CS0_6

SIUL
eMIOS_1
DSPI_4
DSPI_5
DSPI_6

I/O
I/O
I/O
I/O
I/O

S Tristate 11 11 D2

PI[7] PCR[135] AF0
AF1
AF2
AF3
ALT4

GPIO[135]
E1UC[31]

CS1_4
CS1_5
CS1_6

SIUL
eMIOS_1
DSPI_4
DSPI_5
DSPI_6

I/O
I/O
O
O
O

S Tristate 12 12 E2

PI[8] PCR[136] AF0
AF1
AF2
AF3
—

GPIO[136]
—
—
—

ADC0_S[16]

SIUL
—
—
—

ADC_0

I/O
—
—
—
I

S Tristate 108 130 J14

PI[9] PCR[137] AF0
AF1
AF2
AF3
—

GPIO[137]
—
—
—

ADC0_S[17]

SIUL
—
—
—

ADC_0

I/O
—
—
—
I

S Tristate — 131 J15

PI[10] PCR[138] AF0
AF1
AF2
AF3
—

GPIO[138]
—
—
—

ADC0_S[18]

SIUL
—
—
—

ADC_0

I/O
—
—
—
I

S Tristate — 134 J16

Table 4-3. Functional port pin descriptions (continued)

Port
pin

PCR

A
lt

er
n

at
e

fu
n

ct
io

n
1

Function

P
er

ip
h

er
al

I/O
d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
co

n
fi

g
.

Pin number

17
6

L
Q

F
P

20
8

L
Q

F
P

25
6

M
A

P
B

G
A

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

80 Freescale Semiconductor

PI[11] PCR[139] AF0
AF1
AF2
AF3
—
—

GPIO[139]
—
—
—

ADC0_S[19]
SIN_3

SIUL
—
—
—

ADC_0
DSPI_3

I/O
—
—
—
I
I

S Tristate 111 135 H16

PI[12] PCR[140] AF0
AF1
AF2
AF3
—

GPIO[140]
CS0_3
CS0_2

—
ADC0_S[20]

SIUL
DSPI_3
DSPI_2

—
ADC_0

I/O
I/O
I/O
—
I

S Tristate 112 136 G15

PI[13] PCR[141] AF0
AF1
AF2
AF3
—

GPIO[141]
CS1_3
CS1_2

—
ADC0_S[21]

SIUL
DSPI_3
DSPI_2

—
ADC_0

I/O
O
O
—
I

S Tristate 113 137 G14

PI[14] PCR[142] AF0
AF1
AF2
AF3
—
—

GPIO[142]
—
—
—

ADC0_S[22]
SIN_4

SIUL
—
—
—

ADC_0
DSPI_4

I/O
—
—
—
I
I

S Tristate 76 92 T12

PI[15] PCR[143] AF0
AF1
AF2
AF3
—

GPIO[143]
CS0_4
CS2_2

—
ADC0_S[23]

SIUL
DSPI_4
DSPI_2

—
ADC_0

I/O
I/O
O
—
I

S Tristate 75 91 P11

PJ[0] PCR[144] AF0
AF1
AF2
AF3
—

GPIO[144]
CS1_4
CS3_2

—
ADC0_S[24]

SIUL
DSPI_4
DSPI_2

—
ADC_0

I/O
O
O
—
I

S Tristate 74 90 R11

PJ[1] PCR[145] AF0
AF1
AF2
AF3
—
—

GPIO[145]
—
—
—

ADC0_S[25]
SIN_5

SIUL
—
—

——
ADC_0
DSPI_5

I/O
—
—
—
I
I

S Tristate 73 89 N10

PJ[2] PCR[146] AF0
AF1
AF2
AF3
—

GPIO[146]
CS0_5
CS0_6
CS0_7

ADC0_S[26]

SIUL
DSPI_5
DSPI_6
DSPI_7
ADC_0

I/O
I/O
I/O
I/O
I

S Tristate 72 88 R10

Table 4-3. Functional port pin descriptions (continued)

Port
pin

PCR

A
lt

er
n

at
e

fu
n

ct
io

n
1

Function

P
er

ip
h

er
al

I/O
d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
co

n
fi

g
.

Pin number

17
6

L
Q

F
P

20
8

L
Q

F
P

25
6

M
A

P
B

G
A

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 81

PJ[3] PCR[147] AF0
AF1
AF2
AF3
—

GPIO[147]
CS1_5
CS1_6
CS1_7

ADC0_S[27]

SIUL
DSPI_5
DSPI_6
DSPI_7
ADC_0

I/O
O
O
O
I

S Tristate 71 87 P10

PJ[4] PCR[148] AF0
AF1
AF2
AF3

GPIO[148]
SCK_5

E1UC[18]
—

SIUL
DSPI_5

eMIOS_1
—

I/O
I/O
I/O
—

M/S Tristate 5 5 D3

PJ[5] PCR[149] AF0
AF1
AF2
AF3
—

GPIO[149]
—
—
—

ADC0_S[28]

SIUL
—
—
—

ADC_0

I/O
—
—
—
I

S Tristate — 113 N12

PJ[6] PCR[150] AF0
AF1
AF2
AF3
—

GPIO[150]
—
—
—

ADC0_S[29]

SIUL
—
—
—

ADC_0

I/O
—
—
—
I

S Tristate — 112 N15

PJ[7] PCR[151] AF0
AF1
AF2
AF3
—

GPIO[151]
—
—
—

ADC0_S[30]

SIUL
—
—
—

ADC_0

I/O
—
—
—
I

S Tristate — 111 P16

PJ[8] PCR[152] AF0
AF1
AF2
AF3
—

GPIO[152]
—
—
—

ADC0_S[31]

SIUL
—
—
—

ADC_0

I/O
—
—
—
I

S Tristate — 110 P15

PJ[9] PCR[153] AF0
AF1
AF2
AF3
—

GPIO[153]
—
—
—

ADC1_S[8]

SIUL
—
—
—

ADC_1

I/O
—
—
—
I

S Tristate — 68 P5

PJ[10] PCR[154] AF0
AF1
AF2
AF3
—

GPIO[154]
—
—
—

ADC1_S[9]

SIUL
—
—
—

ADC_1

I/O
—
—
—
I

S Tristate — 67 T5

Table 4-3. Functional port pin descriptions (continued)

Port
pin

PCR

A
lt

er
n

at
e

fu
n

ct
io

n
1

Function

P
er

ip
h

er
al

I/O
d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
co

n
fi

g
.

Pin number

17
6

L
Q

F
P

20
8

L
Q

F
P

25
6

M
A

P
B

G
A

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

82 Freescale Semiconductor

PJ[11] PCR[155] AF0
AF1
AF2
AF3
—

GPIO[155]
—
—
—

ADC1_S[10]

SIUL
—
—
—

ADC_1

I/O
—
—
—
I

S Tristate — 60 R3

PJ[12] PCR[156] AF0
AF1
AF2
AF3
—

GPIO[156]
—
—
—

ADC1_S[11]

SIUL
—
—
—

ADC_1

I/O
—
—
—
I

S Tristate — 59 T1

PJ[13] PCR[157] AF0
AF1
AF2
AF3
—
—
—
—

GPIO[157]
—

CS1_7
—

CAN4RX
ADC1_S[12]

CAN1RX
WKPU[31]

SIUL
—

DSPI_7
—

FlexCAN_4
ADC_1

FlexCAN_1
WKPU

I/O
—
O
—
I
I
I
I

S Tristate — 65 N5

PJ[14] PCR[158] AF0
AF1
AF2
AF3

GPIO[158]
CAN1TX
CAN4TX
CS2_7

SIUL
FlexCAN_1
FlexCAN_4

DSPI_7

I/O
O
O
O

M/S Tristate — 64 T4

PJ[15] PCR[159] AF0
AF1
AF2
AF3
—

GPIO[159]
—

CS1_6
—

CAN1RX

SIUL
—

DSPI_6
—

FlexCAN_1

I/O
—
O
—
I

M/S Tristate — 63 R4

PK[0] PCR[160] AF0
AF1
AF2
AF3

GPIO[160]
CAN1TX
CS2_6

—

SIUL
FlexCAN_1

DSPI_6
—

I/O
O
O
—

M/S Tristate — 62 T3

PK[1] PCR[161] AF0
AF1
AF2
AF3
—

GPIO[161]
CS3_6

—
—

CAN4RX

SIUL
DSPI_6

—
—

FlexCAN_4

I/O
O
—
—
I

M/S Tristate — 41 H4

PK[2] PCR[162] AF0
AF1
AF2
AF3

GPIO[162]
CAN4TX

—
—

SIUL
FlexCAN_4

—
—

I/O
O
—
—

M/S Tristate — 42 L4

Table 4-3. Functional port pin descriptions (continued)

Port
pin

PCR

A
lt

er
n

at
e

fu
n

ct
io

n
1

Function

P
er

ip
h

er
al

I/O
d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
co

n
fi

g
.

Pin number

17
6

L
Q

F
P

20
8

L
Q

F
P

25
6

M
A

P
B

G
A

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 83

PK[3] PCR[163] AF0
AF1
AF2
AF3
—
—

GPIO[163]
E1UC[0]

—
—

CAN5RX
LIN8RX

SIUL
eMIOS_1

—
—

FlexCAN_5
LINFlexD_8

I/O
I/O
—
—
I
I

M/S Tristate — 43 N1

PK[4] PCR[164] AF0
AF1
AF2
AF3

GPIO[164]
LIN8TX
CAN5TX
E1UC[1]

SIUL
LINFlexD_8
FlexCAN_5
eMIOS_1

I/O
O
O
I/O

M/S Tristate — 44 M3

PK[5] PCR[165] AF0
AF1
AF2
AF3
—
—

GPIO[165]
—
—
—

CAN2RX
LIN2RX

SIUL
—
—
—

FlexCAN_2
LINFlexD_2

I/O
—
—
—
I
I

M/S Tristate — 45 M5

PK[6] PCR[166] AF0
AF1
AF2
AF3

GPIO[166]
CAN2TX
LIN2TX

—

SIUL
FlexCAN_2
LINFlexD_2

—

I/O
O
O
—

M/S Tristate — 46 M6

PK[7] PCR[167] AF0
AF1
AF2
AF3
—
—

GPIO[167]
—
—
—

CAN3RX
LIN3RX

SIUL
—
—
—

FlexCAN_3
LINFlexD_3

I/O
—
—
—
I
I

M/S Tristate — 47 M7

PK[8] PCR[168] AF0
AF1
AF2
AF3

GPIO[168]
CAN3TX
LIN3TX

—

SIUL
FlexCAN_3
LINFlexD_3

—

I/O
O
O
—

M/S Tristate — 48 M8

PK[9] PCR[169] AF0
AF1
AF2
AF3
—

GPIO[169]
—
—
—

SIN_4

SIUL
—
—
—

DSPI_4

I/O
—
—
—
I

M/S Tristate — 197 E8

PK[10] PCR[170] AF0
AF1
AF2
AF3

GPIO[170]
SOUT_4

—
—

SIUL
DSPI_4

—
—

I/O
O
—
—

M/S Tristate — 198 E7

Table 4-3. Functional port pin descriptions (continued)

Port
pin

PCR

A
lt

er
n

at
e

fu
n

ct
io

n
1

Function

P
er

ip
h

er
al

I/O
d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
co

n
fi

g
.

Pin number

17
6

L
Q

F
P

20
8

L
Q

F
P

25
6

M
A

P
B

G
A

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

84 Freescale Semiconductor

PK[11] PCR[171] AF0
AF1
AF2
AF3

GPIO[171]
SCK_4

—
—

SIUL
DSPI_4

—
—

I/O
I/O
—
—

M/S Tristate — 199 F8

PK[12] PCR[172] AF0
AF1
AF2
AF3

GPIO[172]
CS0_4

—
—

SIUL
DSPI_4

—
—

I/O
I/O
—
—

M/S Tristate — 200 G12

PK[13] PCR[173] AF0
AF1
AF2
AF3
—

GPIO[173]
CS3_6
CS2_7
SCK_1

CAN3RX

SIUL
DSPI_6
DSPI_7
DSPI_1

FlexCAN_3

I/O
O
O
I/O
I

M/S Tristate — 201 H12

PK[14] PCR[174] AF0
AF1
AF2
AF3

GPIO[174]
CAN3TX
CS3_7
CS0_1

SIUL
FlexCAN_3

DSPI_7
DSPI_1

I/O
O
O
I/O

M/S Tristate — 202 J12

PK[15] PCR[175] AF0
AF1
AF2
AF3
—
—

GPIO[175]
—
—
—

SIN_1
SIN_7

SIUL
—
—
—

DSPI_1
DSPI_7

I/O
—
—
—
I
I

M/S Tristate — 203 D5

PL[0] PCR[176] AF0
AF1
AF2
AF3

GPIO[176]
SOUT_1
SOUT_7

—

SIUL
DSPI_1
DSPI_7

—

I/O
O
O
—

M/S Tristate — 204 C4

PL[1] PCR[177] AF0
AF1
AF2
AF3

GPIO[177]
—
—
—

SIUL
—
—
—

I/O
—
—
—

M/S Tristate — — F7

PL[2] PCR[178]7 AF0
AF1
AF2
AF3

GPIO[178]
—

MDO08

—

SIUL
—

Nexus
—

I/O
—
O
—

M/S Tristate — — F5

PL[3] PCR[179] AF0
AF1
AF2
AF3

GPIO[179]
—

MDO1
—

SIUL
—

Nexus
—

I/O
—
O
—

M/S Tristate — — G5

Table 4-3. Functional port pin descriptions (continued)

Port
pin

PCR

A
lt

er
n

at
e

fu
n

ct
io

n
1

Function

P
er

ip
h

er
al

I/O
d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
co

n
fi

g
.

Pin number

17
6

L
Q

F
P

20
8

L
Q

F
P

25
6

M
A

P
B

G
A

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 85

PL[4] PCR[180] AF0
AF1
AF2
AF3

GPIO[180]
—

MDO2
—

SIUL
—

Nexus
—

I/O
—
O
—

M/S Tristate — — H5

PL[5] PCR[181] AF0
AF1
AF2
AF3

GPIO[181]
—

MDO3
—

SIUL
—

Nexus
—

I/O
—
O
—

M/S Tristate — — J5

PL[6] PCR[182] AF0
AF1
AF2
AF3

GPIO[182]
—

MDO4
—

SIUL
—

Nexus
—

I/O
—
O
—

M/S Tristate — — K5

PL[7] PCR[183] AF0
AF1
AF2
AF3

GPIO[183]
—

MDO5
—

SIUL
—

Nexus
—

I/O
—
O
—

M/S Tristate — — L5

PL[8] PCR[184] AF0
AF1
AF2
AF3
—

GPIO[184]
—
—
—

EVTI

SIUL
—
—
—

Nexus

I/O
—
—
—
I

S Pull-up — — M9

PL[9] PCR[185] AF0
AF1
AF2
AF3

GPIO[185]
—

MSEO
—

SIUL
—

Nexus
—

I/O
—
O
—

M/S Tristate — — M10

PL[10] PCR[186] AF0
AF1
AF2
AF3

GPIO[186]
—

MCKO
—

SIUL
—

Nexus
—

I/O
—
O
—

F/S Tristate — — M11

PL[11] PCR[187] AF0
AF1
AF2
AF3

GPIO[187]
—
—
—

SIUL
—
—
—

I/O
—
—
—

M/S Tristate — — M12

PL[12] PCR[188] AF0
AF1
AF2
AF3

GPIO[188]
—

EVTO
—

SIUL
—

Nexus
—

I/O
—
O
—

M/S Tristate — — F11

PL[13] PCR[189] AF0
AF1
AF2
AF3

GPIO[189]
—

MDO6
—

SIUL
—

Nexus
—

I/O
—
O
—

M/S Tristate — — F10

Table 4-3. Functional port pin descriptions (continued)

Port
pin

PCR

A
lt

er
n

at
e

fu
n

ct
io

n
1

Function

P
er

ip
h

er
al

I/O
d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
co

n
fi

g
.

Pin number

17
6

L
Q

F
P

20
8

L
Q

F
P

25
6

M
A

P
B

G
A

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

86 Freescale Semiconductor

PL[14] PCR[190] AF0
AF1
AF2
AF3

GPIO[190]
—

MDO7
—

SIUL
—

Nexus
—

I/O
—
O
—

M/S Tristate — — E12

PL[15] PCR[191] AF0
AF1
AF2
AF3

GPIO[191]
—

MDO8
—

SIUL
—

Nexus
—

I/O
—
O
—

M/S Tristate — — E11

PM[0] PCR[192] AF0
AF1
AF2
AF3

GPIO[192]
—

MDO9
—

SIUL
—

Nexus
—

I/O
—
O
—

M/S Tristate — — E10

PM[1] PCR[193] AF0
AF1
AF2
AF3

GPIO[193]
—

MDO10
—

SIUL
—

Nexus
—

I/O
—
O
—

M/S Tristate — — E9

PM[2] PCR[194] AF0
AF1
AF2
AF3

GPIO[194]
—

MDO11
—

SIUL
—

Nexus
—

I/O
—
O
—

M/S Tristate — — F12

PM[3] PCR[195] AF0
AF1
AF2
AF3

GPIO[195]
—
—
—

SIUL
—
—
—

I/O
—
—
—

M/S Tristate — — K12

PM[4] PCR[196] AF0
AF1
AF2
AF3

GPIO[196]
—
—
—

SIUL
—
—
—

I/O
—
—
—

M/S Tristate — — L12

PM[5] PCR[197] AF0
AF1
AF2
AF3

GPIO[197]
—
—
—

SIUL
—
—
—

I/O
—
—
—

M/S Tristate — — F9

PM[6] PCR[198] AF0
AF1
AF2
AF3

GPIO[198]
—
—
—

SIUL
—
—
—

I/O
—
—
—

M/S Tristate — — F6

1 Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA =
000  AF0; PCR.PA = 001  AF1; PCR.PA = 010  AF2; PCR.PA = 011  AF3; PCR.PA = 100  ALT4. This is
intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to ‘1’,
regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only
function is reported as “—”.

Table 4-3. Functional port pin descriptions (continued)

Port
pin

PCR

A
lt

er
n

at
e

fu
n

ct
io

n
1

Function

P
er

ip
h

er
al

I/O
d

ir
ec

ti
o

n
2

P
ad

 t
yp

e

R
E

S
E

T
co

n
fi

g
.

Pin number

17
6

L
Q

F
P

20
8

L
Q

F
P

25
6

M
A

P
B

G
A

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 87

4.8 Nexus 3+ pins
In the 256 MAPBGA package, seventeen pins are dedicated for Nexus (see Table 4-4). These pins are
available only in the 256-pin BGA package.

2 Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by
setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.

3 NMI[0] and NMI[1] have a higher priority than alternate functions. When NMI is selected, the PCR.PA field is
ignored.

4 SXOSC’s OSC32k_XTAL and OSC32k_EXTAL pins are shared with GPIO functionality. When used as crystal pins,
other functionality of the pin cannot be used and it should be ensured that application never programs OBE and
PUE bit of the corresponding PCR to "1".

5 If you want to use OSC32K functionality through PB[8] and PB[9], you must ensure that PB[10] is static in nature
as PB[10] can induce coupling on PB[9] and disturb oscillator frequency.

6 Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.
PC[0:1] are available as JTAG pins (TDI and TDO respectively).
PH[9:10] are available as JTAG pins (TCK and TMS respectively).
It is up to the user to configure these pins as GPIO when needed.

7 When MBIST is enabled to run (STCU Enable = 1), the application must not drive or tie PAD[178) (MDO[0]) to 0 V
before the device exits reset (external reset is removed) as the pad is internally driven to 1 to indicate MBIST
operation. When MBIST is not enabled (STCU Enable = 0), there are no restriction as the device does not internally
drive the pad.

8 These pins can be configured as Nexus pins during reset by the debugger writing to the Nexus Development
Interface "Port Control Register" rather than the SIUL. Specifically, the debugger can enable the MDO[7:0], MSEO,
and MCKO ports by programming NDI (PCR[MCKO_EN] or PCR[PSTAT_EN]). MDO[8:11] ports can be enabled by
programming NDI ((PCR[MCKO_EN] and PCR[FPM]) or PCR[PSTAT_EN]).

Table 4-4. Nexus 3+ pin descriptions

Port pin Function
I/O

direction
Pad type

Function
after reset

Pin number

256 MAPBGA

MCKO Message clock out O F/M — M11

MDO0 Message data out 0 O M/S — F5

MDO1 Message data out 1 O M/S — G5

MDO2 Message data out 2 O M/S — H5

MDO3 Message data out 3 O M/S — J5

MDO4 Message data out 4 O M/S — K5

MDO5 Message data out 5 O M/S — L5

MDO6 Message data out 6 O M/S — F10

MDO7 Message data out 7 O M/S — E12

MDO8 Message data out 8 O M/S — E11

MDO9 Message data out 9 O M/S — E10

MDO10 Message data out 10 O M/S — E9

MDO11 Message data out 11 O M/S — F12

Chapter 4 Signal Description

MPC5646C Microcontroller Reference Manual, Rev. 5

88 Freescale Semiconductor

EVTI Event in I S Pull-up M9

EVTO Event out O M/S — F11

MSEO0 Message start/end out O M/S — M10

Table 4-4. Nexus 3+ pin descriptions (continued)

Port pin Function
I/O

direction
Pad type

Function
after reset

Pin number

256 MAPBGA

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 89

Chapter 5
Microcontroller Boot
This chapter explains the process of booting the microcontroller. The following entities are involved in the
boot process:

• Boot Assist Module (BAM)

• System Status and Configuration Module (SSCM)

• Flash memory boot sectors (see Chapter 35, Flash Memory)

• Memory Management Unit (MMU)

5.1 Boot mechanism
This section describes the configuration required by the user, and the steps performed by the
microcontroller, in order to achieve a successful boot from flash memory or serial download modes.

The CSE and MBIST boot behavior is not covered here, but is described in the respective reference manual
chapters.

There are two external pins on the microcontroller that are latched during reset and used to determine
whether the microcontroller will boot from flash memory or attempt a serial download via FlexCAN or
LINFlexD (RS232):

• FAB (Force Alternate Boot mode) on pin PA[9]

• ABS (Alternate Boot Select) on pin PA[8]

Table 5-1 describes the configuration options.

The microcontroller has a weak pull-down on PA[9] and a weak pull-up on PA[8]. This means that if
nothing external is connected to these pins, the microcontroller will enter flash memory boot mode by
default. In order to change the boot behavior, you should use external pullup or pulldown resistors on
PA[9] and PA[8]. If there is any external circuitry connected to either pin, you must ensure that this does
not interfere with the expected value applied to the pin at reset. Otherwise, the microcontroller may boot
into an unexpected mode after reset.

The SSCM preforms a lot of the automated boot activity including reading the latched value of the FAB
(PA[9]) pin to determine whether to boot from flash memory or serial boot mode. This is illustrated in
Figure 5-1.

Table 5-1. Boot mode selection

Mode FAB pin (PA[9]) ABS pin (PA[8])

Flash memory boot (default mode) 0 X

Serial boot (LINFlexD) 1 0

Serial boot (FlexCAN) 1 1

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

90 Freescale Semiconductor

Figure 5-1. Boot mode selection

5.1.1 Flash memory boot

In order to successfully boot from flash memory, you must program two 32-bit fields into one of five
possible boot blocks as detailed below. The entities to program are:

• 16-bit Reset Configuration Half Word (RCHW), which contains:

— A BOOT_ID field that must be correctly set to 0x5A in order to "validate" the boot sector

— A VLE bit which configures the initial MMU entry to either Power Architecture Book VLE or
Power Architecture Book III-E as described later on in this chapter

• 32-bit reset vector (this is the start address of the user code and for the CSE BOOT_MAC
calculation)

The boot sector also contains a 32-bit field containing the size of the block of data to be checked by the
CSE during a secure boot. See the CSE chapter for more details. Application code can be programmed
from offset address 0x000C.

The location and structure of the boot sectors in flash memory are shown in Figure 5-2.

FAB (PA[9]) value?
FAB = 0

Boot from
ABS (PA[8]) value?

Serial boot
(FlexCAN)

SSCM reads latched
values of PA[8] and

PA[9] pins

flash memory

Serial boot
(LINFlexD)

FAB = 1

ABS = 0 ABS = 1

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 91

Figure 5-2. Boot sector structure

The RCHW fields are described in Table 5-2.

The SSCM performs a sequential search of each boot sector (starting at sector 0) for a valid BOOT_ID
within the RCHW. If a valid BOOT_ID is found, the SSCM reads the VLE bit and the boot vector address
(as well as the CSE block size). If a valid BOOT_ID is not found, the SSCM starts the process of putting
the microcontroller into static mode.

In order for the e200z4d core to be able to access memory, a valid MMU TLB entry has to be created. The
SSCM does this automatically by reading the reset vector and modifying TLB entry 0 to create a 4 KB
page containing the reset vector address. The MMU VLE bit is set depending on the status of the VLE bit
within the RCHW. The 4 KB MMU page must be 4 KB aligned. This means that the most efficient place

Table 5-2. RCHW field descriptions

Field Description

VLE VLE Bit
0 MMU TLB Entry 0 is configured for Power Architecture Book III-E.
1 MMU TLB Entry 0 is configured for Power Architecture Book VLE.

BOOT_ID Boot identifier.
If BOOT_ID = 0x5A, the boot sector is considered valid and bootable.

32 KB

Boot sector 0

16 KB

16 KB

32 KB

0x0000_0000

0x0000_8000

0x0000_C000

0x0001_0000

Code flash memory

32 KB

0x0001_8000

Boot sector 1

Boot sector 2

Boot sector 3

Boot sector 4

Boot sector structure

Bit 0 Bit 31

Reserved Reserved

6 7 8 15 16

V
LE

BOOT_ID
(0x5A)

0x0
(RCHW)

0x4

0x8 Size of flash memory array to be verified by CSE
(see the CSE chapter)

0xC Application code (from offset 0xC and onward)

32-bit reset vector (points to start address of application code)

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

92 Freescale Semiconductor

to put the application code is immediately after the boot sector. The 4 KB block provides sufficient space
to:

• Add MMU entries for SRAM and peripherals

• Perform standard system initialisation tasks (initialise the SRAM, setup stack, copy constant data)

• Transfer execution to RAM, re-define the flash memory MMU entry and transfer execution back
to flash memory.

Finally, the SSCM sets the e200z4d core instruction pointer to the reset vector address and starts the core
running.

5.1.1.1 Static mode

If no valid BOOT_ID within the RCHW was found, the SSCM creates a 4 KB MMU page at the start of
the BAM with the VLE bit set (the BAM is VLE code). The SSCM then sets the CPU core instruction
pointer to the BAM address and the core starts to execute the code to enter static mode as follows:

• The Software Watchdog Timer (SWT) is enabled.

• The core executes the "wait" instruction which halts the core.

After the microcontroller enters static mode, the SWT periodically resets the core (approximately every
10 ms) to re-attempt a boot from flash memory.

The sequence is illustrated in Figure 5-3.

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 93

Figure 5-3. Flash memory boot mode sequence

5.1.1.2 Alternate boot sectors

Some applications require an alternate boot sector so that the main boot code can be erased and
reprogrammed in the field. When an alternate boot is needed, you can create two bootable sectors:

• The valid boot sector located at the lowest address is the main boot sector.

• The valid boot sector located at the next available address is the alternate boot sector.

This scheme ensures that there is always one active boot sector even if the main boot sector is erased.

5.1.2 Serial boot mode

Serial boot provides a mechanism to download and then execute code into the microcontroller SRAM.
Code may be downloaded using either FlexCAN or LINFlexD (RS232). After the SSCM has detected that
serial boot mode has been requested, a 4 KB MMU page is created at the start of the BAM and execution
is transferred to the BAM which handles all of the serial boot mode tasks. See Section 5.2, Boot Assist
Module (BAM), for more details.

SSCM searches flash
boot sectors for valid

Valid
BOOT_ID found?

SSCM reads VLE bit and
reset vector address

Yes No

BOOT_ID (0x5A)

SSCM configures 4 KB
MMU page at BAM start
address (0xFFFF_C000)

SSCM transfers
execution to e200z4d core

which runs BAM code

BAM code enables
SWT and executes wait

instruction

System in static mode
with SWT timeout of
approximately 10 ms

SSCM configures 4 KB
MMU block to contain

vector address

e200z4d core starts
executing code at

vector address

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

94 Freescale Semiconductor

5.1.3 Censorship

Censorship can be enabled to protect the contents of the flash memory from being read or modified. In
order to achieve this, the censorship mechanism controls access to the:

• JTAG / Nexus debug interface

• Serial boot mode (which could otherwise be used to download and execute code to query or modify
the flash memory)

To re-gain access to the flash memory via JTAG or serial boot, a 64-bit password must be correctly entered.

CAUTION
When censorship has been enabled, the only way to regain access is with the
password. If this is forgotten or not correctly configured, then there is no
way back into the device.

There are two 64-bit values stored in the shadow flash which control the censorship (see Table 35-3 for a
full description):

• Nonvolatile Private Censorship Password registers, NVPWD0 and NVPWD1

• Nonvolatile System Censorship Control registers, NVSCC0 and NVSCC1

5.1.3.1 Censorship password registers (NVPWD0 and NVPWD1)

The two private password registers combine to form a 64-bit password that should be programmed to a
value known only by you. After factory test these registers are programmed as shown below:

• NVPWD0 = 0xFEED_FACE

• NVPWD1 = 0xCAFE_BEEF

This means that even if censorship was inadvertently enabled by writing to the censorship control registers,
there is an opportunity to get back into the microcontroller using the default private password of
0xFEED_FACE_CAFE_BEEF.

When configuring the private password, each half word (16-bit) must contain at least one "1" and one "0".
Some examples of legal and illegal passwords are shown in Table 5-3:

In uncensored devices it is possible to download code via LINFlexD or FlexCAN (Serial Boot Mode) into
internal SRAM even if the 64-bit private password stored in the flash and provided during the boot
sequence is a password that does not conform to the password rules.

Table 5-3. Examples of legal and illegal passwords

Legal (valid) passwords Illegal (invalid) passwords

0x0001_0001_0001_0001
0xFFFE_FFFE_FFFE_FFFE
0x1XXX_X2XX_XX4X_XXX8

0x0000_XXXX_XXXX_XXXX
0xFFFF_XXXX_XXXX_XXXX

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 95

5.1.3.2 Nonvolatile System Censorship Control registers (NVSCC0 and
NVSCC1)

These registers are used together to define the censorship configuration. After factory test these registers
are programmed as shown below which disables censorship:

• NVSCC0 = 0x55AA_55AA

• NVSCC1 = 0x55AA_55AA

Each 32-bit register is split into an upper and lower 16-bit field. The upper 16 bits (the SC field) are used
to control serial boot mode censorship. The lower 16 bits (the CW field) are used to control flash memory
boot censorship.

CAUTION
If the contents of the shadow flash memory are erased and the NVSCC0,1
registers are not re-programmed to a valid value, the microcontroller will be
permanently censored with no way for you to regain access. A
microcontroller in this state cannot be debugged or re-flashed.

5.1.3.3 Censorship configuration

The steps to configuring censorship are:

1. Define a valid 64-bit password that conforms to the password rules.

2. Using the table and flow charts below, decide what level of censorship you require and configure
the NVSCC0,1 values.

3. Re-program the shadow flash memory and NVPWD0,1 and NVSCC0,1 registers with your new
values. A POR is required before these will take effect.

CAUTION
If
(NVSCC0 and NVSCC1 do not match)

or
(Either NVSCC0 or NVSCC1 is not set to 0x55AA)

then the microcontroller will be permanently censored with no way to get
back in.

Table 5-4 shows all the possible modes of censorship. The red shaded areas are to be avoided as these show
the configuration for a device that is permanently locked out. If you wish to enable censorship with a
private password there is only one valid configuration — to modify the CW field in both NVSCC0,1
registers so they match but do not equal 0x55AA. This will allow you to enter the private password in both
serial and flash boot modes.

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

96 Freescale Semiconductor

The flow charts in Figure 5-4 and Figure 5-5 provide a way to quickly check what will happen with
different configurations of the NVSCC0,1 registers as well as detailing the correct way to enter the serial
password. In the password examples, assume the 64-bit password has been programmed into the shadow
flash memory in the order {NVPWD0, NWPWD1} and has a value of 0x01234567_89ABCDEF.

Table 5-4. Censorship configuration and truth table

Boot configuration Serial
censorship

control word
(NVSCCn[SC]

)

Censorship
control word

(NVSCCn[CW])

Internal
flash

memory
state

Nexus
state

Serial
password

JTAG
passwordFAB pin

state
Control options

0 (flash
memory
boot)

Uncensored 0xXXXX AND
NVSCC0 ==

NVSCC1

0x55AA AND
NVSCC0 ==

NVSCC1

Enabled Enabled N/A

Private flash
memory password
and censored

0x55AA AND
NVSCC0 ==

NVSCC1

!0x55AA AND
NVSCC0 ==

NVSCC1

Enabled Enabled
with

password

NVPWD1,0
(SSCM

reads flash
memory1)

1 When the SSCM reads the passwords from flash memory, the NVPWD0 and NVPWD1 password order is swapped, so
you have to submit the 64-bit password as {NVPWD1, NVPWD0}.

Censored with no
password access
(lockout)

!0x55AA !0X55AA Enabled Disabled N/A

OR
NVSCC0 != NVSCC1

1 (serial
boot)

Private flash
memory password
and uncensored

0x55AA AND
NVSCC0 == NVSCC1

Enabled Enabled NVPWD0,1
(BAM reads

flash
memory1)

Private flash
memory password
and censored

0x55AA AND
NVSCC0 ==

NVSCC1

!0x55AA AND
NVSCC0 ==

NVSCC1

Enabled Disabled NVPWD1,0
(SSCM

reads flash
memory1)

Public password
and uncensored

!0x55AA AND
NVSCC0 !=

NVSCC1

0X55AA AND
NVSCC0 !=

NVSCC1

Enabled Enabled Public
(0xFEED_F
ACE_CAFE

_BEEF)

Public password
and censored
(lockout)

!0x55AA Disabled Disabled Public
(0xFEED_F
ACE_CAFE

_BEEF)

OR NVSCC0 != NVSCC1

= Microcontroller permanently locked out

= Not applicable

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 97

Figure 5-4. Censorship control in flash memory boot mode

FAB = 0
(Flash boot mode)

NVSCC0 !=
NVSCC1

?

True Censored with no
password access

(Locked out)

JTAG password details:

Enter password as
{NVPWD1, NVPWD0}

False

False

False

Both
SC and CW !=

0x55AA

CW != 0x55AA
?

?

True Censored with no
password access

(Locked out)

True Censored with
private password

over JTAG

Uncensored

example –
0x89ABCDEF_01234567

Note:
SC = 0x55AA

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

98 Freescale Semiconductor

Figure 5-5. Censorship control in serial boot mode

5.2 Boot Assist Module (BAM)
The BAM consists of a block of ROM at address 0xFFFF_C000 containing VLE firmware. The BAM
provides two main functions:

• Manages the serial download (FlexCAN or LINFlexD protocols supported) including support for
a serial password if censorship is enabled

• Places the microcontroller into static mode if flash memory boot mode is selected and a valid
BOOT_ID is not located in one of the boot sectors by the SSCM

5.2.1 BAM software flow

Figure 5-6 illustrates the BAM logic flow.

FAB = 1
(Serial boot mode)

NVSCC0 !=
NVSCC1

?

True Censored with no
password access

(Locked out)

Serial password details:

Enter public password
0xFEEDFACE_CAFEBEEF

False

False

False

Both
SC and CW !=

0x55AA

SC != 0x55AA
?

?

True Censored with no
password access

(Locked out)

True
Note:
CW = 0x55AA

False

CW != 0x55AA
?

True
Note:
SC = 0x55AA

Public password,
Uncensored

Flash
(private) password,

Censored

Flash
(private) password,

Uncensored

Enter password as
{NVPWD1, NVPWD0}
example –
0x89ABCDEF_01234567

Enter password as
{NVPWD0, NVPWD1}
example –
0x01234567_89ABCDEF

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 99

Figure 5-6. BAM logic flow

The first action is to set up the MMU for the e200z4d core to allow access to the SRAM.

Next, the initial (reset) device configuration is saved including the mode and clock configuration. This
means that the serial download software running in the BAM can make changes to the modes and clocking
and then restore these to the default values before running the newly downloaded application code from
the SRAM.

The SSCM_STATUS[BMODE] field indicates which boot mode is to be executed (see Table 5-5). This
field is only updated during reset.

There are two conditions where the boot mode is not considered valid and the BAM pushes the
microcontroller into static mode after restoring the default configuration:

• BMODE = 011 (flash memory boot mode). This means that the SSCM has been unable to find a
valid BOOT_ID in the boot sectors so has called the BAM

No Restore default
configuration

 (see note 2)

configuration

Save default

BAM Entry
0xFFFF_C000

Boot mode valid?

Download new
code and save in
SRAM

Restore default

configuration

Execute new
code

Safe mode

Yes

1) Boot core is determined by Processor Version Register (PVR)

Check boot
mode

2) The Boot Mode selection is done reading the SSCM_STATUS register

Set up MMU

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

100 Freescale Semiconductor

• BMODE = reserved

In static mode the SWT is enabled and a wait instruction is executed to halt the core.

For the FlexCAN and LINFlexD serial boot modes, the respective area of BAM code is executed to
download the code to SRAM.

After the code has been downloaded to SRAM, the BAM code restores the initial device configuration and
then transfers execution to the start address of the downloaded code.

5.2.1.1 BAM resources

The BAM uses/initializes the following MCU resources:

• MMU to initalize access to resources. This is only initialized if e200z4d is the primary core.

• MC_ME and MC_CGM to initialize mode and clock sources

• FlexCAN_0, LINFlexD_0 and the respective I/O pins when performing serial boot mode

• SSCM during password check

• SSCM to check the boot mode (see Table 5-5)

• 4–40 MHz external crystal oscillator

The system clock is selected directly from the 4–40 MHz external crystal oscillator. Thus, the external
oscillator frequency defines the baud rates used for serial download (see Table 5-6).

Table 5-5. SSCM_STATUS[BMODE] values as used by BAM

BMODE value Corresponding boot mode

000 Reserved

001 FlexCAN_0 serial boot loader

010 LINFlexD_0 (RS232 /UART) serial boot loader

011 Flash memory boot mode

100–111 Reserved

Table 5-6. Serial boot mode – baud rates

FXOSC frequency
(MHz)

LINFlexD baud rate
(baud)

CAN bit rate
(bit/s)

fFXOSC fFXOSC/833 fFXOSC/40

8 9600 200K

12 14400 300K

16 19200 400K

20 24000 500K

40 48000 1M

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 101

5.2.1.2 Download and execute the new code

From a high level perspective, the download protocol follows these steps:

1. Send the 64-bit password.

2. Send the start address, size of code to be downloaded (in bytes) and the VLE bit.

3. Download the code.

Each step must be completed before the next step starts. After the download is complete (the specified
number of bytes is downloaded), the code executes from the start address.

The communication is done in half duplex manner, whereby the transmission from the host is followed by
the microcontroller transmission mirroring the transmission back to the host:

• Host sends data to the microcontroller and waits for a response.

• MCU echoes to host the data received.

• Host verifies if echo is correct:

— If data is correct, the host can continue to send data.

— If data is not correct, the host stops transmission and the microcontroller enters static mode.

All multi-byte data structures are sent with MSB first.

A more detailed description of these steps follows.

5.2.1.3 Censorship mode detection and serial password validation

Before the serial download can commence, the BAM code must determine which censorship mode the
microcontroller is in and which password to use. It does this by reading the PUB and SEC fields in the
SSCM Status Register (see Section 5.3.4.1, System Status Register (SSCM_STATUS)) as shown in
Table 5-7.

When censorship is enabled, the flash memory cannot be read by application code running in the BAM or
in the SRAM. This means that the private password in the shadow flash memory cannot be read by the
BAM code. In this case the SSCM is used to obtain the private password from the flash memory of the
censored device. When the SSCM reads the private password it inverts the order of {NVPWD0,
NWPWD1} so the password entered over the serial download needs to be {NVPWD1, NVPWD0}.

Table 5-7. BAM censorship mode detection

SSCM_STATUS register fields
Mode Password comparison

PUB SEC

1 0 Uncensored, public password 0xFEED_FACE_CAFE_BEEF

0 0 Uncensored, private password NVPWD0,1 from flash memory via BAM

0 1 Censored, private password NVPWD1,0 from flash memory via SSCM

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

102 Freescale Semiconductor

Figure 5-7. BAM censorship mode detection

The first thing to be downloaded is the 64-bit password. If the password does not match the stored
password, then the BAM code pushes the microcontroller into static mode.

The way the password is compared with either the public or private password (depending on mode) varies
depending on whether censorship is enabled as described in the following subsections.

5.2.1.3.1 Censorship disabled (private or public passwords):

1. If the public password is used, the BAM code does a direct comparison between the serial password
and 0xFEED_FACE_CAFE_BEEF.

2. If the private password is used, the BAM code does a direct comparison between the serial
password and the private password in flash memory, {NVPWD0, NVPWD1}.

3. If the password does not match, the BAM code immediately terminates the download and pushes
the microcontroller into static mode.

Yes

BAM code is being
executed

(serial boot mode)

No

No

PUB = 1
?

Yes

Start serial download
with password

SSCM_STATUS register
PUB and SEC
bits are read

SEC = 1
?

Public password,
Uncensored,

BAM can directly
 check password

Private password,
Censored,

SSCM needed to
 check password

Private password,
Uncensored,

BAM can directly
 check password

Public password
mode

Is censorship
enabled

BAM tasks Applicable password

?

?

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 103

5.2.1.3.2 Censorship enabled (private password)

1. Since the flash is secured, the SSCM is required to read the private password.

2. The BAM code writes the serial password to the SSCM_PWCMPH and SSCM_PWCMPL
registers.

3. The BAM code then continues with the serial download (start address, data size and data) until all
the data has been copied to the SRAM.

4. In the meantime the SSCM has compared the private password in flash with the serial download
password the BAM code wrote into SSCM_PWCMPH and SSCM_PWCMPL.

5. If the SSCM obtains a match in the passwords, the censorship is temporarily disabled (until the
next reset).

6. The SSCM updates the status of the security (SEC) bit to reflect whether the passwords matched
(SEC = 0) or not (SEC = 1)

7. Finally, the BAM code reads SEC. If SEC = 0, execution is transferred to the code in the SRAM.
If SEC = 1, the BAM code forces the microcontroller into static mode.

Figure 5-8 shows this in more detail.

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

104 Freescale Semiconductor

Figure 5-8. BAM serial boot mode flow for censorship enabled and private password

With LINFlexD, any receive error will result in static mode. With FlexCAN, the host will re-transmit data
if there has been no acknowledgment from the microcontroller. However there could be a situation where
the receiver configuration has an error which would result in static mode entry.

Censorship enabled,
private password,

BAM running

Yes

BAM reads
SSCM_STATUS[SEC]

Serial password
received

Is SEC bit
cleared

BAM tasks SSCM tasks

serial boot mode

BAM writes received
password to SSCM

registers

Upper 32-bits to
SSCM_PWCMPH
Lower 32-bits to

SSCM_PWCMPL

Start address
and data

Data download
received

and copied to SRAM

?

BAM code pushes
microcontroller into

static mode

If any frame
is received
incorrectly,
BAM code

pushes
device into

static mode
If passwords match,

un-censor device
until next POR

Update SSCM_STATUS[SEC]
bit with

censorship state

SSCM compares
registers to private
password in flash

SSCM_PWCMPH to NVPWD1
SSCM_PWCMPL to NVPWD0

No

BAM code transfers
execution to user

code in SRAM

length received

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 105

NOTE
In a censored device booting with serial boot mode, it is possible to read the
content of the four 32-bit flash memory locations that make up the boot
sector. For example, if the RCHW is stored at address 0x0000_0000, the
reads at address 0x0000_0000, 0x0000_0004, 0x0000_0008 and
0x0000_000C will return a correct value. No other flash memory locations
can be read.

5.2.1.4 Download start address, VLE bit and code size

The next 8 bytes received by the microcontroller contain a 32-bit Start Address, the VLE mode bit and a
31-bit code Length as shown in Figure 5-9.

The VLE bit (Variable Length Instruction) is used to indicate whether the code to be downloaded is Book
VLE or Book III-E. This in turn will define how the MMU page is configured for the SRAM where the
code is downloaded.

The Start Address defines where the received data will be stored and where the MCU will branch after the
download is finished. The start address is 32-bit word aligned and the two least significant bits are ignored
by the BAM code.

NOTE
The start address is configurable, but most not lie within the 0x4000_0000
to 0x4000_00FF address range.

The Length defines how many data bytes have to be loaded.

NOTE
Start address should be 64-bit aligned, and the code length should be such
that the end address comes to be 256-bit aligned, only if cache is enabled.

5.2.1.5 Download data

Each byte of data received is stored in the microcontroller’s SRAM, starting from the address specified in
the previous protocol step.

START_ADDRESS[31:16]

START_ADDRESS[15:0]

VLE CODE_LENGTH[30:16]

CODE_LENGTH[15:0]

Figure 5-9. Start address, VLE bit and download size in bytes

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

106 Freescale Semiconductor

The address increments until the number of bytes of data received matches the number of bytes specified
by the code length.

Since the SRAM is protected by 32-bit wide Error Correction Code (ECC), the BAM code always writes
bytes into SRAM grouped into 32-bit words. If the last byte received does not fall onto a 32-bit boundary,
the BAM code fills any additional bytes with 0x0.

Since the ECC on the SRAM has not been initialized (except for the bytes of data that have just been
downloaded), an additional dummy word of 0x0000_0000 is written at the end of the downloaded data
block to avoid any ECC errors during core prefetch.

NOTE
The BAM code initializes the SRAM area used for BAM operation (and
ensures that received data is programmed to SRAM in 32-bit blocks) so no
ECC errors are encountered.

The rest of the SRAM area remains untouched and must be initialized by the
user application code before use.

5.2.1.6 Execute code

The BAM code waits for the last data byte to be received. If the operating mode is censored with a private
password, then the BAM reads the SSCM status register to determine whether the serial password matched
the private password. If there was a password match then the BAM code restores the initial configuration
and transfers execution to the downloaded code start address in SRAM. If the passwords did not match,
the BAM code forces a static mode entry.

5.2.2 LINFlexD (RS232) boot

5.2.2.1 Configuration

Boot according to the LINFlexD boot mode download protocol (see Section 5.2.2.2, Protocol) is
performed by the LINFlexD_0 module in UART (RS232) mode. Pins used are:

• LIN0TX mapped on PB[2]

• LIN0RX mapped on PB[3]

Boot from LINFlexD uses the system clock driven by the 4–40 MHz fast external crystal oscillator
(FXOSC).

The LINFlexD controller is configured to operate at a baud rate = system clock frequency/833, using an
8-bit data frame without parity bit and 1 stop bit.

Figure 5-10. LINFlexD bit timing in UART mode

D1 D2 D3 D4 D5 D6 D7D0

Byte field

Start
bit

Stop
bit

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 107

5.2.2.2 Protocol

Table 5-8 summarizes the protocol and BAM action during this boot mode.

5.2.3 FlexCAN boot

5.2.3.1 Configuration

Boot according to the FlexCAN boot mode download protocol (see Section 5.2.3.2, Protocol) is performed
by the FlexCAN_0 module. Pins used are:

• CAN0_TX mapped on PB[0]

• CAN0_RX mapped on PB[1]

NOTE
When the serial download via FlexCAN is selected and the device is part of
a CAN network, the serial download may stop unexpectedly if there is any
other traffic on the network. To avoid this situation, ensure that no other
CAN device on the network is active during the serial download process.

Boot from FlexCAN uses the system clock driven by the 4–40 MHz fast external crystal oscillator.

The FlexCAN controller is configured to operate at a baud rate = system clock frequency/40 (see Table 5-6
for examples of baud rate).

It uses the standard 11-bit identifier format detailed in FlexCAN 2.0A specification.

FlexCAN controller bit timing is programmed with 10 time quanta, and the sample point is 2 time quanta
before the end, as shown in Figure 5-11.

Table 5-8. UART boot mode download protocol

Protocol
step

Host sent message
BAM response

message
Action

1 64-bit password
(MSB first)

64-bit password Password checked for validity and compared against
stored password.

2 32-bit store address 32-bit store address Load address is stored for future use.

3 VLE bit + 31-bit
number of bytes
(MSB first)

VLE bit + 31-bit
number of bytes
(MSB first)

Size of download are stored for future use.
Configure SRAM MMU page as either Book VLE or Book
III-E based on setting of VLE bit.

4 8 bits of raw binary
data

8 bits of raw binary
data

8-bit data are packed into a 32-bit word. This word is
saved into SRAM starting from the “Load address”.
“Load address” increments until the number of data
received and stored matches the size as specified in the
previous step.

5 None None Branch to downloaded code

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

108 Freescale Semiconductor

Figure 5-11. FlexCAN bit timing

5.2.3.2 Protocol

Table 5-9 summarizes the protocol and BAM action during this boot mode. All data are transmitted byte
wise.

Table 5-9. FlexCAN boot mode download protocol

Protoco
l

step
Host sent message

BAM response
message

Action

1 CAN ID 0x011 +
64-bit password

CAN ID 0x001 +
64-bit password

Password checked for validity and compared against stored
password

2 CAN ID 0x012 +
32-bit store
address + VLE
bit + 31-bit number of
bytes

CAN ID 0x002 +
32-bit store
address + VLE
bit + 31-bit number of
bytes

Load address is stored for future use.
Size of download are stored for future use.
Configure SRAM MMU page as either Book VLE or Book
III-E based on setting of VLE bit

3 CAN ID 0x013 +
8 to 64 bits of raw
binary data

CAN ID 0x003 +
8 to 64 bits of raw
binary data

8-bit data are packed into 32-bit words. These words are
saved into SRAM starting from the “Load address”.
“Load address” increments until the number of data
received and stored matches the size as specified in the
previous step.

5 None None Branch to downloaded code

SYNC_SEG Time segment 1 Time segment 2

Sample point

NRZ signal

Transmit point

1
time quantum time quanta time quanta

7 2

1 bit time

1 time quantum = 4 system clock periods

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 109

5.3 System Status and Configuration Module (SSCM)

5.3.1 Introduction

The primary purpose of the SSCM is to provide information about the current state and configuration of
the system that may be useful for configuring application software and for debug of the system.

On microcontrollers with a separate STANDBY power domain, the System Status block is part of that
domain.

Figure 5-12. SSCM block diagram

5.3.2 Features

The SSCM includes these features:

• System Configuration and Status

— Memory sizes/status

— Microcontroller Mode and Security Status (including censorship and serial boot information)

— Search Code Flash for bootable sector

— Determine boot vector

• Device identification information (MCU ID Registers)

• Debug Status Port enable and selection

• Bus and peripheral abort enable/disable

• Read STCU test parameters from NVM / shadow flash memory and copy them into the STCU

Bus

System Status and Configuration Module

Interface

Password
Comparator

RevID
Hardmacro

Core
Logic

System
Status

Peripheral

Interface
Bus

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

110 Freescale Semiconductor

• Read the CSE boot block size from the boot clock and issue the SECURE_BOOT command to
CSE to start secure boot process

5.3.3 Modes of operation

The SSCM operates identically in all system modes.

5.3.4 Memory map and register description

Table 5-10 shows the memory map for the SSCM. Note that all addresses are offsets; the absolute address
may be calculated by adding the specified offset to the base address of the SSCM.

All registers are accessible via 8-bit, 16-bit or 32-bit accesses. However, 16-bit accesses must be aligned
to 16-bit boundaries, and 32-bit accesses must be aligned to 32-bit boundaries. As an example, the
SSCM_STATUS register is accessible by a 16-bit read/write to address ‘Base + 0x0002’, but performing
a 16-bit access to ‘Base + 0x0003’ is illegal.

5.3.4.1 System Status Register (SSCM_STATUS)

The System Status register is a read-only register that reflects the current state of the system.

Table 5-10. SSCM memory map

Address offset Register Location

0x00 System Status Register (SSCM_STATUS) on page 110

0x02 System Memory Configuration Register (SSCM_MEMCONFIG) on page 112

0x04 Reserved

0x06 Error Configuration (SSCM_ERROR) on page 113

0x08 Debug Status Port Register (SSCM_DEBUGPORT) on page 114

0x08–0x0A Reserved

0x0C Password Comparison Register High Word (SSCM_PWCMPH) on page 115

0x10 Password Comparison Register Low Word (SSCM_PWCMPL) on page 115

0x14 Reserved

0x18 DPM Boot Register (SSCM_DPMBOOT) on page 116

0x1C DPM Boot Key Register (SSCM_DPMKEY) on page 117

0x20 User Option Status Register (SSCM_UOPS) on page 118

0x24 Reserved

0x28 Processor Start Address register (SSCM_PSA) on page 119

0x2C Code Length Register (SSCM_CLEN) on page 119

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 111

Offset:0x00 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

0 CER 0

 Z
4_

N
X

E
N

Z
0_

N
X

E
N

PUB SEC 0 BMODE VLE 0 0 0 0

W w1c

Reset 0 0 0 0 0 0 0 0 0/1 0/1 0/1 0 0 0 0 0

Figure 5-13. System Status register (SSCM_STATUS)

Table 5-11. SSCM_STATUS allowed register accesses

Access type 8-bit 16-bit 32-bit1

1 All 32-bit accesses must be aligned to 32-bit addresses (i.e., 0x0, 0x4, 0x8 or 0xC).

Read Allowed Allowed Allowed

Write Not allowed Not allowed Not allowed

Table 5-12. SSCM_STATUS field descriptions

Field Description

CER Configuration Error. This field indicates that the SSCM has detected a configuration error during
bootup.
0 No configuration problem detected by the SSCM.
1 Device configuration is not correct.

Z4_NXEN e200z4d Nexus enabled

Z0_NXEN e200z0h Nexus enabled

PUB Public Serial Access Status. This bit indicates whether serial boot mode with public password is
allowed.
0 Serial boot mode with private flash memory password is allowed
1 Serial boot mode with public password is allowed

SEC Security Status. This bit reflects the current security state of the flash memory.
0 The flash memory is not secured.
1 The flash memory is secured.

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

112 Freescale Semiconductor

5.3.4.2 System Memory Configuration Register (SSCM_MEMCONFIG)

The System Memory Configuration register is a read-only register that reflects the memory configuration
of the system.

BMODE Device Boot Mode.
000 Reserved
001 FlexCAN_0 Serial Boot Loader
010 LINFlexD_0 Serial Boot Loader
011 Single Chip
100 Reserved
101 Reserved
110 Reserved
111 Reserved
This field is only updated during reset.

VLE Variable Length Instruction Mode. When booting from flash memory, this field indicates that the code
stored there is using the VLE instruction set. The value of this bit is determined by the VLE field in
the RCHW of the flash memory boot sector.
0 Code flash memory contains Book III-E code
1 Code flash memory contains Book VLE code

Offset: Base + 0x0002 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R JPIN ILVD MREV DVLD

W

Reset 11

1 Reset value is device-specific.

01 01 11 01 01 11 01 01 01 12

2 Reset value depends on boot mode and security status.

02 02 02 02 12

Figure 5-14. System Memory Configuration register (SSCM_MEMCONFIG)

Table 5-13. SSCM_MEMCONFIG field descriptions

Field Description

JPIN JTAG Part ID Number.
JPIN reset value is 0x249.

ILVD Instruction Flash Valid. This bit identifies whether or not the on-chip Instruction flash memory is
accessible in the system memory map. The flash memory may not be accessible due to security
limitations, or because there is no flash memory in the system.
0 Instruction flash memory is not accessible
1 Instruction flash memory is accessible

Table 5-12. SSCM_STATUS field descriptions (continued)

Field Description

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 113

5.3.4.3 Error Configuration (SSCM_ERROR)

The Error Configuration register is a read-write register that controls the error handling of the system.

MREV Minor Mask Revision.
MREV reset value is 0x0.

DVLD Data flash memory Valid.
This bit identifies whether or not the on-chip data flash memory is visible in the system memory map.
The flash memory may not be accessible due to security limitations, or because there is no flash memory
in the system.
0 Data flash memory is not visible
1 Data flash memory is visible

Table 5-14. SSCM_MEMCONFIG allowed register accesses

Access type 8-bit 16-bit 32-bit

Read Allowed Allowed Allowed
(also reads SSCM_STATUS

register)

Write Not allowed Not allowed Not allowed

Offset: 0x06 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PAE RAE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5-15. Error Configuration (SSCM_ERROR)

Table 5-15. SSCM_ERROR field descriptions

Field Description

PAE Peripheral Bus Abort Enable.
This bit enables bus aborts on any access to a peripheral slot that is not used on the device. This feature
is intended to aid in debugging when developing application code.
0 Illegal accesses to non-existing peripherals do not produce a Prefetch or Data Abort exception
1 Illegal accesses to non-existing peripherals produce a Prefetch or Data Abort exception

RAE Register Bus Abort Enable.
This bit enables bus aborts on illegal accesses to off-platform peripherals. Illegal accesses are defined
as reads or writes to reserved addresses within the address space for a particular peripheral. This
feature is intended to aid in debugging when developing application code.
0 Illegal accesses to peripherals do not produce a Prefetch or Data Abort exception
1 Illegal accesses to peripherals produce a Prefetch or Data Abort exception
Transfers to Peripheral Bus resources may be aborted even before they reach the Peripheral Bus (that
is, at the PBRIDGE level). In this case, bits PAE and RAE will have no effect on the abort.

Table 5-13. SSCM_MEMCONFIG field descriptions (continued)

Field Description

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

114 Freescale Semiconductor

5.3.4.4 Debug Status Port Register (SSCM_DEBUGPORT)

The Debug Status Port register is used to (optionally) provide debug data on a set of pins.

Table 5-16. SSCM_ERROR allowed register accesses

Access type 8-bit 16-bit 32-bit

Read Allowed Allowed Allowed

Write Allowed Allowed Not allowed

Offset: 0x08 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0
DEBUG_MODE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5-16. Debug Status Port Register (SSCM_DEBUGPORT)

Table 5-17. SSCM_DEBUGPORT field descriptions

Field Description

DEBUG_MODE Debug Status Port Mode.
This field selects the alternate debug functionality for the Debug Status Port.
000 No alternate functionality selected
001 Mode 1 selected
010 Mode 2 selected
011 Mode 3 selected
100 Mode 4 selected
101 Mode 5 selected
110 Mode 6 selected
111 Mode 7 selected
Table 5-18 describes the functionality of the Debug Status Port in each mode.

Table 5-18. Debug status port modes

Pin
1 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7

0 SSCM_STATUS
[0]

SSCM_STATUS
[8]

SSCM_MEMCONFI
G[0]

SSCM_MEMCONFI
G[8]

Reserved Reserved Reserved

1 SSCM_STATUS
[1]

SSCM_STATUS
[9]

SSCM_MEMCONFI
G[1]

SSCM_MEMCONFI
G[9]

Reserved Reserved Reserved

2 SSCM_STATUS
[2]

SSCM_STATUS
[10]

SSCM_MEMCONFI
G[2]

SSCM_MEMCONFI
G[10]

Reserved Reserved Reserved

3 SSCM_STATUS
[3]

SSCM_STATUS
[11]

SSCM_MEMCONFI
G[3]

SSCM_MEMCONFI
G[11]

Reserved Reserved Reserved

4 SSCM_STATUS
[4]

SSCM_STATUS
[12]

SSCM_MEMCONFI
G[4]

SSCM_MEMCONFI
G[12]

Reserved Reserved Reserved

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 115

PIN[0..7] referred to in Table 5-18 equates to PC[2..9] (Pad 34..41).

5.3.4.5 Password comparison Registers

These registers provide a means for the BAM code to unsecure the device via the SSCM if the password
has been provided via serial download.

5 SSCM_STATUS
[5]

SSCM_STATUS
[13]

SSCM_MEMCONFI
G[5]

SSCM_MEMCONFI
G[13]

Reserved Reserved Reserved

6 SSCM_STATUS
[6]

SSCM_STATUS
[14]

SSCM_MEMCONFI
G[6]

SSCM_MEMCONFI
G[14]

Reserved Reserved Reserved

7 SSCM_STATUS
[7]

SSCM_STATUS
[15]

SSCM_MEMCONFI
G[7]

SSCM_MEMCONFI
G[15]

Reserved Reserved Reserved

1 All signals are active high, unless otherwise noted

Table 5-19. SSCM_DEBUGPORT allowed register accesses

Access type 8-bit 16-bit 32-bit1

1 All 32-bit accesses must be aligned to 32-bit addresses (i.e., 0x0, 0x4, 0x8 or 0xC).

Read Allowed Allowed Not allowed

Write Allowed Allowed Not allowed

Offset: 0x0C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PWD_HI[31:16]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PWD_HI[15:0]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5-17. Password Comparison Register High Word (SSCM_PWCMPH)

Table 5-18. Debug status port modes (continued)

Pin
1 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

116 Freescale Semiconductor

In order to unsecure the device, the password needs to be written as follows: first the upper word to the
SSCM_PWCMPH register, then the lower word to the SSCM_PWCMPL register. The SSCM compares
the 64-bit password entered into the SSCM_PWCMPH / SSCM_PWCMPL registers with the
NVPWM[1,0] private password stored in the shadow flash. If the passwords match then the SSCM
temporarily uncensors the microcontroller.

5.3.4.6 DPM Boot Register (SSCM_DPMBOOT)

This register is used in two functional use cases:

• After normal RESET BOOT – The register is used to wake up the e200z0h

• After STANDBY BOOT into RAM – The register is used to wake up the alternate core

Offset: 0x10 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PWD_LO[31:16]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PWD_LO[15:0]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5-18. Password Comparison Register Low Word (SSCM_PWCMPL)

Table 5-20. Password Comparison Register field descriptions

Field Description

PWD_HI Upper 32 bits of the password

PWD_LO Lower 32 bits of the password

Table 5-21. SSCM_PWCMPH/L allowed register accesses

Access type 8-bit 16-bit 32-bit1

1 All 32-bit accesses must be aligned to 32-bit addresses (i.e., 0x0, 0x4, 0x8 or 0xC).

Read Allowed Allowed Allowed

Write Not allowed Not allowed Allowed

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 117

5.3.4.7 DPM Boot Key Register (SSCM_DPMKEY)

Offset: 0x0018 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PBOOT[29:14]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PBOOT[13:0]

0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5-19. DPM Boot register (SSCM_DPMBOOT)

Table 5-22. SSCM_DPMBOOT field descriptions

Field Description

PBOOT "Determines the start address from which the non-running core will boot.
From a POR, this will always refer to the e200z0h core.
From STANDBY mode exit, this could refer to either the e200z0h core or the e200z4d core
depending on which core is set to be active on STANDBY exit."

Offset: 0x001C Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W KEY

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5-20. DPM Boot Key register (SSCM_DPMKEY)

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

118 Freescale Semiconductor

5.3.4.8 User Option Status Register (SSCM_UOPS)

Table 5-23. SSCM_DPMKEY field descriptions

Field Description

KEY Control key.
This field is used to activate the e200z0h core
The following sequence is required:
- write to the SSCM_DPMBOOT register
- write the value 0101101011110000 (0x5AF0) to the KEY field
- write the value 1010010100001111 (0xA50F) to the KEY field
After this the second core will start executing from the address specified in the SSCM_DPMBOOT
register.

Offset: 0x0020 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R UOPT[31:16]

W

Reset 0/11

1 Default reset value is 0. It cannot be modified by software.

0/11 0/11 0/11 0/11 0/11 0/11 0/11 0/11 0/11 0/11 0/11 0/11 0/11 0/11 0/11

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R UOPT[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5-21. User Option Status register (SSCM_UOPS)

Table 5-24. SSCM_UOPS field descriptions

Field Description

UOPT Shows the values read from the User Option Bits location in the Flash.

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 119

5.3.4.9 Processor Start Address Register (SSCM_PSA)

5.3.4.10 Code Length Register (SSCM_CLEN)

Offset: 0x0028 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SADR[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SADR[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5-22. Processor Start Address register (SSCM_PSA)

Table 5-25. SSCM_PSA field descriptions

Field Description

SADR Start Address.
This shows the word following the Boot ID (with the RCHW field). The boot processor starts executing
application code from this address.

Offset: 0x002C Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CL[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CL[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5-23. Code Length register (SSCM_CLEN)

Chapter 5 Microcontroller Boot

MPC5646C Microcontroller Reference Manual, Rev. 5

120 Freescale Semiconductor

Table 5-26. SSCM_CLEN field descriptions

Field Description

CL Length of the code for the identified boot sector.
This shows the word following the Boot ID (with the RCHW field) and the application start address in
the Flash. For CSE applications, this word must contain the code length. For other applications, this
register can be ignored and the word in Flash can be used for other purposes (e.g. application code).

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 123

——— Clocks and power ———

MPC5646C Microcontroller Reference Manual, Rev. 5

124 Freescale Semiconductor

THE PAGE IS INTENTIONALLY LEFT BLANK

Chapter 6 Clock Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 125

Chapter 6
Clock Description
This chapter describes the clock architectural implementation for MPC5646C.

6.1 Clock architecture
System clocks are generated from three sources:

• Fast external crystal oscillator 4-40 MHz (FXOSC)

• Fast internal RC oscillator 16 MHz (FIRC)

• Frequency modulated phase locked loop (FMPLL)

Additionally, there are two low power oscillators:

• Slow internal RC oscillator 128 kHz (SIRC)

• Slow external crystal oscillator 32 KHz (SXOSC)

The clock architecture is shown in Figure 6-1.

Chapter 6 Clock Description

MPC5646C Microcontroller Reference Manual, Rev. 5

126 Freescale Semiconductor

Figure 6-1. MPC5646C system clock generation

1 For clock divider maximum frequency and for example configuration with respect to CFLASH/DFLASH, e200z0h, FEC, and
Peripheral SET 1/2/3 blocks in this figure, please refer to Table 6-2, MPC5646C example peripheral clock divider setup.

FIRC

CMU

SIRC

Reset/INT

System

Clock
 Selector

AUX

FXOSC_clk_div

FIRC_clk_div

PLLA_clk

(e.g., 120 MHz)

(e.g, 8 MHz)

(e.g, 16 MHz)
sys_clk e200z4d,

Platform

Watchdog

API/RTC

SXOSC
SXOSC_clk

(32 KHz)
SXOSC_clk_div

FlexRAY

Not on all
Family members

SIRC_clk_div

SIRC_clk

SIRC_clk

FIRC_clk

FXOSC_clk

(via MagicCarpet)

CLKOUT/1, /2, /4, /8

PLLA_clk

FIRC_clk

FXOSC_clk

CLKOUT

Selector

/1 to /32

/1 to /32

FIRC_clk_div

/1 to /32

/1 to /32

(128 kHz)

sys_clk

rtc_clk

FlexCAN

e200z0h

FEC

(e.g, 32 kHz)

FXOSC_clk_div

sys_clk

PLL_PHI1_clk

(e.g., 80 MHz (VCO/6))

RTI
FXOSC_clk_div

/1 to /2

/1 to /2

PLL_PHI1_clk

AUX CLK
MUX

CGL
MUX

AUX CLK implemented in CGM

Part of peripheral group 2. Also option to
clock from sys_clk

PLL_PHI1_clk

FXOSC

4-40 MHz

16 MHz

CFLASH/
/1 to /2

PLLA_clk

DFLASH

DMA

SIRC_clk_div

SXOSC_clk_div

Peripheral
Set 1

/1 to /16

Peripheral
Set 2

/1 to /16

Peripheral
Set 3

/1 to /16

rtc_clk

FXOSC

FMPLL

IRC (default)

CLOCK
SELECTOR
0

Chapter 6 Clock Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 127

6.2 Clock gating
The MPC5646C provides the user with the possibility of gating the clock to the peripherals. Table 6-1
describes for each peripheral the associated gating register address. See the ME_PCTLn section in this
reference manual.

Additionally, peripheral set (1, 2, or 3) frequency can be configured to be an integer (1 to 16) divided
version of the main system clock. See the CGM_SC_DC0 section in this reference manual for details.

Table 6-1. MPC5646C — Peripheral clock sources

Peripheral
Register gating address offset

(base = 0xC3FDC0C0)1
Peripheral set2

e200z0h Platform none (managed through ME mode) The e200z0h clock can be
programmed to be divide by 1
or divide by 2 of the system
clock

e200z4d Platform none (managed through ME mode) —

DSPI_n 4+n (n = 0..7) 2

FlexCAN_n 16+n (n = 0..5) 2

DMACHMUX 23 —

FlexRay 24 —

ADC_0 32 3

ADC_1 33 3

I2C 44 1

LINFlexD_n 48+n(n = 0..7) 1

LINFlexD_8 12 1

LINFlexD_9 13 1

CTU 57 3

CANS 60 —

CFLASH_0 66 The flash peripheral clock can
be programmed to be divide by
1 or divide by 2 of the system
clock

DFLASH 67 The flash peripheral clock can
be programmed to be divide by
1 or divide by 2 of the system
clock

SIUL 68 —

WKUP 69 —

eMIOS_n 72+n (n = 0..1) 3

Chapter 6 Clock Description

MPC5646C Microcontroller Reference Manual, Rev. 5

128 Freescale Semiconductor

NOTE
In order to alter the e200z0 clock divider, all the potential sources of
interrupts to e200z0 should be disabled. They should be disabled at the
INTC level as well as WKPU level (by disabling PCTL for WKPU).

Table 6-2 shows how to setup various dividers for different frequency operations. Dynamic switching of
the clock dividers for the peripherals takes effect immediately and affects the external functions.

NOTE
For a system frequency greater than 64 MHz, SRAMC should be
programmed for an additional wait state. See RAM WS bit in
Section 38.4.2.5, Miscellaneous User-Defined Control Register (MUDCR).

CFLASH_1 76 The flash peripheral clock can
be programmed to be divide by
1 or divide by 2 of the system

clock

RTC/API 91 —

PIT_RTI 92 —

CMU 104 —

1 See the ME_PCTL section in this reference manual for details.
2 “—” means undivided system clock.

Table 6-2. MPC5646C example peripheral clock divider setup

System
frequency
(sys_clk)

(MHz)

Peripheral set
11

Max freq.
= 32 MHz

1 See the CGM_SC_DC0 section of this reference manual.

Peripheral set
22

Max freq.
= 64 MHz

2 See the CGM_SC_DC1 section of this reference manual.

Peripheral set
33

Max freq.
= 64 MHz

3 See the CGM_SC_DC2 section of this reference manual.

FEC
frequency4

Max freq.
= 80 MHz

4 See the CGM_FEC_DCR section of this reference manual.

e200z0h
frequency5

Max freq.
= 80 MHz

5 See the CGM_Z0_DCR section of this reference manual.

Flash
memory BIU
frequency6

Max freq.
= 80 MHz

6 See the CGM_FLASH_DCR section of this reference manual.

120 30 60 60 60 60 60

64 32 64 64 64 64 64

80 20 40 40 80 80 80

Table 6-1. MPC5646C — Peripheral clock sources (continued)

Peripheral
Register gating address offset

(base = 0xC3FDC0C0)1
Peripheral set2

Chapter 6 Clock Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 129

6.3 Fast external crystal oscillator (FXOSC) digital interface
The FXOSC digital interface controls the operation of the 4–40 MHz fast external crystal oscillator
(FXOSC). It holds control and status registers accessible for application.

6.3.1 Main features
• Oscillator powerdown control and status reporting through MC_ME block

• Oscillator clock available interrupt

• Oscillator bypass mode

• Output clock division factors ranging from 1, 2, 3....32

6.3.2 Functional description

The FXOSC circuit includes an internal oscillator driver and an external crystal circuitry. It provides an
output clock that can be provided to the FMPLL or used as a reference clock to specific modules depending
on system needs.

The FXOSC can be controlled by the MC_ME module. The ME_xxx_MC[FXOSCON] bit controls the
powerdown of the oscillator based on the current device mode while ME_GS[S_XOSC] register provides
the oscillator clock available status.

After system reset, the oscillator is put into powerdown state and software has to switch on when required.
Whenever the crystal oscillator is switched on from the off state, the OSCCNT counter starts and when it
reaches the value EOCV[7:0]×512, the oscillator clock is made available to the system. Also, an interrupt
pending FXOSC_CTL[I_OSC] bit is set. An interrupt is generated if the interrupt mask bit M_OSC is set.

The oscillator circuit can be bypassed by setting FXOSC_CTL[OSCBYP]. This bit can only be set by
software. A system reset is needed to reset this bit. In this bypass mode, the output clock has the same
polarity as the external clock applied on the EXTAL pin and the oscillator status is forced to ‘1’. The
bypass configuration is independent of the powerdown mode of the oscillator.

Table 6-3 shows the truth table of different oscillator configurations.

Table 6-3. Truth table of crystal oscillator

ME_xxx_MC[FXOSCON]
FXOSC_CTL[OSCBYP

]
XTAL EXTAL FXOSC Oscillator mode

0 0 No crystal,
High Z

No crystal,
High Z

0 Powerdown, IDDQ

x 1 x Ext clock EXTAL Bypass, OSC
disabled

1 0 Crystal Crystal EXTAL Normal, OSC
enabled

Gnd Ext clock EXTAL Normal, OSC
enabled

Chapter 6 Clock Description

MPC5646C Microcontroller Reference Manual, Rev. 5

130 Freescale Semiconductor

The FXOSC clock can be further divided by a configurable factor in the range 1 to 32 to generate the
divided clock to match system requirements. This division factor is specified by FXOSC_CTL[OSCDIV]
field.

6.3.3 Register description

Address: 0xC3FE_0000 Access: Special read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

O
S

C
B

Y
P

1

1 You can read this field, and you can write a value of “1” to it. Writing a “0” has no effect. A reset will also clear this bit.

0 0 0 0 0 0 0

EOCVW

RESET: 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

M
_O

S
C 0 0

OSCDIV

I_
O

S
C

2

2 You can write a value of "0" or "1" to this field. However, writing a "1" will clear this field, and writing "0" will have no
effect on the field value.

0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-2. Fast External Crystal Oscillator Control Register (FXOSC_CTL)

Table 6-4. FXOSC_CTL field descriptions

Field Description

OSCBYP Crystal Oscillator bypass.
This bit specifies whether the oscillator should be bypassed or not.
0 Oscillator output is used as root clock
1 EXTAL is used as root clock

EOCV End of Count Value.
These bits specify the end of count value to be used for comparison by the oscillator stabilization
counter OSCCNT after reset or whenever it is switched on from the off state (OSCCNT runs on the
FXOSC). This counting period ensures that external oscillator clock signal is stable before it can
be selected by the system. When oscillator counter reaches the value EOCV × 512, the crystal
oscillator clock interrupt (I_OSC) request is generated. The OSCCNT counter will be kept under
reset if oscillator bypass mode is selected.

M_OSC Crystal oscillator clock interrupt mask.
0 Crystal oscillator clock interrupt is masked.
1 Crystal oscillator clock interrupt is enabled.

Chapter 6 Clock Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 131

NOTE
Bus access errors are generated in only half of the non-implemented address
space of Oscillator External Interface (Crystal XOSC) and RCOSC Digital
Interface (16MHz Internal RC oscillator [IRC]). Do not access
unimplemented address space for XOSC and RCOSC register areas OR
write software that is not dependent on receiving an error when access to
unimplemented XOSC and RCOSC space occurs

6.4 Slow external crystal oscillator (SXOSC) digital interface

6.4.1 Introduction

The SXOSC digital interface controls the operation of the 32 KHz slow external crystal oscillator
(SXOSC). It holds control and status registers accessible for application.

6.4.2 Main features
• Oscillator powerdown control and status

• Oscillator clock available interrupt

• Oscillator bypass mode

• Output clock division factors ranging from 1 to 32

6.4.3 Functional description

The SXOSC circuit includes an internal oscillator driver and an external crystal circuitry. It can be used as
a reference clock to specific modules depending on system needs.

The SXOSC can be controlled via the SXOSC_CTL register. The OSCON bit controls the powerdown
while bit S_OSC provides the oscillator clock available status.

After system reset, the oscillator is put to powerdown state and software has to switch on when required.
Whenever the SXOSC is switched on from off state, the OSCCNT counter starts and when it reaches the
value EOCV[7:0]×512, the oscillator clock is made available to the system. Also, an interrupt pending
SXOSC_CTL[I_OSC] bit is set. An interrupt will be generated if the interrupt mask bit M_OSC is set.

OSCDIV Crystal oscillator clock division factor.
This field specifies the crystal oscillator output clock division factor. The output clock is divided by
the factor OSCDIV+1.

I_OSC Crystal oscillator clock interrupt.
This bit is set by hardware when OSCCNT counter reaches the count value EOCV × 512.
0 No oscillator clock interrupt occurred.
1 Oscillator clock interrupt pending.

Table 6-4. FXOSC_CTL field descriptions (continued)

Field Description

Chapter 6 Clock Description

MPC5646C Microcontroller Reference Manual, Rev. 5

132 Freescale Semiconductor

The oscillator circuit can be bypassed by writing SXOSC_CTL[OSCBYP] bit to ‘1’. This bit can only be
set by software. A system reset is needed to reset this bit. In this bypass mode, the output clock has the
same polarity as the external clock applied on the OSC32K_EXTAL pin and the oscillator status is forced
to ‘1’. The bypass configuration is independent of the powerdown mode of the oscillator.

Table 6-5 shows the truth table of different configurations of the oscillator.

The SXOSC clock can be further divided by a configurable factor in the range 1 to 32 to generate the
divided clock to match system requirements. This division factor is specified by SXOSC_CTL[OSCDIV]
field.

6.4.4 Register description

Table 6-5. SXOSC truth table

SXOSC_CTL fields
OSC32K_XTAL OSC32K_EXTAL SXOSC Oscillator MODE

OSCON OSCBYP

0 0 No crystal, High Z No crystal, High Z 0 Powerdown, IDDQ

x 1 x External clock OSC32K_EXTAL Bypass, OSC disabled

1 0 Crystal Crystal OSC32K_EXTAL Normal, OSC enabled

Ground External clock OSC32K_EXTAL Normal, OSC enabled

Address: 0xC3FE_0040 Access: Special read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

O
S

C
B

Y
P

1

1 You can read this field, and you can write a value of “1” to it. Writing a “0” has no effect. A reset will also clear this bit.

0 0 0 0 0 0 0

EOCVW

RESET: 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

M
_O

S
C 0 0

OSCDIV

I_
O

S
C

2

2 You can write a value of "0" or "1" to this field. However, writing a "1" will clear this field, and writing "0" will have no
effect on the field value.

0 0 0 0 0

S
_O

S
C

O
S

C
O

N

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-3. Slow External Crystal Oscillator Control register (SXOSC_CTL)

Chapter 6 Clock Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 133

NOTE
The 32 KHz slow external crystal oscillator is by default always OFF, but
can be configured ON in standby by setting the OSCON bit.

6.5 Slow internal RC oscillator (SIRC) digital interface

6.5.1 Introduction

The SIRC digital interface controls the 128 kHz slow internal RC oscillator (SIRC). It holds control and
status registers accessible for application.

6.5.2 Functional description

The SIRC provides a low frequency (fSIRC) clock of 128 kHz requiring very low current consumption.
This clock can be used as the reference clock when a fixed base time is required for specific modules.

Table 6-6. SXOSC_CTL field descriptions

Field Description

OSCBYP Crystal Oscillator bypass.
This bit specifies whether the oscillator should be bypassed or not.
0 Oscillator output is used as root clock.
1 OSC32K_EXTAL is used as root clock.

EOCV End of Count Value.
This field specifies the end of count value to be used for comparison by the oscillator stabilization
counter OSCCNT after reset or whenever it is switched on from the off state. This counting period
ensures that external oscillator clock signal is stable before it can be selected by the system. When
oscillator counter reaches the value EOCV × 512, the crystal oscillator clock interrupt (I_OSC)
request is generated. The OSCCNT counter will be kept under reset if oscillator bypass mode is
selected.

M_OSC Crystal oscillator clock interrupt mask.
0 Crystal oscillator clock interrupt is masked.
1 Crystal oscillator clock interrupt is enabled.

OSCDIV Crystal oscillator clock division factor.
This field specifies the crystal oscillator output clock division factor. The output clock is divided by
the factor OSCDIV + 1.

I_OSC Crystal oscillator clock interrupt.
This field is set by hardware when OSCCNT counter reaches the count value EOCV × 512.
0 No oscillator clock interrupt occurred.
1 Oscillator clock interrupt pending.

S_OSC Crystal oscillator status.
0 Crystal oscillator output clock is not stable.
1 Crystal oscillator is providing a stable clock.

OSCON Crystal oscillator enable.
0 Crystal oscillator is switched off.
1 Crystal oscillator is switched on.

Chapter 6 Clock Description

MPC5646C Microcontroller Reference Manual, Rev. 5

134 Freescale Semiconductor

SIRC is always on in all device modes except STANDBY mode. In STANDBY mode, it is controlled by
SIRC_CTL[SIRCON_STDBY] bit. The clock source status is updated in SIRC_CTL[S_SIRC] bit.

The SIRC clock can be further divided by a configurable division factor in the range from 1 to 32 to
generate the divided clock to match system requirements. This division factor is specified by
SIRC_CTL[SIRCDIV] bits.

The SIRC output frequency can be trimmed using SIRC_CTL[SIRCTRIM]. After a power-on reset, the
SIRC is trimmed using a factory test value stored in test flash memory. However, after a power-on reset
the test flash memory value is not visible at SIRC_CTL[SIRCTRIM] and this field shows a value of zero.
Therefore, be aware that the SIRC_CTL[SIRCTRIM] does not reflect the current trim value until you have
written to this field. Pay particular attention to this feature when you initiate a read-modify-write operation
on SIRC_CTL, because a SIRCTRIM value of zero may be unintentionally written back and this may alter
the SIRC frequency. In this case, you should calibrate the SIRC using the CMU or be sure that you only
write to the upper 16 bits of this SIRC_CTL.

In this oscillator, two's complement trimming method is implemented. So the trimming code increases
from –16 to 15. As the trimming code increases, the internal time constant increases and frequency
reduces. Please refer to device datasheet for average frequency variation of the trimming step.

6.5.3 Register description

Address: 0xC3FE_0080 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0
SIRCTRIM

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0

SIRCDIV

0 0 0

S
_S

IR
C

0 0 0
S

IR
C

O
N

_S
T

D
B

Y

W

RESET: 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

Figure 6-4. Low Power RC Control Register (SIRC_CTL)

Chapter 6 Clock Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 135

6.6 Fast internal RC oscillator (FIRC) digital interface

6.6.1 Introduction

The FIRC digital interface controls the 16 MHz fast internal RC oscillator (FIRC). It holds control and
status registers accessible for application.

6.6.2 Functional description

The FIRC provides a high frequency (fFIRC) clock of 16 MHz. This clock can be used to accelerate the exit
from reset and wakeup sequence from low power modes of the system. It is controlled by the MC_ME
module based on the current device mode. The clock source status is updated in ME_GS[S_RC]. Please
refer to the MC_ME chapter for further details.

The FIRC can be further divided by a configurable division factor in the range from 1 to 32 to generate the
divided clock to match system requirements. This division factor is specified by RC_CTL[RCDIV] bits.

The FIRC output frequency can be trimmed using FIRC_CTL[FIRCTRIM]. After a power-on reset, the
FIRC is trimmed using a factory test value stored in test flash memory. However, after a power-on reset
the test flash memory value is not visible at FIRC_CTL[FIRCTRIM], and this field will show a value of
zero. Therefore, be aware that the FIRC_CTL[FIRCTRIM] field does not reflect the current trim value
until you have written to it. Pay particular attention to this feature when you initiate a read-modify-write
operation on FIRC_CTL, because a FIRCTRIM value of zero may be unintentionally written back and this
may alter the FIRC frequency. In this case, you should calibrate the FIRC using the CMU or ensure that
you write only to the upper 16 bits of this FIRC_CTL.

In this oscillator, two's complement trimming method is implemented. So the trimming code increases
from –32 to 31. As the trimming code increases, the internal time constant increases and frequency
reduces. Please refer to device datasheet for average frequency variation of the trimming step.

Table 6-7. SIRC_CTL field descriptions

Field Description

SIRCTRIM SIRC trimming bits.
This field corresponds (via two’s complement) to a trim factor of –16 to +15.
A +1 change in SIRCTRIM decreases the current frequency by SIRCTRIM (see the device data
sheet).
A –1 change in SIRCTRIM increases the current frequency by SIRCTRIM (see the device data
sheet).

SIRCDIV SIRC clock division factor.
This field specifies the SIRC oscillator output clock division factor. The output clock is divided
by the factor SIRCDIV+1.

S_SIRC SIRC clock status.
0 SIRC is not providing a stable clock.
1 SIRC is providing a stable clock.

SIRCON_STDBY SIRC control in STANDBY mode.
0 SIRC is switched off in STANDBY mode.
1 SIRC is switched on in STANDBY mode.

Chapter 6 Clock Description

MPC5646C Microcontroller Reference Manual, Rev. 5

136 Freescale Semiconductor

During STANDBY mode entry process, the FIRC is controlled based on ME_STANDBY_MC[RCON]
bit. This is the last step in the standby entry sequence. On any system wake-up event, the device exits
STANDBY mode and switches on the FIRC. The actual powerdown status of the FIRC when the device
is in standby is provided by RC_CTL[FIRCON_STDBY] bit.

6.6.3 Register description

z

Address: 0xC3FE_0060 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0
FIRCTRIM

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

0 0 0
FIRCDIV

0 0

F
IR

C
O

N
_S

T
D

B
Y

0 0 0 0 0

W w1c

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-5. FIRC Oscillator Control Register (FIRC_CTL)

Table 6-8. FIRC_CTL field descriptions

Field Description

FIRCTRIM FIRC trimming bits.
This field corresponds (via two’s complement) to a trim factor of –16 to +15.
A +1 change in FIRCTRIM decreases the current frequency by FIRCTRIM (see the device data
sheet).
A –1 change in SIRCTRIM increases the current frequency by FIRCTRIM (see the device data
sheet).

FIRCDIV FIRC clock division factor.
This field specifies the FIRC oscillator output clock division factor. The output clock is divided by
the factor FIRCDIV+1.

FIRCON_STDB
Y

FIRC control in STANDBY mode.
0 FIRC is switched off in STANDBY mode.
1 FIRC is in STANDBY mode.

Chapter 6 Clock Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 137

NOTE
Bus access errors are generated in only half of the non-implemented address
space of Oscillator External Interface (Crystal XOSC) and RCOSC Digital
Interface (16MHz Internal RC oscillator [IRC]). Do not access
unimplemented address space for XOSC and RCOSC register areas OR
write software that is not dependent on receiving an error when access to
unimplemented XOSC and RCOSC space occurs

6.7 Frequency-modulated phase-locked loop (FMPLL)

6.7.1 Introduction

This section describes the features and functions of the FMPLL module implemented in the device.

6.7.2 Overview

The FMPLL enables the generation of high speed system clocks from a common 4–40 MHz input clock.
Further, the FMPLL supports programmable frequency modulation of the system clock. The FMPLL
multiplication factor and output clock divider ratio are all software configurable.

MPC5646C has one FMPLL that can generate the system clock and takes advantage of the FM mode.

NOTE
The user must take care not to program device with a frequency higher than
allowed (no hardware check).

The FMPLL block diagram is shown in Figure 6-6.

Figure 6-6. FMPLL block diagram

6.7.3 Features

The FMPLL has the following major features:

• Input clock frequency 4 MHz–40 MHz

• PFD input clock frequency range in normal mode is 4–16 MHz

• Voltage controlled oscillator (VCO) range from 256 MHz to 512 MHz

• Frequency divider (FD) for reduced frequency operation without forcing the FMPLL to relock

• Frequency modulated FMPLL

Phase Charge
Pump
Low Pass
Filter

VCOIDF

NDIV
Loop
Frequency
Divider

ODF
PHIclkin

Frequency
 Detector

 (PFD)

Chapter 6 Clock Description

MPC5646C Microcontroller Reference Manual, Rev. 5

138 Freescale Semiconductor

— Modulation enabled/disabled through software

— Triangle wave modulation

• Programmable modulation depth

— ±0.25% to ±4% deviation from center spread frequency1

— 0.5% to +8% deviation from down spread frequency

— Programmable modulation frequency dependent on reference frequency

• Self-clocked mode (SCM) operation

• 4 available modes

— Normal mode

— Progressive clock switching

— Normal mode with frequency modulation

— Powerdown mode

6.7.4 Memory map2

Table 6-9 shows the memory map of the FMPLL.

6.7.5 Register description

The FMPLL operation is controlled by two registers. Those registers can be accessed and written in
supervisor mode only.

1. Spread spectrum should be programmed in line with maximum datasheet frequency figures.
2. FMPLL_x are mapped through the ME_CGM register slot

Table 6-9. FMPLL memory map

Base address: 0xC3FE_00A0

Address offset Register Location

0x0 Control Register (CR) on page 139

0x4 Modulation Register (MR) on page 141

Chapter 6 Clock Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 139

6.7.5.1 Control Register (CR)

Offset: 0x0 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
IDF ODF

0
NDIV

W

Reset 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

0 0 0 0 0 0 0

E
N

_P
LL

_S
W

0

U
N

LO
C

K
_O

N
C

E

0

I_
LO

C
K

S
_L

O
C

K

P
LL

_F
A

IL
_M

A
S

K

P
LL

_F
A

IL
_F

LA
G

1

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

Figure 6-7. Control Register (CR)

Table 6-10. CR field descriptions

Field Description

IDF The value of this field sets the FMPLL input division factor as described in Table 6-11.

ODF The value of this field sets the FMPLL output division factor as described in Table 6-12.

NDIV The value of this field sets the FMPLL loop division factor as described in Table 6-13.

EN_PLL_SW This bit is used to enable progressive clock switching. After the PLL locks, the PLL output initially
is divided by 8, and then progressively decreases until it reaches divide-by-1.
0 Progressive clock switching disabled.
1 Progressive clock switching enabled.
Note: Progressive clock switching should not be used if a non-changing clock is needed, such

as for serial communications, until the division has finished.

UNLOCK_ONCE This bit is a sticking indication of FMPLL loss of lock condition. UNLOCK_ONCE is set when the
FMPLL loses lock. Whenever the FMPLL reacquires lock, UNLOCK_ONCE remains set. Only a
power-on reset clears this bit.

I_LOCK This bit is set by hardware whenever there is a lock/unlock event.

S_LOCK This bit is an indication of whether the FMPLL has acquired lock.
0: FMPLL unlocked
1: FMPLL locked
Note: SLOCK=1 indicates that the FMPLL has achieved coarse lock. Fine lock is achieved

200 s after the FMPLL is enabled.

Chapter 6 Clock Description

MPC5646C Microcontroller Reference Manual, Rev. 5

140 Freescale Semiconductor

PLL_FAIL_MASK This bit is used to mask the pll_fail output.
0 pll_fail not masked.
1 pll_fail masked.

PLL_FAIL_FLAG This bit is asynchronously set by hardware whenever a loss of lock event occurs while FMPLL
is switched on. It is cleared by software writing ‘1’.

Table 6-11. Input divide ratios

IDF[3:0] Input divide ratios

0000 Divide by 1

0001 Divide by 2

0010 Divide by 3

0011 Divide by 4

0100 Divide by 5

0101 Divide by 6

0110 Divide by 7

0111 Divide by 8

1000 Divide by 9

1001 Divide by 10

1010 Divide by 11

1011 Divide by 12

1100 Divide by 13

1101 Divide by 14

1110 Divide by 15

1111 Clock Inhibit

Table 6-12. Output divide ratios

ODF[1:0] Output divide ratios

00 Divide by 2

01 Divide by 4

10 Divide by 8

11 Divide by 16

Table 6-10. CR field descriptions (continued)

Field Description

Chapter 6 Clock Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 141

6.7.5.2 Modulation Register (MR)

Table 6-13. Loop divide ratios

NDIV[6:0] Loop divide ratios

0000000–0011111 —

0100000 Divide by 32

0100001 Divide by 33

0100010 Divide by 34

... ...

1011111 Divide by 95

1100000 Divide by 96

1100001–1111111 —

Offset: 0x4 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

S
T

R
B

_B
Y

PA
S

S 0

S
P

R
D

_S
E

L

MOD_PERIOD
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

F
M

_E
N

INC_STEP
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-8. Modulation Register (MR)

Chapter 6 Clock Description

MPC5646C Microcontroller Reference Manual, Rev. 5

142 Freescale Semiconductor

6.7.6 Functional description

6.7.6.1 Normal mode

In Normal Mode the FMPLL inputs are driven by the CR. This means that, when the FMPLL is in lock
state, the FMPLL output clock (PHI) is derived by the reference clock (CLKIN) through this relation:

where the value of IDF, NDIV and ODF are set in the CR and can be derived from Table 6-11, Table 6-12
and Table 6-13.

Table 6-14. MR field descriptions

Field Description

STRB_BYPASS Strobe bypass.
The STRB_BYPASS signal is used to bypass the strobe signal used inside FMPLL to latch the
correct values for control bits (INC_STEP, MOD_PERIOD and SPRD_SEL).
0 Strobe is used to latch FMPLL modulation control bits
1 Strobe is bypassed. In this case control bits need to be static. The control bits must be changed

only when FMPLL is in powerdown mode.

SPRD_SEL Spread type selection.
The SPRD_SEL controls the spread type in Frequency Modulation mode.
0 Center SPREAD
1 Down SPREAD

MOD_PERIOD Modulation period.
The MOD_PERIOD field is the binary equivalent of the value modperiod derived from following
formula:

where:
fref: represents the frequency of the feedback divider
fmod: represents the modulation frequency

FM_EN Frequency Modulation Enable. The FM_EN enables the frequency modulation.
0 Frequency modulation disabled
1 Frequency modulation enabled

INC_STEP Increment step.
The INC_STEP field is the binary equivalent of the value incstep derived from following formula:

where:
md: represents the peak modulation depth in percentage (Center spread -- pk-pk=+/-md,
Downspread -- pk-pk=-2×md)
MDF: represents the nominal value of loop divider (CR[NDIV])

modperiod
fref

4 fmod
--------------------=

incstep round
2

15
1–  md MDF

100 5 MODPERIOD
--- 
 =

phi
clkin NDIV

IDF ODF
----------------------------------=

Chapter 6 Clock Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 143

6.7.6.2 Progressive clock switching

Progressive clock switching allows to switch the system clock to FMPLL output clock stepping through
different division factors. This means that the current consumption gradually increases and, in turn, voltage
regulator response is improved.

This feature can be enabled by programming CR[EN_PLL_SW] bit. When enabled, the system clock is
switched to divided PHI. The FMPLL_clk divider is then progressively decreased to the target divider as
shown in Table 6-16.

Table 6-15. FMPLL lookup table

Crystal
frequency (MHz)

FMPLL output
frequency

(MHz)

CR field values
VCO frequency

(MHz)
PHI11 frequency

(MHz)

1 The PHI1 clock is derived from VCO6 and can be used to drive FlexRay protocol engine at 80 MHz only
(VCO = 480 MHz).

IDF ODF NDIV

8 32 0 2 32 256 42.67

64 0 2 64 512 85.33

80 0 1 40 320 53.33

120 0 1 60 480 80

16 32 1 2 32 256 42.67

64 1 2 64 512 85.33

80 1 1 40 320 53.33

120 1 1 60 480 80

40 32 4 2 32 256 42.67

64 4 2 64 512 85.33

80 3 1 32 320 53.33

120 3 1 48 480 80

Table 6-16. Progressive clock switching on pll_select rising edge

Number of FMPLL output clock cycles
FMPLL_clk frequency

(FMPLL output clock frequency)

8 (FMPLL output clock frequency)/8

16 (FMPLL output clock frequency)/4

32 (FMPLL output clock frequency)/2

onward FMPLL output clock frequency

Chapter 6 Clock Description

MPC5646C Microcontroller Reference Manual, Rev. 5

144 Freescale Semiconductor

Figure 6-9. FMPLL output clock division flow during progressive switching

6.7.6.3 Normal mode with frequency modulation

The FMPLL default mode is without frequency modulation enabled. When frequency modulation is
enabled, however, two parameters must be set to generate the desired level of modulation: the PERIOD,
and the STEP. The modulation waveform is always a triangle wave and its shape is not programmable.

FM mode is activated in two steps:

1. Configure the FM mode characteristics: MOD_PERIOD, INC_STEP.

2. Enable the FM mode by programming bit FM_EN of the MR to ‘1’. FM mode can only be enabled
when FMPLL is in lock state.

There are two ways to latch these values inside the FMPLL, depending on the value of bit STRB_BYPASS
in the MR.

If STRB_BYPASS is low, the modulation parameters are latched in the FMPLL only when the strobe
signal goes high for at least two cycles of CLKIN clock. The strobe signal is automatically generated in
the FMPLL digital interface when the modulation is enabled (FM_EN goes high) if the FMPLL is locked
(S_LOCK = 1) or when the modulation has been enabled (FM_EN = 1) and FMPLL enters lock state
(S_LOCK goes high).

If STRB_BYPASS is high, the strobe signal is bypassed. In this case, control bits (MOD_PERIOD[12:0],
INC_STEP[14:0], SPREAD_CONTROL) need to be static or hardwired to constant values. The control
bits must be changed only when the FMPLL is in powerdown mode.

The modulation depth in % is

NOTE
The user must ensure that the product of INCTEP and MODPERIOD is less
than (215-1).

FMPLL output clock FMPLL_clkDivision factors of 8, 4, 2 or 1

ModulationDepth
100 5 INCSTEPxMODPERIOD

2
15

1–  MDF
--- 
 =

Chapter 6 Clock Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 145

Figure 6-10. Frequency modulation

6.7.6.4 Powerdown mode

To reduce consumption, the FMPLL can be switched off when not required by programming the registers
ME_x_MC on the MC_ME module.

6.7.7 Recommendations

To avoid any unpredictable behavior of the FMPLL clock, it is recommended to follow these guidelines:

• The FMPLL VCO frequency should reside in the range 256 MHz to 512 MHz. Care is required
when programming the multiplication and division factors to respect this requirement.

• The user must change the multiplication, division factors only when the FMPLL output clock is
not selected as system clock. Use progressive clock switching if system clock changes are required
while the PLL is being used as the system clock source. MOD_PERIOD, INC_STEP,
SPREAD_SEL bits should be modified before activating the FM mode. Then strobe has to be
generated to enable the new settings. If STRB_BYP is set to ‘1’ then MOD_PERIOD, INC_STEP
and SPREAD_SEL can be modified only when FMPLL is in powerdown mode.

• Use progressive clock switching (FMPLL output clock can be changed when it is the system clock,
but only when using progressive clock switching).

6.8 Clock monitor unit (CMU)

6.8.1 Introduction

The Clock Monitor Unit (CMU), also referred to as Clock Quality Checker or Clock Fault Detector, serves
two purposes. The main task is to permanently supervise the integrity of the various clock sources, for
example a crystal oscillator or FMPLL. In case the FMPLL leaves an upper or lower frequency boundary

Chapter 6 Clock Description

MPC5646C Microcontroller Reference Manual, Rev. 5

146 Freescale Semiconductor

or the crystal oscillator fails it can detect and forward these kind of events towards the MC_ME and
MC_CGM. The clock management unit in turn can then switch to a SAFE mode where it uses the default
safe clock source (FIRC), reset the device or generate the interrupt according to the system needs.

It can also monitor the external crystal oscillator clock, which must be greater than the internal RC clock
divided by a division factor given by CMU_CSR[RCDIV], and generates a system clock transition request
or an interrupt when enabled.

The second task of the CMU is to provide a frequency meter, which allows to measure the frequency of
one clock source vs. a reference clock. This is useful to allow the calibration of the on-chip RC
oscillator(s), as well as being able to correct/calculate the time deviation of a counter which is clocked by
the RC oscillator.

6.8.2 Main features
• FIRC, SIRC, SXOSC oscillator frequency measurement using FXOSC as reference clock

• External oscillator clock monitoring with respect to FIRC_clk/n clock

• FMPLL clock frequency monitoring for a high and low frequency range with FIRC as reference
clock

• Event generation for various failures detected inside monitoring unit

Chapter 6 Clock Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 147

6.8.3 Block diagram

Figure 6-11. Clock Monitor Unit diagram

CMU_MDR

XOSC Supervisor
FXOSC < FIRC / n

CMU_HFREFR

CMU_LFREFR

Frequency Meter CMU_FDR

FMPLL Supervisor

OLR_evt

FHH_FLL_OR_evt_a

XXOSC ON/OFF
From MC_ME

FMPLL ON/OFF
From MC_ME

MUX1

CKSEL1[1:0]

00

01

10

11

FIRC_clk

FIRC_clk

SIRC_clk

SXOSC_clk

FXOSC_clk

FMPLL

FMPLL > hfref
OR
FMPLL < lfref

OLR_evt: It is the event signaling XOSC failure when asserted. When this signal is asserted, RGM may generate reset, interrupt
or SAFE request based on the RGM configuration.

FHH_FLL_OR_evt_a : It is the event signaling FMPLL failure when asserted. Based on the CMU_HFREFR and CMU_LFREFR
configuration, if the FMPLL is greater than high frequency range or less than the low frequency range configuration, this signal is
generated. When this signal is asserted, RGM may generate reset, interrupt or SAFE request based on the RGM configuration.

Chapter 6 Clock Description

MPC5646C Microcontroller Reference Manual, Rev. 5

148 Freescale Semiconductor

6.8.4 Functional description

The clock and frequency names referenced in this block are defined as follows:

• FXOSC_clk: clock coming from the fast external crystal oscillator

• SXOSC_clk: clock coming from the slow external crystal oscillator

• SIRC_clk: clock coming from the slow (low frequency) internal RC oscillator

• FIRC_clk: clock coming from the fast (high frequency) internal RC oscillator

• FMPLL_clk: clock coming from the FMPLL

• fFXOSC_clk: frequency of fast external crystal oscillator clock

• fSXOSC_clk: frequency of slow external crystal oscillator clock

• fSIRC_clk: frequency of slow (low frequency) internal RC oscillator

• fFIRC_clk: frequency of fast (high frequency) internal RC oscillator

• fFMPLL_clk: frequency of FMPLL clock

6.8.4.1 Crystal clock monitor

If fFXOSC_clk is less than fFIRC_clk divided by 2RCDIV bits of the CMU_CSR and the FXOSC_clk is ‘ON’ as
signaled by the MC_ME then:

• An event pending bit OLRI in CMU_ISR is set.

• A failure event OLR is signaled to the MC_RGM which in turn can automatically switch to a safe
fallback clock and generate an interrupt or reset.

NOTE
Functional FXOSC monitoring can only be guaranteed when the FXOSC
frequency is greater than (FIRC / 2RCDIV) + 0.5 MHz.

NOTE
The function of the XOSC monitor is not guaranteed when the difference
between XOSC and FIRC/2RCDIV (that is, the reference clock frequency) is
less than 0.5 MHz.

6.8.4.2 FMPLL clock monitor

The fFMPLL_clk can be monitored by programming bit CME of the CMU_CSR register to ‘1’. The
FMPLL_clk monitor starts as soon as bit CME is set. This monitor can be disabled at any time by writing
bit CME to ‘0’.

If fFMPLL_clk is greater than a reference value determined by bits HFREF[11:0] of the CMU_HFREFR and
the FMPLL_clk is ‘ON’, as signaled by the MC_ME, then:

• An event pending bit FHHI in CMU_ISR is set.

• A failure event is signaled to the MC_RGM which in turn can generate an interrupt or safe mode
request or functional reset depending on the programming model.

Chapter 6 Clock Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 149

If fFMPLL_clk is less than a reference value determined by bits LFREF[11:0] of the CMU_LFREFR and the
FMPLL_clk is ‘ON’, as signaled by the MC_ME, then:

• An event pending bit FLLI in CMU_ISR is set.

• A failure event FLL is signaled to the MC_RGM which in turn can generate an interrupt or safe
mode request or functional reset depending on the programming model.

NOTE
Functional FMPLL monitoring can only be guaranteed when the FMPLL
frequency is greater than (FIRC / 4) + 0.5 MHz.

NOTE
The internal RC oscillator is used as reliable reference clock for the clock
supervision. In order to avoid false events, proper programming of the
dividers is required. These have to take into account the accuracy and
frequency deviation of the internal RC oscillator.

NOTE
If PLL frequency goes out of range, the CMU shall generate FMPLL fll/fhh
event. It takes approximately 5 s to generate this event.

NOTE
The function of the FMPLL monitor is not guaranteed when the difference
between FMPLL and FIRC/4 (that is, the reference clock frequency) is less
than 0.5 MHz.

6.8.4.3 Frequency meter

The purpose of the frequency meter is twofold:

• to measure the frequency of the oscillators SIRC, FIRC or SXOSC

• to calibrate an internal RC oscillator (SIRC or FIRC) using a known frequency

Hint: This value can then be stored into the flash so that application software can reuse it later on.

The reference clock is always the FXOSC_clk. The frequency meter returns a precise value of frequencies
fSXOSC_clk, fFIRC_clk or fSIRC_clk according to CKSEL1 bit value. The measure starts when bit SFM (Start
Frequency Measure) in the CMU_CSR is set to ‘1’. The measurement duration is given by the
CMU_MDR in numbers of clock cycles of the selected clock source with a width of 20 bits. Bit SFM is
reset to ‘0’ by hardware once the frequency measurement is done and the count is loaded in the
CMU_FDR. The frequency fx

1 can be derived from the value loaded in the CMU_FDR as follows:

fx = (fFXOSC × MD) / n Eqn. 6-1

where n is the value in the CMU_FDR and MD is the value in the CMU_MDR.

The frequency meter by default evaluates fFIRC_clk, but software can swap to fSIRC_clk or fSXOSC_clk by
programming the CKSEL bits in the CMU_CSR.

1. x = FIRC,SIRC or SXOSC

Chapter 6 Clock Description

MPC5646C Microcontroller Reference Manual, Rev. 5

150 Freescale Semiconductor

6.8.5 Memory map and register description

The memory map of the CMU is shown in Table 6-17.

6.8.5.1 Control Status Register (CMU_CSR)

Table 6-17. CMU memory map

Base address: 0xC3FE_0100

Register name Address offset Reset value Location

Control Status Register (CMU_CSR) 0x00 0x00000006 on page 150

Frequency Display Register (CMU_FDR) 0x04 0x00000000 on page 151

High Frequency Reference Register FMPLL (CMU_HFREFR) 0x08 0x00000FFF on page 152

Low Frequency Reference Register FMPLL (CMU_LFREFR) 0x0C 0x00000000 on page 152

Interrupt Status Register (CMU_ISR) 0x10 0x00000000 on page 153

Reserved 0x14 0x00000000 —

Measurement Duration Register (CMU_MDR) 0x18 0x00000000 on page 153

Offset: 0x00 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0

S
F

M
1

1 You can read this field, and you can write a value of "1" to it. Writing a "0" has no effect. A reset will also clear this bit.

0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0
CKSEL1

0 0 0 0 0
RCDIV

C
M

E
_A

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

Figure 6-12. Control Status Register (CMU_CSR)

Table 6-18. CMU_CSR field descriptions

Field Description

SFM Start frequency measure.
The software can only set this bit to start a clock frequency measure. It is reset by hardware when
the measure is ready in the CMU_FDR register.
0 Frequency measurement completed or not yet started.
1 Frequency measurement not completed.

CKSEL1 Clock oscillator selection bit.
CKSEL1 selects the clock to be measured by the frequency meter.
00 FIRC_clk selected.
01 SIRC_clk selected.
10 SXOSC_clk selected.
11 FIRC_clk selected.

Chapter 6 Clock Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 151

6.8.5.2 Frequency Display Register (CMU_FDR)

.

RCDIV RC clock division factor.
These bits specify the RC clock division factor. The output clock is FIRC_clk divided by the factor
2RCDIV. This output clock is used to compare with FXOSC_clk for crystal clock monitor feature.The
clock division coding is as follows.
00 Clock divided by 1 (No division)
01 Clock divided by 2
10 Clock divided by 4
11 Clock divided by 8

CME_A FMPLL_0 clock monitor enable.
0 FMPLL_0 monitor disabled.
1 FMPLL_0 monitor enabled.

Offset: 0x04 Access: Read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 FD[19:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R FD[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-13. Frequency Display Register (CMU_FDR)

Table 6-19. CMU_FDR field descriptions

Field Description

FD Measured frequency bits.
This register displays the measured frequency fx with respect to fFXOSC. The measured value is given
by the following formula: fx = (fFXOSC × MD) / n, where n is the value in CMU_FDR register.
Note: x = FIRC, SIRC or SXOSC.

Table 6-18. CMU_CSR field descriptions (continued)

Field Description

Chapter 6 Clock Description

MPC5646C Microcontroller Reference Manual, Rev. 5

152 Freescale Semiconductor

6.8.5.3 High Frequency Reference Register FMPLL (CMU_HFREFR)

6.8.5.4 Low Frequency Reference Register FMPLL (CMU_LFREFR)

Offset: 0x08 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
HFREF

W

Reset 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

Figure 6-14. High Frequency Reference Register FMPLL (CMU_HFREFR)

Table 6-20. CMU_HFREFR field descriptions

Field Description

HFREF High Frequency reference value.
This field determines the high reference value for the FMPLL clock. The reference value
is given by: (HFREF  16) × (fFIRC  4).

Offset: 0x0C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
LFREF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-15. Low Frequency Reference Register FMPLL (CMU_LFREFR)

Table 6-21. CMU_LFREFR field descriptions

Field Description

LFREF Low Frequency reference value.
This field determines the low reference value for the FMPLL. The reference value is given by:
(LFREF  16) × (fFIRC  4).

Chapter 6 Clock Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 153

6.8.5.5 Interrupt Status Register (CMU_ISR)

6.8.5.6 Measurement Duration Register (CMU_MDR)

Offset: 0x10 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0 0 0 0 0 0 0 0 0 0 0

F
H

H
I

F
LL

I

O
LR

I

W w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-16. Interrupt status register (CMU_ISR)

Table 6-22. CMU_ISR field descriptions

Field Description

FHHI FMPLL clock frequency higher than high reference interrupt.
This bit is set by hardware when fFMPLL_clk becomes higher than HFREF value and FMPLL_clk is ‘ON’
as signaled by the MC_ME. It can be cleared by software by writing ‘1’.
0 No FHH event.
1 FHH event is pending.

FLLI FMPLL clock frequency lower than low reference event.
This bit is set by hardware when fFMPLL_clk becomes lower than LFREF value and FMPLL_clk is ‘ON’
as signaled by the MC_ME. It can be cleared by software by writing ‘1’.
0 No FLL event.
1 FLL event is pending.

OLRI Oscillator frequency lower than RC frequency event.
This bit is set by hardware when fFXOSC_clk is lower than FIRC_clk/2RCDIV frequency and FXOSC_clk
is ‘ON’ as signaled by the MC_ME. It can be cleared by software by writing ‘1’.
0 No OLR event.
1 OLR event is pending.

Offset: 0x18 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0
MD[19:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MD[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-17. Measurement Duration Register (CMU_MDR)

Chapter 6 Clock Description

MPC5646C Microcontroller Reference Manual, Rev. 5

154 Freescale Semiconductor

NOTE
As per design, MDR=1 is not allowed as the FDR counter counts from 0 to
MDR-1.

When FXOSC > FIRC and MDR=0xFFFFF, it will cause overflow of FDR
register and the value stored cannot be relied upon.At the IP level, the
frequency relationship between the measured and reference frequency in not
known and may vary across products.

Based on the frequency relationship in a particular product, application has
to decide the appropriate value of MDR to avoid rollover of FDR with
decent resolution of measurement.

Table 6-23. CMU_MDR field descriptions

Field Description

MD Measurement duration bits.
This field displays the measurement duration in numbers of clock cycles of the selected clock source.
This value is loaded in the frequency meter downcounter. When CMU_CSR[SFM] = 1, the
downcounter starts counting.

Chapter 7 Clock Generation Module (MC_CGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 155

Chapter 7
Clock Generation Module (MC_CGM)

7.1 Introduction
The clock generation module (MC_CGM) generates reference clocks for all the chip blocks. The
MC_CGM selects one of the system clock sources to supply the system clock. The MC_ME controls the
system clock selection (see the MC_ME documentation for more details). Peripheral clock selection is
controlled by MC_CGM control registers. A set of MC_CGM registers controls the clock dividers which
are used for divided system and peripheral clock generation. The memory spaces of system and peripheral
clock sources which have addressable memory spaces accessed through the MC_CGM memory space.
The MC_CGM also selects and generates an output clock.

Figure 7-1 depicts the MC_CGM block diagram.

Chapter 7 Clock Generation Module (MC_CGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

156 Freescale Semiconductor

7.2 Features
The MC_CGM includes the following features:

• generates system and peripheral clocks

• selects and enables/disables the system clock supply from system clock sources according to
MC_ME control

• contains a set of registers to control clock dividers for divided clock generation

Output Clock
Selector/Divider

Registers

Platform Interface

core

MC_CGM

Figure 7-1. MC_CGM block diagram

MC_ME

Auxiliary Clock
Selector/Divider

System Clock
Multiplexer/Divider

FXOSC

FMPLL

FIRC

M
ap

pe
d

M
od

ul
es

 In
te

rf
ac

e

mapped
peripherals

peripherals

PA[0]

MC_RGM

Chapter 7 Clock Generation Module (MC_CGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 157

• contains a set of registers to control peripheral clock selection

• supports multiple clock sources and maps their address spaces to its memory map

• generates an output clock

• guarantees glitch-less clock transitions when changing the system clock selection

• supports 8, 16 and 32-bit wide read/write accesses

7.3 External signal description
The MC_CGM delivers an output clock to the PA[0] pin for off-chip use and/or observation.

7.4 Memory Map and Register Definition
Table 7-1. MC_CGM Register Description

Address Name Description Size
Access

Location
User Supervisor Test

0xC3FE
_00C0

CGM_E200Z0H
CORE_DCR

e200z0h Core Clock
Divider Configuration

byte read read/write read/write on page 163

0xC3FE
_00E0

CGM_FEC_DCR FEC Clock Divider
Configuration

byte read read/write read/write on page 163

0xC3FE
_0120

CGM_FLASH_DCR Flash Clock Divider
Configuration

byte read read/write read/write on page 164

0xC3FE
_0370

CGM_OC_EN Output Clock Enable word read read/write read/write on page 165

0xC3FE
_0374

CGM_OCDS_SC Output Clock Division
Select

byte read read/write read/write on page 165

0xC3FE
_0378

CGM_SC_SS System Clock Select
Status

byte read read read on page 166

0xC3FE
_037C

CGM_SC_DC0 System Clock Divider
Configuration 0

byte read read/write read/write on page 167

0xC3FE
_037D

CGM_SC_DC1 System Clock Divider
Configuration 1

byte read read/write read/write on page 168

0xC3FE
_037E

CGM_SC_DC2 System Clock Divider
Configuration 2

byte read read/write read/write on page 168

0xC3FE
_0380

CGM_AC0_SC Aux Clock 0 Select
Control

word read read/write read/write on page 169

0xC3FE
_0388

CGM_AC1_SC Aux Clock 1 Select
Control

word read read/write read/write on page 170

0xC3FE
_038C

CGM_AC1_DC0 Aux Clock 1 Divider
Configuration 0

byte read read/write read/write on page 170

Chapter 7 Clock Generation Module (MC_CGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

158 Freescale Semiconductor

NOTE
Any access to unused registers as well as write accesses to read-only
registers will be:

• not change register content

• cause a transfer error

Table 7-2. MC_CGM Memory Map

Address Name
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0xC3FE
_0000

…
0xC3FE
_001C

FXOSC registers

0xC3FE
_0020

…
0xC3FE
_003C

reserved

0xC3FE
_0040

…
0xC3FE
_005C

SXOSC registers

0xC3FE
_0060

…
0xC3FE
_007C

FIRC registers

0xC3FE
_0080

…
0xC3FE
_009C

SIRC registers

0xC3FE
_00A0

…
0xC3FE
_00BC

FMPLL registers

0xC3FE
_00C0

CGM_E200Z0
H
CORE_DCR

R 0 0 0 0 0 0 0
DIV

0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Chapter 7 Clock Generation Module (MC_CGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 159

0xC3FE
_00C4

…
0xC3FE
_00DC

reserved

0xC3FE
_00E0

CGM_FEC_D
CR

R 0 0 0 0 0 0 0
DIV

0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

0xC3FE
_00E4

…
0xC3FE
_00FC

reserved

0xC3FE
_0100

…
0xC3FE
_011C

CMU registers

0xC3FE
_0120

CGM_FLASH
_DCR

R 0 0 0 0 0 0 0
DIV

0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

0xC3FE
_0124

…
0xC3FE
_013C

reserved

0xC3FE
_0140

…
0xC3FE
_015C

reserved

0xC3FE
_0160

…
0xC3FE
_017C

reserved

0xC3FE
_0180

…
0xC3FE
_019C

reserved

Table 7-2. MC_CGM Memory Map (continued)

Address Name
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Chapter 7 Clock Generation Module (MC_CGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

160 Freescale Semiconductor

0xC3FE
_01A0

…
0xC3FE
_01BC

reserved

0xC3FE
_01C0

…
0xC3FE
_01DC

reserved

0xC3FE
_01E0

…
0xC3FE
_01FC

reserved

0xC3FE
_0200

…
0xC3FE
_021C

reserved

0xC3FE
_0220

…
0xC3FE
_023C

reserved

0xC3FE
_0240

…
0xC3FE
_025C

reserved

0xC3FE
_0260

…
0xC3FD
_C27C

reserved

0xC3FE
_0280

…
0xC3FE
_029C

reserved

0xC3FE
_02A0

…
0xC3FE
_02BC

reserved

Table 7-2. MC_CGM Memory Map (continued)

Address Name
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Chapter 7 Clock Generation Module (MC_CGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 161

0xC3FE
_02C0

…
0xC3FE
_02DC

reserved

0xC3FE
_02E0

…
0xC3FE
_02FC

reserved

0xC3FE
_0300

…
0xC3FE
_031C

reserved

0xC3FE
_0320

…
0xC3FE
_033C

reserved

0xC3FE
_0340

…
0xC3FE
_035C

reserved

0xC3FE
_0360

…
0xC3FE
_036C

reserved

0xC3FE
_0370

CGM_OC_EN R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EN

W

0xC3FE
_0374

CGM_OCDS_
SC

R 0 0
SELDIV SELCTL

0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Table 7-2. MC_CGM Memory Map (continued)

Address Name
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Chapter 7 Clock Generation Module (MC_CGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

162 Freescale Semiconductor

7.4.1 Register descriptions

All registers may be accessed as 32-bit words, 16-bit half-words, or 8-bit bytes. The bytes are ordered
according to big endian. For example, the CGM_OC_EN register may be accessed as a word at address
0xC3FE_0370, as a half-word at address 0xC3FE_0372, or as a byte at address 0xC3FE_0373.

0xC3FE
_0378

CGM_SC_SS R 0 0 0 0 SELSTAT 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

0xC3FE
_037C

CGM_SC_DC
0…2

R
D

E
0 0 0 0

DIV0

D
E

1 0 0 0
DIV1

W

R

D
E

2 0 0 0
DIV2

0 0 0 0 0 0 0 0

W

0xC3FE
_0380

CGM_AC0_S
C

R 0 0 0 0
SELCTL

0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

0xC3FE
_0384

reserved

0xC3FE
_0388

CGM_AC1_S
C

R 0 0 0 0
SELCTL

0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

0xC3FE
_038C

CGM_AC1_D
C0

R

D
E

0 0 0 0
DIV0

0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

0xC3FE
_0400

…
0xC3FE
_3FFC

reserved

Table 7-2. MC_CGM Memory Map (continued)

Address Name
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Chapter 7 Clock Generation Module (MC_CGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 163

7.4.1.1 e200z0h Core Clock Divider Configuration Register (CGM_Z0_DCR)

This register sets the e200z0h Core clock division factor. For clock divider maximum frequency and for
example configuration, please refer to Table 6-2., “MPC5646C example peripheral clock divider setup”.

NOTE
The value of the DIV field of the CGM_Z0_DCR should only be changed
when the e200z0h core clock is disabled or the core is in WAIT state. Also,
the e200z0h core cannot run at a frequency higher than 80 MHz. If the
system clock frequency is greater than 80 MHz, the e200z0h core clock
frequency must be the system clock frequency divided by 2
(DIV = 1).Otherwise, the e200z0h core clock frequency can be the same as
the system clock frequency (DIV = 0).

7.4.1.2 FEC Clock Divider Configuration Register (CGM_FEC_DCR)

This register sets the FEC clock division factor. For clock divider maximum frequency and for example
configuration, please refer to Table 6-2., “MPC5646C example peripheral clock divider setup”.

NOTE
For 100 Mbit/s Ethernet performance, the FEC must operate at greater than
or equal to 50 MHz. If the system clock frequency is less than or equal to
80 MHz, the FEC clock frequency must be the same as the system clock
frequency (DIV = 0). If the system clock frequency is greater than or equal
to 100 MHz, the FEC clock frequency must be the system clock divided by
2 (DIV = 1).

Address 0xC3FE_00C0 Access: User read, Supervisor read/write

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0
DIV

W

Reset 0 0 0 0 0 0 0 0

Figure 7-2. e200z0h Core Clock Divider Configuration Register (CGM_Z0_DCR)

Table 7-3. e200z0h Core Clock Divider Configuration Register (CGM_Z0_DCR) Field Description

Field Description

DIV Divider Division Value — The resultant e200z0h Core clock will have a period ‘DIV + 1’ times that of the
system clock.

Address 0xC3FE_00E0 Access: User read, Supervisor read/write

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0
DIV

W

Reset 0 0 0 0 0 0 0 1

Figure 7-3. FEC Clock Divider Configuration Register (CGM_FEC_DCR)

Chapter 7 Clock Generation Module (MC_CGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

164 Freescale Semiconductor

7.4.1.3 Flash Clock Divider Configuration Register (CGM_FLASH_DCR)

This register sets the Flash clock division factor. For clock divider maximum frequency and for example
configuration, please refer to Table 6-2., “MPC5646C example peripheral clock divider setup”.

NOTE
The flash register interface cannot run at a frequency higher than 80 MHz.
If the system clock frequency is greater than 80 MHz, the flash clock
frequency must be the system clock divided by 2 (DIV = 1). Otherwise, the
flash clock frequency can be the same as the system clock frequency
(DIV = 0).

Table 7-4. FEC Clock Divider Configuration Register (CGM_FEC_DCR) Field Description

Field Description

DIV Divider Division Value — The resultant FEC clock will have a period ‘DIV + 1’ times that of the system
clock.

Address 0xC3FE_0120 Access: User read, Supervisor read/write

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0
DIV

W

Reset 0 0 0 0 0 0 0 1

Figure 7-4. Flash Clock Divider Configuration Register (CGM_Flash_DCR)

Table 7-5. Flash Clock Divider Configuration Register (CGM_Flash_DCR) Field Description

Field Description

DIV Divider Division Value — The resultant Flash clock will have a period ‘DIV + 1’ times that of the system
clock.

Chapter 7 Clock Generation Module (MC_CGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 165

7.4.1.4 Output Clock Enable Register (CGM_OC_EN)

This register is used to enable and disable the output clock.

7.4.1.5 Output Clock Division Select Register (CGM_OCDS_SC)

This register is used to select the current output clock source and by which factor it is divided before being
delivered at the output clock.

Address 0xC3FE_0370 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-5. Output Clock Enable Register (CGM_OC_EN)

Table 7-6. Output Clock Enable Register (CGM_OC_EN) Field Descriptions

Field Description

EN Output Clock Enable control
0 Output Clock is disabled
1 Output Clock is enabled

Address 0xC3FE_0374 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7

R 0 0
SELDIV SELCTL

W

Reset 0 0 0 0 0 0 0 0

Figure 7-6. Output Clock Division Select Register (CGM_OCDS_SC)

Chapter 7 Clock Generation Module (MC_CGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

166 Freescale Semiconductor

7.4.1.6 System Clock Select Status Register (CGM_SC_SS)

This register provides the current system clock source selection.

Table 7-7. Output Clock Division Select Register (CGM_OCDS_SC) Field Descriptions

Field Description

SELDIV Output Clock Division Select.
00 output selected Output Clock without division
01 output selected Output Clock divided by 2
10 output selected Output Clock divided by 4
11 output selected Output Clock divided by 8

SELCTL Output Clock Source Selection Control — This value selects the current source for the output clock.
0000 FXOSC
0001 FIRC
0010 FMPLL
0011 system clock
0100 RTC clock
0101 FMPLL_PHI1
0110 reserved
0111 reserved
1000 reserved
1001 reserved
1010 reserved
1011 reserved
1100 reserved
1101 reserved
1110 reserved
1111 reserved

Address 0xC3FE_0378 Access: User read, Supervisor read, Test read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 SELSTAT 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-7. System Clock Select Status Register (CGM_SC_SS)

Chapter 7 Clock Generation Module (MC_CGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 167

7.4.1.7 System Clock Divider 0 Configuration Register (CGM_SC_DC0)

This register controls system clock divider 0. For clock divider maximum frequency and for example
configuration, please refer to Table 6-2., “MPC5646C example peripheral clock divider setup”.

Table 7-8. System Clock Select Status Register (CGM_SC_SS) Field Descriptions

Field Description

SELSTAT System Clock Source Selection Status — This value indicates the current source for the system clock.
0000 FIRC
0001 FIRC_divided
0010 FXOSC
0011 FXOSC_divided
0100 FMPLL
0101 reserved
0110 reserved
0111 reserved
1000 reserved
1001 reserved
1010 reserved
1011 reserved
1100 reserved
1101 reserved
1110 reserved
1111 system clock is disabled

Address 0xC3FE_037C Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7

R
DE0

0 0 0
DIV0

W

Reset 1 0 0 0 0 0 0 0

Figure 7-8. System Clock Divider 0 Configuration Register (CGM_SC_DC0)

Table 7-9. System Clock Divider 0 Configuration Register (CGM_SC_DC0) Field Descriptions

Field Description

DE0 Divider 0 Enable.
0 Disable system clock divider 0
1 Enable system clock divider 0

DIV0 Divider 0 Division Value — The resultant peripheral set 1 clock will have a period ‘DIV0 + 1’ times that
of the system clock. If the DE0 is set to ‘0’ (Divider 0 is disabled), any write access to the DIV0 field is
ignored and the peripheral set 1 clock remains disabled.

Chapter 7 Clock Generation Module (MC_CGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

168 Freescale Semiconductor

7.4.1.8 System Clock Divider 1 Configuration Register (CGM_SC_DC1)

This register controls system clock divider 1. This register controls system clock divider 0. For clock
divider maximum frequency and for example configuration, please refer to Table 6-2., “MPC5646C
example peripheral clock divider setup”.

7.4.1.9 System Clock Divider 2 Configuration Register (CGM_SC_DC2)

This register controls system clock divider 2. For clock divider maximum frequency and for example
configuration, please refer to Table 6-2., “MPC5646C example peripheral clock divider setup”.

Address 0xC3FE_037D Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7

R
DE1

0 0 0
DIV1

W

Reset 1 0 0 0 0 0 0 0

Figure 7-9. System Clock Divider 1 Configuration Register (CGM_SC_DC1)

Table 7-10. System Clock Divider 1 Configuration Register (CGM_SC_DC1) Field Descriptions

Field Description

DE1 Divider 1 Enable.
0 Disable system clock divider 1
1 Enable system clock divider 1

DIV1 Divider 1 Division Value — The resultant peripheral set 2 clock will have a period ‘DIV1 + 1’ times that
of the system clock. If the DE1 is set to ‘0’ (Divider 1 is disabled), any write access to the DIV1 field is
ignored and the peripheral set 2 clock remains disabled.

Address 0xC3FE_037E Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7

R
DE2

0 0 0
DIV2

W

Reset 1 0 0 0 0 0 0 0

Figure 7-10. System Clock Divider 2 Configuration Register (CGM_SC_DC2)

Table 7-11. System Clock Divider 2 Configuration Register (CGM_SC_DC2) Field Descriptions

Field Description

DE2 Divider 2 Enable.
0 Disable system clock divider 2
1 Enable system clock divider 2

DIV2 Divider 2 Division Value — The resultant peripheral set 3 clock will have a period ‘DIV2 + 1’ times that
of the system clock. If the DE2 is set to ‘0’ (Divider 2 is disabled), any write access to the DIV2 field is
ignored and the peripheral set 3 clock remains disabled.

Chapter 7 Clock Generation Module (MC_CGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 169

7.4.1.10 Auxiliary Clock 0 Select Control Register (CGM_AC0_SC)

This register is used to select the current clock source for the FMPLL reference clock.

See Figure 7-15 for details.

Address 0xC3FE_0380 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
SELCTL

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-11. Auxiliary Clock 0 Select Control Register (CGM_AC0_SC)

Table 7-12. Auxiliary Clock 0 Select Control Register (CGM_AC0_SC) Field Descriptions

Field Description

SELCTL Auxiliary Clock 0 Source Selection Control — This value selects the current source for auxiliary clock
0.
0000 FXOSC
0001 FIRC
0010 reserved
0011 reserved
0100 reserved
0101 reserved
0110 reserved
0111 reserved
1000 reserved
1001 reserved
1010 reserved
1011 reserved
1100 reserved
1101 reserved
1110 reserved
1111 reserved

Chapter 7 Clock Generation Module (MC_CGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

170 Freescale Semiconductor

7.4.1.11 Auxiliary Clock 1 Select Control Register (CGM_AC1_SC)

This register is used to select the current clock source for the following clocks:

• divided by auxiliary clock 1 divider 0: FlexRay clock

7.4.1.12 Auxiliary Clock 1 Divider 0 Configuration Register (CGM_AC1_DC0)

Address 0xC3FE_0388 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
SELCTL

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7-12. Auxiliary Clock 1 Select Control Register (CGM_AC1_SC)

Table 7-13. Auxiliary Clock 1 Select Control Register (CGM_AC1_SC) Field Descriptions

Field Description

SELCTL Auxiliary Clock 1 Source Selection Control — This value selects the current source for auxiliary clock
1.
0000 system clock
0001 FMPLL_PHI1
0010 reserved
0011 reserved
0100 reserved
0101 reserved
0110 reserved
0111 reserved
1000 reserved
1001 reserved
1010 reserved
1011 reserved
1100 reserved
1101 reserved
1110 reserved
1111 reserved
Note: Before changing the clock source, the FlexRay module should be disabled to prevent any

communication glitches.

Address0xC3FE_038C Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7

R
DE0

0 0 0
DIV0

W

Reset 1 0 0 0 0 0 0 0

Figure 7-13. Auxiliary Clock 1 Divider 0 Configuration Register (CGM_AC1_DC0)

Chapter 7 Clock Generation Module (MC_CGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 171

This register controls auxiliary clock 1 divider 0.

7.5 Functional description

7.5.1 System clock generation

Figure 7-14 shows the block diagram of the system clock generation logic. The MC_ME provides the
system clock select and switch mask (see MC_ME documentation for more details), and the MC_RGM
provides the safe clock request (see MC_RGM documentation for more details). The safe clock request
forces the selector to select the FIRC as the system clock and to ignore the system clock select.

Table 7-14. Auxiliary Clock 1 Divider 0 Configuration Register (CGM_AC1_DC0) Field Descriptions

Field Description

DE0 Divider 0 Enable.
0 Disable auxiliary clock 1 divider 0
1 Enable auxiliary clock 1 divider 0

DIV0 Divider 0 Division Value — The resultant FlexRay clock will have a period ‘DIV0 + 1’ times that of
auxiliary clock 1. If the DE0 is set to 0 (Divider 0 is disabled), any write access to the DIV0 field is ignored
and the FlexRay clock remains disabled.

Chapter 7 Clock Generation Module (MC_CGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

172 Freescale Semiconductor

7.5.1.1 System clock source selection

During normal operation, the system clock selection is controlled

• on a SAFE mode or reset event, by theMC_RGM

• otherwise, by the MC_ME

7.5.1.2 System clock disable

During the STOP0 and TEST modes normal, the system clock can be disabled by the MC_ME.

7.5.1.3 System clock dividers

The MC_CGM generates the following derived clocks from the system clock:

Figure 7-14. MC_CGM System Clock Generation Overview

FXOSC 2
FXOSC_divided 3

FMPLL 4

FIRC_divided 1

system clock

’0’

CGM_SC_SS Register

MC_RGM SAFE mode request

ME_<current mode>
_MC.SYSCLK

CGM_SC_DC0 Register

clock divider peripheral set 1 clock

CGM_SC_DC1 Register

clock divider peripheral set 2 clock

CGM_SC_DC2 Register

clock divider peripheral set 3 clock

system clock is disabled if
ME_<current mode>_MC.SYSCLK = “1111”

“0000” 1

0

FIRC 0

Chapter 7 Clock Generation Module (MC_CGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 173

• peripheral set 1 clock - controlled by the CGM_SC_DC0 register

• peripheral set 2 clock - controlled by the CGM_SC_DC1 register

• peripheral set 3 clock - controlled by the CGM_SC_DC2 register

7.5.2 Auxiliary clock generation

Figure 7-14 shows the block diagram of the auxiliary clock generation logic. See Section 7.4.1.10,
“Auxiliary Clock 0 Select Control Register (CGM_AC0_SC)and Section 7.4.1.11, “Auxiliary Clock 1
Select Control Register (CGM_AC1_SC) for auxiliary clock selection control.

Chapter 7 Clock Generation Module (MC_CGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

174 Freescale Semiconductor

Figure 7-15. MC_CGM Auxiliary Clock 0 Generation Overview

FMPLL reference clock

FIRC 1

CGM_AC0_SC Register

FXOSC 0

Figure 7-16. MC_CGM Auxiliary Clock 1 Generation Overview

CGM_AC1_DC0 Register

clock divider FlexRay clock

reserved 2
FMPLL_PHI1 1

CGM_AC1_SC Register

system clock 0

Chapter 7 Clock Generation Module (MC_CGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 175

7.5.2.1 Auxiliary Clock Source Selection

During normal operation, the auxiliary clock selection is done via the CGM_AC0…1_SC registers. If
software selects an ‘unavailable’ source, the old selection remains, and the register content does not
change.

7.5.2.2 Auxiliary Clock Dividers

• The MC_CGM generate the following derived clocks:

FlexRay clock - controlled by the CGM_AC1_DC0 register

NOTE
When Flexray is clocked through FMPLL.PHI1, then it should be ensured
that the Flexray clock is gated using CGM_AC1_DC0[DIV0] register
before entering into STOP mode.

7.5.3 Dividers functional description

Dividers are used for the generation of divided system and peripheral clocks. The MC_CGM has the
following control registers for built-in dividers:

• Section 7.4.1.7, “System Clock Divider 0 Configuration Register (CGM_SC_DC0)

• Section 7.4.1.8, “System Clock Divider 1 Configuration Register (CGM_SC_DC1)

• Section 7.4.1.9, “System Clock Divider 2 Configuration Register (CGM_SC_DC2)

• Section 7.4.1.12, “Auxiliary Clock 1 Divider 0 Configuration Register (CGM_AC1_DC0)

The reset value of all counters is ‘1’. If a divider has its DE bit in the respective configuration register set
to ‘0’ (the divider is disabled), any value in its DIVn field is ignored.

7.5.4 Output Clock Multiplexing

The MC_CGM contains a multiplexing function for a number of clock sources which can then be used as
output clock sources. The selection is done via the CGM_OCDS_SC register.

Chapter 7 Clock Generation Module (MC_CGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

176 Freescale Semiconductor

7.5.5 Output Clock Division Selection

The MC_CGM provides the following output signals for the output clock generation:

• PA[0] (see Figure 7-17). This signal is generated by using one of the 3-stage ripple counter outputs
or the selected signal without division. The non-divided signal is not guaranteed to be 50% duty
cycle by the MC_CGM.

the MC_CGM also has an output clock enable register (see Section 7.4.1.4, “Output Clock Enable Register
(CGM_OC_EN)) which contains the output clock enable/disable control bit.

Figure 7-17. MC_CGM Output Clock Multiplexer and PA[0] Generation

CGM_OCDS_SC.SELCTL
CGM_OCDS_SC.SELDIV

0

1

2

3

Register
Register

FXOSC 0
FIRC 1

FMPLL 2
system clock 3

RTC clock 4
FMPLL_PHI1 5

PA[0]

’0’

CGM_OC_EN Register

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 177

Chapter 8
Mode Entry Module (MC_ME)

8.1 Introduction

8.1.1 Overview

The MC_ME controls the microcontroller mode and mode transition sequences in all functional states. It
also contains configuration, control and status registers accessible for the application.

The microcontroller must have one core that is in control of the mode transitions. This would typically be
the e200z4 core. It is the responsibility of this core to keep track of:

• The state of the other core

• The operating mode requirements for the other core

• The peripheral configuration requirements for the other core

The e200z4 core needs to configure and enter modes based on these requirements. It must also ensure that
a mode change does not prevent the other core from being able to complete its current tasks due to, for
example, a peripheral being turned off.

Figure 8-1 depicts the MC_ME block diagram.

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

178 Freescale Semiconductor

Registers

Platform Interface

cores

MC_ME

Figure 8-1. MC_ME block diagram

MC_RGM

FXOSC

FMPLL

FIRC

MC_CGM

MC_PCU

peripherals

Flashes

VREG

Chip
Mode
State

Machine

WKPU

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 179

8.1.2 Features

The MC_ME includes the following features:

• Control of the available modes by the mode enable (ME_ME) register

• Change of current mode by the mode control (ME_MCTL) register

• Mode configuration for each of the available modes by the ME_<mode>_MC registers

• Visibility of the current operating mode and mode configuration by the global status (ME_GS)
register

• Configuration of optional interrupts related to mode and mode transition via the interrupt status
(ME_IS) and interrupt mask (ME_IM) registers

• Peripheral clock gating control for run and low power modes via the run peripheral configuration
(ME_RUN_PC[0..7]), low power peripheral configuration (ME_LP_PC[0..7]) and the peripheral
control (ME_PCTLn) registers

• Status Information on the operational status of the peripherals via the peripheral status registers
(ME_PS[0..3])

8.1.3 Modes of operation

The MC_ME provides different low power and operational modes which can be configured based on how
you want to use the microcontroller. Each mode is configurable and can define a policy for energy and
processing power management to fit particular system requirements. An application can easily switch from
one mode to another depending on the current needs of the system. The operating modes controlled by the
MC_ME are divided into system and user modes:

• System modes are modes that can generally not be configured (with the exception of DRUN mode)
and are present to facilitate the startup, error recovery and monitoring of the system:

— RESET

— DRUN (default RUN; this mode can be configured by the user)

— SAFE

— TEST

• User modes are modes that have to be entered via software and can be highly configured to the
applications performance and power requirements:

— RUN[0..3]

— HALT

— STOP

— STANDBY

Table 8-1 describes the MC_ME modes. See Figure 8-25 for a flowchart of possible mode transitions.

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

180 Freescale Semiconductor

1 SAFE on failure which was configured in MC_RGM_FEAR to generate safe mode request. Note: This is possible only if MC_STOP0_MC[SYSCLK]
was not configured for F.

Table 8-1. MC_ME mode descriptions

Name Description Entry Exit

RESET This is a mode during which the application is not active.
The system remains in this mode until all resources are
available for the embedded software to take control of the
chip. It manages hardware initialization of chip
configuration, voltage regulators, clock sources, and flash
modules.

system reset
assertion from
MC_RGM

system reset
deassertion from
MC_RGM

DRUN This is the entry mode for the embedded software. It
provides full accessibility to the system and enables the
configuration of the system at startup. It provides the
unique gate to enter user modes. If the BAM code is
executed during boot, this is done so in DRUN mode.

system reset
deassertion from
MC_RGM,
software request
from SAFE, TEST
and RUN0…3,
wakeup request
from STANDBY

system reset
assertion,
RUN0…3, TEST,
STANDBY via
software, SAFE via
software or
hardware failure.

SAFE This is a service mode which may be entered on the
detection of a recoverable error. It forces the system into a
pre-defined safe configuration from which the system may
try to recover.

hardware failure,
software request
from DRUN, TEST,
and RUN0…3

system reset
assertion, DRUN
via software

TEST This is a service mode which is intended to provide a
control environment for chip software testing.

software request
from DRUN

system reset
assertion, DRUN
via software

RUN0…3 These are software running modes where most processing
activity is done. The RUN modes are where most of the
processing activity is done. Low power modes can only be
entered via one of the RUN modes. The configuration
options available to each of the 4 RUN modes are identical.
Different clock and power configurations can be configured
for each RUN mode to allow a totally configurable RUN
environment.

software request
from DRUN or
other RUN0…3,
interrupt event
from HALT,
interrupt or wakeup
event from STOP

system reset
assertion, SAFE
via software or
hardware failure,
other RUN0…3
modes, HALT,
STOP, STANDBY
via software

HALT This is a reduced-activity low-power mode during which the
clock to the core is disabled. It can be configured to switch
off analog peripherals like clock sources, flash, main
regulator, etc. for efficient power management at the cost of
higher wakeup latency.

software request
from RUN0…3

system reset
assertion, SAFE
on hardware
failure, RUN0…3
on interrupt event

STOP This is an advanced low-power mode during which the
clock to the core is disabled. It may be configured to switch
off most of the peripherals including clock sources for
efficient power management at the cost of higher wakeup
latency.

software request
from RUN0…3

system reset
assertion, SAFE
on hardware
failure, RUN0…3
on interrupt event

or wakeup event1

STANDBY STANDBY mode is the lowest power consumption mode.
Most of the power to the microcontroller is removed leaving
only necessary modules enabled that are required for
wakeup. Wakeup from this mode takes a relatively long
time, and content is lost or must be restored from backup.

software request
from RUN0…3,
DRUN modes

system reset
assertion, DRUN
on wakeup event

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 181

8.2 External signal description
The MC_ME has no connections to any external pins.

8.3 Memory map and register definition
The MC_ME contains registers for:

• mode selection and status reporting

• mode configuration

• mode transition interrupts status and mask control

• scalable number of peripheral sub-mode selection and status reporting

8.3.1 Memory map

Table 8-2. MC_ME register description

Address Name Description Size
Access

Location
User Supervisor Test

0xC3FD
_C000

ME_GS Global Status word read read read on page 190

0xC3FD
_C004

ME_MCTL Mode Control word read read/write read/write on page 193

0xC3FD
_C008

ME_ME Mode Enable word read read/write read/write on page 194

0xC3FD
_C00C

ME_IS Interrupt Status word read read/write read/write on page 196

0xC3FD
_C010

ME_IM Interrupt Mask word read read/write read/write on page 197

0xC3FD
_C014

ME_IMTS Invalid Mode Transition
Status

word read read/write read/write on page 198

0xC3FD
_C018

ME_DMTS Debug Mode Transition
Status

word read read read on page 200

0xC3FD
_C020

ME_RESET_MC RESET Mode
Configuration

word read read read on page 203

0xC3FD
_C024

ME_TEST_MC TEST Mode
Configuration

word read read/write read/write on page 203

0xC3FD
_C028

ME_SAFE_MC SAFE Mode
Configuration

word read read/write read/write on page 204

0xC3FD
_C02C

ME_DRUN_MC DRUN Mode
Configuration

word read read/write read/write on page 204

0xC3FD
_C030

ME_RUN0_MC RUN0 Mode
Configuration

word read read/write read/write on page 205

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

182 Freescale Semiconductor

0xC3FD
_C034

ME_RUN1_MC RUN1 Mode
Configuration

word read read/write read/write on page 205

0xC3FD
_C038

ME_RUN2_MC RUN2 Mode
Configuration

word read read/write read/write on page 205

0xC3FD
_C03C

ME_RUN3_MC RUN3 Mode
Configuration

word read read/write read/write on page 205

0xC3FD
_C040

ME_HALT_MC HALT Mode
Configuration

word read read/write read/write on page 206

0xC3FD
_C048

ME_STOP_MC STOP Mode
Configuration

word read read/write read/write on page 206

0xC3FD
_C054

ME_STANDBY_MC STANDBY Mode
Configuration

word read read/write read/write on page 207

0xC3FD
_C060

ME_PS0 Peripheral Status 0 word read read read on page 209

0xC3FD
_C064

ME_PS1 Peripheral Status 1 word read read read on page 210

0xC3FD
_C068

ME_PS2 Peripheral Status 2 word read read read on page 210

0xC3FD
_C06C

ME_PS3 Peripheral Status 3 word read read read on page 211

0xC3FD
_C080

ME_RUN_PC0 Run Peripheral
Configuration 0

word read read/write read/write on page 211

0xC3FD
_C084

ME_RUN_PC1 Run Peripheral
Configuration 1

word read read/write read/write on page 211

…

0xC3FD
_C09C

ME_RUN_PC7 Run Peripheral
Configuration 7

word read read/write read/write on page 211

0xC3FD
_C0A0

ME_LP_PC0 Low-Power Peripheral
Configuration 0

word read read/write read/write on page 212

0xC3FD
_C0A4

ME_LP_PC1 Low-Power Peripheral
Configuration 1

word read read/write read/write on page 212

…

0xC3FD
_C0BC

ME_LP_PC7 Low-Power Peripheral
Configuration 7

word read read/write read/write on page 212

0xC3FD
_C0C4

ME_PCTL4 DSPI0 Control byte read read/write read/write on page 213

0xC3FD
_C0C5

ME_PCTL5 DSPI1 Control byte read read/write read/write on page 213

Table 8-2. MC_ME register description (continued)

Address Name Description Size
Access

Location
User Supervisor Test

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 183

0xC3FD
_C0C6

ME_PCTL6 DSPI2 Control byte read read/write read/write on page 213

0xC3FD
_C0C7

ME_PCTL7 DSPI3 Control byte read read/write read/write on page 213

0xC3FD
_C0C8

ME_PCTL8 DSPI4 Control byte read read/write read/write on page 213

0xC3FD
_C0C9

ME_PCTL9 DSPI5 Control byte read read/write read/write on page 213

0xC3FD
_C0CA

ME_PCTL10 DSPI6 Control byte read read/write read/write on page 213

0xC3FD
_C0CB

ME_PCTL11 DSPI7 Control byte read read/write read/write on page 213

0xC3FD
_C0CC

ME_PCTL12 LINFlexD_8 Control byte read read/write read/write on page 213

0xC3FD
_C0CD

ME_PCTL13 LINFlexD_9 Control byte read read/write read/write on page 213

0xC3FD
_C0D0

ME_PCTL16 FlexCAN0 Control byte read read/write read/write on page 213

0xC3FD
_C0D1

ME_PCTL17 FlexCAN1 Control byte read read/write read/write on page 213

0xC3FD
_C0D2

ME_PCTL18 FlexCAN2 Control byte read read/write read/write on page 213

0xC3FD
_C0D3

ME_PCTL19 FlexCAN3 Control byte read read/write read/write on page 213

0xC3FD
_C0D4

ME_PCTL20 FlexCAN4 Control byte read read/write read/write on page 213

0xC3FD
_C0D5

ME_PCTL21 FlexCAN5 Control byte read read/write read/write on page 213

0xC3FD
_C0D7

ME_PCTL23 DMA_CH_MUX Control byte read read/write read/write on page 213

0xC3FD
_C0D8

ME_PCTL24 FlexRay Control byte read read/write read/write on page 213

0xC3FD
_C0E0

ME_PCTL32 ADC0 Control byte read read/write read/write on page 213

0xC3FD
_C0E1

ME_PCTL33 ADC1 Control byte read read/write read/write on page 213

0xC3FD
_C0EC

ME_PCTL44 I2C_DMA0 Control byte read read/write read/write on page 213

Table 8-2. MC_ME register description (continued)

Address Name Description Size
Access

Location
User Supervisor Test

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

184 Freescale Semiconductor

NOTE
Any access to unused registers as well as write accesses to read-only
registers will:

• not change register content

0xC3FD
_C0F0

ME_PCTL48 LINFlexD_0 Control byte read read/write read/write on page 213

0xC3FD
_C0F1

ME_PCTL49 LINFlexD_1 Control byte read read/write read/write on page 213

0xC3FD
_C0F2

ME_PCTL50 LINFlexD_2 Control byte read read/write read/write on page 213

0xC3FD
_C0F3

ME_PCTL51 LINFlexD_3 Control byte read read/write read/write on page 213

0xC3FD
_C0F4

ME_PCTL52 LINFlexD_4 Control byte read read/write read/write on page 213

0xC3FD
_C0F5

ME_PCTL53 LINFlexD_5 Control byte read read/write read/write on page 213

0xC3FD
_C0F6

ME_PCTL54 LINFlexD_6 Control byte read read/write read/write on page 213

0xC3FD
_C0F7

ME_PCTL55 LINFlexD_7 Control byte read read/write read/write on page 213

0xC3FD
_C0F9

ME_PCTL57 CTUL Control byte read read/write read/write on page 213

0xC3FD
_C0FC

ME_PCTL60 CANSampler Control byte read read/write read/write on page 213

0xC3FD
_C104

ME_PCTL68 SIUL Control byte read read/write read/write on page 213

0xC3FD
_C105

ME_PCTL69 WKPU Control byte read read/write read/write on page 213

0xC3FD
_C108

ME_PCTL72 eMIOS0 Control byte read read/write read/write on page 213

0xC3FD
_C109

ME_PCTL73 eMIOS1 Control byte read read/write read/write on page 213

0xC3FD
_C11B

ME_PCTL91 RTC/API Control byte read read/write read/write on page 213

0xC3FD
_C11C

ME_PCTL92 PIT_RTI Control byte read read/write read/write on page 213

0xC3FD
_C128

ME_PCTL104 CMU Control byte read read/write read/write on page 213

Table 8-2. MC_ME register description (continued)

Address Name Description Size
Access

Location
User Supervisor Test

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 185

• cause a transfer error

Table 8-3. MC_ME memory map

Address Name
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0xC3FD
_C000

ME_GS

R S_CURRENT_MODE

S
_M

T
R

A
N

S

0 0 0

S
_P

D
O

0 0

S
_M

V
R

S_DFLA S_CFLA

W

R 0 0 0 0 0 0 0 0 0

S
_F

M
P

LL

S
_F

X
O

S
C

S
_F

IR
C

S_SYSCLK

W

0xC3FD
_C004

ME_MCTL R
TARGET_MODE

0 0 0 0 0 0 0 0 0 0 0 0

W

R 1 0 1 0 0 1 0 1 0 0 0 0 1 1 1 1

W KEY

0xC3FD
_C008

ME_ME R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R

R
E

S
E

T
_D

E
S

T

0

S
TA

N
D

B
Y

0 0

S
TO

P 0

H
A

LT

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
E

S
E

T
_F

U
N

C

W

0xC3FD
_C00C

ME_IS R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0

I_
IC

O
N

F
_C

U

I_
IC

O
N

F

I_
IM

O
D

E

I_
S

A
F

E

I_
M

T
C

W w1c w1c w1c w1c w1c

0xC3FD
_C010

ME_IM R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0

M
_I

C
O

N
F

_C
U

M
_I

C
O

N
F

M
_I

M
O

D
E

M
_S

A
F

E

M
_M

T
C

W

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

186 Freescale Semiconductor

0xC3FD
_C014

ME_IMTS R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0

S
_M

T
I

S
_M

R
I

S
_D

M
A

S
_N

M
A

S
_S

E
A

W w1c w1c w1c w1c w1c

0xC3FD
_C018

ME_DMTS

R PREVIOUS_MODE 0 0 0 0

M
P

H
_B

U
S

Y

0 0

P
M

C
_P

R
O

G

C
O

R
E

_D
B

G

0 0

S
M

R

W

R 0

V
R

E
G

_C
S

R
C

_S
C

C
S

R
C

_C
S

R
C

_S
C

F
IR

C
_S

C

S
C

S
R

C
_S

C

S
Y

S
C

LK
_S

W

D
F

la
sh

_S
C

C
F

la
sh

_S
C

C
D

P
_P

R
P

H
_0

_1
43

0 0

C
D

P
_P

R
P

H
_9

6_
12

7

C
D

P
_P

R
P

H
_6

4_
95

C
D

P
_P

R
P

H
_3

2_
63

C
D

P
_P

R
P

H
_0

_3
1

W

0xC3FD
_C01C

reserved

0xC3FD
_C020

ME_RESET_
MC R 0 0 0 0 0 0 0 0

P
D

O 0 0

M
V

R
O

N

DFLAON CFLAON

W

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

0xC3FD
_C024

ME_TEST_M
C R 0 0 0 0 0 0 0 0

P
D

O 0 0

M
V

R
O

N

DFLAON CFLAON

W

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK
W

Table 8-3. MC_ME memory map (continued)

Address Name
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 187

0xC3FD
_C028

ME_SAFE_M
C R 0 0 0 0 0 0 0 0

P
D

O 0 0

M
V

R
O

N

DFLAON CFLAON

W

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

0xC3FD
_C02C

ME_DRUN_M
C R 0 0 0 0 0 0 0 0

P
D

O 0 0

M
V

R
O

N

DFLAON CFLAON

W

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

0xC3FD
_C030

…
0xC3FD
_C03C

ME_RUN0…3
_MC R 0 0 0 0 0 0 0 0

P
D

O 0 0

M
V

R
O

N

DFLAON CFLAON

W

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

0xC3FD
_C040

ME_HALT_M
C

R 0 0 0 0 0 0 0 0

P
D

O 0 0

M
V

R
O

N

DFLAON CFLAON

W

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK
W

0xC3FD
_C044

reserved

Table 8-3. MC_ME memory map (continued)

Address Name
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

188 Freescale Semiconductor

0xC3FD
_C048

ME_STOP_M
C

R 0 0 0 0 0 0 0 0

P
D

O

0 0

M
V

R
O

N

DFLAON CFLAON
W

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

0xC3FD
_C04C

…
0xC3FD
_C050

reserved

0xC3FD
_C054

ME_STANDB
Y_MC R 0 0 0 0 0 0 0 0

P
D

O 0 0

M
V

R
O

N

DFLAON CFLAON

W

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N SYSCLK

W

0xC3FD
_C058

…
0xC3FD
_C05C

reserved

0xC3FD
_C060

ME_PS0

R 0 0 0 0 0 0 0

S
_F

le
xR

ay

S
_D

M
A

_C
H

_M
U

X

S
_F

le
xC

A
N

5

S
_F

le
xC

A
N

4

S
_F

le
xC

A
N

3

S
_F

le
xC

A
N

2

S
_F

le
xC

A
N

1

S
_F

le
xC

A
N

0

W

R 0 0

S
_L

IN
F

le
xD

_9

S
_L

IN
F

le
xD

_8

S
_D

S
P

I7

S
_D

S
P

I6

S
_D

S
P

I5

S
_D

S
P

I4

S
_D

S
P

I3

S
_D

S
P

I2

S
_D

S
P

I1

S
_D

S
P

I0

0 0 0 0

W

Table 8-3. MC_ME memory map (continued)

Address Name
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 189

0xC3FD
_C064

ME_PS1

R 0 0 0

S
_C

A
N

S
am

pl
er

0 0

S
_C

T
U

L

0

S
_L

IN
F

le
xD

_7

S
_L

IN
F

le
xD

_6

S
_L

IN
F

le
xD

_5

S
_L

IN
F

le
xD

_4

S
_L

IN
F

le
xD

_3

S
_L

IN
F

le
xD

_2

S
_L

IN
F

le
xD

_1

S
_L

IN
F

le
xD

_0

W

R 0 0 0

S
_I

2C 0 0 0 0 0 0 0 0 0 0

S
_A

D
C

1

S
_A

D
C

0

W

0xC3FD
_C068

ME_PS2

R 0 0 0

S
_P

IT
_R

T
I

S
_R

T
C

/A
P

I
0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0

S
_e

M
IO

S
1

S
_e

M
IO

S
0

0 0

S
_W

K
P

U

S
_S

IU
L

0 0 0 0

W

0xC3FD
_C06C

ME_PS3 R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0

S
_C

M
U

0 0 0 0 0 0 0 0

W

0xC3FD
_C070

reserved

0xC3FD
_C074

…
0xC3FD
_C07C

reserved

0xC3FD
_C080

…
0xC3FD
_C09C

ME_RUN_PC
0…7

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
E

S
E

T

W

Table 8-3. MC_ME memory map (continued)

Address Name
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

190 Freescale Semiconductor

8.3.2 Register description

Unless otherwise noted, all registers may be accessed as 32-bit words, 16-bit half-words, or 8-bit bytes.
For example, the ME_RUN_PC0 register may be accessed as a word at address 0xC3FD_C080, as a
half-word at address 0xC3FD_C082, or as a byte at address 0xC3FD_C083.

Some fields may be read-only, and their reset value of ‘1’ or ‘0’ and the corresponding behavior cannot be
changed.

8.3.2.1 Global Status Register (ME_GS)

This register contains global mode status.

0xC3FD
_C0A0

…
0xC3FD
_C0BC

ME_LP_PC0
…7

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0

S
TA

N
D

B
Y 0 0

S
TO

P

0

H
A

LT

0 0 0 0 0 0 0 0

W

0xC3FD
_C0C0

…
0xC3FD
_C14C

ME_PCTL0…
1431

R 0

D
B

G
_F

LP_CFG RUN_CFG
0

D
B

G
_F

LP_CFG RUN_CFG
W

R 0

D
B

G
_F

LP_CFG RUN_CFG
0

D
B

G
_F

LP_CFG RUN_CFG
W

0xC3FD
_C150

…
0xC3FD
_FFFC

reserved

1 There is space in the register map for 144 peripherals. Please refer to Table 8-2 for the ME_PCTLn locations
actually occupied. The unoccupied locations contain a read-only byte value of 0x00.

Table 8-3. MC_ME memory map (continued)

Address Name
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 191

Address 0xC3FD_C000 Access: User read, Supervisor read, Test read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

S_CURRENT_MODE

S
_M

T
R

A
N

S

0 0 0

S
_P

D
O

0 0

S
_M

V
R

S_DFLA S_CFLA

W

Reset 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

0 0 0 0 0 0 0 0 0

S
_F

M
P

LL

S
_F

X
O

S
C

S
_F

IR
C

S_SYSCLK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Figure 8-2. Global Status Register (ME_GS)

Table 8-4. Global Status Register (ME_GS) Field Descriptions

Field Description

S_CURREN
T_MODE

Current chip mode status
0000 RESET
0001 TEST
0010 SAFE
0011 DRUN
0100 RUN0
0101 RUN1
0110 RUN2
0111 RUN3
1000 HALT
1001 reserved
1010 STOP
1011 reserved
1100 reserved
1101 STANDBY
1110 reserved
1111 reserved

S_MTRANS Mode transition status
0 Mode transition process is not active
1 Mode transition is ongoing

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

192 Freescale Semiconductor

S_PDO Output power-down status — This bit specifies output power-down status of I/Os. This bit is
asserted whenever outputs of pads are forced to high impedance state or the pads power sequence
driver is switched off.
0 No automatic safe gating of I/Os used and pads power sequence driver is enabled
1 In SAFE/TEST modes, outputs of pads are forced to high impedance state and the pads power

sequence driver is disabled. The inputs are level unchanged. In STOP mode, only the pad power
sequence driver is disabled, but the state of the output remains functional. In STANDBY mode, the
power sequence driver and all pads except those mapped on wakeup lines are not powered and
therefore high impedance. Wakeup lines configuration remains unchanged

S_MVR Main voltage regulator status
0 Main voltage regulator is not ready
1 Main voltage regulator is ready for use

S_DFLA Data flash availability status
00 Reserved
01 Data flash is in power-down mode
10 Reserved
11 Data flash is in normal mode and available for use

S_CFLA Code flash availability status
00 Reserved
01 Code flash is in power-down mode
10 Code flash is in low-power mode
11 Code flash is in normal mode and available for use

S_FMPLL FMPLL status
0 FMPLL is not stable
1 FMPLL is providing a stable clock
Note: S_FMPLL indicates that the FMPLL has achieved coarse lock. Fine lock is achieved 200 s

after the FMPLL is powered on.

S_FXOSC FXOSC (4-40 MHz external oscillator) status
0 FXOSC (4-40 MHz external oscillator) is not stable
1 FXOSC (4-40 MHz external oscillator) is providing a stable clock

S_FIRC FIRC status
0 FIRC is not stable
1 FIRC is providing a stable clock

S_SYSCLK System clock switch status — These bits specify the system clock currently used by the system.
0000 FIRC
0001 FIRC_divided
0010 FXOSC
0011 FXOSC_divided
0100 FMPLL
0101 reserved
0110 reserved
0111 reserved
1000 reserved
1001 reserved
1010 reserved
1011 reserved
1100 reserved
1101 reserved
1110 reserved
1111 system clock is disabled

Table 8-4. Global Status Register (ME_GS) Field Descriptions (continued)

Field Description

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 193

8.3.2.2 Mode Control Register (ME_MCTL)

This register is used to trigger software-controlled mode changes. In order to change mode, the
ME_MCTL register must be written with the correct value in the KEY field and then again with the correct
"inverted key" value. If an attempt is made to change to a mode that is not enabled in the ME_ME register,
then the mode change will not be successful. If "invalid mode" interrupts are enabled, then this will result
in an interrupt being raised.

NOTE
Byte and half-word write accesses are not allowed for this register as a
predefined key is required to change its value.

Address 0xC3FD_C004 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
TARGET_MODE

0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 1 0 1 0 0 1 0 1 0 0 0 0 1 1 1 1

W KEY

Reset 1 0 1 0 0 1 0 1 0 0 0 0 1 1 1 1

Figure 8-3. Mode Control Register (ME_MCTL)

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

194 Freescale Semiconductor

8.3.2.3 Mode Enable Register (ME_ME)

This register allows the user modes to be enabled (with the exception of RUN0, which is always enabled)
so that they can be used. Any attempt to change to a mode that is not enabled will not be successful and
will result in an interrupt if "invalid mode" interrupts are enabled.

Table 8-5. Mode Control Register (ME_MCTL) Field Descriptions

Field Description

TARGET_M
ODE

Target chip mode — These bits provide the target chip mode to be entered by software
programming. The mechanism to enter into any mode by software requires the write operation twice:
first time with key, and second time with inverted key. These bits are automatically updated by
hardware while entering SAFE on hardware request. Also, while exiting from the HALT and STOP
modes on hardware exit events, these are updated with the appropriate RUN0…3 mode value.
0000 RESET (triggers a ‘functional’ reset event)
0001 TEST
0010 SAFE
0011 DRUN
0100 RUN0
0101 RUN1
0110 RUN2
0111 RUN3
1000 HALT
1001 reserved
1010 STOP
1011 reserved
1100 reserved
1101 STANDBY
1110 reserved
1111 RESET (triggers a ‘destructive’ reset event)

KEY Control key — These bits enable write access to this register. Any write access to the register with
a value different from the keys is ignored. Read access will always return inverted key.

KEY:0101101011110000 (0x5AF0)
INVERTED KEY:1010010100001111 (0xA50F)

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 195

Address 0xC3FD_C008 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

R
E

S
E

T
_D

E
S

T

0

S
TA

N
D

B
Y

0 0

S
TO

P 0

H
A

LT

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
E

S
E

T
_F

U
N

C

W

Reset 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1

Figure 8-4. Mode Enable Register (ME_ME)

Table 8-6. Mode Enable Register (ME_ME) Field Descriptions

Field Description

RESET_DES
T

‘destructive’ RESET mode enable
1 ‘destructive’ RESET mode is enabled
Note: Destructive resets are where a critical hardware failure, such as an LVI, has occurred.

Destructive resets go through the full reset sequence and no context or memory contents can
be assumed to be maintained.

STANDBY STANDBY mode enable
0 STANDBY mode is disabled
1 STANDBY mode is enabled

STOP STOP mode enable
0 STOP mode is disabled
1 STOP mode is enabled

HALT HALT mode enable
0 HALT mode is disabled
1 HALT mode is enabled

RUN3 RUN3 mode enable
0 RUN3 mode is disabled
1 RUN3 mode is enabled

RUN2 RUN2 mode enable
0 RUN2 mode is disabled
1 RUN2 mode is enabled

RUN1 RUN1 mode enable
0 RUN1 mode is disabled
1 RUN1 mode is enabled

RUN0 RUN0 mode enable
1 RUN0 mode is enabled

DRUN DRUN mode enable
1 DRUN mode is enabled

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

196 Freescale Semiconductor

8.3.2.4 Interrupt Status Register (ME_IS)

This register provides the current interrupt status.

SAFE SAFE mode enable
1 SAFE mode is enabled

TEST TEST mode enable
0 TEST mode is disabled
1 TEST mode is enabled

RESET_FUN
C

‘functional’ RESET mode enable
1 ‘functional’ RESET mode is enabled

Address 0xC3FD_C00C Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

0 0 0 0 0 0 0 0 0 0 0

I_
IC

O
N

F
_U

I_
IC

O
N

F

I_
IM

O
D

E

I_
S

A
F

E

I_
M

T
C

W w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-5. Interrupt Status Register (ME_IS)

Table 8-7. Interrupt Status Register (ME_IS) Field Descriptions

Field Description

I_ICONF_CU Invalid mode configuration interrupt (Clock Usage) — This bit is set during a mode transition if a
clock which is required to be on by an enabled peripheral is configured to be turned off. It is cleared
by writing a ‘1’ to this bit.
0 No invalid mode configuration (clock usage) interrupt occurred
1 Invalid mode configuration (clock usage) interrupt is pending

I_ICONF Invalid mode configuration interrupt — This bit is set whenever a write operation to
ME_<mode>_MC registers with invalid mode configuration is attempted. It is cleared by writing a ‘1’
to this bit.
0 No invalid mode configuration interrupt occurred
1 Invalid mode configuration interrupt is pending

Table 8-6. Mode Enable Register (ME_ME) Field Descriptions (continued)

Field Description

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 197

8.3.2.5 Interrupt Mask Register (ME_IM)

This register controls whether an event generates an interrupt or not.

I_IMODE Invalid mode interrupt — This bit is set whenever an invalid mode transition is requested. It is
cleared by writing a ‘1’ to this bit.
Invalid mode interrupts can be caused by one of 5 events:
 • Mode transition requested while another mode transition is active
 • The Target mode is not a valid transition from current mode (e.g. DRUN to STOP)
 • The target mode is not enabled in the ME_ME register
 • The target mode does not exist
 • The current mode is SAFE mode
If an invalid mode interrupt is flagged, the cause of the interrupt can be determined by looking at the
ME_IMTS register (see Section 8.3.2.6, Invalid Mode Transition Status Register (ME_IMTS))
0 No invalid mode interrupt occurred
1 Invalid mode interrupt is pending

I_SAFE SAFE mode interrupt — This bit is set whenever the chip enters SAFE mode on hardware requests
generated in the system. It is cleared by writing a ‘1’ to this bit.
0 No SAFE mode interrupt occurred
1 SAFE mode interrupt is pending

I_MTC Mode transition complete interrupt — This bit is set whenever the mode transition process
completes (S_MTRANS transits from 1 to 0). It is cleared by writing a ‘1’ to this bit. This mode
transition interrupt bit will not be set while entering low-power modes HALT, STOP, or STANDBY.
0 No mode transition complete interrupt occurred
1 Mode transition complete interrupt is pending

Address 0xC3FD_C010 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0

M
_I

C
O

N
F

_C
U

M
_I

C
O

N
F

M
_I

M
O

D
E

M
_S

A
F

E

M
_M

T
C

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-6. Interrupt Mask Register (ME_IM)

Table 8-7. Interrupt Status Register (ME_IS) Field Descriptions (continued)

Field Description

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

198 Freescale Semiconductor

8.3.2.6 Invalid Mode Transition Status Register (ME_IMTS)

This register provides the status bits for the possible causes of an invalid mode interrupt.

Table 8-8. Interrupt Mask Register (ME_IM) Field Descriptions

Field Description

M_ICONF_C
U

Invalid mode configuration (clock usage) interrupt mask
0 Invalid mode interrupt is masked
1 Invalid mode interrupt is enabled

M_ICONF Invalid mode configuration interrupt mask
0 Invalid mode interrupt is masked
1 Invalid mode interrupt is enabled

M_IMODE Invalid mode interrupt mask
0 Invalid mode interrupt is masked
1 Invalid mode interrupt is enabled

M_SAFE SAFE mode interrupt mask
0 SAFE mode interrupt is masked
1 SAFE mode interrupt is enabled

M_MTC Mode transition complete interrupt mask
0 Mode transition complete interrupt is masked
1 Mode transition complete interrupt is enabled

Address 0xC3FD_C014 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0 0 0 0 0 0 0 0 0

S
_M

T
I

S
_M

R
I

S
_D

M
A

S
_N

M
A

S
_S

E
A

W w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-7. Invalid Mode Transition Status Register (ME_IMTS)

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 199

Table 8-9. Invalid Mode Transition Status Register (ME_IMTS) Field Descriptions

Field Description

S_MTI Mode Transition Illegal status — This bit is set whenever a new mode is requested while some
other mode transition process is active (S_MTRANS is ‘1’). Please refer to Section 8.4.5, “Mode
transition interrupts for the exceptions to this behavior. It is cleared by writing a ‘1’ to this bit.
0 Mode transition requested is not illegal
1 Mode transition requested is illegal

S_MRI Mode Request Illegal status — This bit is set whenever the target mode requested is not a valid
mode with respect to current mode. It is cleared by writing a ‘1’ to this bit.
0 Target mode requested is not illegal with respect to current mode
1 Target mode requested is illegal with respect to current mode

S_DMA Disabled Mode Access status — This bit is set whenever the target mode requested is one of those
disabled modes determined by ME_ME register. It is cleared by writing a ‘1’ to this bit.
0 Target mode requested is not a disabled mode
1 Target mode requested is a disabled mode

S_NMA Non-existing Mode Access status — This bit is set whenever the target mode requested is one of
those non existing modes determined by ME_ME register. It is cleared by writing a ‘1’ to this bit.
0 Target mode requested is an existing mode
1 Target mode requested is a non-existing mode

S_SEA SAFE Event Active status — This bit is set whenever the chip is in SAFE mode, SAFE event bit is
pending and a new mode requested other than RESET/SAFE modes. It is cleared by writing a ‘1’ to
this bit.
0 No new mode requested other than RESET/SAFE while SAFE event is pending
1 New mode requested other than RESET/SAFE while SAFE event is pending

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

200 Freescale Semiconductor

8.3.2.7 Debug Mode Transition Status Register (ME_DMTS)

This register provides the status of different factors which influence mode transitions. It is used to give an
indication of why a mode transition indicated by ME_GS[S_MTRANS] may be taking longer than
expected.

NOTE
The ME_DMTS register does not indicate whether a mode transition is
ongoing. Therefore, some ME_DMTS bits may still be asserted after the
mode transition has completed.

Address 0xC3FD_C018 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

PREVIOUS_MODE 0 0 0 0

M
P

H
_B

U
S

Y

0 0

P
M

C
_P

R
O

G

C
O

R
E

_D
B

G

0 0

S
M

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

0

V
R

E
G

_C
S

R
C

_S
C

C
S

R
C

_C
S

R
C

_S
C

F
IR

C
_S

C

S
C

S
R

C
_S

C

S
Y

S
C

LK
_S

W

D
F

la
sh

_S
C

C
F

la
sh

_S
C

C
D

P
_P

R
P

H
_0

_1
43

0 0 0

C
D

P
_P

R
P

H
_9

6_
12

7

C
D

P
_P

R
P

H
_6

4_
95

C
D

P
_P

R
P

H
_3

2_
63

C
D

P
_P

R
P

H
_0

_3
1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-8. Debug Mode Transition Status Register (ME_DMTS)

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 201

Table 8-10. Debug Mode Transition Status Register (ME_DMTS) Field Descriptions

Field Description

PREVIOUS_
MODE

Previous chip mode — These bits show the mode in which the chip was prior to the latest change to
the current mode.
0000 RESET
0001 TEST
0010 SAFE
0011 DRUN
0100 RUN0
0101 RUN1
0110 RUN2
0111 RUN3
1000 HALT
1001 reserved
1010 STOP
1011 reserved
1100 reserved
1101 STANDBY
1110 reserved
1111 reserved

MPH_BUSY MC_ME/MC_PCU Handshake Busy indicator — This bit is set if the MC_ME has requested a mode
change from the MC_PCU and the MC_PCU has not yet responded. It is cleared when the MC_PCU
has responded.
0 Handshake is not busy
1 Handshake is busy

PMC_PROG MC_PCU Mode Change in Progress indicator — This bit is set if the MC_PCU is in the process of
powering up or down power domains. It is cleared when all power-up/down processes have
completed.
0 Power-up/down transition is not in progress
1 Power-up/down transition is in progress

CORE_DBG Processor is in Debug mode indicator — This bit is set while the processor is in debug mode.
0 The processor is not in debug mode
1 The processor is in debug mode

SMR SAFE mode request from MC_RGM is active indicator — This bit is set if a hardware SAFE mode
request has been triggered. It is cleared when the hardware SAFE mode request has been cleared.
0 A SAFE mode request is not active
1 A SAFE mode request is active

VREG_CSR
C_SC

Main VREG dependent Clock Source State Change during mode transition indicator — This bit is set
when a clock source which depends on the main voltage regulator to be powered-up is requested to
change its power up/down state. It is cleared when the clock source has completed its state change.
0 No state change is taking place
1 A state change is taking place

CSRC_CSR
C_SC

(Other) Clock Source dependent Clock Source State Change during mode transition indicator — This
bit is set when a clock source which depends on another clock source to be powered-up is requested
to change its power up/down state. It is cleared when the clock source has completed its state
change.
0 No state change is taking place
1 A state change is taking place

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

202 Freescale Semiconductor

FIRC_SC FIRC State Change during mode transition indicator — This bit is set when the FIRC is requested to
change its power up/down state. It is cleared when the FIRC has completed its state change.
0 No state change is taking place
1 A state change is taking place

SYSCLK_S
W

System Clock Switching pending status —
0 No system clock source switching is pending
1 A system clock source switching is pending

DFlash_SC DFlash State Change during mode transition indicator — This bit is set when the DFlash is requested
to change its power up/down state. It is cleared when the DFlash has completed its state change.
0 No state change is taking place
1 A state change is taking place

CFlash_SC CFlash State Change during mode transition indicator — This bit is set when the CFlash is requested
to change its power up/down state. It is cleared when the DFlash has completed its state change.
0 No state change is taking place
1 A state change is taking place

CDP_PRPH
_0_143

Clock Disable Process Pending status for Peripherals 0…1431 — This bit is set when any peripheral
has been requested to have its clock disabled. It is cleared when all the peripherals which have been
requested to have their clocks disabled have entered the state in which their clocks may be disabled.
0 No peripheral clock disabling is pending
1 Clock disabling is pending for at least one peripheral

CDP_PRPH
_96_127

Clock Disable Process Pending status for Peripherals 96…1272 — This bit is set when any peripheral
appearing in ME_PS3 has been requested to have its clock disabled. It is cleared when all these
peripherals which have been requested to have their clocks disabled have entered the state in which
their clocks may be disabled.
0 No peripheral clock disabling is pending
1 Clock disabling is pending for at least one peripheral

CDP_PRPH
_64_95

Clock Disable Process Pending status for Peripherals 64…952 — This bit is set when any peripheral
appearing in ME_PS2 has been requested to have its clock disabled. It is cleared when all these
peripherals which have been requested to have their clocks disabled have entered the state in which
their clocks may be disabled.
0 No peripheral clock disabling is pending
1 Clock disabling is pending for at least one peripheral

CDP_PRPH
_32_63

Clock Disable Process Pending status for Peripherals 32…632 — This bit is set when any peripheral
appearing in ME_PS1 has been requested to have its clock disabled. It is cleared when all these
peripherals which have been requested to have their clocks disabled have entered the state in which
their clocks may be disabled.
0 No peripheral clock disabling is pending
1 Clock disabling is pending for at least one peripheral

CDP_PRPH
_0_31

Clock Disable Process Pending status for Peripherals 0…312 — This bit is set when any peripheral
appearing in ME_PS0 has been requested to have its clock disabled. It is cleared when all these
peripherals which have been requested to have their clocks disabled have entered the state in which
their clocks may be disabled.
0 No peripheral clock disabling is pending
1 Clock disabling is pending for at least one peripheral

1 Peripheral n corresponds to the ME_PCTLn register. Please refer to Table 8-2 for the ME_PCTLn locations actually
occupied, which in turn indicates which peripherals are reported in the ME_DMTS register.

Table 8-10. Debug Mode Transition Status Register (ME_DMTS) Field Descriptions (continued)

Field Description

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 203

8.3.2.8 RESET Mode Configuration Register (ME_RESET_MC)

This register details the mode configuration during reset. See Table 8-11 for details.

8.3.2.9 TEST Mode Configuration Register (ME_TEST_MC)

This register configures the system behavior during TEST mode. Please see Table 8-11 for details.

NOTE
Byte write accesses are not allowed to this register.

Address 0xC3FD_C020 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
0 0 0 0 0 0 0 0 PDO 0 0

M
V

R
O

N

DFLAON CFLAON

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Figure 8-9. RESET Mode Configuration Register (ME_RESET_MC)

Address 0xC3FD_C024 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
0 0 0 0 0 0 0 0

PDO
0 0

M
V

R
O

N

DFLAON CFLAON

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLKW

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Figure 8-10. TEST Mode Configuration Register (ME_TEST_MC)

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

204 Freescale Semiconductor

8.3.2.10 SAFE Mode Configuration Register (ME_SAFE_MC)

This register configures the system behavior during SAFE mode. Please see Table 8-11 for details.

NOTE
Byte write accesses are not allowed to this register.

8.3.2.11 DRUN Mode Configuration Register (ME_DRUN_MC)

This register configures the system behavior during DRUN mode. Please see Table 8-11 for details.

Address 0xC3FD_C028 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
0 0 0 0 0 0 0 0

PDO
0 0

M
V

R
O

N

DFLAON CFLAON

W

Reset 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Figure 8-11. SAFE Mode Configuration Register (ME_SAFE_MC)

Address 0xC3FD_C02C Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
0 0 0 0 0 0 0 0 PDO 0 0

M
V

R
O

N

DFLAON CFLAON

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Figure 8-12. DRUN Mode Configuration Register (ME_DRUN_MC)

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 205

NOTE
Byte write accesses are not allowed to this register.

The following configuration values are retained through STANDBY mode:

• CFLAON

• DFLAON

• FXOSCON

8.3.2.12 RUN0…3 Mode Configuration Registers (ME_RUN0…3_MC)

This register configures the system behavior during RUN0…3 modes. Please see Table 8-11 for details.

NOTE
Byte write accesses are not allowed to this register.

Address 0xC3FD_C030 - 0xC3FD_C03C Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
0 0 0 0 0 0 0 0 PDO 0 0

M
V

R
O

N

DFLAON CFLAON

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Figure 8-13. RUN0…3 Mode Configuration Registers (ME_RUN0…3_MC)

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

206 Freescale Semiconductor

8.3.2.13 HALT Mode Configuration Register (ME_HALT_MC)

This register configures the system behavior during HALT mode. Please see Table 8-11 for details.

NOTE
Byte write accesses are not allowed to this register.

8.3.2.14 STOP Mode Configuration Register (ME_STOP_MC)

This register configures system behavior during STOP mode. Please see Table 8-11 for details.

NOTE
Byte write accesses are not allowed to this register.

Address 0xC3FD_C040 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
0 0 0 0 0 0 0 0 PDO 0 0

M
V

R
O

N

DFLAON CFLAON

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLKW

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Figure 8-14. HALT Mode Configuration Register (ME_HALT_MC)

Address 0xC3FD_C048 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
PDO

0 0

M
V

R
O

N

DFLAON CFLAON
W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLKW

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Figure 8-15. STOP Mode Configuration Register (ME_STOP_MC)

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 207

8.3.2.15 STANDBY Mode Configuration Register (ME_STANDBY_MC)

This register configures the system behavior during STANDBY mode. Please see Table 8-11 for details.

NOTE
Byte write accesses are not allowed to this register.

Address 0xC3FD_C054 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
0 0 0 0 0 0 0 0 PDO 0 0

M
V

R
O

N

DFLAON CFLAON

W

Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N SYSCLK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

Figure 8-16. STANDBY Mode Configuration Register (ME_STANDBY_MC)

Table 8-11. Mode Configuration Registers (ME_<mode>_MC) field descriptions

Field Description

PDO I/O output power-down control — This bit controls the output power-down of I/Os.
0 No automatic safe gating of I/Os used and pads power sequence driver is enabled
1 In SAFE/TEST modes, outputs of pads are forced to high impedance state and pads power

sequence driver is disabled. The inputs are level unchanged. In STOP mode, only the pad power
sequence driver is disabled, but the state of the output remains functional. In STANDBY mode,
power sequence driver and all pads except those mapped on wakeup lines are not powered and
therefore high impedance. Wakeup line configuration remains unchanged

MVRON Main voltage regulator control — This bit specifies whether main voltage regulator is switched off
or not while entering this mode.
0 Main voltage regulator is switched off
1 Main voltage regulator is switched on
Note: If the MVRON bit is cleared in STOP or HALT modes, the SRAM is placed into a low power

state where it cannot be accessed. The SRAM contents are retained and will be available again
after exiting the low power mode.

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

208 Freescale Semiconductor

DFLAON Data flash power-down control — This bit specifies the operating mode of the data flash after
entering this mode.
00reserved
01 Data flash is in power-down mode
10 reserved
11 Data flash is in normal mode
Note: If CFLAON  0b11, then DFLAON cannot be programmed to 0b11 (this effectively becomes

reserved). Therefore, the only valid case for DFLAON = 0b11 is when CFLAON is also 0b11.
This also affects the order these fields are set and cleared.

Note: If the flash memory is to be powered down in any mode, then your software must ensure that
reset sources are configured as long resets in the RGM_FESS register (see Section 9.3.1.6,
Functional Event Short Sequence Register (RGM_FESS)).

CFLAON Code flash power-down control — This bit specifies the operating mode of the code flash after
entering this mode.
00 reserved
01 Code flash is in power-down mode
10 Code flash is in low-power mode
11 Code flash is in normal mode

FMPLLON FMPLL control
0 FMPLL is switched off
1 FMPLL is switched on

FXOSCON FXOSC (4-40 MHz external oscillator) control
0 FXOSC (4-40 MHz external oscillator) is switched off
1 FXOSC (4-40 MHz external oscillator) is switched on

FIRCON FIRC control
0 FIRC is switched off
1 FIRC is switched on

SYSCLK System clock switch control — These bits specify the system clock to be used by the system.
0000 FIRC
0001 FIRC_divided
0010 FXOSC
0011 FXOSC_divided
0100 FMPLL
0101 reserved
0110 reserved
0111 reserved
1000 reserved
1001 reserved
1010 reserved
1011 reserved
1100 reserved
1101 reserved
1110 reserved
1111 system clock is disabled in STOP and TEST modes, reserved in all other modes

Table 8-11. Mode Configuration Registers (ME_<mode>_MC) field descriptions (continued)

Field Description

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 209

8.3.2.16 Peripheral Status Register 0 (ME_PS0)

This register provides the status of the peripherals. Please see Table 8-12 for details.

Address 0xC3FD_C060 Access: User read, Supervisor read, Test read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

0 0 0 0 0 0 0

S
_F

le
xR

ay

S
_D

M
A

_C
H

_M
U

X

0

S
_F

le
xC

A
N

5

S
_F

le
xC

A
N

4

S
_F

le
xC

A
N

3

S
_F

le
xC

A
N

2

S
_F

le
xC

A
N

1

S
_F

le
xC

A
N

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

0 0

S
_L

IN
F

le
xD

_9

S
_L

IN
F

le
xD

_8

S
_D

S
P

I7

S
_D

S
P

I6

S
_D

S
P

I5

S
_D

S
P

I4

S
_D

S
P

I3

S
_D

S
P

I2

S
_D

S
P

I1

S
_D

S
P

I0

0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-17. Peripheral Status Register 0 (ME_PS0)

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

210 Freescale Semiconductor

8.3.2.17 Peripheral Status Register 1 (ME_PS1)

This register provides the status of the peripherals. Please see Table 8-12 for details.

8.3.2.18 Peripheral Status Register 2 (ME_PS2)

This register provides the status of the peripherals. Please refer to Table 8-12 for details.

Address 0xC3FD_C064 Access: User read, Supervisor read, Test read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

0 0 0

S
_C

A
N

S
am

pl
er

0 0

S
_C

T
U

L

0

S
_L

IN
F

le
xD

_7

S
_L

IN
F

le
xD

_6

S
_L

IN
F

le
xD

_5

S
_L

IN
F

le
xD

_4

S
_L

IN
F

le
xD

_3

S
_L

IN
F

le
xD

_2

S
_L

IN
F

le
xD

_1

S
_L

IN
F

le
xD

_0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0

S
_I

2C 0 0 0 0 0 0 0 0 0 0

S
_A

D
C

1

S
_A

D
C

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-18. Peripheral Status Register 1 (ME_PS1)

Address 0xC3FD_C068 Access: User read, Supervisor read, Test read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

0 0 0

S
_P

IT
_R

T
I

S
_R

T
C

/A
P

I

0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

0 0 0 0 0 0

S
_e

M
IO

S
1

S
_e

M
IO

S
0

0 0

S
_W

K
P

U

S
_S

IU
L

0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-19. Peripheral Status Register 2 (ME_PS2)

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 211

8.3.2.19 Peripheral Status Register 3 (ME_PS3)

This register provides the status of the peripherals. Please see Table 8-12 for details.

8.3.2.20 Run Peripheral Configuration Registers (ME_RUN_PC0…7)

These registers configure eight different types of peripheral behavior during run modes.

Address 0xC3FD_C06C Access: User read, Supervisor read, Test read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0 0 0 0 0

S
_C

M
U

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-20. Peripheral Status Register 3 (ME_PS3)

Table 8-12. Peripheral Status Registers (ME_PSn) Field Descriptions

Field Description

S_<periph> Peripheral status — These bits specify the current status of each peripheral which is controlled by
the MC_ME.
0 Peripheral is frozen
1 Peripheral is active

Address 0xC3FD_C080 - 0xC3FD_C09C Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0 0 0 0 0 0

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
E

S
E

T

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-21. Run Peripheral Configuration Registers (ME_RUN_PC0…7)

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

212 Freescale Semiconductor

8.3.2.21 Low-Power Peripheral Configuration Registers (ME_LP_PC0…7)

These registers configure eight different types of peripheral behavior during non-run modes.

Table 8-13. Run Peripheral Configuration Registers (ME_RUN_PC0…7) Field Descriptions

Field Description

RUN3 Peripheral control during RUN3
0 Peripheral is frozen with clock gated
1 Peripheral is active

RUN2 Peripheral control during RUN2
0 Peripheral is frozen with clock gated
1 Peripheral is active

RUN1 Peripheral control during RUN1
0 Peripheral is frozen with clock gated
1 Peripheral is active

RUN0 Peripheral control during RUN0
0 Peripheral is frozen with clock gated
1 Peripheral is active

DRUN Peripheral control during DRUN
0 Peripheral is frozen with clock gated
1 Peripheral is active

SAFE Peripheral control during SAFE
0 Peripheral is frozen with clock gated
1 Peripheral is active

TEST Peripheral control during TEST
0 Peripheral is frozen with clock gated
1 Peripheral is active

RESET Peripheral control during RESET
0 Peripheral is frozen with clock gated
1 Peripheral is active

Address 0xC3FD_C0A0 - 0xC3FD_C0BC Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0

S
TA

N
D

B
Y 0 0

S
TO

P 0

H
A

LT

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-22. Low-Power Peripheral Configuration Registers (ME_LP_PC0…7)

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 213

8.3.2.22 Peripheral Control Registers (ME_PCTLn)

These registers select the configurations during run and non-run modes for each peripheral. Please refer to
Table 8-2 for information on which ME_PCTLn locations are actually occupied. The unoccupied locations
contain a read-only byte value of 0x00.

See Section 8.4.6, Peripheral clock gating, for details on how to use this register.

NOTE
After modifying any of the ME_RUN_PC0…7, ME_LP_PC0…7, and
ME_PCTLn registers, software must request a mode change and wait for the
mode change to be completed before entering debug mode in order to have
consistent behavior between the peripheral clock control process and the
clock status reporting in the ME_PSn registers.

Table 8-14. Low-Power Peripheral Configuration Registers (ME_LP_PC0…7) Field Descriptions

Field Description

STANDBY Peripheral control during STANDBY
0 Peripheral is frozen with clock gated
1 Peripheral is active

STOP Peripheral control during STOP
0 Peripheral is frozen with clock gated
1 Peripheral is active

HALT Peripheral control during HALT
0 Peripheral is frozen with clock gated
1 Peripheral is active

Address 0xC3FD_C0C0 - 0xC3FD_C14F Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7

R 0
DBG_F LP_CFG RUN_CFG

W

Reset 0 0 0 0 0 0 0 0

Figure 8-23. Peripheral Control Registers (ME_PCTLn)

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

214 Freescale Semiconductor

Table 8-15. Peripheral Control Registers (ME_PCTLn) Field Descriptions

Field Description

DBG_F Peripheral control in debug mode — This bit controls the state of the peripheral in debug mode
0 Peripheral state depends on RUN_CFG/LP_CFG bits and the chip mode
1 Peripheral is frozen if not already frozen in chip modes.
Note: This feature is useful to freeze the peripheral state while entering debug. For example, this may

be used to prevent a reference timer from running while making a debug accesses.

LP_CFG Peripheral configuration select for non-run modes — These bits associate a configuration as
defined in the ME_LP_PC0…7 registers to the peripheral.
000 Selects ME_LP_PC0 configuration
001 Selects ME_LP_PC1 configuration
010 Selects ME_LP_PC2 configuration
011 Selects ME_LP_PC3 configuration
100 Selects ME_LP_PC4 configuration
101 Selects ME_LP_PC5 configuration
110 Selects ME_LP_PC6 configuration
111 Selects ME_LP_PC7 configuration

RUN_CFG Peripheral configuration select for run modes — These bits associate a configuration as defined
in the ME_RUN_PC0…7 registers to the peripheral.
000 Selects ME_RUN_PC0 configuration
001 Selects ME_RUN_PC1 configuration
010 Selects ME_RUN_PC2 configuration
011 Selects ME_RUN_PC3 configuration
100 Selects ME_RUN_PC4 configuration
101 Selects ME_RUN_PC5 configuration
110 Selects ME_RUN_PC6 configuration
111 Selects ME_RUN_PC7 configuration

Table 8-16. Peripheral control registers by peripheral

Peripheral ME_PCTLn

ADC_0 32

ADC_1 33

CAN sampler 60

CMU 104

CTU 57

DMA_MUX 23

DSPI_0 4

DSPI_1 5

DSPI_2 6

DSPI_3 7

DSPI_4 8

DSPI_5 9

DSPI_6 10

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 215

8.4 Functional description

8.4.1 Mode transition request

Automatic mode transitions are handled by hardware in the case of special events such as low power mode
exit as well as handling fault conditions. Software initiated mode transitions are handled by writing to the
mode control (ME_MCTL) register which must be written twice:

1. Write the requested mode to the TARGET_MODE field and the key (0x5AF0) to the KEY field.

2. On the second write the TARGET_MODE value is the same but the KEY is inverted (0xA50F).

DSPI_7 11

eMIOS_0 72

eMIOS_1 73

FlexCAN_0 16

FlexCAN_1 17

FlexCAN_2 18

FlexCAN_3 19

FlexCAN_4 20

FlexCAN_5 21

I2C 44

LINFlexD_0 48

LINFlexD_1 49

LINFlexD_2 50

LINFlexD_3 51

LINFlexD_4 52

LINFlexD_5 53

LINFlexD_6 54

LINFlexD_7 55

LINFlexD_8 12

LINFlexD_9 13

PIT_RTI 92

RTC/API 91

SIUL 68

WKPU 69

Table 8-16. Peripheral control registers by peripheral (continued)

Peripheral ME_PCTLn

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

216 Freescale Semiconductor

Once a valid mode transition request is detected, the target mode configuration information is loaded from
the corresponding ME_<mode>_MC register.The mode transition request may require a number of cycles
depending on the programmed configuration, and software should check the S_CURRENT_MODE bit
field and the S_MTRANS bit of the global status register ME_GS to verify when the mode has been
correctly entered and the transition process has completed. For a description of valid mode requests, please
refer to Section 8.4.5, “Mode transition interrupts“ .

Any modification of the mode configuration register of the currently selected mode will not be taken into
account immediately but on the next request to enter this mode. It is valid to enter and re-enter the same
mode (for example, DRUN  DRUN) to latch any changes in configuration. As soon as the mode request
is accepted as valid, the S_MTRANS bit is set and held until the status in the ME_GS register matches the
configuration programmed in the respective ME_<mode>_MC register.

NOTE
It is recommended that software poll the S_MTRANS bit in the ME_GS
register after requesting a transition to HALT, STOP, or STANDBY modes.

A mode re-entry is required to latch changes to any of the Mode Control,
Mode Enable, Mode Configuration, ME_RUN_PCn, ME_LP_PCn and
ME_PCTLn registers.

Figure 8-24. MC_ME mode diagram

SAFE

Recoverable
HW failure

SYSTEM MODES

DRUN

TEST

RESET

SW request

Non-recoverable
failure

RUN 0

HALT

LOW POWER
MODES

USER MODES

RUN 1

•
•
•

RUN 3

STOP

STANDBY

HW triggered transition
SW triggered transition

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 217

8.4.2 Mode details

8.4.2.1 RESET mode

The microcontroller enters this mode on the following events:

• from SAFE, DRUN, RUN0…3, or TEST mode when the TARGET_MODE bit field of the
ME_MCTL register is written with either “0000” for a ‘functional’ reset or “1111” for a
‘destructive’ reset

• from any mode due to a system reset by the MC_RGM because of some non-recoverable hardware
failure in the system (see the MC_RGM chapter for details)

Transition to this mode is instantaneous, and the system remains in this mode until the reset sequence is
finished. The mode configuration information for this mode is provided by the ME_RESET_MC register.
This mode has a pre-defined configuration, and the FIRC is selected as the system clock. All power
domains are made active in this mode.

8.4.2.2 DRUN mode

The microcontroller enters this mode on the following events:

• automatically from RESET mode after completion of the reset sequence

• from RUN0…3, SAFE, or TEST mode when the TARGET_MODE bit field of the ME_MCTL
register is written with “0011”

• from the STANDBY mode after an external wakeup event or internal wakeup alarm (for example,
RTC/API event)

As soon as any of the above events has occurred, a DRUN mode transition request is generated. The mode
configuration information for this mode is provided by the ME_DRUN_MC register. In this mode, the
CFlash and DFlash, all clock sources, and the system clock configuration can be controlled by software as
required. After system reset, the software execution starts with the default configuration selecting the
FIRC as the system clock.

DRUN mode:

• Is the initial mode that user code is executed in

• Provides the gateway to RUN[0..3] modes

• Can be used to jump into and recover from STANDBY mode

as the initial mode that user code is executed in.

When DRUN mode is entered from STANDBY after a wakeup event, the ME_DRUN_MC register
content is restored to its pre-STANDBY values, and the mode starts in that configuration.

In DRUN mode, all power domains are active.

NOTE
Software must ensure that the code executes from RAM before changing to
this mode if the CFlash and DFlash are configured to be in the low-power
or power-down state in this mode.

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

218 Freescale Semiconductor

8.4.2.3 SAFE mode

The microcontroller enters this mode on the following events:

• from DRUN, RUN0…3, or TEST mode when the TARGET_MODE bit field of the ME_MCTL
register is written with “0010”

• from any mode except RESET due to a SAFE mode request generated by the MC_RGM because
of some potentially recoverable hardware failure in the system (see the MC_RGM chapter for
details)

NOTE
If a hardware SAFE mode request occurs during RESET, depending on the
timing of the SAFE mode request, SAFE mode may be entered immediately
after the normal completion of the reset sequence or several system clock
cycles after DRUN entry. The SAFE mode request does not have any
influence on the execution of the reset sequence itself.

As soon as any of the above events has occurred, a SAFE mode transition request is generated. The mode
configuration information for this mode is provided by the ME_SAFE_MC register. This mode has a
pre-defined configuration, and the FIRC is selected as the system clock. All power domains are made
active in this mode.

If the SAFE mode is requested by software while some other mode transition process is ongoing, the new
target mode becomes the SAFE mode regardless of other pending requests or new requests during the
mode transition. No new mode request made during a transition to the SAFE mode will cause an invalid
mode interrupt.

NOTE
If software requests to change to the SAFE mode and then requests to
change back to the parent mode before the mode transition is completed, the
chip’s final mode after mode transition will be the SAFE mode.

As long as a SAFE event is active, the system remains in the SAFE mode, and any software mode request
during this time is ignored and lost.

This mode is intended to be used by software

• to assess the severity of the cause of failure and then to either

— re-initialize the chip via the DRUN mode, or

— completely reset the chip via the RESET mode.

If the outputs of the system I/Os need to be forced to a high impedance state upon entering this mode, the
PDO bit of the ME_SAFE_MC register should be set. In this case, the pads’ power sequence driver cell is
also disabled. The input levels remain unchanged.

8.4.2.4 TEST mode

The microcontroller enters this mode on the following events:

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 219

• from DRUN mode when the TARGET_MODE bit field of the ME_MCTL register is written with
“0001”

As soon as any of the above events has occurred, a TEST mode transition request is generated. The mode
configuration information for this mode is provided by the ME_TEST_MC register. Except for the main
voltage regulator, all resources of the system are configurable in this mode. The system clock to the whole
system can be stopped by programming the SYSCLK bit field to “1111”, and in this case, the only way to
exit this mode is via a chip reset.

This mode is intended to be used by software

• to execute software test routines

In TEST mode, all power domains are active.

NOTE
Software must ensure that the code executes from RAM before changing to
this mode if the flashes are configured to be in the low-power or
power-down state in this mode.

8.4.2.5 RUN0…3 modes

The microcontroller enters one of RUN0...3 modes on the following events:

• from the DRUN, SAFE, or another RUN0…3 mode when the TARGET_MODE bit field of the
ME_MCTL register is written with “0100…0111”

• from the HALT mode due to an interrupt event

• from the STOP mode due to an interrupt or wakeup event

As soon as any of the above events has occurred, a RUN0…3 mode transition request is generated. The
mode configuration information for these modes is provided by the ME_RUN0…3_MC registers. In these
modes, the CFlash and DFlash, all clock sources, and the system clock configuration can be controlled by
software as required.

These modes are intended to be used by software:

• To execute application routines

• To allow entry into STOP and HALT modes

In RUN0..3 modes, all power domains are active.

NOTE
Software must ensure that the code executes from RAM before changing to
this mode if the flashes are configured to be in the low-power or
power-down state in this mode.

8.4.2.6 HALT mode

The chip enters this mode on the following events:

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

220 Freescale Semiconductor

• from one of the RUN0…3 modes when the TARGET_MODE bit field of the ME_MCTL register
is written with “1000”.

As soon as any of the above events has occurred, a HALT mode transition request is generated. The mode
configuration information for this mode is provided by ME_HALT_MC register. The main voltage
regulator and the CFlash and DFlash can be put in low-power or power-down mode as needed. If there is
a HALT mode request while an interrupt request is active, the transition to HALT is aborted with the
resultant mode being the current mode, SAFE (on SAFE mode request), or DRUN (on reset), and an
invalid mode interrupt is not generated.

This mode is intended as a first-level low-power mode with

• the core clock frozen

• only a few peripherals running

and to be used by software

• to wait until it is required to do something and then to react quickly (that is, within a few system
clock cycles of an interrupt event)

In HALT mode, all power domains are active. However, if the ME_HALT_MC[MVRON] bit is cleared,
the SRAM is placed into a low power state where it cannot be accessed. The SRAM contents are retained
and will be available again after exiting HALT mode.

NOTE
It is good practice for software to ensure that the ME_GS[S_MTRANS] bit
has been cleared on HALT mode exit to ensure that the previous RUN0…3
mode configuration has been fully restored before executing critical code.

8.4.2.7 STOP mode

The microcontroller enters this mode on the following events:

• from one of the RUN0…3 modes when the ME_MCTL[TARGET_MODE] field is written with
“1010”.

As soon as any of the above events has occurred, a STOP mode transition request is generated. The mode
configuration information for this mode is provided by the ME_STOP_MC register. This mode is fully
configurable, and the ME_STOP_MC register should be programmed according to the system needs.

The main voltage regulator and the CFlash and DFlash can be put in power-down mode as needed. If there
is a STOP mode request while any interrupt or wakeup event is active:

• The transition to STOP mode is aborted with the resultant mode being one of the following:

— The current mode

— SAFE (on SAFE mode request)

— DRUN (on reset)

• An invalid mode interrupt is not generated.

If any interrupt is pending, the mode is not entered until all interrupt flags are cleared if the system clock
is still available.

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 221

This can be used as an advanced low-power mode with the core clock frozen and almost all peripherals
stopped.

This mode is intended as an advanced low-power mode with

• the system clock frozen

• almost all peripherals stopped

and to be used by software

• to wait until it is required to do something with no need to react quickly (for example, to allow for
system clock source to be re-started)

If the pads’ power sequence driver cell needs to be disabled while entering this mode, the PDO bit of the
ME_STOP_MC register should be set. The state of the outputs is kept.

This mode can be used to stop all clock sources and thus preserve the chip status. When exiting the STOP
mode, the FIRC clock is selected as the system clock until the target clock is available.

In STOP mode, all power domains are active. However, if the ME_STOP_MC[MVRON] bit is cleared,
the SRAM is placed into a low power state where it cannot be accessed. The SRAM contents are retained
and will be available again after exiting STOP mode.

NOTE
It is good practice for software to ensure that the ME_GS[S_MTRANS] bit
has been cleared on STOP mode exit to ensure that the previous RUN0…3
mode configuration has been fully restored before executing critical code.

8.4.2.8 STANDBY mode

The microcontroller enters STANDBY mode on the following events:

• from the DRUN or one of the RUN0…3 modes when the TARGET_MODE bit field of the
ME_MCTL register is written with “1101”.

As soon as any of the above events occur, a STANDBY mode transition request is generated. The mode
configuration information for this mode is provided by the ME_STANDBY_MC register. In this mode, the
power supply is turned off for most of the microcontroller. The only parts of the microcontroller that are
still powered during STANDBY mode are pads mapped on wakeup lines and power domain #0 which
contains the MC_RGM, MC_PCU, WKPU, 8K RAM, RTC_API, CANSampler, SIRC, FIRC, SSCM, and
VREG. The FIRC can be optionally switched off. This is the lowest power consumption mode possible.

This mode is intended:

• As an extreme low-power mode with everything powered down apart from the necessary circuitry
to allow device wakeup

• To be used by software to remain in the lowest power consumption state with no requirement to
wake up quickly

The exit sequence of this mode is similar to the reset sequence, and the resets to all but power domain #0
are asserted with timing that is the same as reset PHASE1 through PHASE3. However, in addition to
booting from the default location, the microcontroller can also be configured to boot from the backup

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

222 Freescale Semiconductor

RAM (see the RGM_STDBY register description in the MC_RGM chapter for details). In the case of
booting from backup RAM, it is also possible to keep the CFlash and DFlash disabled by writing “01” to
the CFLAON and DFLAON fields in the ME_DRUN_MC register prior to STANDBY entry.

If there is a STANDBY mode request while any wakeup event is active, the microcontroller will not enter
STANDBY mode.

In STANDBY mode power domain 1 is disabled. Power domains 2 and 3 can be selectively configured to
enable additional SRAM as defined in Table 10-4, “RAM configurations in modes” .

NOTE
Communications protocols that do not support hardware handshaking (for
example, FlexRay) need to be manually disabled before low power mode
entry.

NOTE
Initialization code in RAM should not enable WKPU clock through
configuring PCTL69 until the NMI exception handler is installed. If WKPU
is enabled before installing the handler, the software might jump to an illegal
code.

8.4.3 Mode transition process

The process of mode transition follows the following steps in a pre-defined manner depending on the
current mode and the requested target mode. In many cases of mode transition, not all steps need to be
executed based on the mode control information, and some steps may not be applicable according to the
mode definition itself.

8.4.3.1 Target mode request

The target mode is requested by accessing the ME_MCTL register with the required keys. This mode
transition request by software must be a valid request satisfying a set of pre-defined rules to initiate the
process. If the request fails to satisfy these rules, it is ignored, and the TARGET_MODE bit field is not
updated. An optional interrupt can be generated for invalid mode requests. See Section 8.4.5, “Mode
transition interrupts for details.

In the case of mode transitions occurring because of hardware events such as a reset, a SAFE mode request,
or interrupt requests and wakeup events to exit from low-power modes, the TARGET_MODE bit field of
the ME_MCTL register is automatically updated with the appropriate target mode. The mode change
process start is indicated by the setting of the mode transition status bit S_MTRANS of the ME_GS
register.

A RESET mode requested via the ME_MCTL register is passed to the MC_RGM, which generates a
global system reset and initiates the reset sequence. The RESET mode request has the highest priority, and
the MC_ME is kept in the RESET mode during the entire reset sequence.

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 223

The SAFE mode request has the next highest priority after reset. It can be generated either by software via
the ME_MCTL register from all software running modes including DRUN, RUN0…3, and TEST or by
the MC_RGM after the detection of system hardware failures, which may occur in any mode.

8.4.3.2 Target mode configuration loading

On completion of the Target mode request step, the resources for that mode (Pad, VREG, CFlash, DFlash,
and clock configuration) are read from the ME_<target mode>_MC register and configured accordingly.

Table 8-17 shows the resources and configuration that are available for each operating mode. Shaded cells
indicate that the configuration is hard wired and cannot be changed.

8.4.3.3 Peripheral clocks disable

On completion of the Target mode request step, the MC_ME requests each peripheral to enter its stop mode
if the peripheral is configured to be disabled in the target mode based on the configuration of the peripheral
PCTL register and the referenced ME_RUN_PC0..7 or ME_LP_PC0..7 registers.

NOTE
The MC_ME automatically requests peripherals to enter their stop modes if
the power domains in which they are residing are to be turned off due to a
mode change. However, it is good practice for software to ensure that those
peripherals that are to be powered down are configured in the MC_ME to
be frozen.

Each peripheral acknowledges its stop mode request after closing its internal activity. The MC_ME then
disables the corresponding clock(s) to this peripheral.

Table 8-17. MC_ME resource control overview1

1 Shaded cells represent configurations that cannot be changed in that mode. Unshaded cells show the default value
that can be modified as required.

Mode PDO
Main
VREG

Data flash
memory

Code flash
memory

FMPLL FXOSC FIRC SYSCLK

RESET Off On On On Off Off On FIRC

TEST Off On On On Off Off On Disabled

SAFE On On On On Off Off On FIRC

DRUN Off On On On Off Off On FIRC

RUN0..3 Off On On On Off Off On FIRC

HALT Off On On Low power Off Off On FIRC

STOP Off On Off Off Off Off On FIRC

STANDB
Y

On Off Off Off Off Off On Disabled

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

224 Freescale Semiconductor

In the case of a SAFE mode transition request, the MC_ME does not wait for the peripherals to
acknowledge the stop requests. The SAFE mode clock gating configuration is applied immediately
regardless of the status of the peripherals’ stop acknowledges.

Please refer to Section 8.4.6, “Peripheral clock gating“ for more details.

Each peripheral that may block or disrupt a communication bus to which it is connected ensures that these
outputs are forced to a safe or recessive state when the microcontroller enters the SAFE mode.

8.4.3.4 Processor low-power mode entry

If, on completion of the Peripheral clocks disable step, the mode transition is to the HALT mode, the
MC_ME requests the processor to enter its halted state. The processor acknowledges its halt state request
after completing all outstanding bus transactions.

If, on completion of the Peripheral clocks disable step, the mode transition is to the STOP or STANDBY
mode, the MC_ME requests the processor to enter its stopped state. The processor acknowledges its stop
state request after completing all outstanding bus transactions.

8.4.3.5 Processor and System Memory Clock Disable

If, on completion of the Processor low-power mode entry step, the mode transition is to the HALT, STOP,
or STANDBY mode and the processor is in its appropriate halted or stopped state, the MC_ME disables
the processor and system memory clocks to achieve further power saving.

The clocks to the processor and system memory are unaffected while transitioning between software
running modes such as DRUN, RUN0…3, and SAFE.

CAUTION
Clocks to the whole microcontroller including the processor and system
memory can be disabled in TEST mode.

8.4.3.6 Clock Sources (Main Voltage Regulator Independent) Switch-On

On completion of the Processor low-power mode entry step, the MC_ME switches on all clock sources,
which do not need the main voltage regulator to be on, based on the <clock source>ON bits of the
ME_<current mode>_MC and ME_<target mode>_MC registers. The following clock sources are
switched on at this step:

• FXOSC

• FIRC

NOTE

Clock sources which need the main voltage regulator to be stable are not
controlled by this step.

The clock sources that are required by the target mode are switched on. The duration required for the
output clocks to be stable depends on the type of source, and all further steps of mode transition depending

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 225

on one or more of these clocks waits for the stable status of the respective clocks. The availability status
of these clocks is updated in the S_<clock source> bits of ME_GS register.

The clock sources which need to be switched off are unaffected during this process in order to not disturb
the system clock which might require one of these clocks before switching to a different target clock.

8.4.3.7 Main Voltage Regulator Switch-On

On completion of the Target mode request step, if the main voltage regulator needs to be switched on from
its off state based on the MVRON bit of the ME_<current mode>_MC and ME_<target mode>_MC
registers, the MC_ME requests the MC_PCU to power-up the regulator and waits for the output voltage
stable status in order to update the S_MVR bit of the ME_GS register.

This step is required only during the exit of the low-power modes HALT and STOP. In this step, the FIRC
is switched on regardless of the target mode configuration, as the main voltage regulator requires the FIRC
during power-up in order to generate the voltage status.

During the STANDBY exit sequence, the MC_PCU alone manages the power-up of the main voltage
regulator, and the MC_ME is kept in RESET or shut off (depending on the power domain #1 status).

8.4.3.8 Flash memory modules switch-on

On completion of the Main Voltage Regulator Switch-On step, if one or more of the flashes needs to be
switched to normal mode from its low-power or power-down mode based on the CFLAON and DFLAON
bit fields of the ME_<current mode>_MC and ME_<target mode>_MC registers, the MC_ME requests
the flash to exit from its low-power/power-down mode. When the flashes are available for access, the
S_CFLA and S_DFLA bit fields of the ME_GS register are updated to “11” by hardware.

If the main regulator is also off in chip low-power modes, then during the exit sequence, the flash is kept
in its low-power state and is switched on only when the Main Voltage Regulator Switch-On process has
completed.

CAUTION
It is illegal to switch the CFlash directly from low-power mode to
power-down mode or from power-down mode to low-power mode. The
MC_ME, however, does not prevent this nor does it flag it.

8.4.3.9 Clock Sources (Main Voltage Regulator Dependent) Switch-On

On completion of the Clock Sources (Main Voltage Regulator Independent) Switch-On and Main Voltage
Regulator Switch-On, the MC_ME controls all clock sources, which need the main voltage regulator to be
on, based on the <clock source>ON bits of the ME_<current mode>_MC and ME_<target mode>_MC
registers. The following clock sources are switched on at this step:

• FMPLL

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

226 Freescale Semiconductor

8.4.3.10 Pad Outputs-On

On completion of the Main Voltage Regulator Switch-On step, if the PDO bit of the
ME_<target mode>_MC register is cleared, then

• all pad outputs are enabled to return to their previous state

• the I/O pads power sequence driver is switched on

8.4.3.11 Peripheral clocks enable

Based on the current and target microcontroller modes, the peripheral configuration registers
ME_RUN_PC0…7, ME_LP_PC0…7, and the peripheral control registers ME_PCTLn, the MC_ME
enables the clocks for selected modules as required. This step is executed only after the Main Voltage
Regulator Switch-On process is completed.

Also, if a mode change translates to a power up of one or more power domains, the MC_PCU indicates
the MC_ME after completing the power-up sequence. At that time, the MC_ME may assert the peripheral
clock enables of the peripherals residing in those power domains.

8.4.3.12 Processor and Memory Clock Enable

If the mode transition is from either HALT or STOP to RUN0…3, the clocks to the processor and system
memory are enabled. The process of enabling these clocks is executed only after the Flash memory
modules switch-on process is completed.

8.4.3.13 Processor low-power mode exit

If the mode transition is from HALT, STOP, or STANDBY to RUN0…3, the MC_ME requests the
processor to exit from its halted or stopped state. This step is executed only after the Processor and
Memory Clock Enable process is completed.

8.4.3.14 System clock switching

Based on the SYSCLK bit field of the ME_<current mode>_MC and ME_<target mode>_MC registers,
if the target and current system clock configurations differ, the following method is implemented for clock
switching.

• The target clock configuration for the FIRC takes effect only after the S_FIRC bit of the ME_GS
register is set by hardware (that is, the FIRC has stabilized).

• The target clock configuration for the FIRC_divided takes effect only after the S_FIRC bit of the
ME_GS register is set by hardware (that is, the FIRC has stabilized).

• The target clock configuration for the FXOSC takes effect only after the S_FXOSC bit of the
ME_GS register is set by hardware (that is, the FXOSC (4-40 MHz external oscillator) has
stabilized).

• The target clock configuration for the FXOSC_divided takes effect only after the S_FXOSC bit of
the ME_GS register is set by hardware (that is, the FXOSC (4-40 MHz external oscillator) has
stabilized).

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 227

• The target clock configuration for the FMPLL takes effect only after the S_FMPLL bit of the
ME_GS register is set by hardware (that is, the FMPLL has stabilized).

• If the clock is to be disabled, the SYSCLK bit field should be programmed with “1111”. This is
possible only in the STOP and TEST modes. In the STANDBY mode, the clock configuration is
fixed, and the system clock is automatically forced to ‘0’.

The current system clock configuration can be observed by reading the S_SYSCLK bit field of the ME_GS
register, which is updated after every system clock switching. Until the target clock is available, the system
uses the previous clock configuration.

System clock switching starts only after

• the Peripheral clocks disable process has completed in order not to change the system clock
frequency before peripherals close their internal activities

Table 8-18 shows the system clock selection options available in each operating mode. The default
configuration is shown. Shading indicates that the SYSCLK cannot be changed from or to this option. A
checkmark represents valid SYSCLK settings.

8.4.3.15 Power Domain #2…3 Switch-Off

Based on the chip mode and the MC_PCU’s power configuration registers PCU_PCONF2…3, the power
domains #2 to 3 are controlled by the MC_PCU.

If a mode change translates to a power-down of a power domain, then the MC_PCU starts the power-down
sequence. The MC_PCU acknowledges the completion of the power-down sequences with respect to the
new mode, and the MC_ME uses this information to update the mode transition status. This step is
executed only after the Peripheral clocks disable process has completed.

8.4.3.16 Pad Switch-Off

If the PDO bit of the ME_<target mode>_MC register is ‘1’ then

• the outputs of the pads are forced to the high impedance state if the target mode is SAFE or TEST

Table 8-18. MC_ME system clock selection overview

Mode FIRC
FIRC

divided
FXOSC

FXOSC
divided

FMPLL Disabled

RESET Default x x x x x

TEST Default     

SAFE Default x x x x x

DRUN Default     x

RUN0..3 Default     x

HALT Default     x

STOP Default     

STANDBY x x x x x Default

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

228 Freescale Semiconductor

• I/O pads power sequence driver is switched off if the target mode is one of SAFE, TEST, or STOP
modes

In STANDBY mode, the power sequence driver and all pads except the external reset and those mapped
on wakeup lines are not powered and therefore high impedance. The wakeup line configuration remains
unchanged.

This step is executed only after the Peripheral clocks disable process has completed.

8.4.3.17 Clock Sources Switch-Off

Based on the chip mode and the <clock source>ON bits of the ME_<mode>_MC registers, if a given clock
source is to be switched off, the MC_ME:

• Requests the clock source to power down

• Updates its availability status bit S_<clock source> of the ME_GS register to ‘0’

This step is executed only after the System clock switching process has completed.

8.4.3.18 Flash Switch-Off

Based on the CFLAON and DFLAON bit fields of the ME_<current mode>_MC and
ME_<target mode>_MC registers, if any of the flashes is to be put in its low-power or power-down mode,
the MC_ME:

• Requests the flash memory to enter the corresponding power mode

• Waits for the flash memory to acknowledge

The exact power mode status of the flashes is updated in the S_CFLA and S_DFLA bit fields of the
ME_GS register. This step is executed only when the Processor and System Memory Clock Disable
process has completed.

8.4.3.19 Main Voltage Regulator Switch-Off

Based on the MVRON bit of the ME_<current mode>_MC and ME_<target mode>_MC registers, if the
main voltage regulator is to be switched off, the MC_ME requests it to power down and clears the
availability status bit S_MVR of the ME_GS register.

This step is required only during the entry of low-power modes like HALT and STOP. This step is executed
only after completing the following processes:

• Clock Sources Switch-Off

• Flash Switch-Off

If the target mode is STANDBY, the main voltage regulator is not switched off by the MC_ME and the
STANDBY request is asserted after the above processes have completed upon which the MC_PCU takes
control of the main regulator. As the MC_PCU needs the FIRC, the FIRC remains active until all the
STANDBY steps are executed by the MC_PCU after which it may be switched off depending on the
FIRCON bit of the ME_STANDBY_MC register.

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 229

8.4.3.20 Current mode update

The current mode status bit field S_CURRENT_MODE of the ME_GS register is updated with the target
mode bit field TARGET_MODE of the ME_MCTL register when :

• all the updated status bits in the ME_GS register match the configuration specified in the
ME_<target mode>_MC register

• power sequences are done

• clock disable/enable process is finished

• processor low-power mode (halt/stop) entry and exit processes are finished

NOTE
SAFE mode entry does not wait for the clock disable/enable process to
finish. It only waits for the ME_GS.S_RC bit to be set. This is to ensure that
the SAFE mode is entered as quickly as possible.

Software can monitor the mode transition status by reading the S_MTRANS bit of the ME_GS register.
The mode transition latency can differ from one mode to another depending on the resources’ availability
before the new mode request and the target mode’s requirements.

If a mode transition is taking longer to complete than is expected, the ME_DMTS register can indicate
which process is still in progress.

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

230 Freescale Semiconductor

Target
STANDBY

STANDBY
Request

N YMain VREG
Switch-Off

End

Target Mode Request
Write ME_MCTL register
SAFE mode request
interrupt/wakeup event

Peripheral Clocks
Disable

Clock Sources
Switch-On

System Clock
Switching

FLASH
Switch-On

Pad

Processor
Low-Power

Processor &

PAD

Peripheral Clocks
Enable

FLASH
Switch-Off

S
_M

T
R

A
N

S
 =

 ‘1
’

A
N

A
L

O
G

 O
N

D
IG

IT
A

L
 C

O
N

T
R

O
L

A
N

A
L

O
G

 O
F

F

Current Mode Update

Start

S_MTRANS = ‘0’

Outputs On

Outputs Off

Entry
Processor

Low-Power
Exit

Clock Disable
Memory

Processor &

Clock Enable
Memory

Figure 8-25. MC_ME transition diagram

Clock Sources Without
Dependencies Switch-Off

Main VREG
Switch-On

Main VREG
Dependent

Clock Sources
Switch-On

Clock Sources With
Dependencies Switch-Off

Power Domain
Switch-On

Power Domain
Switch-Off

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 231

8.4.4 Protection of mode configuration registers

While programming the mode configuration registers ME_<mode>_MC, the following rules must be
respected. Otherwise, the write operation is ignored and an invalid mode configuration interrupt may be
generated.

• If the FIRC is selected as the system clock, FIRC must be on.

• If the FIRC_divided clock is selected as the system clock, FIRC must be on.

• If the FXOSC clock is selected as the system clock, FXOSC must be on.

• If the FXOSC_divided clock is selected as the system clock, FXOSC must be on.

• If the FMPLL clock is selected as the system clock, PLL must be on.

NOTE

Software must ensure that clock sources with dependencies other than those
mentioned above are switched on as needed. There is no automatic
protection mechanism to check this in the MC_ME.

• Configuration “00” for the CFLAON bit field is reserved.

• Configuration “00” for the DFLAON bit field is reserved.

• Configuration “10” for the DFLAON bit field is reserved.

• Configuration “11” for the DFLAON bit field is reserved if the CFLAON bit field is not “11”.

• MVREG must be on if any of the following is active:

— CFlash

— DFlash

• System clock configurations marked as ‘reserved’ may not be selected.

• Configuration “1111” for the SYSCLK bit field is allowed only for the STOP and TEST modes,
and only in this case may all system clock sources be turned off.

CAUTION
If the system clock is stopped during TEST mode, the chip can exit only via
a system reset.

8.4.5 Mode transition interrupts

The MC_ME provides interrupts for incorrectly configuring a mode, requesting an invalid mode
transition, indicating a SAFE mode transition not due to a software request, and indicating when a mode
transition has completed.

8.4.5.1 Invalid mode configuration interrupt

Whenever a write operation is attempted to the ME_<mode>_MC registers violating the protection rules
mentioned in the Section 8.4.4, “Protection of mode configuration registers, the interrupt pending bit
I_ICONF of the ME_IS register is set and an interrupt request is generated if the mask bit M_ICONF of
the ME_IM register is ‘1’.

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

232 Freescale Semiconductor

In addition, during a mode transition, if a clock source has been configured in the ME_<target mode>_MC
register to be off and a peripheral requiring this clock source to be on has been enabled via the
ME_RUN_PC0…7/ME_LP_PC0…7 and ME_PCTLn registers, the interrupt pending bit I_ICONF_CU
of the ME_IS register is set and an interrupt request is generated if the mask bit M_ICONF_CU of the
ME_IM register is ‘1’.

8.4.5.2 Invalid mode transition interrupt

The mode transition request is considered invalid under the following conditions:

• If the system is in the SAFE mode and the SAFE mode request from MC_RGM is active, and if
the target mode requested is other than RESET or SAFE, then this new mode request is considered
to be invalid, and the S_SEA bit of the ME_IMTS register is set.

• If the TARGET_MODE bit field of the ME_MCTL register is written with a value different from
the specified mode values (that is, a non-existing mode), an invalid mode transition event is
generated. When such a non existing mode is requested, the S_NMA bit of the ME_IMTS register
is set. This condition is detected regardless of whether the proper key mechanism is followed while
writing the ME_MCTL register.

• If some of the modes are disabled in the ME_ME register, their respective configurations are
considered reserved, and any attempt to change to a disabled mode by writing to the ME_MCTL
will result in an invalid mode transition request. When such a disabled mode is requested, the
S_DMA bit of the ME_IMTS register is set. This condition is detected regardless of whether the
proper key mechanism is followed while writing the ME_MCTL register.

• If the target mode is not a valid mode with respect to the current mode, the mode request illegal
status bit S_MRI of the ME_IMTS register is set. This condition is detected only when the proper
key mechanism is followed while writing the ME_MCTL register. Otherwise, the write operation
is ignored.

• If further new mode requests occur while a mode transition is in progress (the S_MTRANS bit of
the ME_GS register is ‘1’), the mode transition illegal status bit S_MTI of the ME_IMTS register
is set. This condition is detected only when the proper key mechanism is followed while writing
the ME_MCTL register. Otherwise, the write operation is ignored.

NOTE
As the causes of invalid mode transitions may overlap at the same time, the
priority implemented for invalid mode transition status bits of the
ME_IMTS register in the order from highest to lowest is S_SEA, S_NMA,
S_DMA, S_MRI, and S_MTI.

As an exception, the mode transition request is not considered as invalid under the following conditions:

• A new request is allowed to enter the RESET or SAFE mode irrespective of the mode transition
status.

• As the exit of HALT and STOP modes depends on the interrupts of the system which can occur at
any instant, these requests to return to RUN0…3 modes are always valid.

• In order to avoid any unwanted lockup of the chip modes, software can abort a mode transition by
requesting the parent mode if, for example, the mode transition has not completed after a software

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 233

determined ‘reasonable’ amount of time for whatever reason. The parent mode is the chip mode
before a valid mode request was made.

• Self-transition requests (for example, RUN0  RUN0) are not considered as invalid even when
the mode transition process is active (that is, S_MTRANS is ‘1’). During the low-power mode exit
process, if the system is not able to enter the respective RUN0…3 mode properly (that is, all status
bits of the ME_GS register match with configuration bits in the ME_<mode>_MC register), then
software can only request the SAFE or RESET mode. It is not possible to request any other mode
or to go back to the low-power mode again.

Whenever an invalid mode request is detected, the interrupt pending bit I_IMODE of the ME_IS register
is set, and an interrupt request is generated if the mask bit M_IMODE of the ME_IM register is ‘1’.

8.4.5.3 SAFE mode transition interrupt

Whenever the system enters SAFE mode as a result of a SAFE mode request from the MC_RGM due to
a hardware failure, the interrupt pending bit I_SAFE of the ME_IS register is set, and an interrupt is
generated if the mask bit M_SAFE of ME_IM register is ‘1’ .

The SAFE mode interrupt pending bit can be cleared only when the SAFE mode request is deasserted by
the MC_RGM (see the MC_RGM chapter for details on how to clear a SAFE mode request). If the system
is already in SAFE mode, any new SAFE mode request by the MC_RGM also sets the interrupt pending
bit I_SAFE. However, the SAFE mode interrupt pending bit is not set when the SAFE mode is entered by
a software request (that is, programming of ME_MCTL register).

8.4.5.4 Mode transition complete interrupt

Whenever the system fully completes a mode transition (that is, the S_MTRANS bit of ME_GS register
transits from ‘1’ to ‘0’), the interrupt pending bit I_MTC of the ME_IS register is set, and an interrupt
request is generated if the mask bit M_MTC of the ME_IM register is ‘1’. The interrupt bit I_MTC is not
set when entering low-power modes HALT and STOP in order to avoid the same event requesting the
immediate exit of these low-power modes.

8.4.6 Peripheral clock gating

Each peripheral has an associated Peripheral Control Register (ME_PCTLn), as described in
Section 8.3.2.22, Peripheral Control Registers (ME_PCTLn). The RUN_CFG and LP_CFG fields within
the ME_PCTL registers are used as determine whether the peripheral is enabled or disabled (clock gated)
in run modes and low power modes as described in this section.

The ME_PCTLn[RUN_CFG] field references one of 8 Run Peripheral Configuration
(ME_RUN_PC[0..7]) registers. Each of these identical registers has a bit for each run mode (RUN0..3,
DRUN, SAFE and TEST) that can be set to indicate that the associated group of peripherals (referenced
by ME_PCTLn[RUN_CFG]) is either enabled or disabled in this mode.

Similarly, the ME_PCTLn[LP_CFG] field references one of the 8 Low Power Peripheral Configuration
Registers (ME_LP_PC[0..7]). As with the run mode registers, there is a bit for each low power mode

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

234 Freescale Semiconductor

(STANDBY, STOP and HALT) that determines whether the referenced peripheral group is active in each
mode.

This highly flexible configuration allows 8 groups of peripherals (one per PC[0..7] register) to be
established that are available in different modes. For example, one group of peripherals could be available
in RUN1 mode whereas another group was active in RUN2 mode. By simply switching modes, the new
set of peripherals is available.

Figure 8-26 shows this scheme in more detail.

Figure 8-26. Interaction between ME_PCTLn, ME_LPn, and ME_RUN_PCn

Any modifications to the ME_RUN_PC[0..7], ME_LP_PC[0..7] or PCTLn registers will not take effect
until a mode transition request has been registered.

By default, each ME_PCTLn register has a reset value of 0x00. This means that each peripheral is
associated with ME_RUN_PC[0] and ME_LP_PC[0] by default. Therefore, a fast way to initialize all of
the peripherals in the desired modes is simply to set the desired mode bits within ME_RUN_PC[0] and
ME_LP_PC[0].

The ME_PCTLn registers also have a DBG_F bit. This bit determines the peripheral behaviour when the
microcontroller enters debug mode. If the DBG_F bit is set, the peripheral is clock gated in debug mode.
If the bit is cleared, then the availability of the peripheral in debug mode depends on the current mode and
the settings of the ME_RUN_PC[0..7] and ME_LP_PC[0..7] fields.

8.4.7 Application example

Figure 8-27 shows an example application flow for requesting a mode change and then waiting until the
mode transition has completed.

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 235

Figure 8-27. MC_ME Application example flow diagram

START of mode change

config
for target mode

okay?

write ME_<target mode>_MC,
ME_RUN_PC0…7, ME_LP_PC0…7,

and ME_PCTLn registers

N

Y

write ME_MCTL with target mode
and key

write ME_MCTL with target mode
and inverted key

start timer

S_MTRANS
cleared?

Y
timer

expired?

N

Y

N

write ME_MCTL with current or
SAFE mode and key

write ME_MCTL with current or
SAFE mode and inverted key

stop timer

mode change DONE

Chapter 8 Mode Entry Module (MC_ME)

MPC5646C Microcontroller Reference Manual, Rev. 5

236 Freescale Semiconductor

Chapter 9 Reset Generation Module (MC_RGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 237

Chapter 9
Reset Generation Module (MC_RGM)

9.1 Introduction

9.1.1 Overview

The reset generation module (MC_RGM) centralizes the different reset sources and manages the reset
sequence of the chip. It provides a register interface and the reset sequencer. Various registers are available
to monitor and control the chip reset sequence. The reset sequencer is a state machine which controls the
different phases (PHASE0, PHASE1, PHASE2, PHASE3, and IDLE) of the reset sequence and controls
the reset signals generated in the system.

Figure 9-1 depicts the MC_RGM block diagram.

Chapter 9 Reset Generation Module (MC_RGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

238 Freescale Semiconductor

9.1.2 Features

The MC_RGM contains the functionality for the following features:

• ‘destructive’ resets management

• ‘functional’ resets management

• signalling of reset events after each reset sequence (reset status flags)

• conversion of reset events to SAFE mode or interrupt request events

• short reset sequence configuration

PA[9:8]

RESET

Registers

Platform Interface

core

MC_RGM

Figure 9-1. MC_RGM block diagram

MC_ME

power-on

1.2V low-voltage detected
(power domain #0)

1.2V low-voltage detected
(power domain #1)

software watchdog timer
2.7V low-voltage detected
software 'destructive' reset

JTAG initiated reset
e200z0h debug control core reset

software 'functional' reset
checkstop reset

FMPLL fail
FXOSC frequency lower than

reference
CMU clock frequency higher/lower

than reference
4.5V low-voltage detected

code or data flash fatal error
e200z4d core reset
self-test completed

self-test critical fault
self-test non-critical fault

F
un

ct
io

na
l

R
es

et
 F

ilt
er

Boot Mode
Capture

D
es

tr
uc

tiv
e

R
es

et
 F

ilt
er

Reset
State

Machine

SSCM

peripherals

MC_CGM

Chapter 9 Reset Generation Module (MC_RGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 239

• bidirectional reset behavior configuration

• selection of alternate boot via the backup RAM on STANDBY mode exit

• boot mode capture on RESET deassertion

9.1.3 Reset sources

The different reset sources are organized into two families: ‘destructive’ and ‘functional’.

• A ‘destructive’ reset source is associated with an event related to a critical - usually hardware -
error or dysfunction. When a ‘destructive’ reset event occurs, the full reset sequence is applied to
the chip starting from PHASE0. This resets the full chip ensuring a safe start-up state for both
digital and analog modules, and the memory content must be considered to be unknown.
‘Destructive’ resets are

– power-on reset

– 1.2V low-voltage detected (power domain #0)

– 1.2V low-voltage detected (power domain #1)

– software watchdog timer

– 2.7V low-voltage detected

– software 'destructive' reset

• A ‘functional’ reset source is associated with an event related to a less-critical - usually
non-hardware - error or dysfunction. When a ‘functional’ reset event occurs, a partial reset
sequence is applied to the chip starting from PHASE1. In this case, most digital modules are reset
normally, and the memory content must be considered to be unknown, while the state of analog
modules or specific digital modules (e.g., debug modules, flash modules) is preserved.
‘Functional’ resets are

– external reset

– JTAG initiated reset

– e200z0h debug control core reset

– software 'functional' reset

– checkstop reset

– FMPLL fail

– FXOSC frequency lower than reference

– CMU clock frequency higher/lower than reference

– 4.5V low-voltage detected

– code or data flash fatal error

– e200z4d core reset

– self-test completed

– self-test critical fault

– self-test non-critical fault

Chapter 9 Reset Generation Module (MC_RGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

240 Freescale Semiconductor

When a reset is triggered, the MC_RGM state machine is activated and proceeds through the different
phases (that is, PHASEn states). Each phase is associated with a particular chip reset being provided to the
system. A phase is completed when all corresponding phase completion gates from either the system or
internal to the MC_RGM are acknowledged. The chip reset associated with the phase is then released, and
the state machine proceeds to the next phase up to entering the IDLE phase. During this entire process, the
MC_ME state machine is held in RESET mode. Only at the end of the reset sequence, when the IDLE
phase is reached, does the MC_ME enter the DRUN mode.

Alternatively, it is possible for software to configure some reset source events to be converted from a reset
to either a SAFE mode request issued to the MC_ME or to an interrupt issued to the core (see
Section 9.3.1.3, “Functional Event Reset Disable Register (RGM_FERD) and Section 9.3.1.5, “Functional
Event Alternate Request Register (RGM_FEAR) for ‘functional’ resets).

9.2 External signal description
The MC_RGM interfaces to the bidirectional reset pin RESET and the boot mode pins PA[9:8].

9.3 Memory map and register definition

NOTE
Any access to unused registers as well as write accesses to read-only
registers will:

Table 9-1. MC_RGM register description

Address Name Description Size
Access

Location
User Supervisor Test

0xC3FE
_4000

RGM_FES Functional Event Status half-word read read/write1 read/write1 on page 243

0xC3FE
_4002

RGM_DES Destructive Event Status half-word read read/write1

1 individual bits cleared on writing ‘1’

read/write1 on page 245

0xC3FE
_4004

RGM_FERD Functional Event Reset
Disable

half-word read read/write2

2 write once: ‘0’ = enable, ‘1’ = disable.

read/write2 on page 246

0xC3FE
_4006

RGM_DERD Destructive Event Reset
Disable

half-word read read read on page 248

0xC3FE
_4010

RGM_FEAR Functional Event Alternate
Request

half-word read read/write read/write on page 248

0xC3FE
_4018

RGM_FESS Functional Event Short
Sequence

half-word read read/write read/write on page 250

0xC3FE
_401A

RGM_STDBY STANDBY Reset
Sequence

half-word read read/write read/write on page 251

0xC3FE
_401C

RGM_FBRE Functional Bidirectional
Reset Enable

half-word read read/write read/write on page 252

Chapter 9 Reset Generation Module (MC_RGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 241

• not change register content

• cause a transfer error

Table 9-2. MC_RGM memory map

Address Name
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0xC3FE
_4000

RGM_
FES /
RGM_
DES

R
F

_E
X

R

F
_S

T
_N

C
F

F
_S

T
_C

F

F
_S

T
_D

O
N

E

F
_Z

4C
O

R
E

F
_F

LA
S

H

F
_L

V
D

45

F
_C

M
U

_F
H

L

F
_C

M
U

_O
LR

F
_F

M
P

LL

F
_C

H
K

S
TO

P

F
_S

O
F

T
_F

U
N

C

F
_Z

0C
O

R
E

F
_J

TA
G

W w1c

R

F
_P

O
R

F
_S

O
F

T
_D

E
S

T

F
_L

V
D

27

F
_S

W
T

F
_L

V
D

12
_P

D
1

F
_L

V
D

12
_P

D
0

W w1c

0xC3FE
_4004

RGM_
FERD /
RGM_
DERD

R

D
_E

X
R

D
_S

T
_N

C
F

D
_S

T
_C

F

D
_S

T
_D

O
N

E

D
_Z

4C
O

R
E

D
_F

LA
S

H

D
_L

V
D

45

D
_C

M
U

_F
H

L

D
_C

M
U

_O
LR

D
_F

M
P

LL

D
_C

H
K

S
TO

P

D
_S

O
F

T
_F

U
N

C

D
_Z

0C
O

R
E

D
_J

TA
G

W

R 0

D
_S

O
F

T
_D

E
S

T

D
_L

V
D

27

D
_S

W
T

D
_L

V
D

12
_P

D
1

D
_L

V
D

12
_P

D
0

W

0xC3FE
_4008

…
0xC3FE
_400C

reserved

0xC3FE
_4010

RGM_
FEAR

R

A
R

_S
T

_N
C

F

A
R

_S
T

_C
F

A
R

_Z
4C

O
R

E

A
R

_L
V

D
45

A
R

_C
M

U
_F

H
L

A
R

_C
M

U
_O

LR

A
R

_F
M

P
LL

A
R

_Z
0C

O
R

E

A
R

_J
TA

G

W

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

w1c w1c w1c w1c w1c

Chapter 9 Reset Generation Module (MC_RGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

242 Freescale Semiconductor

9.3.1 Register descriptions

Unless otherwise noted, all registers may be accessed as 32-bit words, 16-bit half-words, or 8-bit bytes.
The bytes are ordered according to big endian. For example, the RGM_DES[8:15] register bits may be
accessed as a word at address 0xC3FE_4000, as a half-word at address 0xC3FE_4002, or as a byte at
address 0xC3FE_4003.

Some fields may be read-only, and their reset value of ‘1’ or ‘0’ and the corresponding behavior cannot be
changed.

0xC3FE
_4014

reserved

0xC3FE
_4018

RGM_
FESS /
RGM_
STDB
Y

R
S

S
_E

X
R

S
S

_S
T

_D
O

N
E

S
S

_Z
4C

O
R

E

S
S

_F
LA

S
H

S
S

_L
V

D
45

S
S

_C
M

U
_F

H
L

S
S

_C
M

U
_O

LR

S
S

_F
M

P
LL

S
S

_C
H

K
S

TO
P

S
S

_S
O

F
T

_F
U

N
C

S
S

_Z
0C

O
R

E

S
S

_J
TA

G

W

R 0 0 0 0 0 0 0

S
B

_C
P

U

B
O

O
T

_F
R

O
M

_B
K

P
_R

A
M

0 0 0 0 0 0 0

W

0xC3FE
_401C

RGM_
FBRE

R

B
E

_E
X

R

B
E

_S
T

_D
O

N
E

B
E

_Z
4C

O
R

E

B
E

_F
LA

S
H

B
E

_L
V

D
45

B
E

_C
M

U
_F

H
L

B
E

_C
M

U
_O

LR

B
E

_F
M

P
LL

B
E

_C
H

K
S

TO
P

B
E

_S
O

F
T

_F
U

N
C

B
E

_Z
0C

O
R

E

B
E

_J
TA

G

W

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

0xC3FE
_4020

…
0xC3FE
_7FFC

reserved

Table 9-2. MC_RGM memory map (continued)

Address Name
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Chapter 9 Reset Generation Module (MC_RGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 243

9.3.1.1 Functional Event Status Register (RGM_FES)

This register contains the status of the last asserted functional reset sources. It can be accessed in read/write
on either supervisor mode or test mode. It can be accessed in read only in user mode. Register bits are
cleared on write ‘1’ if the triggering event has already been cleared at the source.

NOTE
If a ‘functional’ reset source is configured to generate a SAFE mode request
or an interrupt request, software needs to clear the event in the source
module at least three system clock cycles before it clears the associated
RGM_FES status bit in order to avoid multiple SAFE mode requests or
interrupts for the same event. In order to avoid having to count cycles, it is
good practice for software to check whether the RGM_FES has been
properly cleared, and if not, clear it again.

Address 0xC3FE_4000 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

F
_E

X
R

F
_S

T
_N

C
F

F
_S

T
_C

F

F
_S

T
_D

O
N

E

F
_Z

4C
O

R
E

F
_F

LA
S

H

F
_L

V
D

45

F
_C

M
U

_F
H

L

F
_C

M
U

_O
LR

F
_F

M
P

LL

F
_C

H
K

S
TO

P

F
_S

O
F

T
_F

U
N

C

F
_Z

0C
O

R
E

F
_J

TA
G

W w1c

POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-2. Functional Event Status Register (RGM_FES)

Table 9-3. Functional Event Status Register (RGM_FES) Field Descriptions

Field Description

F_EXR Flag for External Reset
0 No external reset event has occurred since either the last clear or the last destructive reset

assertion
1 An external reset event has occurred

F_ST_NCF Flag for self-test non-critical fault
0 No self-test non-critical fault event has occurred since either the last clear or the last destructive

reset assertion
1 A self-test non-critical fault event has occurred

F_ST_CF Flag for self-test critical fault
0 No self-test critical fault event has occurred since either the last clear or the last destructive reset

assertion
1 A self-test critical fault event has occurred

F_ST_DONE Flag for self-test completed
0 No self-test completed event has occurred since either the last clear or the last destructive reset

assertion
1 A self-test completed event has occurred

w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Chapter 9 Reset Generation Module (MC_RGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

244 Freescale Semiconductor

F_Z4CORE Flag for e200z4d core reset
0 No e200z4d core reset event has occurred since either the last clear or the last destructive reset

assertion
1 A e200z4d core reset event has occurred

F_FLASH Flag for code or data flash fatal error
0 No code or data flash fatal error event has occurred since either the last clear or the last destructive

reset assertion
1 A code or data flash fatal error event has occurred

F_LVD45 Flag for 4.5V low-voltage detected
0 No 4.5V low-voltage detected event has occurred since either the last clear or the last destructive

reset assertion
1 A 4.5V low-voltage detected event has occurred

F_CMU_FHL Flag for CMU clock frequency higher/lower than reference
0 CMU indicated that FMPLL frequency in range if PLL monitoring is enabled in CMU
1 CMU indicated that FMPLL frequency out of range

F_CMU_OL
R

Flag for FXOSC frequency lower than reference
0 No FXOSC frequency lower than reference event has occurred since either the last clear or the

last destructive reset assertion
1 A FXOSC frequency lower than reference event has occurred

F_FMPLL Flag for FMPLL fail
0 No FMPLL fail event has occurred since either the last clear or the last destructive reset assertion
1 A FMPLL fail event has occurred

F_CHKSTOP Flag for checkstop reset
0 No checkstop reset event has occurred since either the last clear or the last destructive reset

assertion
1 A checkstop reset event has occurred

F_SOFT_FU
NC

Flag for software 'functional' reset
0 No software 'functional' reset event has occurred since either the last clear or the last destructive

reset assertion
1 A software 'functional' reset event has occurred

F_Z0CORE Flag for e200z0h debug control core reset
0 No e200z0h debug control core reset event has occurred since either the last clear or the last

destructive reset assertion
1 A e200z0h debug control core reset event has occurred; this event can only be asserted when the

DBCR0[RST] field is set by an external debugger. See the "Debug Support" chapter of the core
reference manual for more details.

F_JTAG Flag for JTAG initiated reset
0 No JTAG initiated reset event has occurred since either the last clear or the last destructive reset

assertion
1 A JTAG initiated reset event has occurred

Table 9-3. Functional Event Status Register (RGM_FES) Field Descriptions (continued)

Field Description

Chapter 9 Reset Generation Module (MC_RGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 245

9.3.1.2 Destructive Event Status Register (RGM_DES)

This register contains the status of the last asserted destructive reset sources. It can be accessed in
read/write on either supervisor mode or test mode. It can be accessed in read only in user mode. Register
bits are cleared on write ‘1’.

NOTE
The F_POR flag is also set when a low-voltage is detected on the 1.2 V
supply, even if the low voltage is detected after power-on has completed.

Address 0xC3FE_4002 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

F
_P

O
R

F
_S

O
F

T
_D

E
S

T

F
_L

V
D

27

F
_S

W
T

F
_L

V
D

12
_P

D
1

F
_L

V
D

12
_P

D
0

W w1c

POR 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-3. Destructive Event Status Register (RGM_DES)

Table 9-4. Destructive Event Status Register (RGM_DES) field descriptions

Field Description

F_POR Flag for Power-On reset
0 No power-on event has occurred since the last clear
1 A power-on event has occurred

F_SOFT_DE
ST

Flag for software 'destructive' reset
0 No software 'destructive' reset event has occurred since either the last clear or the last power-on

reset assertion
1 A software 'destructive' reset event has occurred

F_LVD27 Flag for 2.7V low-voltage detected
0 No 2.7V low-voltage detected event has occurred since either the last clear or the last power-on

reset assertion
1 A 2.7V low-voltage detected event has occurred

F_SWT Flag for software watchdog timer
0 No software watchdog timer event has occurred since either the last clear or the last power-on

reset assertion
1 A software watchdog timer event has occurred

F_LVD12_P
D1

Flag for 1.2V low-voltage detected (power domain #1)
0 No 1.2V low-voltage detected (power domain #1) event has occurred since either the last clear or

the last power-on reset assertion
1 A 1.2V low-voltage detected (power domain #1) event has occurred

F_LVD12_P
D0

Flag for 1.2V low-voltage detected (power domain #0)
0 No 1.2V low-voltage detected (power domain #0) event has occurred since either the last clear or

the last power-on reset assertion
1 A 1.2V low-voltage detected (power domain #0) event has occurred

w1c w1c w1c w1c w1c

Chapter 9 Reset Generation Module (MC_RGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

246 Freescale Semiconductor

The F_LVD27 flag may still have the value '0' after a dip has occurred on
the 2.7 V supply during a non-monotonic power-on sequence. The F_POR
flag will, however, still be set in this case as expected after each power-on
sequence.

9.3.1.3 Functional Event Reset Disable Register (RGM_FERD)

This register provides dedicated bits to disable functional reset sources.When a functional reset source is
disabled, the associated functional event will trigger either a SAFE mode request or an interrupt request
(see Section 9.3.1.5, “Functional Event Alternate Request Register (RGM_FEAR)). Some fields are
read-only, and their POR value and corresponding behavior cannot be changed. It can be accessed in
read/write in either supervisor mode or test mode. It can be accessed in read only in user mode. Each byte
can be written only once after power-on reset.

CAUTION
It is important to clear the RGM_FES register before setting any of the bits
in the RGM_FERD register to ‘1’. Otherwise a redundant SAFE mode
request or interrupt request may occur.

Address 0xC3FE_4004 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

D
_E

X
R

D
_S

T
_N

C
F

D
_S

T
_C

F

D
_S

T
_D

O
N

E

D
_Z

4C
O

R
E

D
_F

LA
S

H

D
_L

V
D

45

D
_C

M
U

_F
H

L

D
_C

M
U

_O
LR

D
_F

M
P

LL

D
_C

H
K

S
TO

P

D
_S

O
F

T
_F

U
N

C

D
_Z

0C
O

R
E

D
_J

TA
G

W

POR 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-4. Functional Event Reset Disable Register (RGM_FERD)

Table 9-5. Functional Event Reset Disable Register (RGM_FERD) field descriptions

Field Description

D_EXR Disable External Reset
0 An external reset event triggers a reset sequence

D_ST_NCF Disable self-test non-critical fault
1 A self-test non-critical fault event generates an interrupt request

D_ST_CF Disable self-test critical fault
1 A self-test critical fault event generates a SAFE mode request

D_ST_DON
E

Disable self-test completed
0 A self-test completed event triggers a reset sequence

D_Z4CORE Disable e200z4d core reset
0 A e200z4d core reset event triggers a reset sequence
1 A e200z4d core reset event generates either a SAFE mode or an interrupt request depending on

the value of RGM_FEAR.AR_Z4CORE

Chapter 9 Reset Generation Module (MC_RGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 247

D_FLASH Disable code or data flash fatal error
0 A code or data flash fatal error event triggers a reset sequence

D_LVD45 Disable 4.5V low-voltage detected
0 A 4.5V low-voltage detected event triggers a reset sequence
1 A 4.5V low-voltage detected event generates either a SAFE mode or an interrupt request

depending on the value of RGM_FEAR.AR_LVD45

D_CMU_FH
L

Disable CMU clock frequency higher/lower than reference
0 A CMU clock frequency higher/lower than reference event triggers a reset sequence
1 A CMU clock frequency higher/lower than reference event generates either a SAFE mode or an

interrupt request depending on the value of RGM_FEAR.AR_CMU_FHL

D_CMU_OL
R

Disable FXOSC frequency lower than reference
0 A FXOSC frequency lower than reference event triggers a reset sequence
1 A FXOSC frequency lower than reference event generates either a SAFE mode or an interrupt

request depending on the value of RGM_FEAR.AR_CMU_OLR

D_FMPLL Disable FMPLL fail
0 A FMPLL fail event triggers a reset sequence
1 A FMPLL fail event generates either a SAFE mode or an interrupt request depending on the value

of RGM_FEAR.AR_FMPLL

D_CHKSTO
P

Disable checkstop reset
0 A checkstop reset event triggers a reset sequence

D_SOFT_FU
NC

Disable software 'functional' reset
0 A software 'functional' reset event triggers a reset sequence

D_Z0CORE Disable e200z0h debug control core reset
0 A e200z0h debug control core reset event triggers a reset sequence
1 A e200z0h debug control core reset event generates either a SAFE mode or an interrupt request

depending on the value of RGM_FEAR.AR_Z0CORE

D_JTAG Disable JTAG initiated reset
0 A JTAG initiated reset event triggers a reset sequence
1 A JTAG initiated reset event generates either a SAFE mode or an interrupt request depending on

the value of RGM_FEAR.AR_JTAG

Table 9-5. Functional Event Reset Disable Register (RGM_FERD) field descriptions (continued)

Field Description

Chapter 9 Reset Generation Module (MC_RGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

248 Freescale Semiconductor

9.3.1.4 Destructive Event Reset Disable Register (RGM_DERD)

This register provides dedicated bits to disable particular destructive reset sources.

9.3.1.5 Functional Event Alternate Request Register (RGM_FEAR)

Address 0xC3FE_4006 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

0

D
_S

O
F

T
_D

E
S

T

D
_L

V
D

27

D
_S

W
T

D
_L

V
D

12
_P

D
1

D
_L

V
D

12
_P

D
0

W

POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-5. Destructive Event Reset Disable Register (RGM_DERD)

Table 9-6. Destructive Event Reset Disable Register (RGM_DERD) field descriptions

Field Description

D_SOFT_DE
ST

Disable software 'destructive' reset
0 A software 'destructive' reset event triggers a reset sequence

D_LVD27 Disable 2.7V low-voltage detected
0 A 2.7V low-voltage detected event triggers a reset sequence

D_SWT Disable software watchdog timer
0 A software watchdog timer event triggers a reset sequence

D_LVD12_P
D1

Disable 1.2V low-voltage detected (power domain #1)
0 A 1.2V low-voltage detected (power domain #1) event triggers a reset sequence

D_LVD12_P
D0

Disable 1.2V low-voltage detected (power domain #0)
0 A 1.2V low-voltage detected (power domain #0) event triggers a reset sequence

Address 0xC3FE_4010 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

A
R

_S
T

_N
C

F

A
R

_S
T

_C
F

A
R

_Z
4C

O
R

E

A
R

_L
V

D
45

A
R

_C
M

U
_F

H
L

A
R

_C
M

U
_O

LR

A
R

_F
M

P
LL

A
R

_Z
0C

O
R

E

A
R

_J
TA

G

W

POR 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-6. Functional Event Alternate Request Register (RGM_FEAR)

Chapter 9 Reset Generation Module (MC_RGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 249

This register defines an alternate request to be generated when a reset on a functional event has been
disabled. The alternate request can be either a SAFE mode request to MC_ME or an interrupt request to
the system. Some fields are read-only, and their POR value and corresponding behavior cannot be
changed. It can be accessed in read/write in either supervisor mode or test mode. It can be accessed in read
only in user mode.

Table 9-7. Functional Event Alternate Request Register (RGM_FEAR) field descriptions

Field Description

AR_ST_NCF Alternate Request for self-test non-critical fault
1 Generate an interrupt request on a self-test non-critical fault event if the reset is disabled

AR_ST_CF Alternate Request for self-test critical fault
0 Generate a SAFE mode request on a self-test critical fault event if the reset is disabled

AR_Z4COR
E

Alternate Request for e200z4d core reset
0 Generate a SAFE mode request on a e200z4d core reset event if the reset is disabled
1 Generate an interrupt request on a e200z4d core reset event if the reset is disabled

AR_LVD45 Alternate Request for 4.5V low-voltage detected
0 Generate a SAFE mode request on a 4.5V low-voltage detected event if the reset is disabled
1 Generate an interrupt request on a 4.5V low-voltage detected event if the reset is disabled

AR_CMU_F
HL

Alternate Request for CMU clock frequency higher/lower than reference
0 Generate a SAFE mode request on a CMU clock frequency higher/lower than reference event if

the reset is disabled
1 Generate an interrupt request on a CMU clock frequency higher/lower than reference event if the
reset is disabled

AR_CMU_O
LR

Alternate Request for FXOSC frequency lower than reference
0 Generate a SAFE mode request on a FXOSC frequency lower than reference event if the reset is

disabled
1 Generate an interrupt request on a FXOSC frequency lower than reference event if the reset is
disabled
For the case when RGM_FERD[D_CMU_OLR] = 1 & RGM_FEAR[AR_CMU_OLR] = 1, an RGM

interrupt will not be generated for an FXOSC failure when the system clock = FXOSC as there will
be no system clock to execute the interrupt service routine. However, the interrupt service routine
will be executed if the FXOSC recovers at some point. The recommended use case for this feature
is when the system clock = FIRC or FMPLL.

AR_FMPLL Alternate Request for FMPLL fail
0 Generate a SAFE mode request on a FMPLL fail event if the reset is disabled
1 Generate an interrupt request on a FMPLL fail event if the reset is disabled

AR_Z0COR
E

Alternate Request for e200z0h debug control core reset
0 Generate a SAFE mode request on a e200z0h debug control core reset event if the reset is

disabled
1 Generate an interrupt request on a e200z0h debug control core reset event if the reset is disabled

AR_JTAG Alternate Request for JTAG initiated reset
0 Generate a SAFE mode request on a JTAG initiated reset event if the reset is disabled
1 Generate an interrupt request on a JTAG initiated reset event if the reset is disabled

Chapter 9 Reset Generation Module (MC_RGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

250 Freescale Semiconductor

9.3.1.6 Functional Event Short Sequence Register (RGM_FESS)

This register defines which reset sequence will be done when a functional reset sequence is triggered. The
functional reset sequence can either start from PHASE1 or from PHASE3, skipping PHASE1 and
PHASE2.

NOTE
This could be useful for fast reset sequence, for example to skip flash reset.

Some fields are read-only, and their POR value and corresponding behavior cannot be changed. It can be
accessed in read/write in either supervisor mode or test mode. It can be accessed in read in user mode.

Address 0xC3FE_4018 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
S

S
_E

X
R

S
S

_S
T

_D
O

N
E

S
S

_Z
4C

O
R

E

S
S

_F
LA

S
H

S
S

_L
V

D
45

S
S

_C
M

U
_F

H
L

S
S

_C
M

U
_O

LR

S
S

_F
M

P
LL

S
S

_C
H

K
S

TO
P

S
S

_S
O

F
T

_F
U

N
C

S
S

_Z
0C

O
R

E

S
S

_J
TA

G

W

POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-7. Functional Event Short Sequence Register (RGM_FESS)

Table 9-8. Functional Event Short Sequence Register (RGM_FESS) field descriptions

Field Description

SS_EXR Short Sequence for External Reset
0 The reset sequence triggered by an external reset event will start from PHASE1

SS_ST_DON
E

Short Sequence for self-test completed
0 The reset sequence triggered by a self-test completed event will start from PHASE1

SS_Z4CORE Short Sequence for e200z4d core reset
0 The reset sequence triggered by a e200z4d core reset event will start from PHASE1
1 The reset sequence triggered by a e200z4d core reset event will start from PHASE3, skipping

PHASE1 and PHASE2

SS_FLASH Short Sequence for code or data flash fatal error
0 The reset sequence triggered by a code or data flash fatal error event will start from PHASE1

SS_LVD45 Short Sequence for 4.5V low-voltage detected
0 The reset sequence triggered by a 4.5V low-voltage detected event will start from PHASE1
1 The reset sequence triggered by a 4.5V low-voltage detected event will start from PHASE3,

skipping PHASE1 and PHASE2

SS_CMU_F
HL

Short Sequence for CMU clock frequency higher/lower than reference
0 The reset sequence triggered by a CMU clock frequency higher/lower than reference event will

start from PHASE1
1 The reset sequence triggered by a CMU clock frequency higher/lower than reference event will

start from PHASE3, skipping PHASE1 and PHASE2

Chapter 9 Reset Generation Module (MC_RGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 251

9.3.1.7 STANDBY Reset Sequence Register (RGM_STDBY)

This register controls booting on STANDBY mode exit. It can be accessed in read/write in either
supervisor mode or test mode. It can be accessed in read only in user mode.

This register is reset on any enabled ‘destructive’ or ‘functional’ reset event.

The CPU not used for booting on STANDBY exit remains disabled until it is enabled via the same
mechanism that is used to enable the non-booting CPU after a reset.

When the Z4 is selected to boot from backup RAM on STANDBY exit, VLE code must be placed at the
boot location in the RAM. The VLE code at this location can then program other memory pages to be
BookE if required.

NOTE
If the "BOOT_FROM_BKP_RAM" bit is set to enable STANDBY exit to
RAM, the e200z0 will be the CPU used by default. To enable the e200Z4 as
the active core when exiting STANDBY to RAM, the SB_CPU bit must be
set

SS_CMU_O
LR

Short Sequence for FXOSC frequency lower than reference
0 The reset sequence triggered by a FXOSC frequency lower than reference event will start from

PHASE1
1 The reset sequence triggered by a FXOSC frequency lower than reference event will start from

PHASE3, skipping PHASE1 and PHASE2

SS_FMPLL Short Sequence for FMPLL fail
0 The reset sequence triggered by a FMPLL fail event will start from PHASE1
1 The reset sequence triggered by a FMPLL fail event will start from PHASE3, skipping PHASE1

and PHASE2

SS_CHKST
OP

Short Sequence for checkstop reset
0 The reset sequence triggered by a checkstop reset event will start from PHASE1
1 The reset sequence triggered by a checkstop reset event will start from PHASE3, skipping

PHASE1 and PHASE2

SS_SOFT_F
UNC

Short Sequence for software 'functional' reset
0 The reset sequence triggered by a software 'functional' reset event will start from PHASE1
1 The reset sequence triggered by a software 'functional' reset event will start from PHASE3,

skipping PHASE1 and PHASE2

SS_Z0CORE Short Sequence for e200z0h debug control core reset
0 The reset sequence triggered by a e200z0h debug control core reset event will start from PHASE1
1 The reset sequence triggered by a e200z0h debug control core reset event will start from PHASE3,

skipping PHASE1 and PHASE2

SS_JTAG Short Sequence for JTAG initiated reset
0 The reset sequence triggered by a JTAG initiated reset event will start from PHASE1
1 The reset sequence triggered by a JTAG initiated reset event will start from PHASE3, skipping

PHASE1 and PHASE2

Table 9-8. Functional Event Short Sequence Register (RGM_FESS) field descriptions (continued)

Field Description

Chapter 9 Reset Generation Module (MC_RGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

252 Freescale Semiconductor

9.3.1.8 Functional Bidirectional Reset Enable Register (RGM_FBRE)

This register enables the generation of an external reset on functional reset. It can be accessed in read/write
in either supervisor mode or test mode. It can be accessed in read in user mode.reset

Address 0xC3FE_401A Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

0 0 0 0 0 0 0

S
B

_C
P

U

B
O

O
T

_F
R

O
M

_B
K

P
_R

A
M

0 0 0 0 0 0 0

W

reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-8. STANDBY Reset Sequence Register (RGM_STDBY)

Table 9-9. STANDBY Reset Sequence Register (RGM_STDBY) field descriptions

Field Description

SB_CPU STANBY0 Boot CPU — This bit selects which CPU is to be used for booting on STANDBY exit if the
BOOT_FROM_BKP_RAM is set. If BOOT_FROM_BKP_RAM is cleared, the CPU used for booting
after reset is used for booting on STANDBY exit.
0 Boot with the Z0 core on STANDBY exit
1 Boot with the Z4 core on STANDBY exit

BOOT_
FROM_

BKP_RAM

Boot from Backup RAM indicator — This bit indicates whether the system will boot from backup
RAM or flash out of STANDBY exit.
0 Boot from flash on STANDBY exit
1 Boot from backup RAM on STANDBY exit (when using the Z4 from RAM in STANDBY ensure that

VLE code is used, as described in this section). By default, the e200z0 will be the core that will
boot on STANDBY exit when "Boot From RAM" is enabled. To change this to the e200z4, set the
SB_CPU bit.

Address 0xC3FE_401C Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

B
E

_E
X

R

B
E

_S
T

_D
O

N
E

B
E

_Z
4C

O
R

E

B
E

_F
LA

S
H

B
E

_L
V

D
45

B
E

_C
M

U
_F

H
L

B
E

_C
M

U
_O

LR

B
E

_F
M

P
LL

B
E

_C
H

K
S

TO
P

B
E

_S
O

F
T

_F
U

N
C

B
E

_Z
0C

O
R

E

B
E

_J
TA

G

W

POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9-9. Functional Bidirectional Reset Enable Register (RGM_FBRE)

Chapter 9 Reset Generation Module (MC_RGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 253

9.4 Functional description

9.4.1 Reset state machine

The main role of MC_RGM is the generation of the reset sequence which ensures that the correct parts of
the chip are reset based on the reset source event. This is summarized in Table 9-11.

Table 9-10. Functional Bidirectional Reset Enable Register (RGM_FBRE) Field Descriptions

Field Description

BE_EXR Bidirectional Reset Enable for External Reset
0 RESET is asserted on an external reset event if the reset is enabled
1 RESET is not asserted on an external reset event

BE_ST_DON
E

Bidirectional Reset Enable for self-test completed
0 RESET is asserted on a self-test completed event if the reset is enabled
1 RESET is not asserted on a self-test completed event

BE_Z4CORE Bidirectional Reset Enable for e200z4d core reset
0 RESET is asserted on a e200z4d core reset event if the reset is enabled
1 RESET is not asserted on a e200z4d core reset event

BE_FLASH Bidirectional Reset Enable for code or data flash fatal error
0 RESET is asserted on a code or data flash fatal error event if the reset is enabled
1 RESET is not asserted on a code or data flash fatal error event

BE_LVD45 Bidirectional Reset Enable for 4.5V low-voltage detected
0 RESET is asserted on a 4.5V low-voltage detected event if the reset is enabled
1 RESET is not asserted on a 4.5V low-voltage detected event

BE_CMU_F
HL

Bidirectional Reset Enable for CMU clock frequency higher/lower than reference
0 RESET is asserted on a CMU clock frequency higher/lower than reference event if the reset is
enabled
1 RESET is not asserted on a CMU clock frequency higher/lower than reference event

BE_CMU_O
LR

Bidirectional Reset Enable for FXOSC frequency lower than reference
0 RESET is asserted on a FXOSC frequency lower than reference event if the reset is enabled
1 RESET is not asserted on a FXOSC frequency lower than reference event

BE_FMPLL Bidirectional Reset Enable for FMPLL fail
0 RESET is asserted on a FMPLL fail event if the reset is enabled
1 RESET is not asserted on a FMPLL fail event

BE_CHKST
OP

Bidirectional Reset Enable for checkstop reset
0 RESET is asserted on a checkstop reset event if the reset is enabled
1 RESET is not asserted on a checkstop reset event

BE_SOFT_F
UNC

Bidirectional Reset Enable for software 'functional' reset
0 RESET is asserted on a software 'functional' reset event if the reset is enabled
1 RESET is not asserted on a software 'functional' reset event

BE_Z0CORE Bidirectional Reset Enable for e200z0h debug control core reset
0 RESET is asserted on a e200z0h debug control core reset event if the reset is enabled
1 RESET is not asserted on a e200z0h debug control core reset event

BE_JTAG Bidirectional Reset Enable for JTAG initiated reset
0 RESET is asserted on a JTAG initiated reset event if the reset is enabled
1 RESET is not asserted on a JTAG initiated reset event

Chapter 9 Reset Generation Module (MC_RGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

254 Freescale Semiconductor

NOTE
JTAG logic has its own independent reset control and is not controlled by
the MC_RGM in any way.

The reset sequence is comprised of five phases managed by a state machine, which ensures that all phases
are correctly processed through waiting for a minimum duration and until all processes that need to occur
during that phase have been completed before proceeding to the next phase.

The state machine used to produce the reset sequence is shown in Figure 9-10.

Table 9-11. MC_RGM Reset implications

Source What Gets Reset
External Reset

Assertion1

1 ‘external reset assertion’ means that the RESET pin is asserted by the MC_RGM until the end of reset PHASE3

Boot Mode
Capture

power-on reset all yes yes

‘destructive’ resets all except some clock/reset management yes yes

external reset all except some clock/reset management and
debug

programmable2

2 the assertion of the external reset is controlled via the RGM_FBRE register

yes

‘functional’ resets all except some clock/reset management and
debug

programmable2 programmable3

3 the boot mode is captured if the external reset is asserted

shortened ‘functional’ resets4

4 the short sequence is enabled via the RGM_FESS register

flip-flops except some clock/reset management programmable2 programmable3

Chapter 9 Reset Generation Module (MC_RGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 255

9.4.1.1 PHASE0 phase

This phase is entered immediately from any phase on a power-on or enabled ‘destructive’ reset event. The
reset state machine exits PHASE0 and enters PHASE1 on verification of the following:

• all enabled ‘destructive’ resets have been processed

• all processes that need to be done in PHASE0 are completed

Figure 9-10. MC_RGM State Machine

PHASE0

PHASE1

PHASE2

PHASE3

IDLE

duration  3 FIRC (16 MHz internal RC oscillator) clock

FIRC stable, VREG voltage okay done

duration  165 FIRC (16 MHz internal RC oscillator) clock
cycles

duration FIRC (16 MHz internal RC oscillator) clock

code and data flash initialization done

duration 40FIRC (16 MHz internal RC oscillator) clock

power-on
or enabled

‘destructive’
reset

enabled
non-shortened

external or
‘functional’

reset1

enabled
shortened
external or
‘functional’

reset code and data flash initialization done

RESET released

Chapter 9 Reset Generation Module (MC_RGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

256 Freescale Semiconductor

— FIRC stable, VREG voltage okay

• a minimum of 3 FIRC (16 MHz internal RC oscillator) clock cycles have elapsed since power-up
completion and the last enabled ‘destructive’ reset event

9.4.1.2 PHASE1 phase

This phase is entered either on exit from PHASE0 or immediately from PHASE2, PHASE3, or IDLE on
a non-masked external or ‘functional’ reset event if it has not been configured to trigger a ‘short’ sequence.
The reset state machine exits PHASE1 and enters PHASE2 on verification of the following:

• all enabled, non-shortened ‘functional’ resets have been processed

• a minimum of 165 FIRC (16 MHz internal RC oscillator) clock cycles have elapsed since the last
enabled external or non-shortened ‘functional’ reset event

9.4.1.3 PHASE2 phase

This phase is entered on exit from PHASE1. The reset state machine exits PHASE2 and enters PHASE3
on verification of the following:

• all processes that need to be done in PHASE2 are completed

— code and data flash initialization

• a minimum of 8 FIRC (16 MHz internal RC oscillator) clock cycles have elapsed since entering
PHASE2

9.4.1.4 PHASE3 phase

This phase is a entered either on exit from PHASE2 or immediately from IDLE on an enabled, shortened
‘functional’ reset event. The reset state machine exits PHASE3 and enters IDLE on verification of the
following:

• all processes that need to be done in PHASE3 are completed

— code and data flash initialization

• a minimum of 40 FIRC (16 MHz internal RC oscillator) clock cycles have elapsed since the last
enabled, shortened ‘functional’ reset event

9.4.1.5 IDLE phase

This is the final phase and is entered on exit from PHASE3. When this phase is reached, the MC_RGM
releases control of the chip to the core and waits for new reset events that can trigger a reset sequence.

9.4.2 Destructive Resets

A ‘destructive’ reset indicates that an event has occurred after which critical register or memory content
can no longer be guaranteed.

The status flag associated with a given ‘destructive’ reset event (RGM_DES.F_<destructive reset> bit) is
set when the ‘destructive’ reset is asserted and the power-on reset is not asserted. It is possible for multiple

Chapter 9 Reset Generation Module (MC_RGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 257

status bits to be set simultaneously, and it is software’s responsibility to determine which reset source is
the most critical for the application.

The chip’s low-voltage detector threshold ensures that, when 1.2V low-voltage detected (power domain
#0) is enabled, the supply is sufficient to have the destructive event correctly propagated through the digital
logic. Therefore, if a given ‘destructive’ reset is enabled, the MC_RGM ensures that the associated reset
event will be correctly triggered to the full system. However, if the given ‘destructive’ reset is disabled and
the voltage goes below the digital functional threshold, functionality can no longer be ensured, and the
reset may or may not be asserted.

An enabled ‘destructive’ reset will trigger a reset sequence starting from the beginning of PHASE0.

9.4.3 External Reset

The MC_RGM manages the external reset coming from RESET. The detection of a falling edge on RESET
will start the reset sequence from the beginning of PHASE1.

 The status flag associated with the external reset falling edge event (RGM_FES.F_EXR bit) is set when
the external reset is asserted and the power-on reset is not asserted.

The external reset can optionally be disabled by writing bit RGM_FERD.D_EXR.

NOTE
The RGM_FERD register can be written only once between two power-on
reset events.

An enabled external reset will normally trigger a reset sequence starting from the beginning of PHASE1.
Nevertheless, the RGM_FESS register enables the further configuring of the reset sequence triggered by
the external reset. When RGM_FESS.SS_EXR is set, the external reset will trigger a reset sequence
starting directly from the beginning of PHASE3, skipping PHASE1 and PHASE2. This can be useful
especially when an external reset should not reset the flash.

The MC_RGM may also assert the external reset if the reset sequence was triggered by one of the
following:

• a power-on reset

• a ‘destructive’ reset event

• an external reset event

• a ‘functional’ reset event configured via the RGM_FBRE register to assert the external reset

In this case, the external reset is asserted until the end of PHASE3.

9.4.4 Functional Resets

A ‘functional’ reset indicates that an event has occurred after which it can be guaranteed that critical
register and memory content is still intact.

The status flag associated with a given ‘functional’ reset event (RGM_FES.F_<functional reset> bit) is set
when the ‘functional’ reset is asserted and the power-on reset is not asserted. It is possible for multiple

Chapter 9 Reset Generation Module (MC_RGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

258 Freescale Semiconductor

status bits to be set simultaneously, and it is software’s responsibility to determine which reset source is
the most critical for the application.

The ‘functional’ reset can be optionally disabled by software writing bit
RGM_FERD.D_<functional reset>.

NOTE
The RGM_FERD register can be written only once between two power-on
reset events.

An enabled ‘functional’ reset will normally trigger a reset sequence starting from the beginning of
PHASE1. Nevertheless, the RGM_FESS register enables the further configuring of the reset sequence
triggered by a functional reset. When RGM_FESS.SS_<functional reset> is set, the associated ‘functional’
reset will trigger a reset sequence starting directly from the beginning of PHASE3, skipping PHASE1 and
PHASE2. This can be useful especially in case a functional reset should not reset the flash module.

9.4.5 STANDBY entry sequence

STANDBY mode can be entered only when the MC_RGM is in IDLE. On STANDBY entry, the
MC_RGM moves to PHASE1. The minimum duration counter in PHASE1 does not start until STANDBY
mode is exited. On entry to PHASE1 due to STANDBY mode entry, the resets for all power domains
except power domain #0 are asserted. During this time, RESET is not asserted as the external reset can act
as a wakeup for the chip.

There is an option to keep the flash inaccessible and in low-power mode on STANDBY exit by configuring
the DRUN mode before STANDBY entry so that the flash is in power-down or low-power mode. If the
flash is to be inaccessible, the PHASE2 and PHASE3 states do not wait for the flash to complete
initialization before exiting, and the reset to the flash remains asserted.

See the MC_ME chapter for details on the STANDBY and DRUN modes.

9.4.6 Alternate event generation

The MC_RGM provides alternative events to be generated on reset source assertion. When a reset source
is asserted, the MC_RGM normally enters the reset sequence. Alternatively, it is possible for some reset
source events to be converted from a reset to either a SAFE mode request issued to the MC_ME or to an
interrupt request issued to the core.

Alternate event selection for a given reset source is made via the RGM_FERD and RGM_FEAR registers
as shown in Table 9-12.

Table 9-12. MC_RGM alternate event selection

RGM_FERD
Bit Value

RGM_FEAR
Bit Value

Generated Event

0 X reset

1 0 SAFE mode request

1 1 interrupt request

Chapter 9 Reset Generation Module (MC_RGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 259

The alternate event is cleared by deasserting the source of the request (that is, at the reset source that caused
the alternate request) and also clearing the appropriate RGM_FES status bit.

NOTE
Alternate requests (SAFE mode as well as interrupt requests) are generated
regardless of whether the system clock is running.

NOTE
If a masked ‘functional’ reset event which is configured to generate a SAFE
mode/interrupt request occurs during PHASE1, it is ignored, and the
MC_RGM will not send any safe mode/interrupt request to the MC_ME.

9.4.7 Boot mode capturing

The MC_RGM samples PA[9:8] whenever RESET is asserted until five FIRC (16 MHz internal RC
oscillator) clock cycles before its deassertion edge. The result of the sampling is used at the beginning of
reset PHASE3 for boot mode selection and is retained after RESET has been deasserted for subsequent
boots after reset sequences during which RESET is not asserted.

NOTE
In order to ensure that the boot mode is correctly captured, the application
needs to apply the valid boot mode value the entire time that RESET is
asserted.

RESET can be asserted as a consequence of the internal reset generation.
This will force re-sampling of the boot mode pins. (See Table 9-11 for
details.)

Chapter 9 Reset Generation Module (MC_RGM)

MPC5646C Microcontroller Reference Manual, Rev. 5

260 Freescale Semiconductor

Chapter 10 Power Control Unit (MC_PCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 261

Chapter 10
Power Control Unit (MC_PCU)

10.1 Introduction

10.1.1 Overview

The power control unit (MC_PCU) is used to control the overall microcontroller power consumption.
There are 4 power domains controlled by the MC_PCU which physically disconnects power to the
domains when the specific operating mode allows this.

When a power domain is disconnected from the supply, the power consumption is reduced to zero in that
domain. Any status information of such a power domain is lost. When re-connecting a power domain to
the supply voltage, the domain draws an increased current until the power domain reaches its operational
voltage.

For each mode, software can configure whether a power domain is connected to the supply voltage
(power-up state) or disconnected (power-down state). Maximum power saving is reached by entering the
STANDBY mode.

On each mode change request, the MC_PCU evaluates the power domain settings in the power domain
configuration registers and initiates a power-down or a power-up sequence for each individual power
domain. The power-up/down sequences are handled by finite state machines to ensure a smooth and safe
transition from one power state to the other.

Exiting the STANDBY mode can only be done via a system wakeup event as all power domains other than
power domain #0 are in the power-down state.

In addition, the MC_PCU acts as a bridge for mapping the VREG peripheral to the MC_PCU address
space.

Figure 10-1 depicts the MC_PCU block diagram.

Chapter 10 Power Control Unit (MC_PCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

262 Freescale Semiconductor

10.1.2 Features

The MC_PCU includes the following features:

• support for 4 power domains

• support for chip modes RESET, DRUN, SAFE, TEST, RUN0…3, HALT, STOP, and STANDBY
(for further mode details, please see the MC_ME chapter)

• power states updating on each mode change and on system wakeup

• a handshake mechanism for power state changes thus guaranteeing operable voltage

• maps the VREG registers to the MC_PCU address space

10.2 External Signal Description
The MC_PCU has no connections to any external pins.

MC_ME

FIRC

VREG

WKPUpower
domains

Power Domain
State Machines

Registers

Platform Interface

MC_PCU

Figure 10-1. MC_PCU block diagram

M
ap

pe
d

M
od

ul
e

In
te

rf
ac

e
mapped

peripheral

core

Chapter 10 Power Control Unit (MC_PCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 263

10.3 Memory Map and Register Definition

10.3.1 Memory Map

NOTE
Any access to unused registers as well as write accesses to read-only
registers will:

• not change register content

• cause a transfer error

Table 10-1. MC_PCU Register Description

Address Name Description Size
Access

Location
User Supervisor Test

0xC3FE
_8000

PCU_PCONF0 Power Domain #0
Configuration

word read read read on page 265

0xC3FE
_8004

PCU_PCONF1 Power Domain #1
Configuration

word read read read on page 266

0xC3FE
_8008

PCU_PCONF2 Power Domain #2
Configuration

word read read/write read/write on page 266

0xC3FE
_800C

PCU_PCONF3 Power Domain #3
Configuration

word read read/write read/write on page 266

0xC3FE
_8040

PCU_PSTAT Power Domain Status
Register

word read read read on page 268

Table 10-2. MC_PCU Memory Map

Address Name
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0xC3FE
_8000

PCU_PCONF0 R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0

S
T

B
Y

0

0 0

S
TO

P

0

H
A

LT

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
S

T

W

0xC3FE
_8004

PCU_PCONF1 R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0

S
T

B
Y

0

0 0

S
TO

P

0

H
A

LT

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
S

T

W

Chapter 10 Power Control Unit (MC_PCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

264 Freescale Semiconductor

10.3.2 Register descriptions

All registers may be accessed as 32-bit words, 16-bit half-words, or 8-bit bytes. The bytes are ordered
according to big endian. For example, the PD0 field of the PCU_PSTAT register may be accessed as a word
at address 0xC3FE_8040, as a half-word at address 0xC3FE_8042, or as a byte at address 0xC3FE_8043.

0xC3FE
_8008

…
0xC3FE

_800

PCU_PCONF2…3 R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0

S
T

B
Y 0 0

S
TO

P 0

H
A

LT

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
S

T

W

0xC3FE
_8010

…
0xC3FE
_803C

reserved

0xC3FE
_8040

PCU_PSTAT R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R

P
D

3

P
D

2

P
D

1

P
D

0

W

0x044
…

0x07C
reserved

0xC3FE
_8080

…
0xC3FE
_80FC

VREG registers
(For details, see the VREG Register Description section of the Reference Manual)

0xC3FE
_8100

…
0xC3FE
_BFFC

reserved

Table 10-2. MC_PCU Memory Map (continued)

Address Name
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Chapter 10 Power Control Unit (MC_PCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 265

10.3.2.1 Power Domain #0 Configuration Register (PCU_PCONF0)

This register defines for power domain #0 whether it is on or off in each chip mode. As power domain #0
is the always-on power domain (and includes the MC_PCU), none of its bits are programmable. This
register is available for completeness reasons.

Address 0xC3FE_8000 Access: User read, Supervisor read, Test read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0

S
T

B
Y

0

0 0

S
TO

P

0

H
A

LT

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
S

T

W

Reset 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1

Figure 10-2. Power Domain #0 Configuration Register (PCU_PCONF0)

Table 10-3. Power Domain Configuration register field descriptions

Field Description

RST Power domain control during RESET mode
0 Power domain off
1 Power domain on

TEST Power domain control during TEST mode
0 Power domain off
1 Power domain on

SAFE Power domain control during SAFE mode
0 Power domain off
1 Power domain on

DRUN Power domain control during DRUN mode
0 Power domain off
1 Power domain on

RUN0 Power domain control during RUN0 mode
0 Power domain off
1 Power domain on

RUN1 Power domain control during RUN1 mode
0 Power domain off
1 Power domain on

RUN2 Power domain control during RUN2 mode
0 Power domain off
1 Power domain on

RUN3 Power domain control during RUN3 mode
0 Power domain off
1 Power domain on

Chapter 10 Power Control Unit (MC_PCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

266 Freescale Semiconductor

10.3.2.2 Power Domain #1 Configuration Register (PCU_PCONF1)

This register defines for power domain #1 whether it is on or off in each chip mode. The bit field
description is the same as in Table 10-3. As the platform, clock generation, and mode control reside in
power domain #1, this power domain is only powered down during the STANDBY mode. Therefore, none
of the bits is programmable. This register is available for completeness reasons.

The difference between PCU_PCONF0 and PCU_PCONF1 is the reset value of the STBY0 bit: During
the STANDBY mode, power domain #1 is disconnected from the power supply, and therefore
PCU_PCONF1.STBY0 is always ‘0’. Power domain #0 is always on, and therefore
PCU_PCONF0.STBY0 is ‘1’.

For further details about STANDBY mode, please refer to Section 10.4.4.2, “STANDBY Mode transition.

10.3.2.3 Power Domain #2…3 Configuration Registers (PCU_PCONF2…3)

These registers define for each power domain #2 through #3 whether it is on or off in each chip mode. The
bit field description is the same as in Table 10-3.

HALT Power domain control during HALT mode
0 Power domain off
1 Power domain on

STOP Power domain control during STOP mode
0 Power domain off
1 Power domain on

STBY0 Power domain control during STANDBY mode
0 Power domain off
1 Power domain on

Address 0xC3FE_8004 Access: User read, Supervisor read, Test read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0

S
T

B
Y

0

0 0

S
TO

P

0

H
A

LT

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
S

T

W

Reset 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1

Figure 10-3. Power Domain #1 Configuration Register (PCU_PCONF1)

Table 10-3. Power Domain Configuration register field descriptions (continued)

Field Description

Chapter 10 Power Control Unit (MC_PCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 267

Power domains #2 and #3 contain the backup RAM extensions and can only be powered down during
STANDBY mode.Therefore, writing a '0' to the respective bits for the other modes will not power down
those domains.

There are 4 possible configurations for the amount of RAM active in STANDBY mode as shown
Table 10-4 and Table 10-5. The 40 KB option results in a non-contiguous address space.

Table 10-4. RAM configurations in modes

Mode(s)
8 KB

0x4000_0000
0x4000_1FFF

56 KB
0x4000_2000
0x4000_FFFF

32 KB
0x4001_0000
0x4001_7FFF

32 KB
0x4001_8000
0x4001_FFFF

128 KB
0x4002_0000
0x4003_FFFF

RUN, STOP, HALT On1

1 If the MVRON bit is cleared in the ME_<mode>_MC register for STOP or HALT modes, the SRAM is placed into a
low power state where it cannot be accessed. The SRAM contents are retained and will be available again after
exiting the low power mode.

On1 On1 On1 On1

STANDBY On PCONF[2] PCONF[3] Off Off

Table 10-5. PCONF settings for RAM in STANDBY

STANDBY RAM (KB) PCONF[2] PCONF[3]

8 0 0

60 (8 + 56) 1 0

96 (8 + 56 + 32) 1 1

40 (8 + 32)1

1 Results in non-contiguous address space

0 1

Address 0xC3FE_8008 -
0xC3FE_800

Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0

S
T

B
Y 0 0

S
TO

P
1 0

H
A

LT
1

R
U

N
31

R
U

N
21

R
U

N
11

R
U

N
01

D
R

U
N

1

S
A

F
E

1

T
E

S
T

1

R
S

T

W

Reset 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1

1 The microcontroller allows you to write to these fields in all modes, but you must not do so except in STANDBY
mode. Writing to these fields in any other mode is an illegal operation that results in undetermined results.

Figure 10-4. Power Domain #2…3 Configuration Registers (PCU_PCONF2…3)

Chapter 10 Power Control Unit (MC_PCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

268 Freescale Semiconductor

10.3.2.4 Power Domain Status Register (PCU_PSTAT)

This register reflects the power status of all available power domains.

10.4 Functional description

10.4.1 General

The MC_PCU controls all available power domains on a chip mode basis. The PCU_PCONFn registers
specify during which system/user modes a power domain is powered up. The power state for each
individual power domain is reflected by the bits in the PCU_PSTAT register.

On a mode change, the MC_PCU evaluates which power domain(s) must change power state. The power
state is controlled by a state machine (FSM) for each individual power domain (see Figure 3-1) which
ensures a clean and safe state transition.

10.4.2 Reset / Power-On Reset

After any reset, the chip will transition to the RESET mode during which all power domains are powered
up (see the MC_ME chapter). Once the reset sequence has been completed, the DRUN mode is entered
and software can begin the MC_PCU configuration.

10.4.3 MC_PCU configuration

Per default, all power domains are powered in all modes other than STANDBY. Software can change the
configuration for each power domain on a mode basis by programming the PCU_PCONFn registers.

Address 0xC3FE_8040 Access: User read, Supervisor read, Test read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

P
D

3

P
D

2

P
D

1

P
D

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Figure 10-5. Power Domain Status Register (PCU_PSTAT)

Table 10-6. Power Domain Status Register (PCU_PSTAT) Field Descriptions

Field Description

PDn Power status for power domain #n
0 Power domain is inoperable
1 Power domain is operable

Chapter 10 Power Control Unit (MC_PCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 269

Each power domain which is powered down is held in a reset state. Read/write accesses to peripherals in
those power domains will result in a transfer error.

10.4.4 Mode transitions

On a mode change requested by the MC_ME, the MC_PCU evaluates the power configurations for all
power domains. It compares the settings in the PCU_PCONFn registers for the new mode with the settings
for the current mode. If the configuration for a power domain differs between the modes, a power state
change request is generated. These requests are handled by a finite state machine to ensure a smooth and
safe transition from one power state to another.

10.4.4.1 DRUN, SAFE, TEST, RUN0…3, HALT, and STOP mode transition

The DRUN, SAFE, TEST, RUN0…3, HALT, and STOP modes allow an increased power saving. The
level of power saving is software-controllable via the settings in the PCU_PCONFn registers for power
domain #2 onwards. The settings for power domains #0 and #1 can not be changed. Therefore, power
domains #0 and #1 remain connected to the power supply for all modes beside STANDBY.

Figure 10-6 shows an example for a mode transition from RUN0 to HALT and back, which will result in
power domain #2 being powered down during the HALT mode. In this case, PCU_PCONF2.HALT is
programmed to be ‘0’.

When the MC_PCU receives the mode change request to HALT mode, it starts its power-down phase.
During the power-down phase, clocks are disabled and the reset is asserted resulting in a loss of all
information for this power domain.

Then the power domain is disconnected from the power supply (power-down state).

When the MC_PCU receives a mode change request to RUN0, it starts its power-up phase if
PCU_PCONF2.RUN0 is ‘1’. The power domain is re-connected to the power supply, and the voltage in

new mode
requested by

MC_ME

Figure 10-6. MC_PCU Events During Power Sequences (non-STANDBY mode)

power-down

RUN0

voltage in

PCU_PSTAT.PD2

HALT RUN0

Notes:

Not drawn to scale; PCONF2.RUN0 = 1; PCONF2.HALT = 0

current mode

power-up phase

power domain #2

RUN0 HALT RUN0

power-down state power-up state
phase

power-up state

Chapter 10 Power Control Unit (MC_PCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

270 Freescale Semiconductor

power domain #2 will increase slowly. Once the voltage of power domain #2 is within an operable range,
its clocks are enabled, and its resets are deasserted (power-up state).

NOTE
It is possible that, due to a mode change, power-up is requested before a
power domain completed its power-down sequence. In this case, the
information in that power domain is lost.

10.4.4.2 STANDBY Mode transition

STANDBY offers the maximum power saving. The level of power saving is software-controllable via the
settings in the PCU_PCONFn registers for power domain #2 onwards. Power domain #0 stays connected
to the power supply while power domain #1 is disconnected from the power supply. Amongst others power
domain #1 contains the platform and the MC_ME. Therefore this mode differs from all other user/system
modes.

Once STANDBY is entered it can only be left via a system wakeup. On exiting the STANDBY mode, all
power domains are powered up according to the settings in the PCU_PCONFn registers, and the DRUN
mode is entered. In DRUN mode, at least power domains #0 and #1 are powered.

Figure 10-7 shows an example for a mode transition from RUN0 to STANDBY to DRUN. All power
domains which have PCU_PCONFn.STBY cleared will enter power-down phase. In this example only
power domain #1 will be disabled during STANDBY mode.

When the MC_PCU receives the mode change request to STANDBY mode it starts the power down phase
for power domain #1. During the power down phase, clocks are disabled and reset is asserted resulting in
a loss of all information for this power domain. Then the power domain is disconnected from the power
supply (power-down state).

Chapter 10 Power Control Unit (MC_PCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 271

When the MC_PCU receives a system wakeup request, it starts the power-up phase. The power domain is
re-connected to the power supply and the voltage in power domain #1 will increase slowly. Once the
voltage is in an operable range, clocks are enabled and the reset is be deasserted (power-up state).

Prior to standby entry, PCTL for WKPU should be disabled.

NOTE
It is possible that due to a wakeup request, power-up is requested before a
power domain completed its power-down sequence. In this case, the
information in that power domain is lost.

10.4.4.3 Power Saving for Memories During STANDBY Mode

All memories which are not powered down during STANDBY mode automatically enter a power saving
state. No software configuration is required to enable this power saving state. While a memory is residing
in this state an increased power saving is achieved. Data in the memories is retained.

10.5 Initialization information
To initialize the MC_PCU, the registers PCU_PCONF2…3 should be programmed. After programming
is done, those registers should no longer be changed.

Figure 10-7. MC_PCU Events During Power Sequences (STANDBY mode)

new mode

power-down

RUN0

voltage in

PCU_PSTAT.PD1

STANDBY

Notes:

Not drawn to scale; PCONF1.RUN0 = 1; PCONF1.STBY0 = 0

current mode

power-up phase

power domain #1

RUN0 STANDBY DRUN

requested by ME

power-down state power-up statepower-up state
phase

Mode set due to reset being asserted to power domain #1

wakeup request

Chapter 10 Power Control Unit (MC_PCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

272 Freescale Semiconductor

10.6 Application information

10.6.1 STANDBY mode considerations

STANDBY offers maximum power saving possibility. But power is only saved during the time a power
domain is disconnected from the supply. Increased power is required when a power domain is re-connected
to the power supply. Additional power is required during restoring the information (e.g. in the platform).
Care should be taken that the time during which the chip is operating in STANDBY mode is significantly
longer than the required time for restoring the information.

Chapter 11 Voltage Regulators and Power Supplies

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 273

Chapter 11
Voltage Regulators and Power Supplies

11.1 Voltage regulators
The power blocks provide a 1.2 V digital supply to the internal logic of the device. The main supply is
(3 V–5 V ± 10%) and digital/regulated output supply is (1.2 V ± 10%). The voltage regulator used in
MPC5646C comprises two regulators.

• High power regulator (HPREG)

• Low power regulator (LPREG)

The HPREG regulator is switched off during the STANDBY mode to save consumption from the regulator
itself. In STOP mode, the user can configure the HPREG regulator to switch-off (Refer to MC_ME
chapter). In this case, when current is low enough to be handled by LPREG alone, the HPREG regulator
is switched-off and the supply is provided by the LPREG regulator.

The internal voltage regulator requires an external capacitance (CREG) to be connected to the device in
order to provide a stable low voltage digital supply to the device. Capacitances should be placed on the
board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of
the board.

Figure 11-2 shows the power domain organization of MPC5646C. The digital design is partitioned into
two main domains:

• PD1 — Switchable domain (powered off in standby mode)

• PD0 — Always powered on

NOTE
MPC5646C also contains PD3 and PD4 domains for controlling additional
SRAM and STANDBY. For details, refer to Section 10.3.2, Register
descriptions.

These domains are connected through low leakage power switches inside the design. These switches open
during STANDBY mode, thus providing power gating to PD1. For both domains, there is a low voltage
detector for the 1.2 V output voltage. Additionally, there are two low voltage detectors for the
VDD_HV_A, one at the 3.3V level and one at the 5V level. VDD_HV_A is also use to power the on-chip
regulators (HPREG and LPREG).

11.1.1 High power regulator (HPREG)

The HPREG converts the 3 V–5 V input supply to a 1.2 V digital supply. For more information, see the
voltage regulator electrical characteristics section of the data sheet.

In STOP and HALT modes, a request can be made to disable the regulator by clearing the MVRON bit in
the ME_<mode>_MC register. The regulator will be disabled once system power consumption falls to a
sufficient level. If the main regulator is disabled, the SRAM is put into a low power state and cannot be
read or written, although the contents are retained.

Chapter 11 Voltage Regulators and Power Supplies

MPC5646C Microcontroller Reference Manual, Rev. 5

274 Freescale Semiconductor

11.1.2 Low power regulator (LPREG)

The LPREG generates power for the device in the STOP and STANDBY mode, providing the output
supply of 1.2 V. The control part of the regulator can be used to disable the low power regulator. It is
managed by MC_ME.

11.1.3 LVDs and POR

There are three types of LVD available:

1. LVD_MAIN for the 3.3 V–5 V input supply

2. LVD_MAIN5 for the 3.3 V–5 V input supply

3. LVD_DIG for the 1.2 V output voltage

The LVD_MAIN and LVD_MAIN5 sense the 3.3 V–5 V power supply for CORE, shared with IO ring
supply and indicate when the 3.3 V–5 V supply is stabilized.

Two LVD_DIGs are provided in the design. One LVD_DIG is placed in the high power domain and senses
the PD1 domain voltage notifying that the 1.2 V output is stable. The other LVD_DIG is placed in the
standby domain (PD0) and senses the standby 1.2 V supply level notifying that the 1.2 V output is stable.
The reference voltage used for all LVDs is generated by the low power reference generator and is trimmed
for LVD_DIG, using the bits LP[4:7]. Therefore, during the pre-trimming period, LVD_DIG exhibits
higher thresholds, whereas during post trimming, the thresholds reach the desired range. Power-down
controls are provided for LVDs. When LVDs are power-down, their outputs are de-asserted. No trimming
capability is provided on LVD_MAIN and LVD_MAIN5. The trimming is done through flash and happens
in phase3 of the reset sequencing.

POR is required to initialize the device during supply rise. POR works when the main supply
(VDD_HV_A) is ramping up. POR is asserted on power-up when Vdd supply is above VPORUP min (refer
to data sheet for details). It will be released only after Vdd supply is above VPORH (refer to data sheet for
details). Vdd above VPORH ensures power management module including internal LVDs modules are fully
functional. To assert POR again, Vdd needs to ramp down to VPORUP min levels.

11.1.4 VREG digital interface

The voltage regulator digital interface provides the temporization delay at initial power-up and protocol
required during entry and exit from low-power modes (STOP/STANDBY). A signal indicating that Low
Power domain is powered is used at power-up to release reset to temporization counter. At exit from
low-power modes (STOP with Vreg-off / STANDBY), the power-down for high power regulator request
signal is monitored by the digital interface and used to release reset to the temporization counter. In both
cases, on completion of the delay counter, an end-of-count signal is released, it is gated with another signal
indicating the main domain voltage correct to release the VREG_OK signal. This is used by MC_RGM to
release the reset to the device and enter to the next phase, i.e. phase1. It also manages trimming of HPREG,
LPREG during RUN, STOP, or STANDBY mode. It also manages transition from run to low power mode
and vice-versa.

Chapter 11 Voltage Regulators and Power Supplies

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 275

11.1.4.1 Features

• Temporization counter of 18 s to get HPREG up and stable during:

— initial power up

— STOP (with vreg-off) exit

— STANDBY mode exit

• Transition between different modes:

— RUN to STOP with vreg-off

— RUN to STANDBY mode

— STOP with Vreg-off to RUN mode

— STANDBY to RUN mode

• Control register to mask 5 V LVD when the regulator input supply is 3.3 V

• Control register to switch-off the PORPU circuitry of voltage regulator when HPREG is powered
down (either during STOP or STANDBY)

11.1.5 Memory map

The registers in this section are mapped to the MC_PCU address space as described in Chapter 10, “Power
Control Unit (MC_PCU).

11.1.6 Register description

11.1.6.1 Voltage Regulator Control Register (VREG_CTL)

Voltage Regulator Control Register (VREG_CTL) controls the masking of the 5 V LVD. It is used for
disabling/enabling the 5 V LVD.

Table 11-1. Memory map

Base address: 0xC3FE_8080

Address offset Register Location

0x0 Voltage Regulator Control Register (VREG_CTL) on page 276

0x4 Voltage Regulator Power Down mode VREG_PDMODE on page 278

Chapter 11 Voltage Regulators and Power Supplies

MPC5646C Microcontroller Reference Manual, Rev. 5

276 Freescale Semiconductor

11.1.6.2 Voltage Regulator (VREG_PDMODE)

This register is implemented to support programming of PORPU circuitry in voltage regulator of current
when HPREG is powered down during STANDBY mode. For SRAM data retention, minimum power
supply varies according to memory operating modes.

Offset: 0x0 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5V
_L

V
D

_M
A

S
K

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 11-1. Voltage Regulator Control Register (VREG_CTL)

Table 11-2. VREG_CTL field descriptions

Field Description

5V_LVD_MASK Mask bit for 5 V LVD from regulator
This is a read/write bit and must be unmasked by writing a ‘0’ by software to generate LVD
functional reset request to MC_RGM for 5 V trip.
1: 5 V LVD is masked
0: 5 V LVD is not masked.

Offset: 0x0 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P
O

R
P

U

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 11 Voltage Regulators and Power Supplies

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 277

11.2 Power supply strategy
From a power-routing perspective, the device is organized as follows.

The device provides the following dedicated supply domains at package level:

• HV: High voltage external power supply for voltage regulator module. This must be provided
externally through VDD_HV_A power pins.

• LV: Low voltage internal power supply for core, FMPLL and Flash digital logic. This is generated
by the on-chip VREG with an external ballast (NPN device). It is further split into four main
domains to ensure noise isolation between critical LV modules within the device:

— LV_COR: Low voltage supply for the core. It is also used to provide supply for FMPLL
through double bonding.

— LV_CFLA0/CFLA1: Low voltage supply for the two code Flash modules.

— LV_DFLA: Low voltage supply for data flash module.

— LV_PLL: Low voltage supply for FMPLL.

For further details, refer to Power management electrical characteristics section of Data Sheet.

11.3 Power domain organization
This device employs two primary power domains, namely PD0 and PD1.Power domain organization and
connections to the internal regulator are depicted in Figure 11-2.

Table 11-3. VREG_PDMODE field descriptions

Field Description

PORPU This bit is used to control the i/p signal PORPU of voltage regulator
during STOP/STANDBY mode.
1 : POR circuitry is enabled
0 : POR circuitry is disabled.

Chapter 11 Voltage Regulators and Power Supplies

MPC5646C Microcontroller Reference Manual, Rev. 5

278 Freescale Semiconductor

Figure 11-2. Power domain organization

32 KB 56 KB
SplitSplit

CTRL CTRL

Split

CTRL

PD0 (always on domain)

PD1 Switchable Domain

HPREG

LPREG

HPVDD

LPVDD

VDD_LV

VSS_LV

Off chip
NPN driver

40 f

HPVDD
LPVDD

 sw1 (<0.1Ohm)

8KB

P
D

0
Lo

gi
c

VDD_BV VDD_HV_A VSS_HV

100 nf

(FMPLL, Flash, 160 KB RAM)

VDD_LV VDD_LV VDD_LVVSS_LV VSS_LV VSS_LV

100 nf 100 nf 100 nf

VRC_CTRL

(CREGn)

Chip Boundary

10 f

(CDEC2)

(4  10 f)

Chapter 12 Wakeup Unit (WKPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 279

Chapter 12
Wakeup Unit (WKPU)

12.1 Overview
The Wakeup Unit supports 2 internal sources and 30 external sources that can generate interrupts or
wakeup events, of which 2 can cause non-maskable interrupt requests or wakeup source. Figure 12-1 is a
block diagram of the Wakeup Unit and its interfaces to other system components.

The wakeup lines are mapped on the interrupt vectors as shown in Table 12-1. All unused WKPU pins
must use a pull resistor — either pullup (internal or external) or pulldown (external) — to ensure no
leakage from floating inputs.

Table 12-1. Wakeup vector mapping

Wakeup
number

Port
SIU

PCR#

Port input function1
(can be used in

conjunction with
WKPU function)

WKPU IRQ to
INTC

IRQ# WISR
Register2

bit
position

Package

17
6-

pi
n

Q
F

P

20
8-

pi
n

Q
F

P

25
6-

pi
n

B
G

A

WKPU0 API n/a3 — WakeUp_IRQ_
0

46 EIF0 31 3 3 3

WKPU1 RTC n/a3 — EIF1 30 3 3 3

WKPU2 PA1 PCR1 NMI[0], CAN3RX EIF2 29   

WKPU3 PA2 PCR2 NMI[1] EIF3 28   

WKPU4 PB1 PCR17 CAN0RX, LIN0RX EIF4 27   

WKPU5 PC11 PCR43 CAN1RX, CAN4RX EIF5 26   

WKPU6 PE0 PCR64 CAN5RX EIF6 25   

WKPU7 PE9 PCR73 CAN2RX, CAN3RX EIF7 24   

WKPU8 PB10 PCR26 — WakeUp_IRQ_
1

47 EIF8 23   

WKPU9 PA4 PCR4 LIN5RX EIF9 22   

WKPU10 PA15 PCR15 — EIF10 21   

WKPU11 PB3 PCR19 LIN0RX EIF11 20   

WKPU12 PC7 PCR39 LIN1RX EIF12 19   

WKPU13 PC9 PCR41 LIN2RX EIF13 18   

WKPU14 PE11 PCR75 LIN3RX EIF14 17   

WKPU15 PF11 PCR91 LIN4RX EIF15 16   

Chapter 12 Wakeup Unit (WKPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

280 Freescale Semiconductor

NOTE
There is no dedicated wake up pin for the replicated mux functions on the
208 package. Therefore, CANRX_2, CANRX_3, CANRX_5, LINRX_2,
LINRX_3 and LINRX_8 do not have wakeup assigned in every position
that they occur.

WKPU16 PF13 PCR93 LIN5RX WakeUp_IRQ_
2

48 EIF16 15   

WKPU17 PG3 PCR99 — EIF17 14   

WKPU18 PG5 PCR101 — EIF18 13   

WKPU19 PA0 PCR0 CAN1RX EIF19 12   

WKPU20 PG7 PCR103 LIN6RX EIF20 11   

WKPU21 PG9 PCR105 LIN7RX EIF21 10   

WKPU22 PF9 PCR89 CAN2RX, CAN3RX EIF22 9   

WKPU23 PI3 PCR131 LIN9RX EIF23 8   

WKPU24 PI1 PCR129 LIN8RX WakeUp_IRQ_
3

49 EIF24 7   

WKPU25 PB8 PCR24 — EIF25 6   

WKPU26 PB9 PCR25 — EIF26 5   

WKPU27 PD0 PCR48 — EIF27 4   

WKPU28 PD1 PCR49 — EIF28 3   

WKPU29 PE[3] PCR67 FR_A_RX EIF29 2   

WKPU30 PE[5] PCR69 FR_B_RX EIF30 1   

WKPU31 PJ[13] PCR157 CAN1RX, CAN4RX EIF31 0 x4  

1 This column does not contain an exhaustive list of functions on that pin. Rather, it includes peripheral communication
functions (such as CAN and LINFlexD Rx) that could be used to wake up the microcontroller. DSPI pins are not included
because DSPI would typically be used in master mode.

2 WISR, IRER, WRER, WIFEER, WIFEEF, WIFER, WIPUER
3 Port not required to use timer functions.
4 Unavailable WKPU pins must use internal pullup enabled using WIPUER.

Table 12-1. Wakeup vector mapping (continued)

Wakeup
number

Port
SIU

PCR#

Port input function1
(can be used in

conjunction with
WKPU function)

WKPU IRQ to
INTC

IRQ# WISR
Register2

bit
position

Package

17
6-

pi
n

Q
F

P

20
8-

pi
n

Q
F

P

25
6-

pi
n

B
G

A

Chapter 12 Wakeup Unit (WKPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 281

NOTE
Wake-up pins are enabled in all modes, therefore, the Wake-up pins should
be correctly terminated to ensure minimal current consumption. Any unused
Wake-up signal input should be terminated by using an external pull-up or
pull-down, or by internal pull-up enabled at WKPU_WIPUER. Also, care
has to be taken on packages where the Wake-up signal inputs are not
bonded. For these packages, the user must ensure the internal pull-up are
enabled for those signals not bonded. Details of non-bonded wake-ups for
the smaller packages given below:

176-pin LQFP – PJ[13]

NOTE
In HALT mode and in STOP mode where the system clock is still enabled,
an external interrupt (EIRQ) or any peripheral interrupt can be used to wake
the device up.

Figure 12-1. Wakeup unit block diagram

12.2 Features
The Wakeup Unit supports these distinctive features:

IPS
BUS

Pads

Interrupt
Controller

Peripheral

Mode /
Power Control

IRQs

system wakeup

wakeup

30

2

Platform
2

4

NMI / Wakeup
- Configuration

IRQ / Wakeup
- Configuration

Wakeup Unit

IOMux

2
2

RTC, etc.
0-

filter

filter

filter bypass

filter bypass

NMI enable

Bridge

Chapter 12 Wakeup Unit (WKPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

282 Freescale Semiconductor

• Non-maskable interrupt support with

— 2 NMI source with bypassable glitch filter

— Independent interrupt destination: non-maskable interrupt, critical interrupt, or machine check
request

— Edge detection

• External wakeup/interrupt support with

— 30 interrupt sources

— Analog glitch filter per each wakeup line

— Independent interrupt mask

— Edge detection

— Configurable system wakeup triggering from all interrupt sources

— Configurable pullup

• On-chip wakeup support

— 2 wakeup sources

— Wakeup status mapped to same register as external wakeup/interrupt status

12.3 Memory map and register description
This section provides a detailed description of all registers accessible in the WKPU module.

12.3.1 Memory map

Table 12-2 gives an overview on the WKPU registers implemented.

Table 12-2. WKPU memory map

Base address: 0xC3F9_4000

Address offset Register Location

0x0000 NMI Status Flag Register (NSR) on page 284

0x0004 – 0x0007 Reserved —

0x0008 NMI Configuration Register (NCR) on page 285

0x000C – 0x0013 Reserved —

0x0014 Wakeup/Interrupt Status Flag Register (WISR)1 on page 286

0x0018 Interrupt Request Enable Register (IRER) on page 287

0x001C Wakeup Request Enable Register (WRER)1 on page 287

0x0020 – 0x0027 Reserved —

0x0028 Wakeup/Interrupt Rising-Edge Event Enable Register
(WIREER)1

on page 288

0x002C Wakeup/Interrupt Falling-Edge Event Enable Register
(WIFEER)1

on page 288

Chapter 12 Wakeup Unit (WKPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 283

NOTE
Reserved registers will read as 0, writes will have no effect. If
SSCM_ERROR[RAE] is enabled, a transfer error will be issued when
trying to access completely reserved register space.

12.3.2 Register description

This section describes in address order all the Wakeup Unit registers. Each description includes a standard
register diagram with an associated figure number. Details of register bit and field function follow the
register diagrams, in bit order. The numbering convention of register is MSB = 0, however the numbering
of internal field is LSB = 0, for example EIF[5] = WISR[26].

Each bit of Wakeup Unit registers can be mapped to a wake-up port.

Figure 12-2 shows wake-up ports mapped to register bits.

Figure 12-2. Wake-up port mapping

0x0030 Wakeup/Interrupt Filter Enable Register (WIFER) on page 289

0x0034 Wakeup/Interrupt Pullup Enable Register (WIPUER) on page 289

0x0038 –
0x03FFF

Reserved —

1 Applies to both external and internal wakeup sources.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Port PJ13 PE5 PE3 PD1 PD0 PB9 PB8 PI1 PI3 PF9 PG9 PG7 PA0 PG5 PG3 PF13

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Port PF11 PE11 PC9 PC7 PB3 PA15 PA4 PB10 PE9 PE0 PC11 PB1 PA2 PA1 RTC API

Table 12-2. WKPU memory map (continued)

Base address: 0xC3F9_4000

Address offset Register Location

Chapter 12 Wakeup Unit (WKPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

284 Freescale Semiconductor

12.3.2.1 NMI Status Flag Register (NSR)

This register holds the non-maskable interrupt status flags.

Offset: 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

N
IF

[0
]

N
O

V
F

[0
]

0 0 0 0 0 0

N
IF

[1
]

N
O

V
F

[1
]

0 0 0 0 0 0

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 12-3. NMI Status Flag Register (NSR)

Table 12-3. NSR field descriptions

Field Description

NIF[0] NMI 0 Status Flag
This flag can be cleared only by writing a 1. Writing a 0 has no effect. If enabled (NREE or NFEE set),
NIF[0] causes an interrupt request.
1 An event as defined by NREE and NFEE has occurred
0 No event has occurred on the pad

NOVF[0] NMI 0 Overrun Status Flag
This flag can be cleared only by writing a 1. Writing a 0 has no effect. It will be a copy of the current
NIF[0] value whenever an NMI event occurs, thereby indicating to the software that an NMI 0 occurred
while the last one was not yet serviced. If enabled (NREE or NFEE set), NOVF causes an interrupt
request.
1 An overrun has occurred on NMI 0 input
0 No overrun has occurred on NMI 0 input

NIF[1] NMI 1 Status Flag
This flag can be cleared only by writing a 1. Writing a 0 has no effect. If enabled (NREE or NFEE set),
NIF [1] causes an interrupt request.
1 An event as defined by NREE and NFEE has occurred
0 No event has occurred on the pad

NOVF[1] NMI 1 Overrun Status Flag
This flag can be cleared only by writing a 1. Writing a 0 has no effect. It will be a copy of the current
NIF[1] value whenever an NMI event occurs, thereby indicating to the software that an NMI occurred
while the last one was not yet serviced. If enabled (NREE or NFEE set), NOVF causes an interrupt
request.
1 An overrun has occurred on NMI 1 input
0 No overrun has occurred on NMI 1 input

Chapter 12 Wakeup Unit (WKPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 285

12.3.2.2 NMI Configuration Register (NCR)

This register holds the configuration bits for the non-maskable interrupt settings.

Offset: 0x0008 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

N
LO

C
K

0

NDSS0

N
W

R
E

0 0

N
R

E
E

0

N
F

E
E

0

N
F

E
0

N
LO

C
K

1

NDSS1

N
W

R
E

 1 o

N
R

E
E

1

N
F

E
E

1

N
F

E
1

W

Reset 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 12-4. NMI Configuration Register (NCR)

Table 12-4. NCR field descriptions

Field Description

NLOCK0 NMI Configuration Lock Register for e200z0
Writing a 1 to this bit locks the configuration for the NMI until it is unlocked by a system reset. Writing
a 0 has no effect.

NDSS0 NMI Destination Source Select for e200z0
00 Non-maskable interrupt
01 Critical interrupt
10 Machine check request
11 Reserved—no NMI, critical interrupt, or machine check request generated

NWRE0 NMI Wakeup Request Enable for e200z0
1 A set NIF bit or set NOVF bit causes a system wakeup request
0 System wakeup requests from the corresponding NIF bit are disabled
Note: Software should only enable the NMI after the IVPR/IVOR registers have been configured. This

should be noted when booting from RESET or STANDBY mode as all registers will have been
cleared to their reset state.

NREE0 NMI Rising-edge Events Enable for e200z0
1 Rising-edge event is enabled
0 Rising-edge event is disabled

NFEE0 NMI Falling-edge Events Enable for e200z0
1 Falling-edge event is enabled
0 Falling-edge event is disabled

NFE0 NMI Filter Enable for e200z0
Enable analog glitch filter on the NMI pad input.
1 Filter is enabled
0 Filter is disabled

NLOCK1 NMI Configuration Lock Register for e200z4
Writing a 1 to this bit locks the configuration for the NMI until it is unlocked by a system reset. Writing
a 0 has no effect.

Chapter 12 Wakeup Unit (WKPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

286 Freescale Semiconductor

NOTE
Writing a ‘0’ to both NREE and NFEE disables the NMI functionality
completely (that is, no system wakeup or interrupt will be generated on any
pad activity)!

12.3.2.3 Wakeup/Interrupt Status Flag Register (WISR)

This register holds the wakeup/interrupt flags.

NDSS1 NMI Destination Source Select for e200z4
00 Non-maskable interrupt
01 Critical interrupt
10 Machine check request
11 Reserved—no NMI, critical interrupt, or machine check request generated

NWRE1 NMI Wakeup Request Enable for e200z4
1 A set NIF bit or set NOVF bit causes a system wakeup request
0 System wakeup requests from the corresponding NIF bit are disabled

NREE1 NMI Rising-edge Events Enable for e200z4
1 Rising-edge event is enabled
0 Rising-edge event is disabled

NFEE1 NMI Falling-edge Events Enable for e200z4
1 Falling-edge event is enabled
0 Falling-edge event is disabled

NFE1 NMI Filter Enable for e200z4
Enable analog glitch filter on the NMI pad input.
1 Filter is enabled
0 Filter is disabled

Offset: 0x0014 Access: User read/write (write 1 to clear)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EIF[31:0]

W w1c

Reset 0

Figure 12-5. Wakeup/Interrupt Status Flag Register (WISR)

Table 12-5. WISR field descriptions

Field Description

EIF[x] External Wakeup/Interrupt WKPU[x] Status Flag
This flag can be cleared only by writing a 1. Writing a 0 has no effect. If enabled (IRER[x]), EIF[x]
causes an interrupt request.
1 An event as defined by WIREER and WIFEER has occurred
0 No event has occurred on the pad

Table 12-4. NCR field descriptions (continued)

Field Description

Chapter 12 Wakeup Unit (WKPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 287

12.3.2.4 Interrupt Request Enable Register (IRER)

This register is used to enable the interrupt messaging from the wakeup/interrupt pads to the interrupt
controller.

12.3.2.5 Wakeup Request Enable Register (WRER)

This register is used to enable the system wakeup messaging from the wakeup/interrupt pads to the mode
entry and power control modules.

Offset: 0x0018 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EIRE[31:0]

W w1c

Reset 0

Figure 12-6. Interrupt Request Enable Register (IRER)

Table 12-6. IRER field descriptions

Field Description

EIRE[x] External Interrupt Request Enable x
1 A set EIF[x] bit causes an interrupt request
0 Interrupt requests from the corresponding EIF[x] bit are disabled

Offset: 0x001C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R WRE[31:0]

W

Reset 0

Figure 12-7. Wakeup Request Enable Register (WRER)

Table 12-7. WRER field descriptions

Field Description

WRE[x] External Wakeup Request Enable x
1 A set EIF[x] bit causes a system wakeup request
0 System wakeup requests from the corresponding EIF[x] bit are disabled

Chapter 12 Wakeup Unit (WKPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

288 Freescale Semiconductor

12.3.2.6 Wakeup/Interrupt Rising-Edge Event Enable Register (WIREER)

This register is used to enable rising-edge triggered events on the corresponding wakeup/interrupt pads and
the internal interrupt sources.

NOTE
The RTC_API can only be configured on the rising edge.

12.3.2.7 Wakeup/Interrupt Falling-Edge Event Enable Register (WIFEER)

This register is used to enable falling-edge triggered events on the corresponding wakeup/interrupt pads
and the internal interrupt sources.

Offset: 0x0028 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R IREE[31:0]

W

Reset 0

Figure 12-8. Wakeup/Interrupt Rising-Edge Event Enable Register (WIREER)

Table 12-8. WIREER field descriptions

Field Description

IREE[x] External Interrupt Rising-edge Events Enable x
1 Rising-edge event is enabled
0 Rising-edge event is disabled

Offset: 0x002C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R IFEE[31:0]

W

Reset 0

Figure 12-9. Wakeup/Interrupt Falling-Edge Event Enable Register (WIFEER)

Table 12-9. WIFEER field descriptions

Field Description

IFEEx External Interrupt Falling-edge Events Enable x
1 Falling-edge event is enabled
0 Falling-edge event is disabled

Chapter 12 Wakeup Unit (WKPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 289

12.3.2.8 Wakeup/Interrupt Filter Enable Register (WIFER)

This register is used to enable an analog filter on the corresponding interrupt pads to filter out glitches on
the inputs.

NOTE
There is no analog filter for the RTC_API.

12.3.2.9 Wakeup/Interrupt Pullup Enable Register (WIPUER)

This register is used to enable a pull up on the corresponding interrupt pads to pull a wakeup/interrupt input
to a value of ‘1’.

NOTE
A wakeup/interrupt pad configuration for a pull up through the WIPUER
will be activated on the next STANDBY mode entry. It may take over an
eventual SIUL Port Configuration Register for a pull up/down. Only a
software access to WIPUER or a Reset can disable the WKPU pull up
enable, releasing the pull up/down ownership to the SIUL.

Offset: 0x0030 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R IFE[31:0]

W

Reset 0

Figure 12-10. Wakeup/Interrupt Filter Enable Register (WIFER)

Table 12-10. WIFER field descriptions

Field Description

IFE[x] External Interrupt Filter Enable x
Enable analog glitch filter on the external interrupt pad input.
1 Filter is enabled
0 Filter is disabled

Offset: 0x0034 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R IPUE [31:0]

W

Reset 0

Figure 12-11. Wakeup/Interrupt Pullup Enable Register (WIPUER)

Table 12-11. WIPUER field descriptions

Field Description

IPUE[x] External Interrupt Pullup Enable x
1 Pullup is enabled
0 Pullup is disabled

Chapter 12 Wakeup Unit (WKPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

290 Freescale Semiconductor

12.4 Functional description

12.4.1 General

This section provides a complete functional description of the Wakeup Unit.

12.4.2 Non-maskable interrupts

The System Integration Unit Lite supports up to two non-maskable interrupts.

The Wakeup Unit supports the generation of three types of interrupts from the NMI. The Wakeup Unit
supports the capturing of a second event per NMI input before the interrupt is cleared, thus reducing the
chance of losing an NMI event.

Each NMI passes through a bypassable analog glitch filter.

NOTE
Glitch filter control and pad configuration should be done while the NMI is
disabled in order to avoid erroneous triggering by glitches caused by the
configuration process itself.

Figure 12-12. NMI pad diagram

Glitch Filter

Edge Detect

Glitch Filter

Edge Detect

Destination

N
M

I

cr
it

ic
al

 IR
Q

m
ac

h
in

e
ch

ec
k

Destination

N
M

I

cr
it

ic
al

 IR
Q

m
ac

h
in

e
ch

ec
k

M
o

d
e/

P
w

r
C

tl

Flag Overrun Flag Overrun

N
D

S
S

[0
]

N
W

R
E

[0
]

N
R

E
E

[0
]

N
F

E
E

[0
]

N
F

E
[0

]

N
D

S
S

[1
]

N
W

R
E

[1
]

N
R

E
E

[1
]

N
F

E
E

[1
]

N
F

E
[1

]

NMI Configuration Register (NCR)

Wakeup Enable Wakeup Enable

CPU CPU

Chapter 12 Wakeup Unit (WKPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 291

12.4.2.1 NMI management

The NMI can be enabled or disabled using the single NCR register laid out to contain all configuration bits
for an NMI in a single byte (see Figure 12-4). The pad defined as an NMI can be configured by the user
to recognize interrupts with an active rising edge, an active falling edge or both edges being active. A
setting of having both edge events disabled results in no interrupt being detected and should not be
configured.

The active NMI edge is controlled by the user through the configuration of the NREE and NFEE bits.

NOTE
After reset, NREE and NFEE are set to ‘0’, therefore the NMI functionality
is disabled after reset and must be enabled explicitly by software.

Once the pad’s NMI functionality has been enabled, the pad cannot be reconfigured in the IOMUX to
override or disable the NMI.

The NMI destination interrupt is controlled by the user through the configuration of the NDSS bits. See
Table 12-4 for details.

An NMI supports a status flag and an overrun flag which are located in the NSR register (see Figure 12-3).
This register is a clear-by-write-1 register type, preventing inadvertent overwriting of other flags in the
same register. The status flag is set whenever an NMI event is detected. The overrun flag is set whenever
an NMI event is detected and the status flag is set (that is, has not yet been cleared).

NOTE
The overrun flag is cleared by writing a ‘1’ to the appropriate overrun bit in
the NSR register. If the status bit is cleared and the overrun bit is still set, the
pending interrupt will not be cleared.

12.4.3 External wakeups/interrupts

The Wakeup Unit supports up to four interrupt vectors to the interrupt controller of the SoC. Each interrupt
vector can support up to the number of external interrupt sources from the device pads with the total across
all vectors being equal to the number of external interrupt sources. Each external interrupt source is
assigned to exactly one interrupt vector. The interrupt vector assignment is sequential so that one interrupt
vector is for external interrupt sources 0 through N-1, the next is for N through N+M-1, and so forth.

Refer to Figure 12-13 for an overview of the external interrupt implementation for the example of four
interrupt vectors with up to eight external interrupt sources each.

Chapter 12 Wakeup Unit (WKPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

292 Freescale Semiconductor

Figure 12-13. External Interrupt Pad Diagram

All of the external interrupt pads within a single group have equal priority. It is the responsibility of the
user software to search through the group of sources in the most appropriate way for their application.

NOTE
Glitch filter control and pad configuration should be done while the external
interrupt line is disabled in order to avoid erroneous triggering by glitches
caused by the configuration process itself.

12.4.3.1 External interrupt management

Each external interrupt can be enabled or disabled independently. This can be performed using a single
rolled up register (Figure 12-6). A pad defined as an external interrupt can be configured by the user to
recognize external interrupts with an active rising edge, an active falling edge or both edges being active.

NOTE
Writing a ‘0’ to both IREE[x] and IFEE[x] disables the external interrupt
functionality for that pad completely (that is, no system wakeup or interrupt
will be generated on any activity on that pad)!

The active IRQ edge is controlled by the users through the configuration of the registers WIREER and
WIFEER.

In
te

rr
u

p
t

C
o

n
tr

o
lle

r

Int
Vectors

Pads

WIREER[29:0]

Interrupt Edge Enable

WIFEER[29:0]
Falling

Rising
Edge Detection

Analog Glitch FilterWIFER[29:0]
Glitch Filter enable

Interrupt enable

OR OR OR OR

IRQ_29_24 IRQ_23_16 IRQ_15_08 IRQ_07_00

Flag[29:24] Flag[23:16] Flag[15:8] WISR[29:0]Flag[7:0]

WRER[29:0]

Wakeup enable

M
o

d
e/

P
w

r
C

tl

IRER[29:0]

APIRTC

Chapter 12 Wakeup Unit (WKPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 293

Each external interrupt supports an individual flag which is held in the flag register (WISR). This register
is a clear-by-write-1 register type, preventing inadvertent overwriting of other flags in the same register.

12.4.4 On-chip wakeups

The Wakeup Unit supports two on-chip wakeup sources. It combines the on-chip wakeups with the
external ones to generate a single wakeup to the system.

12.4.4.1 On-chip wakeup management

In order to allow software to determine the wakeup source at one location, on-chip wakeups are reported
along with external wakeups in the WISR register (see Figure 12-5 for details).

Chapter 12 Wakeup Unit (WKPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

294 Freescale Semiconductor

Chapter 13 Real Time Clock / Autonomous Periodic Interrupt (RTC/API)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 295

Chapter 13
Real Time Clock / Autonomous Periodic Interrupt (RTC/API)

13.1 Overview
The RTC is a free running counter used for time keeping applications. The RTC may be configured to
generate an interrupt at a predefined interval independent of the mode of operation (run mode or low power
mode). When the RTC interval is reached, the RTC will generate a wakeup request to the wakeup unit. The
RTC can be configured to generate an interrupt on the RTC interval timeout.

The RTC also supports an autonomous periodic interrupt (API) function which can be used to generate a
periodic event to the wakeup unit or an interrupt request.

13.2 Features
Features of the RTC/API include:

• 4 selectable counter clock sources

— SIRC (128 kHz)

— SXOSC (32 kHz)

— FIRC (16 MHz)

— FXOSC (4-40 MHz)

• Clock sources can optionally be prescaled by 512 or 32

• 32-bit counter

— Supports times up to 1.5 months with 1 ms resolution

— Runs in all modes of operation, including normal RESET

— Reset when disabled by software and by POR

• 12-bit compare value to support interrupt intervals of 1 s up to greater than 1 hr with 1 s resolution
when using 32 Khz external oscillator source with divide by 32 enabled

• RTC compare value changeable while counter is running

• RTC status and control register are reset only by POR

• Autonomous periodic interrupt (API)

— 10-bit compare value to support wakeup intervals of 1.0 ms to 1 s when using 32 Khz external
oscillator source with divide by 32 enabled

— Compare value changeable while counter is running

• Configurable interrupt for RTC match, API match, and RTC rollover

• Configurable wakeup event for RTC match, API match, and RTC rollover

Chapter 13 Real Time Clock / Autonomous Periodic Interrupt (RTC/API)

MPC5646C Microcontroller Reference Manual, Rev. 5

296 Freescale Semiconductor

Figure 13-1. RTC/API block diagram

0
1

2
C

L
K

S
E

L
[1

:0
]

3

128KHz IRC

16MHz IRC

32KHz OSC

==

C
N

T
E

N

RTCCNT

RTCVAL

12

RTCF

RTCIE
RTC interrupt

offset reg

==
10

API wakeup

+

load

10

APIVAL

APIEN

reset

reset

32 bit counter

sync

sync

RTC wakeup

APIF

APIIE
API

sync

interrupt

ROVRF

RTC Rollover wakeupsync

XOSC

di
v5

12

di
v3

2

di
v3

2e
n

di
v5

12
en

RTC cnt_or_rlovr

RTCIE
ROVREN

ROVREN

or
CNTEN

Chapter 13 Real Time Clock / Autonomous Periodic Interrupt (RTC/API)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 297

Figure 13-2. Clock gating for RTC clocks

13.3 Modes of operation

13.3.1 Functional mode

There are two functional modes of operation for the RTC: normal operation and low power mode. In
normal operation, all RTC registers can read or written. The RTC/API and associated interrupts are
optionally enabled. In low power mode, the bus interface is disabled and no configuration changes are
permitted. The RTC/API is enabled if enabled prior to entry into low power mode.

13.3.2 Debug mode

If RTCC[FRZEN] is set, the counter will stop on the last valid count when the device enters debug mode.
On debug mode exit, the counter will resume counting from the frozen value. If RTCC[FRZEN] is clear,
the counter will continue counting (and set flags accordingly) when the device is in debug mode.

32-bit counter

CELL
C.G.

en

 SIRC

(cnten & clksel== 2’b00)

CELL

en

SXOSC

(cnten & clksel== 2’b01)

CELL

en

FIRC

(cnten & clksel== 2’b10)

CELL
C.G.

en

FXOSC

(cnten & clksel== 2’b11)

C.G.

C.G.

0
1

2
C

LK
S

E
L[

0:
1]

3

CELL
C.G.

en

1

0

div 512

CELL
C.G.

en

1

0

div 32

div512en

div32en

C
N

T
E

N

Chapter 13 Real Time Clock / Autonomous Periodic Interrupt (RTC/API)

MPC5646C Microcontroller Reference Manual, Rev. 5

298 Freescale Semiconductor

13.4 Register descriptions
The registers listed in Table 13-1 are described in the following sections.

13.4.1 RTC Supervisor Control Register (RTCSUPV)

The RTCSUPV register contains the SUPV bit which determines whether other registers are accessible in
supervisor mode or user mode.

NOTE
RTCSUPV register is accessible only in supervisor mode.

Table 13-1. RTC/API register map

Base address: 0xC3FE_C000

Address offset Register Location

0x0000 RTC Supervisor Control Register (RTCSUPV) on page 298

0x0004 RTC Control Register (RTCC) on page 299

0x0008 RTC Status Register (RTCS) on page 301

0x000C RTC Counter Register (RTCCNT) on page 302

Address: RTC_BASE + 0x0000 Access:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

S
U

P
V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 13-3. RTC Supervisor Control Register (RTCSUPV)

Table 13-2. RTCSUPV register field descriptions

Field Description

SUPV RTC Supervisor Bit
0 All registers are accessible in both user as well as supervisor mode.
1 All other registers are accessible in supervisor mode only.

Chapter 13 Real Time Clock / Autonomous Periodic Interrupt (RTC/API)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 299

13.4.2 RTC Control Register (RTCC)

The RTCC register contains:

• RTC counter enable

• RTC interrupt enable

• RTC clock source select

• RTC compare value

• API enable

• API interrupt enable

• API compare value

Address: RTC_BASE + 0x0004 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

C
N

T
E

N

R
T

C
IE

F
R

Z
E

N

R
O

V
R

E
N

RTCVAL
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

A
P

I
E

N

A
P

IIE

C
LK

S
E

L

D
IV

51
2

E
N

D
IV

32
E

N

APIVAL
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 13-4. RTC Control Register (RTCC)

Table 13-3. RTCC register field descriptions

Field Description

CNTEN Counter Enable
The CNTEN bit enables the RTC counter. Clearing CNTEN has the effect of asynchronously
resetting (synchronous reset negation) all the RTC and API logic as well as resetting the 32-bit
counter. This allows for the RTC configuration and clock source selection to be updated without
causing synchronization issues.
0 Counter disabled and reset
1 Counter enabled

RTCIE RTC Interrupt Enable
The RTCIE bit enables interrupts requests to the system if RTCF is asserted.
0 RTC interrupts disabled
1 RTC interrupts enabled

Chapter 13 Real Time Clock / Autonomous Periodic Interrupt (RTC/API)

MPC5646C Microcontroller Reference Manual, Rev. 5

300 Freescale Semiconductor

FRZEN Freeze Enable Bit
If RTCC[FRZEN] is set, the counter will stop on the last valid count when the device enters debug
mode. On debug mode exit, the counter will resume counting from the frozen value.
0 Counter running in debug mode.
1 Counter stops (freezes) in debug mode.

ROVREN Counter Roll Over Wakeup/Interrupt Enable
The ROVREN bit enables wakeup and interrupt requests when the RTC has rolled over from
0xFFFF_FFFF to 0x0000_0000. The RTCIE bit must also be set in order to generate an interrupt
from a counter rollover.
0 RTC rollover wakeup/interrupt disabled
1 RTC rollover wakeup/interrupt enabled

RTCVAL RTC Compare Value
The RTCVAL bits are compared to bits 10:21 of the RTC counter and if match sets RTCF. RTCVAL
can be updated when the counter is running.

APIEN Autonomous Periodic Interrupt Enable
The APIEN bit enables the autonomous periodic interrupt function.
0 API disabled
1 API enabled

APIIE API Interrupt Enable
The APIIE bit enables interrupts requests to the system if APIF is asserted.
0 API interrupts disabled
1 API interrupts enabled

CLKSEL Clock Select
The CLKSEL[0:1] bits select the clock source for the RTC. CLKSEL may only be updated when
CNTEN is 0. The user should ensure that oscillator is enabled before selecting it as a clock source
for RTC.
00 SXOSC
01 SIRC
10 FIRC
11 FXOSC

DIV512EN Divide by 512 enable
The DIV512EN bit enables the 512 clock divider. DIV512EN may only be updated when CNTEN is
0.
0 Divide by 512 is disabled.
1 Divide by 512 is enabled.

DIV32EN Divide by 32 enable
The DIV32EN bit enables the 32 clock divider. DIV32EN may only be updated when CNTEN is 0.
0 Divide by 32 is disabled.
1 Divide by 32 is enabled.

APIVAL API Compare Value
The APIVAL bits are added as an offset to the current RTC counter value which is then compared
against the RTC counter. When there is a match, an API wakeup event occurs and if APIIE is set,
an interrupt is also raised to the core. APIVAL can only be updated when APIEN is 0.
Note: API functionality start only when APIVAL is non zero. The first API interrupt takes two more

cycles because of synchronization of APIVAL to rtc clock and API_VAL+1 cycles for the
subsequent occurences. After that interrupts are periodic in nature. Minimum value of APIVAL
supported is 4. This is due to synchronization issues

Table 13-3. RTCC register field descriptions (continued)

Field Description

Chapter 13 Real Time Clock / Autonomous Periodic Interrupt (RTC/API)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 301

13.4.3 RTC Status Register (RTCS)

The RTCS register contains:

• RTC interrupt flag

• API interrupt flag

• ROLLOVR Flag

Table 13-4. RTCS register field descriptions

Address: RTC_BASE + 0x0008 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

R
T

C
F

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

A
P

IF

R
O

V
R

F

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 13-5. RTC Status Register (RTCS)

Field Description

RTCF RTC Interrupt Flag
The RTCF bit indicates that the RTC counter has reached the counter value matching RTCVAL.
RTCF is cleared by writing a 1 to RTCF. Writing a 0 to RTCF has no effect.
0 RTC counter is not equal to RTCVAL
1 RTC counter matches RTCVAL

APIF API Interrupt Flag
The APIF bit indicates that the RTC counter has reached the counter value matching API offset
value. APIF is cleared by writing a 1 to APIF. Writing a 0 to APIF has no effect.
0 No API interrupt
1 API interrupt
Note: The periodic interrupt comes after APIVAL[0:9] + 1’b1 RTC counts

ROVRF Counter Roll Over Interrupt Flag
The ROVRF bit indicates that the RTC has rolled over from 0xffff_ffff to 0x0000_0000. ROVRF is
cleared by writing a 1 to ROVRF.
0 RTC has not rolled over
1 RTC has rolled over

Chapter 13 Real Time Clock / Autonomous Periodic Interrupt (RTC/API)

MPC5646C Microcontroller Reference Manual, Rev. 5

302 Freescale Semiconductor

13.4.4 RTC Counter Register (RTCCNT)

The RTCCNT register contains the current value of the RTC counter.

13.5 RTC functional description
The RTC consists of a 32-bit free running counter enabled with the RTCC[CNTEN] bit. (When CNTEN
is cleared, the counter is asynchronously reset.) The value of the counter may be read via the RTCCNT
register. Note that due to the clock synchronization, the RTCCNT value may actually represent a previous
counter value. The difference between the counter and the read value depends on ratio of counter clock
and ipg_clk. Maximum possible difference between the two is 6 count values.

The clock source to the counter is selected with the RTCC[CLKSEL] field, which gives four options for
clocking the RTC/API. The four clock sources are:

• The 16Mhz FIRC

• 4–40 Mhz fast external oscillator

• 128 Khz FIRC

• 32 Khz slow external oscillator

The output of the clock mux can be optionally divided by combination of 512 and 32 to give a 1 ms
RTC/API count period for different clock sources. Note that the RTCC[CNTEN] bit must be disabled
when the RTC/API clock source is switched.

Address: RTC_BASE + 0x000C Access: User read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R RTCCNT[0:31]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RTCCNT[0:31]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 13-6. RTC Counter Register (RTCCNT)

Table 13-5. RTCCNT register field descriptions

Field Description

RTCCNT RTC Counter Value
Due to the clock synchronization, the RTCCNT value may actually represent a previous counter
value.

Chapter 13 Real Time Clock / Autonomous Periodic Interrupt (RTC/API)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 303

When the counter value for counter bits 10:21 match the 12-bit value in the RTCC[RTCVAL] field, then
the RTCS[RTCF] interrupt flag bit is set (after proper clock synchronization). If the RTCC[RTCIE]
interrupt enable bit is set, then the RTC interrupt request is generated. For example, the RTC supports
interrupt requests in the range of 1 s to 4096 s (> 1 hr) with a 1 s resolution, assuming a 32 kHz clock
source with the divide by 32 enabled. If there is a match while in low power mode then the RTC will first
generate a wakeup request to force a wakeup to run mode, then the RTCF flag will be set.

A rollover wakeup and/or interrupt can be generated when the RTC transitions from a count of
0xFFFF_FFFF to 0x0000_0000. Rollover events are enabled by setting the RTCC[ROVEN] bit. If this bit
is set, an RTC rollover will cause a wakeup request. To enable interrupts on an rollover request, the
RTCC[RTCIE] bit also needs to be set.

All the flags and counter values are synchronized with ipg_clk. It is assumed that ipg_clk frequency is
always more than or equal to the rtc_clk used to run the counter.

13.6 API functional description
Setting the RTCC[APIEN] bit enables the autonomous interrupt function. The 10-bit RTCC[APIVAL]
field selects the time interval for triggering an interrupt and/or wakeup event. Since the RTC is a free
running counter, the APIVAL is added to the current count to calculate an offset. When the counter reaches
the offset count, a interrupt and/or wakeup request is generated. Then the offset value is recalculated and
re-triggers a new request when the new value is reached. APIVAL may only be updated when APIEN is
disabled. When a compare is reached, the RTCS[APIF] interrupt flag bit is set (after proper clock
synchronization). If the RTCC[APIIE] interrupt enable bit is set, then the API interrupt request is
generated. If there is a match while in low power mode, then the API will first generate a wakeup request
to force a wakeup into normal operation, then the APIF flag will be set.

Chapter 13 Real Time Clock / Autonomous Periodic Interrupt (RTC/API)

MPC5646C Microcontroller Reference Manual, Rev. 5

304 Freescale Semiconductor

Chapter 14 CAN Sampler

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 305

Chapter 14
CAN Sampler

14.1 Introduction
The CAN Sampler peripheral has been designed to store the first identifier of CAN message “detected” on
the CAN bus while no precise clock (Crystal) is running at that time on the device, typically in Low Power
modes (STOP, HALT or STANBY) or in RUN mode with crystal switched off.

Depending on both CAN baudrate and Low Power mode used, it is possible to catch either the first or the
second CAN frame by sampling one CAN Rx port among 6 and storing all samples in internal registers.

After selection of the mode (first or second frame), the CAN Sampler stores samples of the 48 bits or skips
the first frame and stores samples of the 48 bits of second frame using the divided 16 MHz fast internal
RC oscillator and the 5-bit clock prescaler.

After completion, software must process the sampled data in order to rebuild the 48 minimal bits.

Figure 14-1. Extended CAN data frame

14.2 Main features
• Store 384 samples, equivalent to 48 CAN bit @ 8 samples/bit

• Sample frequency from 500 kHz up to 16 MHz, equivalent at 8 samples/bit to CAN baudrates of
62.5 Kbit/s to 2 Mbit/s

• User selectable CAN Rx sample port [CAN0RX-CAN5RX]

• Divided 16 MHz fast internal RC oscillator clock

• 5-bit clock prescaler

• Configurable trigger mode (immediate, next frame)

• Flexible samples processing by software

• Very low power consumption

Base Identifier (11 bit)

SOF
SPR

Extended Identifier (18 bit)

IDE-bit

RTR-bit

r1

r0

Data
Length
Code

Chapter 14 CAN Sampler

MPC5646C Microcontroller Reference Manual, Rev. 5

306 Freescale Semiconductor

14.3 Memory map and register description
The CAN Sampler registers are listed in Table 14-1.

14.3.1 Control Register (CR)

Table 14-1. CAN Sampler memory map

Base address: 0xFFE7_0000

Address offset Register Location

0x00 Control Register (CR) on page 306

0x04–0x30 Sample registers 0–11 on page 307

Offset: 0x00 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

R
X

_C
O

M
P

LE
T

E

B
U

S
Y

A
C

T
IV

E
_C

K

0 0 0

M
O

D
E

CAN_RX_SEL BRP

C
A

N
_S

M
P

LR
_E

N

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 14-2. Control Register (CR)

Table 14-2. CR field descriptions

Field Description

RX_COMPLETE 0: CAN frame has not been stored in the sample registers
1: CAN frame is stored in the sample registers

BUSY This bit indicates the status of sampling
0: Sampling is complete or has not started
1: Sampling is ongoing

ACTIVE_CK This bit indicates which is current clock for sample registers i.e xmem_ck.
0: ipg_clk_s is currently xmem_ck
1: RC_CLK is currently xmem_ck

MODE 0:Skip the first frame and sample and store the second frame (SF_MODE)
1:Sample and store the first frame (FF_MODE)

Chapter 14 CAN Sampler

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 307

14.3.2 CAN Sampler Sample Registers 0–11

14.4 Functional description
As the CAN Sampler is driven by the divided 16 MHz fast internal RC oscillator to sample properly the
CAN identifier, two modes are possible depending on both CAN baudrate and Low Power mode used:

• Immediate sampling on falling edge detection (first CAN frame): this mode is used when the
divided 16 MHz fast internal RC oscillator is available in LP mode, e.g. STOP or HALT.

• Sampling on next frame (second CAN frame): this mode is used when the divided 16 MHz fast
internal RC oscillator is switched off in LP mode, e.g. STANDBY. Due to the start-up times of both

CAN_RX_SEL These bits determine which RX bit is sampled.
000: Rx0 is selected
001: Rx1 is selected
010: Rx2 is selected
011: Rx3 is selected
100: Rx4 is selected
101: Rx5 is selected

BRP Baudrate Prescaler
These bits are used to set the baudrate before going into standby mode
00000: Prescaler has 1
11111: Prescaler has 32

CAN_SMPLR_EN
1

CAN SAMPLER Enable
This bit enables the CAN Sampler before going into standby or stop mode.
0: CAN Sampler is disabled
1: Can Sampler is enabled

1 When CAN Sampler is enabled (i.e CR[CAN_SAMPLER_EN] = '1') and the peripheral is stopped by a mode
transition through Mode Entry (MC_ME) block, it remains in the stopped state even after exiting the mode. The
peripheral is unavailable for further sampling until and unless, either a device reset occurs or the CAN Sampler is
disabled and enabled again. If the CAN Sampler has to be used again for sampling, it needs to be disabled and
enabled again by programming CR[CAN_SAMPLER_EN] = '0' followed by CR[CAN_SAMPLER_EN] = '1'."

Offsets: 0x04–0x30 (12 registers) Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SR[0:15]

W

Reset The reset values are unknown. They will be filled only after the first CAN sampling.

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
SR[16:31]

W

Reset The reset values are unknown. They will be filled only after the first CAN sampling.

Figure 14-3. CAN Sampler Sample Registers 0–11

Table 14-2. CR field descriptions (continued)

Field Description

Chapter 14 CAN Sampler

MPC5646C Microcontroller Reference Manual, Rev. 5

308 Freescale Semiconductor

the Voltage regulator and the divided 16 MHz fast internal RC oscillator (~10µs), the CAN sampler
would miss the first bits of a CAN identifier sent at 500 kbit/s. Therefore the first identifier is
ignored and the sampling is performed on the first falling edge of after interframe space.

The CAN sampler performs sampling on a user selected CAN Rx port among six Rx ports available,
normally when the device is in standby or stop mode storing the samples in internal registers. The user is
required to configure the baudrate to achieve eight samples per CAN nominal bit. It does not perform any
sort of filtering on input samples. Thereafter the software must enable the sampler by setting
CAN_SMPLR_EN bit in CR register. It then becomes the master controller for accessing the internal
registers implemented for storing samples.

The CAN sampler, when enabled, waits for a low pulse on the selected Rx line, taking it as a valid bit of
the first CAN frame and generates the RC wakeup request which can be used to start the RC oscillator.
Depending upon the mode, it stores the first 8 samples of the 48 bits on selected Rx line or skips the first
frame and stores 8 bits for first 48 bits of second frame. In FF_MODE, it samples the CAN Rx line on RC
clock and stores the 8 samples of first 48 bits (384 samples). In SF_MODE, it samples the Rx and waits
for 11 consecutive dominant bits (11 * 8 samples), taking it as the end of first frame. It then waits for first
low pulse on the Rx, taking it as a valid Start of Frame (SOF) of the second frame. The sampler takes 384
samples (48 bytes * 8) using the RC clock (configuring 8 samples per nominal bit) of the second frame,
including the SOF bit. These samples are stored in consecutive addresses of the (12 x 32) internal registers.
RX_COMPLETE bit is set to ‘1’, indicating that sampling is complete.

Software should now process the sampled data by first becoming master for accessing samples internal
registers by resetting CAN_SMPLR_EN bit. The sampler will need to be enabled again to start waiting for
a new sampling routine.

14.4.1 Enabling/disabling the CAN sampler

The CAN sampler is disabled on reset and the CPU is able to access the 12 registers used for storing
samples. The CAN Sampler must be enabled before going into standby or stop mode by setting
CAN_SMPLR_EN bit in the Control Register (CR) by writing ‘1’ to this bit.

Any activity on selected Rx line, the sampler enables the divided 16 MHz fast internal RC oscillator. When
CAN_SMPLR_EN is reset to 0, the sampler should at least receive three RC clock pulses to reset itself,
after which the RC can be switched off.

When the software wishes to access the sample registers contents it must first reset the CAN_SMPLR_EN
bit by writing a ‘0’. Before accessing the register contents it must monitor Active_CK bit for ‘0’.When this
bit is reset it can safely access the (12 x 32) sample registers. While shifting from normal to sample mode
and vice versa, the sample register signals must be static and inactive to ensure the data is not corrupt.

14.4.2 Selecting the Rx port

One Rx port can be selected per sampling routine, which port to be sampled is selected by CAN_RX_SEL.

Chapter 14 CAN Sampler

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 309

14.4.3 Baudrate generation

Sampling is performed at a baudrate that is set by the software as a multiple of RC oscillator frequency of
62.5 ns (assuming RC is configured for high frequency mode, that is, 16 MHz). User must set the baudrate
prescaler (BRP) such that 8 samples per bit are achieved.

Baudrate setting must be made by software before going into standby or stop mode. This is done by setting
BRP bits 5:1 in Control register. The reset value of BRP is 00000 and can be set to max. 11111 which gives
a prescale value of BRP+1 thus providing a BRP range of 1 to 32.

• Max. bitrate supported for sampling is 2 Mbit/s using BRP as 1

• Min. bitrate supported for sampling is 62.5 kbit/s using BRP as 32

For example, suppose system is transmitting at 125 kbit/s. In this case, nominal bit period:

T=1/(125*103)s =8*10-3*10-3s = 8 s Eqn. 14-1

To achieve 8 samples per bit

Sample period= 8/8 s =1 s

BRP = 1 s/62.5ns = 16. Thus in this case BRP = 01111

Table 14-3. Internal multiplexer correspondence

CAN_RX_SEL Rx selected

000 CAN0RX on PB[1]

001 CAN1RX on PC[11]

010 CAN2RX on PE[9]

011 CAN3RX on PE[9]

100 CAN4RX on PC[11]

101 CAN5RX on PE[0]



 



Chapter 14 CAN Sampler

MPC5646C Microcontroller Reference Manual, Rev. 5

310 Freescale Semiconductor

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 311

——— Core platform modules ———

MPC5646C Microcontroller Reference Manual, Rev. 5

312 Freescale Semiconductor

THE PAGE IS INTENTIONALLY LEFT BLANK

Chapter 15 e200z0h Core

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 313

Chapter 15
e200z0h Core

15.1 Overview
The e200z0h processor family is a set of CPU cores that implement cost-efficient versions of the
Power Architecture technology. These processors are designed for deeply embedded control applications
which require low cost solutions rather than maximum performance.

The e200z0h processor integrates an integer execution unit, branch control unit, instruction fetch and
load/store units, and a multi-ported register file capable of sustaining three read and two write operations
per clock. Most integer instructions execute in a single clock cycle. Branch target prefetching is performed
by the branch unit to allow single-cycle branches in some cases.

The e200z0h core is a single-issue built on Power Architecture technology with 32-bit general purpose
registers (GPRs). All arithmetic instructions that execute in the core operate on data in GPRs.

Instead of the base Power Architecture Book E instruction set support, the e200z0h core only implements
the VLE (variable-length encoding) APU, providing improved code density. The VLE APU is further
documented in the Power Architecture VLE APU Definition, a separate document.

15.2 Features
The following is a list of some of the key features of the e200z0h core:

• 32-bit Power Architecture, VLE-only programmer’s model

• Single issue, 32-bit CPU

• Implements the VLE APU for reduced code footprint

• In-order execution and retirement

• Precise exception handling

• Branch processing unit

— Dedicated branch address calculation adder

• Branch acceleration using Branch Target Buffer

• Supports independent instruction and data accesses to different memory subsystems, such as
SRAM and flash memory via independent Instruction and Data bus interface units (BIUs).

• Load/store unit

— 1 cycle load latency

— Fully pipelined

— Big-endian support only

— Misaligned access support

— Zero load-to-use pipeline bubbles for aligned transfers

• Power management

— Low power design

Chapter 15 e200z0h Core

MPC5646C Microcontroller Reference Manual, Rev. 5

314 Freescale Semiconductor

— Power saving modes: nap, sleep, and wait

— Dynamic power management of execution units

• Testability

— Synthesizeable, full MuxD scan design

— ABIST/MBIST for optional memory arrays

15.2.1 Microarchitecture summary

The processor utilizes a four stage pipeline for instruction execution. The Instruction Fetch (stage 1),
Instruction Decode/Register file Read/Effective Address Calculation (stage 2), Execute/Memory Access
(stage 3), and Register Writeback (stage 4) stages operate in an overlapped fashion, allowing single clock
instruction execution for most instructions.

The integer execution unit consists of a 32-bit Arithmetic Unit (AU), a Logic Unit (LU), a 32-bit Barrel
shifter (Shifter), a Mask-Insertion Unit (MIU), a Condition Register manipulation Unit (CRU), a
Count-Leading-Zeros unit (CLZ), a 8 x 32 Hardware Multiplier array, result feed-forward hardware, and
a hardware divider.

Arithmetic and logical operations are executed in a single cycle with the exception of the divide and
multiply instructions. A Count-Leading-Zeros unit operates in a single clock cycle.

The Instruction Unit contains a PC incrementer and a dedicated Branch Address adder to minimize delays
during change of flow operations. Sequential prefetching is performed to ensure a supply of instructions
into the execution pipeline. Prefetched instructions are placed into an instruction buffer with 4 entries, each
capable of holding a single 32-bit instruction or a pair of 16-bit instructions.

Conditional branches which are not taken execute in a single clock. Branches with successful target
prefetching have an effective execution time of one clock All other taken branches have an execution time
of two clocks.

Memory load and store operations are provided for byte, halfword, and word (32-bit) data with automatic
zero or sign extension of byte and halfword load data as well as optional byte reversal of data. These
instructions can be pipelined to allow effective single cycle throughput. Load and store multiple word
instructions allow low overhead context save and restore operations. The load/store unit contains a
dedicated effective address adder to allow effective address generation to be optimized. Also, a load-to-use
dependency does not incur any pipeline bubbles for most cases.

The Condition Register unit supports the condition register (CR) and condition register operations defined
by the Power Architecture. The condition register consists of eight 4-bit fields that reflect the results of
certain operations, such as move, integer and floating-point compare, arithmetic, and logical instructions,
and provide a mechanism for testing and branching.

Vectored and autovectored interrupts are supported by the CPU. Vectored interrupt support is provided to
allow multiple interrupt sources to have unique interrupt handlers invoked with no software overhead.

Chapter 15 e200z0h Core

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 315

15.2.1.1 Block diagram

Figure 15-1. e200z0h block diagram

15.2.1.2 Instruction unit features

The features of the e200z0h Instruction unit are:

• 32-bit instruction fetch path supports fetching of 32-bit instruction per clock, or upto two16-bit
VLE instructions per clock

• Instruction buffer with 4each holding a single 32-bit instruction, or a pair of 16-bit instructions

• Dedicated PC incrementer supporting instruction prefetches

CPU

CONTROL LOGIC

LOAD/

DATAADDRESS

STORE
UNIT

INSTRUCTION UNIT

BRANCH
UNIT

PC
UNIT

INSTRUCTION BUFFER

GPRCRSPR

MULTIPLY
UNIT

DATA BUS INTERFACE UNIT

CONTROL

32 32 N

OnCE/NEXUS

CONTROL LOGIC

INTERFACE

CONTROL

DATA

(MTSPR/MFSPR)

INTEGER
EXECUTION

UNIT

EXTERNAL
SPR

CTR
XER

LR

D
A

T
A

A
D

D
R

E
S

S

IN
S

T
R

U
C

T
IO

N
 B

U
S

 IN
T

E
R

F
A

C
E

 U
N

IT

C
O

N
T

R
O

L

32
32

N

Chapter 15 e200z0h Core

MPC5646C Microcontroller Reference Manual, Rev. 5

316 Freescale Semiconductor

• Branch unit with dedicated branch address adder supporting single cycle of execution of certain
branches, two cycles for all others

15.2.1.3 Integer unit features

The e200z0h integer unit supports single cycle execution of most integer instructions:

• 32-bit AU for arithmetic and comparison operations

• 32-bit LU for logical operations

• 32-bit priority encoder for count leading zero’s function

• 32-bit single cycle barrel shifter for shifts and rotates

• 32-bit mask unit for data masking and insertion

• Divider logic for signed and unsigned divide in 5 to 34 clocks with minimized execution timing

• 8x32 hardware multiplier array supports 1 to 4 cycle 32x32->32 multiply (early out)

15.2.1.4 Load/Store unit features

The e200z0h load/store unit supports load, store, and the load multiple / store multiple instructions:

• 32-bit effective address adder for data memory address calculations

• Pipelined operation supports throughput of one load or store operation per cycle

• Dedicated 32-bit interface to memory

15.2.1.5 e200z0h System Bus features

The features of the e200z0h System Bus interface are as follows:

• Independent Instruction and Data Buses

• AMBA AHB2.v6 protocol

• 32-bit address bus plus attributes and control on each bus

• 32-bit read data bus for Instruction Interface

• Separate uni-directional 32-bit read data bus and 32-bit write data bus for Data Interface

• Overlapped, in-order accesses

15.2.1.6 Nexus3+ features

The Nexus3+ module is compliant with Class 3 of the IEEE-ISTO 5001-2008 standard, with additional
Class 4 features available. See Section 42.2.1, NDI Features.

15.3 Core registers and programmer’s model
This section describes the registers implemented in the e200z0h core. It includes an overview of registers
defined by the Power Architecture Book E architecture, highlighting differences in how these registers are
implemented in the e200z0h core, and provides a detailed description of e200z0h-specific registers. Full

Chapter 15 e200z0h Core

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 317

descriptions of the architecture-defined register set are provided in Power Architecture Book E
Specification.

The Power Architecture Book E defines register-to-register operations for all computational instructions.
Source data for these instructions are accessed from the on-chip registers or are provided as immediate
values embedded in the opcode. The three-register instruction format allows specification of a target
register distinct from the two source registers, thus preserving the original data for use by other
instructions. Data is transferred between memory and registers with explicit load and store instructions
only.

Figure 15-2 and Figure 15-3 show the e200z0h register set including the registers which are accessible
while in supervisor mode, and the registers which are accessible in user mode. The number to the right of
the special-purpose registers (SPRs) is the decimal number used in the instruction syntax to access the
register (for example, the integer exception register (XER) is SPR 1).

NOTE
e200z0h is a 32-bit implementation of the Power Architecture Book E
specification. In this document, register bits are sometimes numbered from
bit 0 (Most Significant Bit) to 31 (Least Significant Bit), rather than the
Book E numbering scheme of 32:63, thus register bit numbers for some
registers in Book E are 32 higher.

Where appropriate, the Book E defined bit numbers are shown in
parentheses.

Chapter 15 e200z0h Core

MPC5646C Microcontroller Reference Manual, Rev. 5

318 Freescale Semiconductor

Figure 15-2. e200z0h Supervisor mode programmer’s model

SPR General

Exception Handling/Control Registers
Save and Restore

Machine State
MSR

PVR

Processor Control Registers

SUPERVISOR Mode Programmer’s Model

SPRG0

SPRG1

SPR 272

SPR 273

SRR0

SRR1

CSRR0

CSRR1

DSRR0

DSRR1

SPR 26

SPR 27

SPR 58

SPR 59

SPR 574

SPR 575

Processor ID

PIR SPR 286

Interrupt Vector Prefix

IVPR SPR 63

1 - These e200z0h specific registers may not
be supported by other Power Architecture
processors

2 - Optional registers defined by the

Processor Version

Hardware Implementation
Dependent1

HID0

HID1

SPR 1008

SPR 1009

SPR 9

General-Purpose
Registers

Count Register

CTR

SPR 8

Link Register

LR

Condition Register

CR
GPR0

GPR1

GPR31

SPR 1

XER

XER

General Registers

SPR 287

System Version1

SVR SPR 1023

ESR SPR 62

Exception Syndrome

Data Exception Address

DEAR SPR 61

Machine Check
Syndrome Register

MCSR SPR 572

Memory Management Registers

Process ID

PID0 SPR 48

Configuration (Read-only

MMUCFG SPR 1015

Cache Registers

SPR 515

Cache Configuration
(Read-only)

L1CFG0

BTB Control1

SPR 1013BUCSR

BTB Registers

Debug Registers2

Debug Control

DBCR0

DBCR1

DBCR2

DBCR41

DBCR61

DBERC01

DEVENT1

DDAM1

SPR 308

SPR 309

SPR 310

SPR 563

SPR 603

SPR 569

SPR 975

SPR 576

Instruction Address
Compare

IAC1

IAC2

IAC3

IAC4

SPR 312

SPR 313

SPR 314

SPR 315

Data Address Compare

DAC1

DAC2

SPR 316

SPR 317

Debug Status

DBSR SPR 304

Data Value Compare

DVC1

DVC2

SPR 318

SPR 319

Chapter 15 e200z0h Core

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 319

Figure 15-3. e200z0h User mode program model

General purpose registers (GPRs) are accessed through instruction operands. Access to other registers can
be explicit (by using instructions for that purpose such as Move to Special Purpose Register (mtspr) and
Move from Special Purpose Register (mfspr) instructions) or implicit as part of the execution of an
instruction. Some registers are accessed both explicitly and implicitly.

15.3.1 Unimplemented SPRs and read-only SPRs
e200z0h fully decodes the SPR field of the mfspr and mtspr instructions. If the SPR specified is undefined
and not privileged, an illegal instruction exception is generated. If the SPR specified is undefined and
privileged and the CPU is in user mode (MSR[PR=1]), a privileged instruction exception is generated. If
the SPR specified is undefined and privileged and the core is in supervisor mode (MSR[PR=0]), an illegal
instruction exception is generated.

For the mtspr instruction, if the SPR specified is read-only and not privileged, an illegal instruction
exception is generated. If the SPR specified is read-only and privileged and the core is in user mode

USER Mode Programmer’s Model

SPR 9

General-Purpose
Registers

Count Register

CTR

SPR 8

Link Register

LR

Condition Register

CR
GPR0

GPR1

GPR31

SPR 1

XER

XER

General Registers

Cache Registers

SPR 515

Cache Configuration
(Read-only)

L1CFG0

Debug

DEVENT SPR 975

DDAM SPR 576

Chapter 15 e200z0h Core

MPC5646C Microcontroller Reference Manual, Rev. 5

320 Freescale Semiconductor

(MSR[PR=1]), a privileged instruction exception is generated. If the SPR specified is read-only and
privileged and the core is in supervisor mode (MSR[PR=0]), an illegal instruction exception is generated.

For e200z0h, the following SPRs are not implemented and attempted access via a mtspr or mfspr
instruction will result in an unimplemented instruction exception, unless the register is privileged and the
access attempt is made in user mode, in which case a privileged instruction exception will occur.

15.4 Instruction summary
e200z0h supports all VLE instructions described in the Power Architecture VLE APU Definition version
1.2 together with the additional instructions for context save/restore.

Table 15-1. List of Unimplemented SPRs

Type Name

TImebase DEC, DECAR, TCR, TSR, TBU, TBL

Software-Use Special
Purpose Registers

USPRG0, SPRG2-7

Interrupt Vector Offset
Registers

IVOR0-151

1 These SPRs are hardwired to specific values, and are readable, but a
mtspr will result in an unimplemented or privileged exception.

Chapter 16 e200z4d Core

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 321

Chapter 16
e200z4d Core
This chapter provides an overview of the e200z4d microprocessor core present in this device. It includes
the following:

• An overview of the core, including the block diagram (Figure 16-1)

• A summary of the feature set for this core (see Section 16.1, “Features”)

— A description of the execution units (see Section 16.1.1, “Execution Unit Features”)

— A description of the memory management architecture (see Section 16.1.3, “Memory
management unit features”)

— High-level details of the core memory and coherency model (see Section 16.1.4, “External core
complex interface features”)

— High-level details of the Nexus 3+ features (see Section 16.1.5, “Nexus 3+ features”)

• A summary of the programming model for this core (see Section 16.2, “Programming model”)

— An overview of the register set (see Section 16.2.1, “Register set”)

— An overview of the instruction set (see Section 16.2.2, “Instruction set”)

— An overview of interrupts and exception handling (see Section 16.2.3, “Interrupts and
Exception Handling”)

• A summary of instruction pipeline and flow (see Section 16.3, “Microarchitecture summary”)

a) Overview

The e200z4d processor family is a set of CPU cores that implement low-cost versions of the Power
Architecture technology.

The e200z4d is a dual-issue design based on the Power Architecture with 64-bit general purpose registers
(GPRs). Power Architecture Book E floating-point instructions are not supported in hardware, but are
trapped and may be emulated by software.

An Embedded Floating-point (EFPU) APU is provided to support real-time single-precision embedded
numerics operations using the general-purpose registers.

A Signal Processing Extension (SPE) APU is provided to support real-time SIMD fixed point and
single-precision, embedded numerics operations using the general-purpose registers. All arithmetic
instructions that execute in the core operate on data in the general purpose registers (GPRs). The GPRs
have been extended to 64-bits in order to support vector instructions defined by the SPE APU. These
instructions operate on a vector pair of 16-bit or 32-bit data types, and deliver vector and scalar results.

In addition to the base Power Architecture Book E instruction set support, the e200z4d core also
implements the VLE (variable-length encoding) technology, providing improved code density. The VLE
technology is further documented in “Power Architecture VLE Definition, Version 1.03", a separate
document.

The e200z4d processor integrates a pair of integer execution units, a branch control unit, instruction fetch
unit and load/store unit, and a multi-ported register file capable of sustaining six read and three write

Chapter 16 e200z4d Core

MPC5646C Microcontroller Reference Manual, Rev. 5

322 Freescale Semiconductor

operations per clock. Most integer instructions execute in a single clock cycle. Branch target prefetching
is performed by the branch unit to allow single-cycle branches in many cases.

The e200z4d contains a 4 Kb Instruction Cache as well as a Memory Management Unit. A Nexus Class
3+ module is also integrated.

Figure 16-1 shows the block diagram for the device.

Figure 16-1. e200z4d Block Diagram

16.1 Features
Key features of the e200z4d are summarized as follows:

• Dual-issue, 32-bit Power ISA-compliant core

CPU

CONTROL LOGIC

LOAD/

DATA

MEMORY
MANAGEMENT

UNIT

ADDRESS

STORE
UNIT

INSTRUCTION UNIT

BRANCH
UNIT

PC
UNIT

INSTRUCTION BUFFER

GPRCRSPR

MULTIPLY
UNITS

SPE
UNIT

DATA BUS INTERFACE UNIT

CONTROL

32 64 N

EXTENDED
FUNCTIONAL

CONTROL

INST

DATA

OnCE/NEXUS

CONTROL LOGIC
UNIT

INTERFACE

INTERFACE

CONTROL

DATA

(MTSPR/MFSPR)

INTEGER
EXECUTION

UNITS

EXTERNAL
SPR

CTR
XER

LR

D
A

T
A

A
D

D
R

E
S

S

IN
S

T
R

U
C

T
IO

N
 B

U
S

 IN
T

E
R

F
A

C
E

 U
N

IT

C
O

N
T

R
O

L

32
64

N

Chapter 16 e200z4d Core

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 323

• Implementation of the VLE category for reduced code footprint

• In-order execution and retirement

• Precise exception handling

• Branch processing unit (BPU)

— Dedicated branch address calculation adder

— Branch target prefetching using an 8-entry branch target buffer (BTB)

• Supports independent instruction and data accesses to different memory subsystems, such as
SRAM and flash memory by means of independent instruction and data bus interface units.

• Load/store unit

• 64-bit general-purpose register file

• Dual advanced high-performance (AHB) 2.v6 64-bit system buses

• Memory management unit (MMU) with 16-entry fully associative TLB and multiple page-size
support

• 4 KB, 2/4-way set-associative instruction cache

• Signal Processing Extension (SPE1.1) APU supporting SIMD fixed-point operations using the
64-bit General Purpose Register file.

• Embedded Floating-Point (EFP2) APU supporting scalar and vector SIMD single-precision
floating-point operations, using the 64-bit General Purpose Register file.

• Nexus Class 3+ real-time development unit

• Power management

— Low power design—extensive clock gating

— Power saving modes: nap, sleep, wait

— Dynamic power management of execution units, cache, and MMU

See the following sections for more details about specific units.

16.1.1 Execution Unit Features

The following subsections describes the execution units main features.

16.1.1.1 Instruction Unit Features

The instruction unit features the following:

• 64-bit path to cache supports fetching of two 32-bit Power ISA instructions or four 16-bit VLE
instructions per clock cycle.

• Instruction buffer holds up to eight 32-bit Power ISA instructions or sixteen 16-bit VLE
instructions.

• Dedicated program counter (PC) incrementer supports instruction prefetches.

• Branch unit with dedicated branch address adder and branch target buffer supports single-cycle
execution of successfully predicted branches.

Chapter 16 e200z4d Core

MPC5646C Microcontroller Reference Manual, Rev. 5

324 Freescale Semiconductor

16.1.1.2 Integer unit features

The integer units feature support for single-cycle execution of most integer instructions, as follows:

• 32-bit AU for arithmetic and comparison operations

• 32-bit LU for logical operations

• 32-bit priority encoder for count-leading-zeros function

• 32-bit single-cycle barrel shifter for static shifts and rotates

• 32-bit mask unit for data masking and insertion

• Divider logic for signed and unsigned divide in  14 clock cycles with minimized execution timing
(Divide instruction will not be issued twice.)

• Pipelined 32  32 hardware multiplier array supports 32  3232 multiply with 2 clock latency,
1 clock throughput

16.1.1.3 Load/Store unit features

The load/store unit supports load, store, and load multiple/store multiple instructions by means of the
following:

• 32-bit effective address adder for data memory address calculations

• Pipelined operation supports throughput of one load or store operation per cycle

• Dedicated 64-bit interface to memory supports saving and restoring of up to two registers per cycle
for load multiple and store multiple word instructions

16.1.2 L1 Cache features

The L1 cache features the following:

• 4 KB, 2- or 4-way configurable set-associative instruction cache

• 32-bit address bus plus attributes and control

• Supports Cache line locking

• Supports Way allocation

• Supports Tag and data parity or multi-bit EDC protection with correction/auto-invalidation
capability

• Supports Tag and Data Double Error Detection

• Correction/Auto-invalidation capability

16.1.3 Memory management unit features

The memory management unit features the following:

• Virtual memory support

• 32-bit virtual and physical addresses

• 8-bit process identifier

• 16-entry fully associative TLB

Chapter 16 e200z4d Core

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 325

• Hardware assist for TLB miss exceptions

• Per-entry multiple page size support from 1 Kbyte to 4 Gbyte

• Entry flush protection

16.1.4 External core complex interface features

The core complex interface features the following:

• Independent instruction and data buses

• Advanced microcontroller bus architecture (AMBA) AHB 2.v6 protocol

• 32-bit address bus, 64-bit data bus, plus attributes and control

• Data interface provides separate uni-directional 64-bit read and write data buses

• Support for HCLK running at a slower rate than CPU clock

16.1.5 Nexus 3+ features

The Nexus 3+ module provides real-time development capabilities for e200z4d processors in compliance
with the IEEE-ISTO 5001-2010 standard. The ‘3+’ suffix indicates that some Nexus Class 4 features are
available. A portion of the pin interface (the JTAG port) is also shared with the OnCE/Nexus 1 unit.

The following features are implemented:

• Program trace by means of branch trace messaging.

— Branch trace messaging displays program flow discontinuities (direct and indirect branches,
exceptions, etc.), allowing the development tool to interpolate what transpires between the
discontinuities. Thus, static code may be traced.

• Data trace by means of data write messaging and data read messaging.

— Provides the capability for the development tool to trace reads and/or writes to selected internal
memory resources.

• Ownership trace by means of ownership trace messaging (OTM).

— OTM facilitates ownership trace by providing visibility of which process ID or operating
system task is activated.An ownership trace message is transmitted when a new process/task is
activated, allowing the development tool to trace ownership flow.

— Allows enhanced download/upload capabilities.

• Data acquisition messaging

— Allows code to be instrumented to export customized information to the Nexus auxiliary output
port.

• Watchpoint messaging by means of the auxiliary interface

• Watchpoint trigger enable of program and/or data trace messaging

• Run-time access to the processor memory map by means of the JTAG port

All features are controllable and configurable by means of the JTAG port.

Chapter 16 e200z4d Core

MPC5646C Microcontroller Reference Manual, Rev. 5

326 Freescale Semiconductor

16.2 Programming model
This section describes the register model, instruction model, and the interrupt model as they are defined
by the Power ISA, Freescale EIS, and the e200z4d implementation.

16.2.1 Register set

Figure 16-2 and Figure 16-3 show the complete e200z4d register set, including the sets of the registers that
are accessible in supervisor mode and the set of registers that are accessible in user mode. The number to
the right of the special-purpose registers (SPRs) is the decimal number used in the instruction syntax to
access the register. For example, the integer exception register (XER) is SPR 1.

Figure 16-2 shows the registers that can be accessed by supervisor-level software. User-level software can
access only those registers listed in Figure 16-3.

Chapter 16 e200z4d Core

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 327

Figure 16-2. e200z4d Supervisor Mode Programmer’s Model

ESR SPR 62

Exception Syndrome

Data Exception Address

SPR General
Exception Handling/Control Registers

Save and Restore

MMU Assist

Memory Management Registers

Machine State
MSR

PVR

Processor Control Registers

Decrementer
Timers

Time Base (writeonly)

MAS0

MAS1

MAS2

MAS3

MAS4

MAS6

SPR 624

SPR 625

SPR 626

SPR 627

SPR 628

SPR 630

SPRG0

SPRG1

SPRG2

SPRG3

SPRG4

SPRG5

SPRG6

SPRG7

SPRG8

SPRG9

SPR 272

SPR 273

SPR 274

SPR 275

SPR 276

SPR 277

SPR 278

SPR 279

SPR 604

SPR 605

DEAR SPR 61

SPR 26

SPR 27

SPR 58

SPR 59

SPR 574

SPR 575

SPR 570

SPR 571

TBL SPR 284

TBU SPR 285

DEC SPR 22

Process ID

PID0 SPR 48

Processor ID

PIR SPR 286
DECAR SPR 54

IVOR0

IVOR1

IVOR15

SPR 400

SPR 401

SPR 415

Interrupt Vector Prefix

IVPR SPR 63

Interrupt Vector Offset

Control and Status

TCR SPR 340

TSR SPR 336

SPR 528

SPR 530

IVOR322

IVOR342

Processor Version

Control & Configuration

 SPR 1012

 SPR 1015

SPR 688

SPR 689

Hardware Implementation
Dependent1

HID0

HID1

SPR 1008

SPR 1009

MMUCSR0

MMUCFG

TLB0CFG

TLB1CFG

SPR 9

General-Purpose Registers

Count Register

CTR

SPR 8

Link Register

LR

Condition Register

CR GPR0

GPR1

GPR31

SPR 1

XER

XER

General Registers

SPR 256

User SPR

USPRG0

SP E Status and Control

SPR 512SPEFSCR

SPE Register

SPR 287

System Version2

SVR SPR 1023

Machine Check
Syndrome Register

MCSR SPR 572

BTB Control1

SPR 1013BUCSR

BTB Register

SRR0

SRR1

CSRR0

CSRR1

DSRR02

DSRR12

MCSRR02

MCSRR12

Machine Check
Address Register

MCAR SPR 573

Accumulator

ACC

Cache Control

SPR 1011L1CSR1

Cache Registers

SPR 515

Cache Configuration
(Read-only)

L1CFG0

SPR 959L1FINV1SPR 516L1CFG1

IAC1

IAC2

IAC3

IAC4

IAC5

IAC6

IAC7

IAC8

Debug Registers2

Debug Control

DBCR0

DBCR1

DBCR2

DBCR31

DBCR41

DBCR51

DBCR61

DBERC01

SPR 308

SPR 309

SPR 310

SPR 561

SPR 563

SPR 564

SPR 603

SPR 569

Instruction Address Compare

SPR 312

SPR 313

SPR 314

SPR 315

SPR 565

SPR 566

SPR 567

SPR 568

Data Address Compare

DAC1

DAC2

SPR 316

SPR 317

Debug Status

DBSR SPR 304

Debug Counter1

DBCNT SPR 562 Data Value Compare (64-bit)

DVC1

DVC2

SPR 318

SPR 319

1 - These e200-specific registers may not be supported by other processors built on Power Architecture technology
2 - Optional registers defined by the Power ISA embedded architecture
3 - Read-only registers

Cache Access Registers

CDACNTL

CDADATA

DCR 351

DCR 350

PSU Registers

PSCR

PSSR

PSHR

PSLR

DCR 272

DCR 273

DCR 274

DCR 275

Device Control Registers (DCRs) 1

PSCTR

PSUHR

PSULR

DCR 276

DCR 277

DCR 278

Chapter 16 e200z4d Core

MPC5646C Microcontroller Reference Manual, Rev. 5

328 Freescale Semiconductor

Figure 16-3 shows the user-mode special-purpose registers.

Figure 16-3. e200z4d User mode programmer’s model SPRs

The GPRs are accessed through instruction operands. Access to other registers can be explicit, by using
instructions for that purpose such as the Move to Special-Purpose Register (mtspr) and Move from
Special-Purpose Register (mfspr) instructions. Access to other registers can also be implicit, as part of the
execution of an instruction. Some registers are accessed both explicitly and implicitly.

16.2.2 Instruction set

The e200z4d supports the Power ISA instruction set for 32-bit embedded implementations. This is
composed primarily of the user-level instructions defined by the user instruction set architecture (UISA).
The e200z4d does not include the Power ISA floating-point, load string, or store string instructions.

The e200z4d core implements the following architectural extensions:

• The VLE category

• The integer select category (ISEL)

• Enhanced debug and the debug notify halt instruction categories

• The machine check category

• The WAIT category

• The volatile context save/restore category

• The embedded floating-point unit, version 2

• The signal processing extension unit, version 1.1

• The cache line locking category

• The enhanced reservations category

Timers (Read only)

Time Base

SPR 515

Cache Configuration

L1CFG0

TBL SPR 268

TBU SPR 269

Cache Register
(Read-only)

SPR 9

General-Purpose Registers

Count Register

CTR

SPR 8

Link

LR

Condition Register

CR

SPR 1

XER

XER

General Registers

SPR General (Read-only)

Control Registers

SPRG4

SPRG5

SPRG6

SPRG7

SPR 260

SPR 261

SPR 262

SPR 263

SPR 256

User SPR

USPRG0

SPE Status and
Control Register

SPR 512SPEFSCR

Category Registers

GPR0

GPR1

•

•

GPR31

Accumulator

ACC

SPR 516L1CFG1

•

Chapter 16 e200z4d Core

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 329

16.2.3 Interrupts and Exception Handling

The e200z4d core supports an extended exception handling model with nested interrupt capability and
extensive interrupt vector programmability. In general, interrupt processing begins with an exception that
occurs due to external conditions, errors, or program execution problems. When an exception occurs, the
processor checks whether interrupt processing is enabled for that particular exception. If enabled, the
interrupt causes the state of the processor to be saved in the appropriate registers and begins execution of
the handler located at the associated vector address for that particular exception.

Once the handler is executing, the implementation may need to check bits in the exception syndrome
register (ESR), the machine check syndrome register (MCSR), or the signal processing and embedded
floating-point status and control register (SPEFSCR) to verify the specific cause of the exception and take
appropriate action.

The core complex supports the interrupts described in Table 16-1.

Table 16-1. Interrupt Registers

Register Description

Noncritical Interrupt Registers

SRR0 Save/restore register 0—On noncritical interrupts, stores either the address of the instruction causing
the exception or the address of the instruction that executes after the rfi instruction.

SRR1 Save/restore register 1—Saves machine state on noncritical interrupts and restores machine state
after an rfi instruction is executed.

Critical Interrupt Registers

CSRR0 Critical save/restore register 0—On critical interrupts, stores either the address of the instruction
causing the exception or the address of the instruction that executes after the rfci instruction.

CSRR1 Critical save/restore register 1—Saves machine state on critical interrupts and restores machine state
after an rfci instruction is executed.

Debug Interrupt Registers

DSRR0 Debug save/restore register 0—On debug interrupts, stores either the address of the instruction
causing the exception or the address of the instruction that executes after the rfdi instruction.

DSRR1 Debug save/restore register 1—Saves machine state on debug interrupts and restores machine state
after an rfdi instruction is executed.

Machine Check Interrupts

MCSRR0 Machine check save/restore register 0—On machine check interrupts, stores either the address of the
instruction causing the exception or the address of the instruction that executes after the rfmci
instruction.

MCSRR1 Machine check save/restore register 1—Saves machine state on machine check interrupts and
restores those values when an rfmci instruction is executed

Syndrome Registers

MCSR Machine check syndrome register—Saves machine check syndrome information on machine check
interrupts.

Chapter 16 e200z4d Core

MPC5646C Microcontroller Reference Manual, Rev. 5

330 Freescale Semiconductor

Each interrupt has an associated interrupt vector address, obtained by concatenating IVPR[32–47] with the
address index in the associated IVOR (that is, IVPR[32–47] || IVORn[48–59] || 4b0000). The resulting
address is that of the instruction to be executed when that interrupt occurs. IVPR and IVOR values are
indeterminate on reset and must be initialized by the system software using mtspr.

Table 16-2 lists IVOR registers implemented on the e200z4d and the associated interrupts.

ESR Exception syndrome register—Provides a syndrome to differentiate among the different kinds of
exceptions that generate the same interrupt type. Upon generation of a specific exception type, the
associated bits are set and all other bits are cleared.

SPE Interrupt Registers

SPEFSCR Signal processing and embedded floating-point status and control register—Provides interrupt control
and status as well as various condition bits associated with the operations performed by the SPE. See
Table 16-2 for a list of the associated IVORs.

Other Interrupt Registers

DEAR Data exception address register—Contains the address that was referenced by a load, store, or cache
management instruction that caused an alignment, data TLB miss, or data storage interrupt.

IVPR
IVORs

Together, IVPR[32–47] || IVORn [48–59] || 4bfr0000 define the address of an interrupt-processing
routine. See Table 16-2 for more information.

MSR Machine state register—Defines the state of the processor. When an interrupt occurs, it is updated to
preclude unrecoverable interrupts from occurring during the initial portion of the interrupt handler

Table 16-2. Exceptions and conditions

IVORn Interrupt Type IVORn Interrupt Type

None1

1 Vector to [p_rstbase[0:29]] || 2b00.

System reset (not an interrupt) 9 AP unavailable (not used by this core)

02

2 Autovectored external and critical input interrupts use this IVOR. Vectored interrupts supply an interrupt vector
offset directly.

Critical input 10 Decrementer

1 Machine check 11 Fixed-interval timer

Machine check (non-maskable interrupt) 12 Watchdog timer

2 Data storage 13 Data TLB error

3 Instruction storage 14 Instruction TLB error

42 External input 15 Debug

5 Alignment 16–31 Reserved

6 Program 32 SPE unavailable

7 Floating-point unavailable 33 SPE data exception

8 System call 34 SPE round exception

Table 16-1. Interrupt Registers (continued)

Register Description

Chapter 16 e200z4d Core

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 331

16.3 Microarchitecture summary
The e200z4d processor utilizes a five-stage pipeline for instruction execution. These stages operate in an
overlapped fashion, allowing single clock-cycle instruction execution for most instructions. The stages are
as follows:

1. Instruction fetch

2. Instruction decode/register file read/effective address calculation

3. Execute 0/memory access 0

4. Execute 1/memory access 1

5. Register write-back

The integer execution units consist of a 32-bit arithmetic unit, a logic unit, a 32-bit barrel shifter, a
mask-insertion unit, a condition register manipulation unit, a count-leading-zeros unit, a 32  32 hardware
multiplier array, and result feed-forward hardware. Integer unit 1 also supports hardware division.

Most arithmetic and logical operations are executed in a single cycle with the exception of multiply, which
is implemented with a 2-cycle pipelined hardware array, and the divide instructions. A count-leading-zeros
unit operates in a single clock cycle.

The instruction unit contains a program counter incrementer and dedicated branch address adder to
minimize delays during change-of-flow operations. Sequential prefetching is performed to ensure a supply
of instructions into the execution pipeline. Branch target prefetching using the BTB is performed to
accelerate taken branches. Prefetched instructions are placed into an 8-entry instruction buffer, with each
entry capable of holding a single 32-bit instruction or a pair of 16-bit instructions.

Branch target addresses are calculated in parallel with branch instruction decode. Conditional branches
that are not taken execute in a single clock cycle. Branches with successful BTB target prefetching have
an effective execution time of one clock cycle if correctly predicted. All other taken branches have an
execution time of two clock cycles.

Memory load and store operations are provided for byte, half-word, word (32-bit), and double-word data
with automatic zero or sign extension of byte and half-word load data as well as optional byte reversal of
data. These instructions can be pipelined to allow effective single-cycle throughput. Load and store
multiple word instructions allow low-overhead context save and restore operations. The load/store unit
contains a dedicated effective address adder to allow effective address generation to be optimized. There
is a single load-to-use bubble for load instructions.

The condition register unit supports the condition register (CR) and condition register operations defined
by the architecture. The condition register consists of eight 4-bit fields that reflect the results of certain
operations, such as move, integer and floating-point compare, arithmetic, and logical instructions. It also
provides a mechanism for testing and branching.

Vectored and autovectored interrupts are supported by the CPU. Vectored interrupt support is provided to
allow multiple interrupt sources to have unique interrupt handlers invoked with no software overhead.

The SPE category supports vector instructions operating on 8-, 16-, and 32-bit fixed-point data types, as
well as 32-bit IEEE Std. 754™ single-precision floating-point formats. It supports single-precision
floating-point operations in a pipelined fashion.

Chapter 16 e200z4d Core

MPC5646C Microcontroller Reference Manual, Rev. 5

332 Freescale Semiconductor

The 64-bit general-purpose register file is used for source and destination operands, and there is a unified
storage model for single-precision floating-point data types of 32-bits and the normal integer type. Low
latency fixed-point and floating-point add, subtract, multiply, multiply-add, multiply-sub, divide,
compare, and conversion operations are provided. Most operations can be pipelined.

16.4 Availability of detailed documentation
Detailed documentation of the e200z4d core will be provided in a separate core reference manual (CRM).
This CRM is available online at http://www.freescale.com.

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 333

Chapter 17
Enhanced Direct Memory Access (eDMA)

17.1 Introduction
The enhanced direct memory access controller (eDMA) is a second-generation platform block capable of
performing complex data movements through 32 programmable channels, with minimal intervention from
the host processor. The hardware microarchitecture includes a DMA engine that performs source and
destination address calculations, and the actual data movement operations, along with an SRAM-based
memory containing the transfer control descriptors (TCD) for the channels. This implementation
minimizes the overall block size.

Figure 17-1 is a block diagram of the eDMA module.

Figure 17-1. DMA block diagram

S
la

ve
 in

te
rfa

ce

eDMA

eDMA Done

S
ys

te
m

 b
us

Data path ControlAddress

Program model/

Slave write data

Slave write address

Bus write data

Slave read data

Bus address

eDMA engine

TCD0

TCDn-1*

eDMA Peripheral

Bus read data

channel arbitration

Request

path

SRAM
transfer control descriptor

(TCD)

SRAM

*n = 16 channels

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

334 Freescale Semiconductor

17.2 General features
The eDMA module supports the following features:

• All data movement via dual-address transfers: read from source, write to destination

— Programmable source, destination addresses, transfer size, plus support for enhanced
addressing modes

• Transfer control descriptor organized to support two-deep, nested transfer operations

— An inner data transfer loop defined by a “minor” byte transfer count

— An outer data transfer loop defined by a “major” iteration count

• Channel service request via one of three methods:

— Explicit software initiation

— Initiation via a channel-to-channel linking mechanism for continuous transfers
 – Independent channel linking at end of minor loop and/or major loop

— Peripheral-paced hardware requests (one per channel)

— For all three methods, one service request per execution of the minor loop is required

• Support for fixed-priority and round-robin channel arbitration

• Channel completion reported via optional interrupt requests

— One interrupt per channel, optionally asserted at completion of major iteration count

— Error terminations are optionally enabled per channel, and logically summed together to form
a small number of error interrupt outputs

• Support for scatter/gather eDMA processing

• Support for complex data structures

• Support to cancel transfers via software or hardware

17.3 Device-specific features
• 32 programmable channels to support independent 8-, 16- or 32-bit single value or block transfers

• Support of variable sized queues and circular queues

• Source and destination address registers independently configured to post-incrementor remain
constant

• Each transfer initiated by peripheral, CPU, periodic timer interrupt or eDMA channel request

• Peripheral eDMA request sources possible from DSPI, I2C, 10-bit ADC, 12-bit ADC, LINFlexD,
and eMIOS

• Each eDMA channel able to optionally send interrupt request to CPU on completion of single value
or block transfer

• DMA transfers possible between system memories and all accessible memory mapped locations
including peripheral and registers

• Programmable eDMA Channel Mux allows assignment of any eDMA source to any available
eDMA channel with total of up to 64 request sources

• DMA supports the following functionality:

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 335

— Scatter Gather

— Channel Linking

— Inner Loop Offset

— Arbitration

Fixed Group, fixed channel

Round Robin Group, fixed channel

Round Robin Group, Round Robin Channel

Fixed Group, Round Robin Channel

— Channel preemption

— Cancel channel transfer

• Interrupts – The eDMA has a single interrupt request for each implemented channel and a
combined eDMA Error interrupt to flag transfer errors to the system. Each channel eDMA interrupt
can be enabled or disabled and provides notification of a completed transfer. Refer to the Interrupt
Vector in the Interrupt Controller chapter of the reference manual for the allocation of these
interrupts.

17.4 Memory map/register definition
The eDMA memory map is shown in Table 17-1. The address of each register is given as an offset to the
eDMA base address. Registers are listed in address order, identified by complete name and mnemonic, and
list the type of accesses allowed.

The eDMA’s programming model is partitioned into two regions—the first region defines a number of
registers providing control functions; the second region corresponds to the local transfer control descriptor
memory.

Table 17-2 is a 32-bit view of the eDMA’s memory map.

Table 17-1. eDMA memory map

Base address: 0xFFF4_4000

Address offset Register Location

0x0000 EDMA_CR — eDMA control register on page 338

0x0004 EDMA_ESR — eDMA error status register on page 340

0x0008 Reserved

0x000C EDMA_ERQRL — eDMA enable request low register
(channels 15–00)

on page 342

0x0010 Reserved

0x0014 EDMA_EEIRL — eDMA enable error interrupt low register
(channels 31–00)

on page 343

0x0018 EDMA_SERQR — eDMA set enable request register on page 344

0x0019 EDMA_CERQR — eDMA clear enable request register on page 345

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

336 Freescale Semiconductor

0x001A EDMA_SEEIR — eDMA set enable error interrupt register on page 345

0x001B EDMA_CEEIR — eDMA clear enable error interrupt register on page 345

0x001C EDMA_CIRQR — eDMA clear interrupt request register on page 346

0x001D EDMA_CER — eDMA clear error register on page 346

0x001E EDMA_SSBR — eDMA set start bit register on page 347

0x001F EDMA_CDSBR — eDMA clear done status bit register on page 347

0x0020 Reserved

0x0024 EDMA_IRQRL — eDMA interrupt request low register on page 348

0x0028 Reserved

0x002C EDMA_ERL — eDMA error low register on page 349

0x0030 Reserved

0x0034 EDMA_HRSL — eDMA hardware request status register on page 350

0x0038 – 0x01FF Reserved

0x0100–0x0111F eDMA channel n priority register (EDMA_CPRn) on page 351

0x0110 Reserved

0x1000 TCD00 — eDMA transfer control descriptor 00 on page 352

0x1020 TCD01 — eDMA transfer control descriptor 01 on page 352

0x1040 TCD02 — eDMA transfer control descriptor 02 on page 352

0x1060 TCD03 — eDMA transfer control descriptor 03 on page 352

0x1080 TCD04 — eDMA transfer control descriptor 04 on page 352

0x10A0 TCD05 — eDMA transfer control descriptor 05 on page 352

0x10C0 TCD06 — eDMA transfer control descriptor 06 on page 352

0x10E0 TCD07 — eDMA transfer control descriptor 07 on page 352

0x1100 TCD08 — eDMA transfer control descriptor 08 on page 352

0x1120 TCD09 — eDMA transfer control descriptor 09 on page 352

0x1140 TCD10 — eDMA transfer control descriptor 10 on page 352

0x1160 TCD11 — eDMA transfer control descriptor 11 on page 352

0x1180 TCD12 — eDMA transfer control descriptor 12 on page 352

0x11A0 TCD13 — eDMA transfer control descriptor 13 on page 352

0x11C0 TCD14 — eDMA transfer control descriptor 14 on page 352

Table 17-1. eDMA memory map (continued)

Base address: 0xFFF4_4000

Address offset Register Location

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 337

0x11E0 TCD15 — eDMA transfer control descriptor 15 on page 352

0x1200 Reserved

Table 17-2. eDMA 32-bit memory map

DMA Offset Register

0x0000 DMA Control Register (EDMA_CR)

0x0004 DMA Error Status (EDMA_ESR)

0x0008 Reserved

0x000C DMA Enable Request Low (EDMA_ERQRL, Channels 31-00)

0x0010 Reserved

0x0014 DMA Enable Error Interrupt Low (EDMA_EEIRL, Channels 31-00)

0x0018 DMA Set Enable
Request

(EDMA_SERQR)

DMA Clear Enable
Request

(EDMA_CERQR)

DMA Set Enable Error
Interrupt

(EDMA_SEEIR)

DMA Clear Enable
Error Interrupt

 (EDMA_CEEIR)

0x001C DMA Clear Interrupt
Request

(EDMA_CIRQR)

DMA Clear
 Error

(EDMA_CER)

DMA Set Start Bit
(EDMA_SSBR)

DMA Clear Done
Status Bit

(EDMA_CDSBR)

0x0020 Reserved

0x0024 DMA Interrupt Request Low (EDMA_IRQRL, Channels 31-00)

0x0028 Reserved

0x002C DMA Error Low (EDMA_ERL, Channels 31-00)

0x0030 Reserved

0x0034 DMA Hardware Request Status Low (EDMA_HRSL, Channels 31-00)

0x0038 – 0x00FC Reserved

0x0100 DMA Channel 0
 Priority

(EDMA_CPR0)

DMA Channel 1
 Priority

(EDMA_CPR1)

DMA Channel 2
 Priority

(EDMA_CPR2)

DMA Channel 3
 Priority

(EDMA_CPR3)

0x0104 DMA Channel 4
 Priority

(EDMA_CPR4)

DMA Channel 5
 Priority

(EDMA_CPR5)

DMA Channel 6
 Priority

(EDMA_CPR6)

DMA Channel 7
 Priority

(EDMA_CPR7)

0x0108 DMA Channel 8
 Priority

(EDMA_CPR8)

DMA Channel 9
 Priority

(EDMA_CPR9)

DMA Channel 10
 Priority

(EDMA_CPR10)

DMA Channel 11
 Priority

(EDMA_CPR11)

0x010C DMA Channel 12
 Priority

(EDMA_CPR12)

DMA Channel 13
 Priority

(EDMA_CPR13)

DMA Channel 14
 Priority

(EDMA_CPR14)

DMA Channel 15
 Priority

(EDMA_CPR15)

0x0110 DMA Channel 16
 Priority

(EDMA_CPR16)

DMA Channel 17
 Priority

(EDMA_CPR17)

DMA Channel 18
 Priority

(EDMA_CPR18)

DMA Channel 19
 Priority

(EDMA_CPR19)

0x0114 DMA Channel 20
 Priority

(EDMA_CPR20)

DMA Channel 21
 Priority

(EDMA_CPR21)

DMA Channel 22
 Priority

(EDMA_CPR22)

DMA Channel 23
 Priority

(EDMA_CPR23)

Table 17-1. eDMA memory map (continued)

Base address: 0xFFF4_4000

Address offset Register Location

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

338 Freescale Semiconductor

17.4.1 Register descriptions

17.4.1.1 DMA Control Register (EDMA_CR)

The 32-bit EDMA_CR defines the basic operating configuration of the eDMA.

Arbitration among the channels can be configured to use a fixed priority or a round robin. In fixed-priority
arbitration, the highest priority channel requesting service is selected to execute. The priorities are
assigned by the channel priority registers (see Section 17.4.1.16, “DMA Channel n Priority
(EDMA_CPRn)”). In round-robin arbitration mode, the channel priorities are ignored and the channels are
cycled through, from channel 31 down to channel 0, without regard to priority.

See Figure 17-2 and Table 17-3 for the EDMA_CR definition.

Figure 17-2. DMA Control Register (EDMA_CR)

0x0118 DMA Channel 24
 Priority

(EDMA_CPR24)

DMA Channel 25
 Priority

(EDMA_CPR25)

DMA Channel 26
 Priority

(EDMA_CPR26)

DMA Channel 27
 Priority

(EDMA_CPR27)

0x011c DMA Channel 28
Priority

(EDMA_CPR28)

DMA Channel 29
 Priority

(EDMA_CPR29)

DMA Channel 30
 Priority

(EDMA_CPR30)

DMA Channel 31
 Priority

(EDMA_CPR31)

0x0120 – 0x013C Reserved

0x0140 – 0x0FFC Reserved

0x1000 – 0x11FC TCD00-TCD15

0x1200-0x13fc TCD16-TCD31

Register address: EDMA_Offset + 0x0000 (EDMA_CR)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CX ECX
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R 0 0 0 0 GRP1PRI GRP0PRI

E
M

LM

C
LM

H
A

LT

H
O

E

E
R

G
A

E
R

C
A

E
D

B
G

E
B

W
W

RESET: 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

= Unimplemented

Table 17-2. eDMA 32-bit memory map (continued)

DMA Offset Register

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 339

Table 17-3. DMA Control Register (EDMA_CR) field descriptions

Name Description Value

CX Cancel Transfer 0 Normal operation.
1 Cancel the remaining data transfer. Stop the

executing channel and force the minor loop to be
finished. The cancel takes effect after the last write
of the current read/write sequence. The CXFR bit
clears itself after the cancel has been honored. This
cancel retires the channel normally as if the minor
loop was completed.

ECX Error Cancel Transfer 0 Normal operation.
1 Cancel the remaining data transfer in the same

fashion as the CX cancel transfer. Stop the
executing channel and force the minor loop to be
finished. The cancel takes effect after the last write
of the current read/write sequence. The ECX bit
clears itself after the cancel has been honored. In
addition to cancelling the transfer, the ECX treats the
cancel as an error condition; thus updating the
EDMA_ESR register and generating an optional
error interrupt (see Section 17.4.1.2, “DMA Error
Status (EDMA_ESR)”).

GRP1PRI Channel Group 1 Priority Group 1 priority level when fixed priority group
arbitration is enabled.

GRP0PRI Channel Group 0 Priority Group 0 priority level when fixed priority group
arbitration is enabled.

EMLM Enable Minor Loop Mapping 0 Minor loop mapping disabled. TCDn.word2 is
defined as a 32-bit nbytes field.

1 Minor loop mapping enabled. When set,
 TCDn.word2 is redefined to include individual

enable fields, an offset field and the nbytes field. The
individual enable fields allow the minor loop offset to
be applied to the source address, the destination
address, or both. The nbytes field is reduced when
either offset is enabled.

CLM Continuous Link Mode 0 A minor loop channel link made to itself will go
through channel arbitration before being activated
again.

1 A minor loop channel link made to itself will not go
through channel arbitration before being activated
again. Upon minor loop completion the channel will
active again if that channel has a minor loop channel
link enabled and the link channel is itself. This
effectively applies the minor loop offsets and restarts
the next minor loop.

HALT Halt DMA Operations 0 Normal operation.
1 Stall the start of any new channels. Executing

channels are allowed to complete. Channel
execution will resume when the HALT bit is cleared.

HOE Halt On Error 0 Normal operation.
1 Any error will cause the HALT bit to be set.

Subsequently, all service requests will be ignored
until the HALT bit is cleared.

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

340 Freescale Semiconductor

17.4.1.2 DMA Error Status (EDMA_ESR)

The EDMA_ESR provides information about the last recorded channel error. Channel errors can be caused
by a configuration error (an illegal setting in the transfer control descriptor or an illegal priority register
setting in fixed-arbitration mode) or an error termination to a bus master read or write cycle.

A configuration error is caused when the starting source or destination address, source or destination
offsets, minor loop byte count, and the transfer size represent an inconsistent state. The addresses and
offsets must be aligned on 0-modulo-transfer_size boundaries, and the minor loop byte count must be a
multiple of the source and destination transfer sizes. All source reads and destination writes must be
configured to the natural boundary of the programmed transfer size respectively.

In fixed-arbitration mode, a configuration error is generated when any two channel priority levels are equal
and any channel is activated. The ERRCHN field is undefined for this type of error. All channel priority
levels must be unique before any service requests are made.

If a scatter-gather operation is enabled on channel completion, a configuration error is reported if the
scatter-gather address (DLAST_SGA) is not aligned on a 32-byte boundary. If minor loop channel linking
is enabled on channel completion, a configuration error is reported when the link is attempted if the
TCD.CITER.E_LINK bit is not equal to the TCD.BITER.E_LINK bit. All configuration error conditions
except scatter-gather and minor loop link error are reported as the channel is activated and assert an error
interrupt request if enabled. When properly enabled, a scatter-gather configuration error is reported when
the scatter-gather operation begins at major loop completion. A minor loop channel link configuration
error is reported when the link operation is serviced at minor loop completion.

If a system bus read or write is terminated with an error, the data transfer is immediately stopped and the
appropriate bus error flag is set. In this case, the state of the channel’s transfer control descriptor is updated
by the DMA engine with the current source address, destination address, and minor loop byte count at the

ERGA Enable Round Robin Group Arbitration 0 Fixed priority arbitration is used for selection among
the groups.

1 Round robin arbitration is used for selection among
the groups.

ERCA Enable Round Robin Channel Arbitration 0 Fixed priority arbitration is used for channel
selection within each group.

1 Round robin arbitration is used for channel selection
within each group.

EDBG Enable Debug 0 The assertion of the device debug mode is ignored.
1 The assertion of the device debug mode causes the

eDMA to stall the start of a new channel. Executing
channels are allowed to complete. Channel
execution will resume when either the device comes
out of debug mode or the EDBG bit is cleared.

EBW Enable Buffered Writes 0 The bufferable write signal (hprot[2]) is not asserted
during AMBA AHB writes.

1 The bufferable write signal (hprot[2]) is asserted on
all AMBA AHB writes except for the last write
sequence.

Table 17-3. DMA Control Register (EDMA_CR) field descriptions (continued)

Name Description Value

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 341

point of the fault. If a bus error occurs on the last read prior to beginning the write sequence, the write will
execute using the data captured during the bus error. If a bus error occurs on the last write prior to switching
to the next read sequence, the read sequence will execute before the channel is terminated due to the
destination bus error.

The occurrence of any type of error causes the DMA engine to stop the active channel and the appropriate
channel bit in the eDMA error register to be asserted. At the same time, the details of the error condition
are loaded into the EDMA_ESR. The major loop complete indicators, setting the transfer control
descriptor DONE flag and the possible assertion of an interrupt request, are not affected when an error is
detected. After the error status has been updated, the DMA engine continues to operate by servicing the
next appropriate channel. A channel that experiences an error condition is not automatically disabled. If a
channel is terminated by an error and then issues another service request before the error is fixed, that
channel will execute and terminate with the same error condition.

Figure 17-3. DMA Error Status (EDMA_ESR) Register

Register address: EDMA_Offset + 0x0004 (EDMA_ESR)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R VLD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R 0 CPE ERRCHN[0:5] SAE SOE DAE DOE NCE SGE SBE DBE
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented

Table 17-4. DMA Error Status (EDMA_ESR) field descriptions

Name Description Value

VLD Logical OR of all EDMA_ERL status bits. 0 No EDMA_ERL bits are set.
1 At least one EDMA_ERL bit is set indicating a valid

error exists that has not been cleared.

CPE Channel Priority Error 0 No channel priority error.
1 The last recorded error was a configuration error in

the channel priorities within a group. All channel
priorities within a group are not unique.

ERRCHN[0:5] Error Channel Number or Cancelled
Channel Number

The channel number of the last recorded error
(excluding GPE and CPE errors) or last recorded
transfer that was error cancelled.

SAE Source Address Error 0 No source address configuration error.
1 The last recorded error was a configuration error

detected in the TCD.saddr field. TCD.saddr is
inconsistent with TCD.ssize.

SOE Source Offset Error 0 No source offset configuration error.
1 The last recorded error was a configuration error

detected in the TCD.soff field. TCD.soff is
inconsistent with TCD.ssize.

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

342 Freescale Semiconductor

17.4.1.3 DMA Enable Request (EDMA_ERQRL)

The EDMA_ERQRL provides a bit map for the 32channels to enable the request signal for each channel.
EDMA_ERQRL maps to channels 31–0.

The state of any given channel enable is directly affected by writes to this register; the state is also affected
by writes to the EDMA_SERQR, and EDMA_CERQR registers. The EDMA_CERQR and
EDMA_SERQR registers are provided so the request enable for a single channel can be modified without
performing a read-modify-write sequence to the EDMA_ERQRL register.

Both the eDMA request input signal and this enable request flag must be asserted before a channel’s
hardware service request is accepted. The state of the eDMA enable request flag does not affect a channel
service request made through software or a linked channel request.

DAE Destination Address Error 0 No destination address configuration error.
1 The last recorded error was a configuration error

detected in the TCD.daddr field. TCD.daddr is
inconsistent with TCD.dsize.

DOE Destination Offset Error 0 No destination offset configuration error.
1 The last recorded error was a configuration error

detected in the TCD.doff field. TCD.doff is
inconsistent with TCD.dsize.

NCE Nbytes/Citer Configuration Error 0 No nbytes/citer configuration error.
1 The last recorded error was a configuration error

detected in the TCD.nbytes or TCD.citer fields.
TCD.nbytes is not a multiple of TCD.ssize and
TCD.dsize, or TCD.citer is equal to zero, or
TCD.citer.e_link is not equal to TCD.biter.e_link.

SGE Scatter/Gather Configuration Error 0 No scatter/gather configuration error.
1 The last recorded error was a configuration error

detected in the TCD.dlast_sga field. This field is
checked at the beginning of a scatter/gather
operation after major loop completion if TCD.e_sg is
enabled. TCD.dlast_sga is not on a 32 byte
boundary.

SBE Source Bus Error 0 No source bus error.
1 The last recorded error was a bus error on a source

read.

DBE Destination Bus Error 0 No destination bus error.
1 The last recorded error was a bus error on a

destination write.

Table 17-4. DMA Error Status (EDMA_ESR) field descriptions (continued)

Name Description Value

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 343

Figure 17-4. DMA Enable Request (EDMA_ERQRL) Registers

As a given channel completes the processing of its major iteration count, there is a flag in the transfer
control descriptor that may affect the ending state of the EDMA_ERQRL bit for that channel. If the
TCD.d_req bit is set, then the corresponding EDMA_ERQRL bit is cleared, disabling the eDMA request;
else if the d_req bit is cleared, the state of the EDMA_ERQRL bit is unaffected.

17.4.1.4 DMA Enable Error Interrupt (EDMA_EEIRL)

The EDMA_EEIRL provides a bit map for the 32 channels to enable the error interrupt signal for each
channel. EDMA_EEIRL maps to channels 31–0.

The state of any given channel’s error interrupt enable is directly affected by writes to these registers; it is
also affected by writes to the EDMA_SEEIR and EDMA_CEEIR registers. The EDMA_SEEIR and
EDMA_CEEIR registers are provided so that the error interrupt enable for a single channel can be
modified without the performing a read-modify-write sequence to the EDMA_EEIRL register.

Both the eDMA error indicator and this error interrupt enable flag must be asserted before an error
interrupt request for a given channel is asserted. See Figure 17-5 and Table 17-6 for the EDMA_EEIRL
definition.

Register address: EDMA_Offset +0x000C (EDMA_ERQRL)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

E
R

Q
31

E
R

Q
30

E
R

Q
29

E
R

Q
28

E
R

Q
27

E
R

Q
26

E
R

Q
25

E
R

Q
24

E
R

Q
23

E
R

Q
22

E
R

Q
21

E
R

Q
20

E
R

Q
19

E
R

Q
18

E
R

Q
17

E
R

Q
16

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

E
R

Q
15

E
R

Q
14

E
R

Q
13

E
R

Q
12

E
R

Q
11

E
R

Q
10

E
R

Q
09

E
R

Q
08

E
R

Q
07

E
R

Q
06

E
R

Q
05

E
R

Q
04

E
R

Q
03

E
R

Q
02

E
R

Q
01

E
R

Q
00

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented

Table 17-5. DMA Enable Request (EDMA_ERQRL) field descriptions

Name Description Value

ERQn Enable eDMA Request n 0 The eDMA request signal for channel n is disabled.
1 The eDMA request signal for channel n is enabled.

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

344 Freescale Semiconductor

Figure 17-5. DMA Enable Error Interrupt (EDMA_EEIRL) Register

17.4.1.5 DMA Set Enable Request (EDMA_SERQR)

The EDMA_SERQR provides a simple memory-mapped mechanism to set a given bit in the
EDMA_ERQRL to enable the eDMA request for a given channel. The data value on a register write causes
the corresponding bit in the EDMA_ERQRL to be set. Setting bit 1 (SERQ[0]) provides a global set
function, forcing the entire contents of EDMA_ERQRL to be asserted. Reads of this register return all
zeroes.

Figure 17-6. DMA Set Enable Request (EDMA_SERQR) Register

Table 17-7. DMA Set Enable Request (EDMA_SERQR) field descriptions

Register address: EDMA_Offset + 0x0014 (EDMA_EEIRL)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

E
E

I3
1

E
E

I3
0

E
E

I2
9

E
E

I2
8

E
E

I2
7

E
E

I2
6

E
E

I2
5

E
E

I2
4

E
E

I2
3

E
E

I2
2

E
E

I2
1

E
E

I2
0

E
E

I1
9

E
E

I1
8

E
E

I1
7

E
E

I1
6

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

E
E

I1
5

E
E

I1
4

E
E

I1
3

E
E

I1
2

E
E

I1
1

E
E

I1
0

E
E

I0
9

E
E

I0
8

E
E

I0
7

E
E

I0
6

E
E

I0
5

E
E

I0
4

E
E

I0
3

E
E

I0
2

E
E

I0
1

E
E

I0
0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented

Table 17-6. DMA Enable Error Interrupt (EDMA_EEIRL) field descriptions

Name Description Value

EEIn Enable Error Interrupt n 0 The error signal for channel n does not generate an
error interrupt.

1 The assertion of the error signal for channel n
generate an error interrupt request.

Register address: EDMA_Offset + 0x0018 (EDMA_SERQR)

0 1 2 3 4 5 6 7
R 0 0 0 0 0 0 0 0
W SERQ[0:6]

RESET: 0 0 0 0 0 0 0 0

= Unimplemented

Name Description Value

SERQ[0:6] Set Enable Request 0-31 Set the corresponding bit in EDMA_ERQRL
64-127 Set all bits in EDMA_ERQRL

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 345

17.4.1.6 DMA Clear Enable Request (EDMA_CERQR)

The EDMA_CERQR provides a simple memory-mapped mechanism to clear a given bit in the
EDMA_ERQRL to disable the eDMA request for a given channel. The data value on a register write
causes the corresponding bit in the EDMA_ERQRL to be cleared. Setting bit 1 (CERQ[0]) provides a
global clear function, forcing the entire contents of the EDMA_ERQRL to be zeroed, disabling all eDMA
request inputs. Reads of this register return all zeroes. See Figure 17-7 and Table 17-8 for the
EDMA_CERQR definition.

Figure 17-7. DMA Clear Enable Request (EDMA_CERQR) Register

Table 17-8. DMA Clear Enable Request (EDMA_CERQR) field descriptions

17.4.1.7 DMA Set Enable Error Interrupt (EDMA_SEEIR)

The EDMA_SEEIR provides a memory-mapped mechanism to set a given bit in the EDMA_EEIRL to
enable the error interrupt for a given channel. The data value on a register write causes the corresponding
bit in the EDMA_EEIRL to be set. Setting bit 1 (SEEI[0]) provides a global set function, forcing the entire
contents of EDMA_EEIRL to be asserted. Reads of this register return all zeroes. See Figure 17-8 and
Table 17-9 for the EDMA_SEEIR definition.

Figure 17-8. DMA Set Enable Error Interrupt (EDMA_SEEIR) Register

Table 17-9. DMA Set Enable Error Interrupt (EDMA_SEEIR) field descriptions

17.4.1.8 DMA Clear Enable Error Interrupt (EDMA_CEEIR)

The EDMA_CEEIR provides a memory-mapped mechanism to clear a given bit in the EDMA_EEIRL to
disable the error interrupt for a given channel. The data value on a register write causes the corresponding

Register address: EDMA_Offset + 0x0019 (EDMA_CERQR)

0 1 2 3 4 5 6 7
R 0 0 0 0 0 0 0 0
W CERQ[0:6]

RESET: 0 0 0 0 0 0 0 0

= Unimplemented

Name Description Value

CERQ[0:6] Clear Enable Request 0-63 Clear corresponding bit in EDMA_ERQRL
64-127 Clear all bits in EDMA_ERQRL

Register address: EDMA_Offset + 0x001A (EDMA_SEEIR)

0 1 2 3 4 5 6 7
R 0 0 0 0 0 0 0 0
W SEEI[0:6]

RESET: 0 0 0 0 0 0 0 0

= Unimplemented

Name Description Value

SEEI[0:6] Set Enable Error Interrupt 0-63 Set the corresponding bit in EDMA_EEIRL
64-127 Set all bits in EDMA_EEIRL

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

346 Freescale Semiconductor

bit in the EDMA_EEIRL to be cleared. Setting bit 1 (CEEI[0]) provides a global clear function, forcing
the entire contents of the EDMA_EEIRL to be zeroed, disabling error interrupts for all channels. Reads of
this register returns all zeroes. See Figure 17-9 and Table 17-10 for the EDMA_CEEIR definition.

Figure 17-9. DMA Clear Enable Error Interrupt (EDMA_CEEIR) Register

Table 17-10. DMA Clear Enable Error Interrupt (EDMA_CEEIR) field descriptions

17.4.1.9 DMA Clear Interrupt Request (EDMA_CIRQR)

The EDMA_CIRQR provides a memory-mapped mechanism to clear a given bit in the EDMA_IRQRL to
disable the interrupt request for a given channel. The given value on a register write causes the
corresponding bit in the EDMA_IRQRL to be cleared. Setting bit 1 (CINT[0]) provides a global clear
function, forcing the entire contents of the EDMA_IRQRL to be zeroed, disabling all eDMA interrupt
requests. Reads of this register return all zeroes. See Figure 17-10 and Table 17-11 for the EDMA_CIRQR
definition.

Figure 17-10. DMA Clear Interrupt Request (EDMA_CIRQR) Fields

Table 17-11. DMA Clear Interrupt Request (EDMA_CIRQR) field descriptions

17.4.1.10 DMA Clear Error (EDMA_CER)

The EDMA_CER provides a memory-mapped mechanism to clear a given bit in the EDMA_ERL to
disable the error condition flag for a given channel. The given value on a register write causes the
corresponding bit in the EDMA_ERL to be cleared. Setting bit 1 (CERR[0]) provides a global clear
function, forcing the entire contents of the EDMA_ERL to be zeroed, clearing all channel error indicators.
Reads of this register return all zeroes. See Figure 17-11 and Table 17-12 for the EDMA_CER definition.

Register address: EDMA_Offset + 0x001B (EDMA_CEEIR)

0 1 2 3 4 5 6 7
R 0 0 0 0 0 0 0 0
W CEEI[0:6]

RESET: 0 0 0 0 0 0 0 0

= Unimplemented

Name Description Value

CEEI[0:6] Clear Enable Error Interrupt 0-63 Clear corresponding bit in EDMA_EEIRL
64-127 Clear all bits in EDMA_EEIRL

Register address: EDMA_Offset + 0x001C

0 1 2 3 4 5 6 7
R 0 0 0 0 0 0 0 0
W CINT[0:6]

RESET: 0 0 0 0 0 0 0 0

= Unimplemented

Name Description Value

CINT[0:6] Clear Interrupt Request 0-63 Clear the corresponding bit in EDMA_IRQRL
64-127 Clear all bits in EDMA_IRQRL

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 347

Figure 17-11. DMA Clear Error (EDMA_CER) Register

Table 17-12. DMA Clear Error (EDMA_CER) field descriptions

17.4.1.11 DMA Set START Bit (EDMA_SSBR)

The EDMA_SSBR provides a memory-mapped mechanism to set the START bit in the TCD of the given
channel. The data value on a register write causes the START bit in the corresponding transfer control
descriptor to be set. Setting bit 1 (SSB[0]) provides a global set function, forcing all START bits to be set.
Reads of this register return all zeroes. See Table 17-20 for the TCD START bit definition.

Figure 17-12. DMA Set START Bit (EDMA_SSBR) Register

Table 17-13. DMA Set START Bit (EDMA_SSBR) field descriptions

17.4.1.12 DMA Clear DONE Status (EDMA_CDSBR)

The EDMA_CDSBR provides a memory-mapped mechanism to clear the DONE bit in the TCD of the
given channel. The data value on a register write causes the DONE bit in the corresponding transfer control
descriptor to be cleared. Setting bit 1 (CDSB[0]) provides a global clear function, forcing all DONE bits
to be cleared. See Table 17-20 for the TCD DONE bit definition.

Register address: EDMA_Offset + 0x001E (EDMA_CER)

0 1 2 3 4 5 6 7
R 0 0 0 0 0 0 0 0
W CERR[0:6]

RESET: 0 0 0 0 0 0 0 0

= Unimplemented

Name Description Value

CERR[0:6] Clear Error Indicator 0-63 Clear corresponding bit in EDMA_ERL
64-127 Clear all bits in EDMA_ERL

Register address: EDMA_Offset + 0x001E

0 1 2 3 4 5 6 7
R 0 0 0 0 0 0 0 0
W SSRT[0:6]

RESET: 0 0 0 0 0 0 0 0

= Unimplemented

Name Description Value

SSRT[0:6] Set START Bit
(Channel Service Request)

0-63 Set the corresponding channel’s TCD.start
64-127 Set all TCD.start bits

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

348 Freescale Semiconductor

Figure 17-13. DMA Clear DONE Status (EDMA_CDSBR) Register

Table 17-14. DMA Clear DONE Status (EDMA_CDSBR) field descriptions

17.4.1.13 DMA Interrupt Request (EDMA_IRQRL)

The EDMA_IRQRL provides a bit map for the 32channels signaling the presence of an interrupt request
for each channel. EDMA_IRQRL maps to channels 31–0.

The DMA engine signals the occurrence of a programmed interrupt on the completion of a data transfer
as defined in the transfer control descriptor by setting the appropriate bit in this register. The outputs of
this register are directly routed to the interrupt controller (INTC). During the execution of the interrupt
service routine associated with any given channel, software must clear the appropriate bit, negating the
interrupt request. Typically, a write to the EDMA_CIRQR in the interrupt service routine is used for this
purpose.

The state of any given channel’s interrupt request is directly affected by writes to this register; it is also
affected by writes to the EDMA_CIRQR. On writes to the EDMA_IRQRL, a 1 in any bit position clears
the corresponding channel’s interrupt request. A 0 in any bit position has no affect on the corresponding
channel’s current interrupt status. The EDMA_CIRQR is provided so the interrupt request for a single
channel can be cleared without performing a read-modify-write sequence to the EDMA_IRQRL. See
Figure 17-14 and Table 17-15 for the EDMA_IRQL definition.

Register address: EDMA_Offset + 0x001F (EDMA_CDSBR)

0 1 2 3 4 5 6 7
R 0 0 0 0 0 0 0 0
W CDNE[0:6]

RESET: 0 0 0 0 0 0 0 0

= Unimplemented

Name Description Value

CDNE[0:6] Clear DONE Status Bit 0-63 Clear the corresponding channel’s DONE bit
64-127 Clear all TCD DONE bits

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 349

Figure 17-14. DMA Interrupt Request (EDMA_IRQRL) Registers

Table 17-15. DMA Interrupt Request (EDMA_IRQRL) field descriptions

17.4.1.14 DMA Error (EDMA_ERL)

The EDMA_ERL provides a bit map for the 32 channels signaling the presence of an error for each
channel. EDMA_ERL maps to channels 31-0.

The DMA engine signals the occurrence of a error condition by setting the appropriate bit in this register.
The outputs of this register are enabled by the contents of the EDMA_EEIR, then logically summed across
32 channels to form an error interrupt request, which is then routed to the interrupt controller. During the
execution of the interrupt service routine associated with any eDMA errors, it is software’s responsibility
to clear the appropriate bit, negating the error interrupt request. Typically, a write to the EDMA_CER in
the interrupt service routine is used for this purpose. The normal eDMA channel completion indicators,
setting the transfer control descriptor DONE flag and the possible assertion of an interrupt request, are not
affected when an error is detected.

The contents of this register can also be polled and a non-zero value indicates the presence of a channel
error, regardless of the state of the EDMA_EEIR. The EDMA_ESR[VLD] bit is a logical OR of all bits in
this register and it provides a single bit indication of any errors. The state of any given channel’s error
indicators is affected by writes to this register; it is also affected by writes to the EDMA_CER. On writes
to EDMA_ERL, a 1 in any bit position clears the corresponding channel’s error status. A 0 in any bit
position has no affect on the corresponding channel’s current error status. The EDMA_CER is provided
so the error indicator for a single channel can be cleared. See Figure 17-15 and Table 17-16 for the
EDMA_ERL definition.

Register address: EDMA_Offset + 0x0024 (EDMA_IRQRL)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

IN
T

31

IN
T

30

IN
T

29

IN
T

28

IN
T

27

IN
T

26

IN
T

25

IN
T

24

IN
T

23

IN
T

22

IN
T

21

IN
T

20

IN
T

19

IN
T

18

IN
T

17

IN
T

16

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

IN
T

15

IN
T

14

IN
T

13

IN
T

12

IN
T

11

IN
T

10

IN
T

09

IN
T

08

IN
T

07

IN
T

06

IN
T

05

IN
T

04

IN
T

03

IN
T

02

IN
T

01

IN
T

00

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented

Name Description Value

INTn DMA Interrupt Request n 0 The interrupt request for channel n is cleared.
1 The interrupt request for channel n is active.

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

350 Freescale Semiconductor

Figure 17-15. DMA Error (EDMA_ERL) Registers

Table 17-16. DMA Error (EDMA_ERL) field descriptions

17.4.1.15 DMA Hardware Request Status (EDMA_HRSL)

The EDMA_HRSL register provides a bit map for the implemented channels to show the current hardware
request status for each channel. This view into the hardware request signals may be used for debug
purposes.

See Figure 17-16 and Figure 17-17 for the EDMA_HRSL definition.

Register address: EDMA_Offset + 0x002C (EDMA_ERL)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

E
R

R
31

E
R

R
30

E
R

R
29

E
R

R
28

E
R

R
27

E
R

R
26

E
R

R
25

E
R

R
24

E
R

R
23

E
R

R
22

E
R

R
21

E
R

R
20

E
R

R
19

E
R

R
18

E
R

R
17

E
R

R
16

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

E
R

R
15

E
R

R
14

E
R

R
13

E
R

R
12

E
R

R
11

E
R

R
10

E
R

R
09

E
R

R
08

E
R

R
07

E
R

R
06

E
R

R
05

E
R

R
04

E
R

R
03

E
R

R
02

E
R

R
01

E
R

R
00

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented

Name Description Value

ERRn DMA Error n 0 An error in channel n has not occurred.
1 An error in channel n has occurred.

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 351

Figure 17-16. DMA Hardware Request Status (EDMA_HRSL) Register

Table 17-17. DMA Hardware Request Status (EDMA_HRSL) field descriptions

17.4.1.16 DMA Channel n Priority (EDMA_CPRn)

When the fixed-priority channel arbitration mode is enabled (EDMA_CR[ERCA] = 0), the contents of
these registers define the unique priorities associated with each channel. The channel priorities are
evaluated by numeric value; that is, 0 is the lowest priority, 1 is the next higher priority, then 2, 3, etc. If
software modifies channel priority values, then the software must ensure that the channel priorities contain
unique values, otherwise a configuration error will be reported. The range of the priority value is limited
to the values of 0 through 15.

Channel preemption is enabled on a per-channel basis by setting the ECP bit in the EDMA_CPRn register.
Channel preemption allows the executing channel’s data transfers to be temporarily suspended in favor of
starting a higher priority channel. After the preempting channel has completed all its minor loop data
transfers, the preempted channel is restored and resumes execution. After the restored channel completes
one read/write sequence, it is again eligible for preemption. If any higher priority channel requests service,
the restored channel will be suspended and the higher priority channel will be serviced. Nested preemption
(attempting to preempt a preempting channel) is not supported. After a preempting channel begins

Register address: EDMA_Offset + 0x0034 (EDMA_HRSL)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

H
R

S
31

H
R

S
30

H
R

S
29

H
R

S
28

H
R

S
27

H
R

S
26

H
R

S
25

H
R

S
24

H
R

S
23

H
R

S
22

H
R

S
21

H
R

S
20

H
R

S
19

H
R

S
18

H
R

S
17

H
R

S
16

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

H
R

S
15

H
R

S
14

H
R

S
13

H
R

S
12

H
R

S
11

H
R

S
10

H
R

S
09

H
R

S
08

H
R

S
07

H
R

S
06

H
R

S
05

H
R

S
04

H
R

S
03

H
R

S
02

H
R

S
01

H
R

S
00

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented

Name Description Value

HRSn DMA Hardware Request Status n 0 A hardware service request for channel n is not
present.

1 A hardware service request for channel n is present.

Note: The hardware request status reflects the state of
the request as seen by the arbitration logic.
Therefore, this status is affected by the
EDMA_ERQRL[n] bit.

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

352 Freescale Semiconductor

execution, it cannot be preempted. Preemption is available only when fixed arbitration is selected for
channel arbitration mode

A channel’s ability to preempt another channel can be disabled by setting the DPA bit in the EDMA_CPRn
register. When a channel’s preempt ability is disabled, that channel cannot suspend a lower priority
channel’s data transfer; regardless of the lower priority channel’s ECP setting. This allows for a pool of
low priority, large data moving channels to be defined. These low priority channels can be configured to
not preempt each other, thus preventing a low priority channel from consuming the preempt slot normally
available a true, high priority channel. See Figure 17-17 and Table 17-18 for the EDMA_CPRn definition.

Figure 17-17. DMA Channel n Priority (EDMA_CPRn) Register

Table 17-18. DMA Channel n Priority (EDMA_CPRn) field descriptions

17.4.1.17 Transfer Control Descriptor (TCD)

Each channel requires a 32-byte transfer control descriptor for defining the desired data movement
operation. The channel descriptors are stored in the local memory in sequential order: channel 0, channel
1,... channel 15. The definitions of the TCD are presented as eight 32-bit values. Table 17-19 is a field list
of the basic TCD structure.

Register address: EDMA_Offset + 0x100 + n (EDMA_CPRn)

0 1 2 3 4 5 6 7
R ECP DPA GRPPRI[0:1] CHPRI[0:3]
W

RESET: 0 0 * * * * * *

= Unimplemented,
* = defaults to channel number (n) after reset

Name Description Value

ECP Enable Channel Preemption 0 Channel n cannot be suspended by a higher priority
channel’s service request.

1 Channel n can be temporarily suspended by the
service request of a higher priority channel.

DPA Disable Preempt Ability 0 Channel n can suspend a lower priority channel.
1 Channel n cannot suspend any channel, regardless

of channel priority.

CHPRI[0:3] Channel n Arbitration Priority Channel priority when fixed-priority arbitration is
enabled.

Table 17-19. TCDn 32-bit Memory Structure

eDMA Offset TCDn Field

0x1000+(32 x n)+0x0000 Source address (saddr)

0x1000+(32 x n)+0x0004 Transfer attributes Signed source address offset (soff)

0x1000+(32 x n)+0x0008 Inner minor byte count (nbytes)

0x1000+(32 x n)+0x000C Last source address adjustment (slast)

0x1000+(32 x n)+0x0010 Destination address (daddr)

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 353

Figure 17-18 and Table 17-20 define the fields of the TCDn structure.

NOTE
The TCD structures for the eDMA channels shown in Figure 17-18 are
implemented in internal SRAM. These structures are not initialized at reset;
therefore, all channel TCD parameters must be initialized by the application
code before activating that channel.

0x1000+(32 x n)+0x0014 Current major iteration count (citer) Signed destination address offset (doff)

0x1000 (32 x n) 0x0018 Last destination address adjustment / scatter-gather address (dlast_sga)

0x1000+(32 x n)+0x001c Beginning major iteration count (biter) Channel control/status

Word
Offset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x0000 SADDR

0x0004 SMOD SSIZE DMOD DSIZE SOFF

0x0008 NBYTES1

1 The fields implemented in Word 2 depend on whether EDMA_CR(EMLM) is set to 0 or 1. Refer to Table 17-3.

0x8

S
M

LO
E

1

D
M

LO
E

1

MLOFF or NBYTES 1 NBYTES1

0x000C SLAST

0x0010 DADDR

0x0014

C
IT

E
R

.E
_

LI
N

K

CITER or
CITER.LINKCH

CITER DOFF

0x0018 DLAST_SGA

0x001C

B
IT

E
R

.E
_

LI
N

K

BITER or
BITER.LINKCH

BITER BWC MAJOR LINKCH

D
O

N
E

A
C

T
IV

E

M
A

JO
R

.E
_L

IN
K

E
_S

G

D
_R

E
Q

IN
T

_H
A

LF

IN
T

_M
A

J

S
TA

R
T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 17-18. TCD Structure

Table 17-19. TCDn 32-bit Memory Structure (continued)

eDMA Offset TCDn Field

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

354 Freescale Semiconductor

Table 17-20. TCDn field descriptions

Bits /
Word Offset

[n:n]
Name Description

0–31 /
0x0 [0:31]

SADDR
[0:31]

Source address. Memory address pointing to the source data.
Word 0x0, bits 0–31.

32–36 /
0x4 [0:4]

SMOD
[0:4]

Source address modulo.
0 Source address modulo feature is disabled.
non-0 This value defines a specific address range that is specified to be the

value after SADDR + SOFF calculation is performed or the original
register value. The setting of this field provides the ability to easily
implement a circular data queue. For data queues requiring
power-of-2 size bytes, the queue should start at a 0-modulo-size
address and the SMOD field should be set to the appropriate value
for the queue, freezing the desired number of upper address bits.
The value programmed into this field specifies the number of lower
address bits that are allowed to change. For this circular queue
application, the SOFF is typically set to the transfer size to implement
post-increment addressing with the SMOD function constraining the
addresses to a 0-modulo-size range.

37–39 /
0x4 [5:7]

SSIZE
[0:2]

Source data transfer size.
000 8-bit
001 16-bit
010 32-bit
011 Reserved
100 16-byte (32-bit, 4-beat, WRAP4 burst)
101 32-byte (32-bit, 8 beat, WRAP8 burst)
110 Reserved
111 Reserved
The attempted specification of a reserved encoding causes a configuration
error.

40–44 /
0x4 [8:12]

DMOD
[0:4]

Destination address modulo. See the SMOD[0:5] definition.

45–47 /
0x4 [13:15]

DSIZE
[0:2]

Destination data transfer size. See the SSIZE[0:2] definition.

48–63 /
0x4 [16:31]

SOFF
[0:15]

Source address signed offset. Sign-extended offset applied to the current
source address to form the next-state value as each source read is
completed.

64–95 /
0x8 [0:31]

NBYTES1

[0:31]
Inner “minor” byte transfer count. Number of bytes to be transferred in each
service request of the channel. As a channel is activated, the contents of
the appropriate TCD is loaded into the eDMA engine, and the appropriate
reads and writes performed until the complete byte transfer count has been
transferred. This is an indivisible operation and cannot be stalled or halted.
Once the minor count is exhausted, the current values of the SADDR and
DADDR are written back into the local memory, the major iteration count is
decremented and restored to the local memory. If the major iteration count
is completed, additional processing is performed.
Note: The NBYTES value of 0x0000_0000 is interpreted as
0x1_0000_0000, thus specifying a 4 Gbyte transfer.

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 355

64
0x8 [0]

SMLOE 1

0
Source minor loop offset enable
This flag selects whether the minor loop offset is applied to the source
address upon minor loop completion.

0 The minor loop offset is not applied to the saddr.
1 The minor loop offset is applied to the saddr.

65
0x8 [1]

DMLOE 1

1
Destination minor loop offset enable
This flag selects whether the minor loop offset is applied to the destination
address upon minor loop completion.

0 The minor loop offset is not applied to the daddr.
1 The minor loop offset is applied to the daddr.

66–85
0x8 [2-21]

MLOFF or
NBYTES 1

[0:19]

Inner “minor” byte transfer count or Minor loop offset
If both SMLOE and DMLOE are cleared, this field is part of the byte transfer
count.

If either SMLOE or DMLOE are set, this field represents a sign-extended
offset applied to the source or destination address to form the next-state
value after the minor loop is completed.

86–95 /
0x8 [22:31]

NBYTES 1 Inner “minor” byte transfer count. Number of bytes to be transferred in each
service request of the channel. As a channel is activated, the contents of
the appropriate TCD is loaded into the eDMA engine, and the appropriate
reads and writes performed until the complete byte transfer count has been
transferred. This is an indivisible operation and cannot be stalled or halted.
Once the minor count is exhausted, the current values of the SADDR and
DADDR are written back into the local memory, the major iteration count is
decremented and restored to the local memory. If the major iteration count
is completed, additional processing is performed.
Note: The NBYTES value of 0x0000_0000 is interpreted as
0x1_0000_0000, thus specifying a 4 GByte transfer.

96–127 /
0xC [0:31]

SLAST
[0:31]

Last source address adjustment. Adjustment value added to the source
address at the completion of the outer major iteration count. This value can
be applied to “restore” the source address to the initial value, or adjust the
address to reference the next data structure.

128–159 /
0x10 [0:31]

DADDR
[0:31]

Destination address. Memory address pointing to the destination data.

Table 17-20. TCDn field descriptions (continued)

Bits /
Word Offset

[n:n]
Name Description

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

356 Freescale Semiconductor

160 /
0x14 [0]

CITER.E_LINK Enable channel-to-channel linking on minor loop completion. As the
channel completes the inner minor loop, this flag enables the linking to
another channel, defined by CITER.LINKCH[0:5]. The link target channel
initiates a channel service request via an internal mechanism that sets the
TCD.START bit of the specified channel. If channel linking is disabled, the
CITER value is extended to 15 bits in place of a link channel number. If the
major loop is exhausted, this link mechanism is suppressed in favor of the
MAJOR.E_LINK channel linking.
0 The channel-to-channel linking is disabled.
1 The channel-to-channel linking is enabled.

Note: This bit must be equal to the BITER.E_LINK bit otherwise a
configuration error will be reported.

161–166 /
0x14 [1:6]

CITER
[0:5]
or

CITER.LINKCH
[0:5]

Current major iteration count or link channel number.
If channel-to-channel linking is disabled (TCD.CITER.E_LINK = 0), then
 • No channel-to-channel linking (or chaining) is performed after the inner

minor loop is exhausted. TCD bits [161:175] are used to form a 15-bit
CITER field.

Otherwise,
 • After the minor loop is exhausted, the DMA engine initiates a channel

service request at the channel defined by CITER.LINKCH[0:5] by setting
that channel’s TCD.START bit.

167–175 /
0x14 [7:15]

CITER
[6:14]

Current major iteration count. This 9 or 15-bit count represents the current
major loop count for the channel. It is decremented each time the minor
loop is completed and updated in the transfer control descriptor memory.
After the major iteration count is exhausted, the channel performs a number
of operations (for example, final source and destination address
calculations), optionally generating an interrupt to signal channel
completion before reloading the CITER field from the beginning iteration
count (BITER) field.
Note: When the CITER field is initially loaded by software, it must be set
to the same value as that contained in the BITER field.

Note: If the channel is configured to execute a single service request, the
initial values of BITER and CITER should be 0x0001.

176–191 /
0x14 [16:31]

DOFF
[0:15]

Destination address signed Offset. Sign-extended offset applied to the
current destination address to form the next-state value as each destination
write is completed.

Table 17-20. TCDn field descriptions (continued)

Bits /
Word Offset

[n:n]
Name Description

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 357

192–223 /
0x18 [0:31]

DLAST_SGA
[0:31]

Last destination address adjustment or the memory address for the next
transfer control descriptor to be loaded into this channel (scatter-gather).
If scatter-gather processing for the channel is disabled (TCD.E_SG = 0)
then
 • Adjustment value added to the destination address at the completion of

the outer major iteration count.
This value can be applied to restore the destination address to the initial
value, or adjust the address to reference the next data structure.
Otherwise,
 • This address points to the beginning of a 0-modulo-32 byte region

containing the next transfer control descriptor to be loaded into this
channel. This channel reload is performed as the major iteration count
completes. The scatter-gather address must be 0-modulo-32 byte,
otherwise a configuration error is reported.

224 /
0x1C [0]

BITER.E_LINK Enables channel-to-channel linking on minor loop complete. As the channel
completes the inner minor loop, this flag enables the linking to another
channel, defined by BITER.LINKCH[0:5]. The link target channel initiates a
channel service request via an internal mechanism that sets the
TCD.START bit of the specified channel. If channel linking is disabled, the
BITER value is extended to 15 bits in place of a link channel number. If the
major loop is exhausted, this link mechanism is suppressed in favor of the
MAJOR.E_LINK channel linking.
0 The channel-to-channel linking is disabled.
1 The channel-to-channel linking is enabled.
Note: When the TCD is first loaded by software, this field must be set equal
to the corresponding CITER field, otherwise a configuration error will be
reported. As the major iteration count is exhausted, the contents of this field
is reloaded into the CITER field.

225–230 /
0x1C [1:6]

BITER
[0:5]
or

BITER.LINKCH[0:5]

Starting major iteration count or link channel number.
If channel-to-channel linking is disabled (TCD.BITER.E_LINK = 0), then
 • No channel-to-channel linking (or chaining) is performed after the inner

minor loop is exhausted. TCD bits [225:239] are used to form a 15-bit
BITER field.

Otherwise,
 • After the minor loop is exhausted, the DMA engine initiates a channel

service request at the channel, defined by BITER.LINKCH[0:5], by
setting that channel’s TCD.START bit.

Note: When the TCD is first loaded by software, this field must be set equal
to the corresponding CITER field, otherwise a configuration error will be
reported. As the major iteration count is exhausted, the contents of this field
is reloaded into the CITER field.

231–239 /
0x1C [7:15]

BITER
[6:14]

Starting major iteration count. As the transfer control descriptor is first
loaded by software, this field must be equal to the value in the CITER field.
As the major iteration count is exhausted, the contents of this field are
reloaded into the CITER field.
Note: If the channel is configured to execute a single service request, the
initial values of BITER and CITER should be 0x0001.

Table 17-20. TCDn field descriptions (continued)

Bits /
Word Offset

[n:n]
Name Description

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

358 Freescale Semiconductor

240–241 /
0x1C [16:17]

BWC
[0:1]

Bandwidth control. This two-bit field provides a mechanism to effectively
throttle the amount of bus bandwidth consumed by the eDMA. In general,
as the eDMA processes the inner minor loop, it continuously generates
read/write sequences until the minor count is exhausted. This field forces
the eDMA to stall after the completion of each read/write access to control
the bus request bandwidth seen by the system bus crossbar switch
(XBAR).
00 No DMA engine stalls
01 Reserved
10 DMA engine stalls for 4 cycles after each r/w
11 DMA engine stalls for 8 cycles after each r/w

242–247 /
0x1C [18:23]

MAJOR.LINKCH
[0:5]

Link channel number.
If channel-to-channel linking on major loop complete is disabled
(TCD.MAJOR.E_LINK = 0) then,
 • No channel-to-channel linking (or chaining) is performed after the outer

major loop counter is exhausted.
Otherwise
 • After the major loop counter is exhausted, the DMA engine initiates a

channel service request at the channel defined by MAJOR.LINKCH[0:5]
by setting that channel’s TCD.START bit.

248 /
0x1C [24]

DONE Channel done. This flag indicates the eDMA has completed the outer major
loop. It is set by the DMA engine as the CITER count reaches zero; it is
cleared by software or hardware when the channel is activated (when the
DMA engine has begun processing the channel, not when the first data
transfer occurs).
Note: This bit must be cleared to write the MAJOR.E_LINK or E_SG bits.

249 /
0x1C [25]

ACTIVE Channel active. This flag signals the channel is currently in execution. It is
set when channel service begins, and is cleared by the DMA engine as the
inner minor loop completes or if any error condition is detected.

250 /
0x1C [26]

MAJOR.E_LINK Enable channel-to-channel linking on major loop completion. As the
channel completes the outer major loop, this flag enables the linking to
another channel, defined by MAJOR.LINKCH[0:5]. The link target channel
initiates a channel service request via an internal mechanism that sets the
TCD.START bit of the specified channel.
NOTE: To support the dynamic linking coherency model, this field is forced
to zero when written to while the TCD.DONE bit is set.
0 The channel-to-channel linking is disabled.
1 The channel-to-channel linking is enabled.

Table 17-20. TCDn field descriptions (continued)

Bits /
Word Offset

[n:n]
Name Description

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 359

17.5 Functional description
This section provides an overview of the microarchitecture and functional operation of the eDMA block.

251 /
0x1C [27]

E_SG Enable scatter-gather processing. As the channel completes the outer
major loop, this flag enables scatter-gather processing in the current
channel. If enabled, the DMA engine uses DLAST_SGA as a memory
pointer to a 0-modulo-32 address containing a 32-byte data structure which
is loaded as the transfer control descriptor into the local memory.
NOTE: To support the dynamic scatter-gather coherency model, this field
is forced to zero when written to while the TCD.DONE bit is set.
0 The current channel’s TCD is normal format.
1 The current channel’s TCD specifies a scatter gather format. The

DLAST_SGA field provides a memory pointer to the next TCD to be
loaded into this channel after the outer major loop completes its
execution.

252 /
0x1C [28]

D_REQ Disable hardware request. If this flag is set, the eDMA hardware
automatically clears the corresponding EDMA_ERQRL bit when the
current major iteration count reaches zero.
0 The channel’s EDMA_ERQRL bit is not affected.
1 The channel’s EDMA_ERQRL bit is cleared when the outer major loop

is complete.

253 /
0x1C [29]

INT_HALF Enable an interrupt when major counter is half complete. If this flag is set,
the channel generates an interrupt request by setting the appropriate bit in
the EDMA_ERQRL when the current major iteration count reaches the
halfway point. Specifically, the comparison performed by the eDMA engine
is (CITER == (BITER >> 1)). This halfway point interrupt request is provided
to support double-buffered (aka ping-pong) schemes, or other types of data
movement where the processor needs an early indication of the transfer’s
progress.
0 The half-point interrupt is disabled.
1 The half-point interrupt is enabled.
Note: If BITER = 1, do not use INT_HALF; use INT_MAJ instead.

254 /
0x1C [30]

INT_MAJ Enable an interrupt when major iteration count completes. If this flag is set,
the channel generates an interrupt request by setting the appropriate bit in
the EDMA_ERQRL when the current major iteration count reaches zero.
0 The end-of-major loop interrupt is disabled.
1 The end-of-major loop interrupt is enabled.

255 /
0x1C [31]

START Channel start. If this flag is set the channel is requesting service. The
eDMA hardware automatically clears this flag after the channel begins
execution.
0 The channel is not explicitly started.
1 The channel is explicitly started via a software initiated service request.

1 The fields implemented at 0x8 depend on whether EDMA_CR(EMLM) is set to 0 or 1. Refer to Table 17-3.

Table 17-20. TCDn field descriptions (continued)

Bits /
Word Offset

[n:n]
Name Description

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

360 Freescale Semiconductor

The eDMA module is partitioned into two major modules: the DMA engine and the transfer control
descriptor local memory. The DMA engine is further partitioned into four submodules, which are detailed
below.

• DMA engine

— Address path: This module implements registered versions of two channel transfer control
descriptors: channel x and channel y, and is responsible for all the master bus address
calculations. All the implemented channels provide the same functionality. This hardware
structure allows the data transfers associated with one channel to be preempted after the
completion of a read/write sequence if a higher priority channel service request is asserted
while the first channel is active. After a channel is activated, it runs until the minor loop is
completed unless preempted by a higher priority channel. This capability provides a
mechanism (optionally enabled by EDMA_CPRn[ECP]) where a large data move operation
can be preempted to minimize the time another channel is blocked from execution.

When another channel is activated, the contents of its transfer control descriptor is read from
the local memory and loaded into the registers of the other address path channel{x,y}. After
the inner minor loop completes execution, the address path hardware writes the new values for
the TCDn.{SADDR, DADDR, CITER} back into the local memory. If the major iteration
count is exhausted, additional processing is performed, including the final address pointer
updates, reloading the TCDn.CITER field, and a possible fetch of the next TCDn from memory
as part of a scatter-gather operation.

— Data path: This module implements the actual bus master read/write datapath. It includes 32
bytes of register storage (matching the maximum transfer size) and the necessary mux logic to
support any required data alignment. The system read data bus is the primary input, and the
system write data bus is the primary output.

The address and data path modules directly support the two-stage pipelined system bus. The
address path module represents the 1st stage of the bus pipeline (the address phase), while the
data path module implements the second stage of the pipeline (the data phase).

— Program model/channel arbitration: This module implements the first section of eDMA’s
programming model and also the channel arbitration logic. The programming model registers
are connected to the slave bus (not shown). The eDMA peripheral request inputs and eDMA
interrupt request outputs are also connected to this module (via the control logic).

— Control: This module provides all the control functions for the DMA engine. For data transfers
where the source and destination sizes are equal, the DMA engine performs a series of source
read, destination write operations until the number of bytes specified in the inner minor loop
byte count has been moved.

A minor loop interaction is defined as the number of bytes to transfer (nbytes) divided by the
transfer size. Transfer size is defined as:

if (SSIZE < DSIZE)

transfer size = destination transfer size (# of bytes)

else

transfer size = source transfer size (# of bytes)

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 361

Minor loop TCD variables are SOFF, SMOD, DOFF, DMOD, NBYTES, SADDR, DADDR,
BWC, ACTIVE, AND START. Major loop TCD variables are DLAST, SLAST, CITER,
BITER, DONE, D_REQ, INT_MAJ, MAJOR_LNKCH, and INT_HALF.

For descriptors where the sizes are not equal, multiple access of the smaller size data are
required for each reference of the larger size. For example, if the source size references 16-bit
data and the destination is 32-bit data, two reads are performed, then one 32-bit write.

• TCD local memory

— Memory controller: This logic implements the required dual-ported controller, handling
accesses from both the DMA engine as well as references from the slave bus. As noted earlier,
in the event of simultaneous accesses, the DMA engine is given priority and the slave
transaction is stalled. The hooks to a BIST controller for the local TCD memory are included
in this module.

— Memory array: The TCD is implemented using a single-ported, synchronous compiled RAM
memory array.

17.5.1 eDMA Basic data flow

The eDMA transfers data based on a two-deep, nested flow. The basic flow of a data transfer can be
partitioned into three segments. As shown in Figure 17-19, the first segment involves the channel service
request. In the diagram, this example uses the assertion of the eDMA peripheral request signal to request
service for channel n. Channel service request via software and the TCDn.START bit follows the same
basic flow as an eDMA peripheral request. The eDMA peripheral request input signal is registered
internally and then routed to through the DMA engine, first through the control module, then into the
program model/channel arbitration module. In the next cycle, the channel arbitration is performed using
the fixed-priority or round-robin algorithm. After the arbitration is complete, the activated channel number
is sent through the address path and converted into the required address to access the TCD local memory.
Next, the TCD memory is accessed and the required descriptor read from the local memory and loaded
into the DMA engine address path channel{x,y} registers. The TCD memory is organized 64-bits in width
to minimize the time needed to fetch the activated channel’s descriptor and load it into the eDMA engine
address path channel{x,y} registers.

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

362 Freescale Semiconductor

Figure 17-19. eDMA Operation, Part 1

In the second part of the basic data flow as shown in Figure 17-20, the modules associated with the data
transfer (address path, data path, and control) sequence through the required source reads and destination
writes to perform the actual data movement. The source reads are initiated and the fetched data is
temporarily stored in the data path module until it is gated onto the system bus during the destination write.
This source read/destination write processing continues until the inner minor byte count has been
transferred. The eDMA done handshake signal is asserted at the end of the minor byte count transfer.

Sl
av

e
in

te
rfa

ce

eDMA

eDMA peripheral request

S
ys

te
m

 b
us

Data path ControlAddress

Program model/

Slave write data

Slave write address

Bus write data

Slave read data

Bus address

eDMA engine

TCD0

TCDn-1*

eDMA interrupt request

Bus read data
channel arbitration

eDMA done handshake

path

SRAM
Transfer control descriptor

(TCD)

SRAM

*n = 16 channels

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 363

Figure 17-20. eDMA Operation, Part 2

After the inner minor byte count has been moved, the final phase of the basic data flow is performed. In
this segment, the address path logic performs the required updates to certain fields in the channel’s TCD;
for example, SADDR, DADDR, CITER. If the outer major iteration count is exhausted, then there are
additional operations performed. These include the final address adjustments and reloading of the BITER
field into the CITER. Additionally, assertion of an optional interrupt request occurs at this time, as does a
possible fetch of a new TCD from memory using the scatter-gather address pointer included in the
descriptor. The updates to the TCD memory and the assertion of an interrupt request are shown in
Figure 17-21.

Sl
av

e
in

te
rfa

ce

eDMA

eDMA interrupt request

S
ys

te
m

 b
us

Program model/

Slave write data

Slave write address

Bus write data

Slave read data

Bus address

eDMA engine

TCD0

TCDn-1*

eDMA peripheral

Bus read data

channel arbitration

request

SRAM
Transfer control descriptor

(TCD)

SRAM

Data path ControlAddress
path

eDMA done handshake

*n = 16 channels

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

364 Freescale Semiconductor

Figure 17-21. eDMA Operation, Part 3

17.5.2 eDMA performance

This section addresses the performance of the eDMA module, focusing on two separate metrics. In the
traditional data movement context, performance is best expressed as the peak data transfer rates achieved
using the eDMA. In most implementations, this transfer rate is limited by the speed of the source and
destination address spaces. In a second context where device-paced movement of single data values
to/from peripherals is dominant, a measure of the requests which can be serviced in a fixed time is a more
interesting metric. In this environment, the speed of the source and destination address spaces remains
important, but the microarchitecture of the eDMA also factors significantly into the resulting metric.

The peak transfer rates for several different source and destination transfers are shown in Table 17-21. The
following assumptions apply to Table 17-21 and Table 17-22:

• Platform SRAM can be accessed with zero wait-states when viewed from the AMBA-AHB data
phase

• All IPS reads require two wait-states, and IPS writes three wait-states, again viewed from the
system bus data phase

• All IPS accesses are 32 bits in size

Sl
av

e
in

te
rfa

ce

eDMA

eDMA done

S
ys

te
m

 b
us

Slave write data

Slave write address

Bus write data

Slave read data

Bus address

eDMA engine

TCD0

TCDn-1*

eDMA peripheral

Bus read data

request

SRAM
Transfer control descriptor

(TCD)

SRAM

Data path Address
path

Control

Program model/
channel arbitration

*n = 16 channels

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 365

Table 17-21 presents a peak transfer rate comparison, measured in megabytes per second. In this table, the
Platform_SRAM-to-Platform_SRAM transfers occur at the native platform datapath width, i.e., either 32-
or 64-bits per access. For all transfers involving the IPS bus, 32-bit transfer sizes are used. In all cases, the
transfer rate includes the time to read the source plus the time to write the destination.

The second performance metric is a measure of the number of eDMA requests which can be serviced in a
given amount of time. For this metric, it is assumed the peripheral request causes the channel to move a
single IPS-mapped operand to/from the platform SRAM. The same timing assumptions used in the
previous example apply to this calculation. In particular, this metric also reflects the time required to
activate the channel. The eDMA design supports the following hardware service request sequence:

• Cycle 1: ipd_req[n] is asserted

• Cycle 2: The ipd_req[n] is registered locally in the eDMA module and qualified (TCD.start bit
initiated requests start at this point with the registering of the IPS write to TCD word7)

• Cycle 3: Channel arbitration begins

• Cycle 4: Channel arbitration completes. The transfer control descriptor local memory read is
initiated.

• Cycle 5 - 6: The first two parts of the activated channel’s TCD is read from the local memory. The
memory width to the eDMA engine is 64 bits, so the entire descriptor can be accessed in four
cycles.

• Cycle 7: The first AMBA-AHB read cycle is initiated, as the third part of the channel’s TCD is read
from the local memory. Depending on the state of the platform’s crossbar switch, arbitration at the
system bus may insert an additional cycle of delay here.

• Cycle 8 - ?: The last part of the TCD is read in. This cycle represents the 1st data phase for the read,
and the address phase for the destination write.
The exact timing from this point is a function of the response times for the channel’s read and write
accesses. In this case of an IPS read and a platform SRAM write, the combined data phase time is
4 cycles. For an SRAM read and IPS write, it is 5 cycles.

• Cycle ?+1: This cycle represents the data phase of the last destination write

Table 17-21. eDMA peak transfer rates [MB/s]

Platform Speed,
 Width

Platform SRAM-to-
Platform SRAM

32-bit IPS-to-
Platform SRAM

Platform SRAM-to-
32-bit IPS

66.7 MHz, 32-bit 133.3 66.7 53.3

66.7 MHz, 64-bit 266.7 66.6 53.3

83.3 MHz, 32-bit 166.7 83.3 66.7

83.3 MHz, 64-bit 333.3 83.3 66.7

100.0 MHz, 32-bit 200.0 100.0 80.0

100.0 MHz, 64-bit 400.0 100.0 80.0

133.3 MHz, 32-bit 266.7 133.3 106.7

133.3 MHz, 64-bit 533.3 133.3 106.7

150.0 MHz, 32-bit 300.0 150.0 120.0

150.0 MHz, 64-bit 600.0 150.0 120.0

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

366 Freescale Semiconductor

• Cycle ?+2: The eDMA engine completes the execution of the inner minor loop and prepares to
write back the required TCDn fields into the local memory. TCD word7 is read and checked for
channel linking or scatter/gather requests.

• Cycle ?+3: The appropriate fields in the first part of the TCDn are written back into the local
memory

• Cycle ?+4: The fields in the second part of the TCDn are written back into the local memory. This
cycle coincides with the next channel arbitration cycle start.

• Cycle ?+5: The next channel to be activated performs the read of the first part of its TCD from the
local memory. This is equivalent to Cycle 4 for the first channel’s service request.

Assuming zero wait states on the AHB system bus, eDMA requests can be processed every 9 cycles.
Assuming an average of the access times associated with IPS-to-SRAM (4 cycles) and SRAM-to-IPS
(5 cycles), eDMA requests can be processed every 11.5 cycles (4 + (4+5)2 + 3). This is the time from
Cycle 4 to Cycle “?+5”. The resulting peak request rate, as a function of the platform frequency, is shown
in Table 17-22. This metric represents millions of requests per second.

A general formula to compute the peak request rate (with overlapping requests) is:

PEAKreq = freq  [entry + (1 + read_ws) + (1 + write_ws) + exit]

where:

PEAKreq - peak request rate

freq - platform frequency

entry - channel startup (4 cycles)

read_ws - wait states seen during the system bus read data phase

write_ws - wait states seen during the system bus write data phase

exit - channel shutdown (3 cycles)

For example: consider a platform with the following characteristics:

• Platform SRAM can be accessed with one wait-state when viewed from the AMBA-AHB data
phase

Table 17-22. eDMA peak request rate [MReq/sec]

Platform Speed
Request Rate

(zero wait state)
Request Rate

(with wait states)

66.6 MHz 7.4 5.8

83.3 MHz 9.2 7.2

100.0 MHz 11.1 8.7

133.3 MHz 14.8 11.6

150.0 MHz 16.6 13.0

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 367

• All IPS reads require two wait-states, and IPS writes three wait-states, again viewed from the
system bus data phase

• Platform operates at 150 MHz

For an SRAM to IPS transfer:

PEAKreq = 150 MHz  [4 + (1 + 1) + (1 + 3) + 3] cycles = 11.5 Mreq/sec

For an IPS to SRAM transfer:

PEAKreq = 150 MHz  [4 + (1 + 2) + (1 + 1) + 3] cycles = 12.5 Mreq/sec

Assuming an even distribution of the two transfer types, the average Peak Request Rate would be:

PEAKreq = (11.5 Mreq/sec + 12.5 Mreq/sec)  2 = 12.0 Mreq/sec

The minimum number of cycles to perform a single read/write, zero wait states on the system bus, from a
cold start (where no channel is executing, eDMA is idle) are:

• 11 cycles for a software (TCD.start bit) request

• 12 cycles for a hardware (ipd_req signal) request

Two cycles account for the arbitration pipeline and one extra cycle on the hardware request resulting from
the internal registering of the ipd_req signals. For the peak request rate calculations above, the arbitration
and request registering is absorbed in or overlap the previous executing channel.

NOTE

When channel linking or scatter/gather is enabled, a two cycle delay is imposed on the next channel
selection and startup. This allows the link channel or the scatter/gather channel to be eligible and
considered in the arbitration pool for next channel selection.

17.6 Initialization / Application Information

17.6.1 eDMA Initialization

A typical initialization of the eDMA has the following sequence:

1. Write the EDMA_CR if a configuration other than the default is desired.

2. Write the channel priority levels into the EDMA_CPRn registers if a configuration other than the
default is desired.

3. Enable error interrupts in the EDMA_EEIRL and/or EDMA_EEIRH registers if desired.

4. Write the 32-byte TCD for each channel that may request service.

5. Enable any hardware service requests via the EDMA_ERQRH and/or EDMA_ERQRL registers.

6. Request channel service by software (setting the TCD.START bit) or by hardware (slave device
asserting its DMA peripheral request signal).

After any channel requests service, a channel is selected for execution based on the arbitration and priority
levels written into the programmer's model. The DMA engine will read the entire TCD, including the

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

368 Freescale Semiconductor

primary transfer control parameter shown in Table 17-23, for the selected channel into its internal address
path module. As the TCD is being read, the first transfer is initiated on the system bus unless a
configuration error is detected. Transfers from the source (as defined by the source address, TCD.SADDR)
to the destination (as defined by the destination address, TCD.DADDR) continue until the specified
number of bytes (TCD.NBYTES) have been transferred. When the transfer is complete, the DMA engine's
local TCD.SADDR, TCD.DADDR, and TCD.CITER are written back to the main TCD memory and any
minor loop channel linking is performed, if enabled. If the major loop is exhausted, further post processing
is executed; for example, interrupts, major loop channel linking, and scatter-gather operations, if enabled.

Figure 17-22 shows how each DMA request initiates one minor loop transfer (iteration) without CPU
intervention. DMA arbitration can occur after each minor loop, and one level of minor loop DMA
preemption is allowed. The number of minor loops in a major loop is specified by the beginning iteration
count (biter).

Table 17-23. TCD Primary Control and Status Fields

TCD Field
Name

Description

START Control bit to start channel when using a software initiated DMA
service (Automatically cleared by hardware)

ACTIVE Status bit indicating the channel is currently in execution

DONE Status bit indicating major loop completion (cleared by software
when using a software initiated DMA service)

D_REQ Control bit to disable DMA request at end of major loop
completion when using a hardware-initiated DMA service

BWC Control bits for throttling bandwidth control of a channel

E_SG Control bit to enable scatter-gather feature

INT_HALF Control bit to enable interrupt when major loop is half complete

INT_MAJ Control bit to enable interrupt when major loop completes

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 369

Figure 17-22. Example of Multiple Loop Iterations

Figure 17-23 lists the memory array terms and how the TCD settings interrelate.

Figure 17-23. Memory array terms

17.6.2 DMA programming errors

The DMA performs various tests on the transfer control descriptor to verify consistency in the descriptor
data. Most programming errors are reported on a per-channel basis with the exception of two errors:
group-priority error and channel-priority error, or EDMA_ESR[GPE] and EDMA_ESR[CPE],
respectively.

For all error types other than group- or channel-priority errors, the channel number causing the error is
recorded in the EDMA_ESR. If the error source is not removed before the next activation of the problem
channel, the error will be detected and recorded again.

DMA request

Minor loop 3

Current major loop
iteration count

(CITER)
Example memory array

•
•
•

DMA request

Minor loop 2•
•
•

DMA request

Minor loop 1•
•
•

Major loop

xADDR:
(Starting address)

xSIZE:
(Size of one data

Minor loop
(NBYTES in

minor loop, often
the same value

as xSIZE)

Offset (xOFF): Number of
bytes added to current

address after each transfer
(Often the same value

as xSIZE)

•
Minor loop

Each DMA source (S) and
destination (D) has its own:

• Address (xADDR)
• Size (xSIZE)
• Offset (xOFF)

xLAST: Number of bytes
added to current address

Peripheral queues typically
have size and offset
equal to NBYTES

•
•

after major loop
(typically used to

loop back)

transfer)

•
•
•

•
•
•

Last minor loop

• Modulo (xMOD)
• Last address adjustment
(xLAST) where x = S or D

•
•
•

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

370 Freescale Semiconductor

Channel-priority errors are identified within a group after that group has been selected as the active group.
For the example, all of the channel priorities in group 1 are unique, but some of the channel priorities in
group 0 are the same:

1. The DMA is configured for fixed-group and fixed-channel arbitration modes.

2. Group 1 is the highest priority and all channels are unique in that group.

3. Group 0 is the next highest priority and has two channels with the same priority level.

4. If group 1 has any service requests, those requests will be executed.

5. After all of group 1 requests have completed, group 0 will be the next active group.

6. If group 0 has a service request, then an undefined channel in group 0 will be selected and a
channel-priority error will occur.

7. This will repeat until the all of group 0 requests have been removed or a higher priority group 1
request comes in.

In this sequence, for item 2, the DMA acknowledge lines will assert only if the selected channel is
requesting service via the DMA peripheral request signal. If interrupts are enabled for all channels, the user
will receive an error interrupt, but the channel number for the EDMA_ER and the error interrupt request
line are undetermined because they reflect the undefined channel. A group-priority error is global and any
request in any group will cause a group-priority error.

If priority levels are not unique, the highest (channel/group) priority that has an active request is selected,
but the lowest numbered (channel/group) with that priority is selected by arbitration and executed by the
DMA engine. The hardware service request handshake signals, error interrupts, and error reporting are
associated with the selected channel.

17.6.3 DMA request assignments

The assignments between the DMA requests from the modules to the channels of the eDMA are shown in
Table 17-24. The source column is written in C language syntax. The syntax is
module_instance.register[bit].

Table 17-24. DMA Request Summary for eDMA

DMA Request Channel Source Description

DMA_MUX_CHCONFIG0_SOURCE 0 DMA_MUX.CHCONFIG0[SOURCE] DMA MUX channel 0 source

DMA_MUX_CHCONFIG1_SOURCE 1 DMA_MUX.CHCONFIG1[SOURCE] DMA MUX channel 1 source

DMA_MUX_CHCONFIG2_SOURCE 2 DMA_MUX.CHCONFIG2[SOURCE] DMA MUX channel 2 source

DMA_MUX_CHCONFIG3_SOURCE 3 DMA_MUX.CHCONFIG3[SOURCE] DMA MUX channel 3 source

DMA_MUX_CHCONFIG4_SOURCE 4 DMA_MUX.CHCONFIG4[SOURCE] DMA MUX channel 4 source

DMA_MUX_CHCONFIG5_SOURCE 5 DMA_MUX.CHCONFIG5[SOURCE] DMA MUX channel 5 source

DMA_MUX_CHCONFIG6_SOURCE 6 DMA_MUX.CHCONFIG6[SOURCE] DMA MUX channel 6 source

DMA_MUX_CHCONFIG7_SOURCE 7 DMA_MUX.CHCONFIG7[SOURCE] DMA MUX channel 7 source

DMA_MUX_CHCONFIG8_SOURCE 8 DMA_MUX.CHCONFIG8[SOURCE] DMA MUX channel 8 source

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 371

17.6.4 DMA Arbitration Mode Considerations

17.6.4.1 Fixed-Group Arbitration, Fixed-Channel Arbitration

In this mode, the channel service request from the highest priority channel in the highest priority group is
selected to execute. If the eDMA is programmed so the channels within one group use fixed priorities, and
that group is assigned the highest fixed priority of all groups, it is possible for that group to take all the
bandwidth of the eDMA controller. That is, no other groups will be serviced if there is always at least one
DMA request pending on a channel in the highest priority group when the controller arbitrates the next
DMA request. The advantage of this scenario is that latency can be small for channels that need to be
serviced quickly. Preemption is available in this scenario only.

17.6.4.2 Round-Robin Group Arbitration, Fixed-Channel Arbitration

The occurrence of one or more DMA requests from one or more groups, the channel with the highest
priority from a specific group will be serviced first. Groups are serviced starting with the highest group
number with a service request and rotating through to the lowest group number containing a service
request.

After the channel request is serviced, the group round robin algorithm will select the highest pending
request from the next group in the round-robin sequence. Servicing continues round robin, always
servicing the highest priority channel in the next group in the sequence, or skipping a group if it has no
pending requests.

If a channel requests service at a rate that equals or exceeds the round robin service rate, then that channel
will always be serviced before lower priority channels in the same group, and the lower priority channels
will never be serviced. The advantage of this scenario is that no one group will consume all the eDMA
bandwidth. The highest priority channel selection latency is potentially greater than fixed/fixed arbitration.
Excessive request rates on high-priority channels can prevent the servicing of lower priority channels in
the same group.

DMA_MUX_CHCONFIG9_SOURCE 9 DMA_MUX.CHCONFIG9[SOURCE] DMA MUX channel 9 source

DMA_MUX_CHCONFIG10_SOURCE 10 DMA_MUX.CHCONFIG10[SOURCE] DMA MUX channel 10 source

DMA_MUX_CHCONFIG11_SOURCE 11 DMA_MUX.CHCONFIG11[SOURCE] DMA MUX channel 11 source

DMA_MUX_CHCONFIG12_SOURCE 12 DMA_MUX.CHCONFIG12[SOURCE] DMA MUX channel 12 source

DMA_MUX_CHCONFIG13_SOURCE 13 DMA_MUX.CHCONFIG13[SOURCE] DMA MUX channel 13 source

DMA_MUX_CHCONFIG14_SOURCE 14 DMA_MUX.CHCONFIG14[SOURCE] DMA MUX channel 14 source

DMA_MUX_CHCONFIG15_SOURCE 15 DMA_MUX.CHCONFIG15[SOURCE] DMA MUX channel 15 source

Table 17-24. DMA Request Summary for eDMA (continued)

DMA Request Channel Source Description

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

372 Freescale Semiconductor

17.6.4.3 Round-Robin Group Arbitration, Round-Robin Channel Arbitration

Groups will be serviced as described in Section 17.6.4.2, “Round-Robin Group Arbitration,
Fixed-Channel Arbitration, but this time channels will be serviced in channel number order. One channel
only is serviced from each requesting group for each round robin pass through the groups.

Within each group, channels are serviced starting with the highest channel number and rotating through to
the lowest channel number without regard to channel priority levels.

Because channels are serviced in round-robin manner, any channel that generates DMA requests faster
than a combination of the group round-robin service rate and the channel service rate for its group will not
prevent the servicing of other channels in its group. Any DMA requests that are not serviced are simply
lost, but at least one channel will be serviced.

This scenario ensures that all channels will be guaranteed service at some point, regardless of the request
rates. However, the potential latency could be high. All channels are treated equally. Priority levels are not
used in round-robin/round-robin mode.

17.6.4.4 Fixed-Group Arbitration, Round-Robin Channel Arbitration

The highest priority group with a request will be serviced. Lower priority groups will be serviced if no
pending requests exist in the higher priority groups.

Within each group, channels are serviced starting with the highest channel number and rotating through to
the lowest channel number without regard to the channel priority levels assigned within the group.

This scenario could cause the same bandwidth consumption problem as indicated in Section 17.6.4.1, but
all the channels in the highest priority group will get serviced. Service latency will be short on the highest
priority group, but could potentially get longer and longer as the group priority decreases.

17.6.5 DMA transfer

17.6.5.1 Single request

To perform a simple transfer of n bytes of data with one activation, set the major loop to 1
(TCD.CITER = TCD.BITER = 1). The data transfer will begin after the channel service request is
acknowledged and the channel is selected to execute. After the transfer is complete, the TCD.DONE bit
will be set and an interrupt will be generated if properly enabled.

For example, the following TCD entry is configured to transfer 16 bytes of data. The eDMA is
programmed for one iteration of the major loop transferring 16 bytes per iteration. The source memory has
a byte wide memory port located at 0x1000. The destination memory has a word wide port located at
0x2000. The address offsets are programmed in increments to match the size of the transfer; one byte for
the source and four bytes for the destination. The final source and destination addresses are adjusted to
return to their beginning values.

TCD.CITER = TCD.BITER = 1

TCD.NBYTES = 16

TCD.SADDR = 0x1000

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 373

TCD.SOFF = 1

TCD.SSIZE = 0

TCD.SLAST = –16

TCD.DADDR = 0x2000

TCD.DOFF = 4

TCD.DSIZE = 2

TCD.DLAST_SGA= -16

TCD.INT_MAJ = 1

TCD.START = 1 (Must be written last after all other fields have been initialized)

All other TCD fields = 0

This would generate the following sequence of events:

1. Slave write to the TCD.START bit requests channel service.

2. The channel is selected by arbitration for servicing.

3. eDMA engine writes: TCD.DONE = 0, TCD.START = 0, TCD.ACTIVE = 1.

4. eDMA engine reads: channel TCD data from local memory to internal register file.

5. The source to destination transfers are executed as follows:

a) read_byte(0x1000), read_byte(0x1001), read_byte(0x1002), read_byte(0x1003)

b) write_word(0x2000)  first iteration of the minor loop

c) read_byte(0x1004), read_byte(0x1005), read_byte(0x1006), read_byte(0x1007)

d) write_word(0x2004)  second iteration of the minor loop

e) read_byte(0x1008), read_byte(0x1009), read_byte(0x100a), read_byte(0x100b)

f) write_word(0x2008)  third iteration of the minor loop

g) read_byte(0x100c), read_byte(0x100d), read_byte(0x100e), read_byte(0x100f)

h) write_word(0x200c)  last iteration of the minor loop  major loop complete

6. eDMA engine writes: TCD.SADDR = 0x1000, TCD.DADDR = 0x2000, TCD.CITER = 1
(TCD.BITER).

7. eDMA engine writes: TCD.ACTIVE = 0, TCD.DONE = 1, EDMA_IRQRn = 1.

8. The channel retires.

The eDMA goes idle or services the next channel.

17.6.5.2 Multiple requests

The next example is the same as previous, excepting transferring 32 bytes via two hardware requests. The
only fields that change are the major loop iteration count and the final address offsets. The eDMA is
programmed for two iterations of the major loop transferring 16 bytes per iteration. After the channel’s
hardware requests are enabled in the EDMA_ERQR, channel service requests are initiated by the slave
device (ERQR should be set after TCD). Note that TCD.START = 0.

TCD.CITER = TCD.BITER = 2

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

374 Freescale Semiconductor

TCD.NBYTES = 16

TCD.SADDR = 0x1000

TCD.SOFF = 1

TCD.SSIZE = 0

TCD.SLAST = –32

TCD.DADDR = 0x2000

TCD.DOFF = 4

TCD.DSIZE = 2

TCD.DLAST_SGA= –32

TCD.INT_MAJ = 1

TCD.START = 0 (Must be written last after all other fields have been initialized)

All other TCD fields = 0

This generates the following sequence of events:

1. First hardware (eDMA peripheral request) request for channel service.

2. The channel is selected by arbitration for servicing.

3. eDMA engine writes: TCD.DONE = 0, TCD.START = 0, TCD.ACTIVE = 1.

4. eDMA engine reads: channel TCD data from local memory to internal register file.

5. The source to destination transfers are executed as follows:

a) read_byte(0x1000), read_byte(0x1001), read_byte(0x1002), read_byte(0x1003)

b) write_word(0x2000)  first iteration of the minor loop

c) read_byte(0x1004), read_byte(0x1005), read_byte(0x1006), read_byte(0x1007)

d) write_word(0x2004)  second iteration of the minor loop

e) read_byte(0x1008), read_byte(0x1009), read_byte(0x100a), read_byte(0x100b)

f) write_word(0x2008)  third iteration of the minor loop

g) read_byte(0x100c), read_byte(0x100d), read_byte(0x100e), read_byte(0x100f)

h) write_word(0x200c)  last iteration of the minor loop

6. eDMA engine writes: TCD.SADDR = 0x1010, TCD.DADDR = 0x2010, TCD.CITER = 1.

7. eDMA engine writes: TCD.ACTIVE = 0.

8. The channel retires  one iteration of the major loop.

The eDMA goes idle or services the next channel.

9. Second hardware (eDMA peripheral request) requests channel service.

10. The channel is selected by arbitration for servicing.

11. eDMA engine writes: TCD.DONE = 0, TCD.START = 0, TCD.ACTIVE = 1.

12. eDMA engine reads: channel TCD data from local memory to internal register file.

13. The source to destination transfers are executed as follows:

a) read_byte(0x1010), read_byte(0x1011), read_byte(0x1012), read_byte(0x1013)

b) write_word(0x2010)  first iteration of the minor loop

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 375

c) read_byte(0x1014), read_byte(0x1015), read_byte(0x1016), read_byte(0x1017)

d) write_word(0x2014)  second iteration of the minor loop

e) read_byte(0x1018), read_byte(0x1019), read_byte(0x101a), read_byte(0x101b)

f) write_word(0x2018)  third iteration of the minor loop

g) read_byte(0x101c), read_byte(0x101d), read_byte(0x101e), read_byte(0x101f)

h) write_word(0x201c)  last iteration of the minor loop  major loop complete

14. eDMA engine writes: TCD.SADDR = 0x1000, TCD.DADDR = 0x2000, TCD.CITER = 2
(TCD.BITER).

15. eDMA engine writes: TCD.ACTIVE = 0, TCD.DONE = 1, EDMA_IRQRn = 1.

16. The channel retires  major loop complete.

The eDMA goes idle or services the next channel.

17.6.5.3 Modulo feature

The modulo feature of the eDMA provides the ability to implement a circular data queue in which the size
of the queue is a power of two. MOD is a 5-bit bitfield for both the source and destination in the TCD and
specifies which lower address bits are allowed to increment from their original value after the
address + offset calculation. All upper address bits remain the same as in the original value. A setting of 0
for this field disables the modulo feature.

Table 17-25 shows how the transfer addresses are specified based on the setting of the MOD field. Here a
circular buffer is created where the address wraps to the original value while the 28 upper address bits
(0x1234567x) retain their original value. In this example the source address is set to 0x12345670, the
offset is set to 4 bytes and the mod field is set to 4, allowing for a 24 byte (16-byte) size queue.

17.6.6 TCD status

17.6.6.1 Minor Loop Complete

There are two methods to test for minor loop completion when using software initiated service requests.
The first method is to read the TCD.CITER field and test for a change. Another method may be extracted
from the sequence below. The second method is to test the TCD.START bit AND the TCD.ACTIVE bit.

Table 17-25. Modulo Feature Example

Transfer
Number

Address

1 0x12345670

2 0x12345674

3 0x12345678

4 0x1234567C

5 0x12345670

6 0x12345674

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

376 Freescale Semiconductor

The minor loop complete condition is indicated by both bits reading zero after the TCD.START was
written to a 1. Polling the TCD.ACTIVE bit may be inconclusive because the active status may be missed
if the channel execution is short in duration.

The TCD status bits execute the following sequence for a software activated channel:

1. TCD.START = 1, TCD.ACTIVE = 0, TCD.DONE = 0 (channel service request via software).

2. TCD.START = 0, TCD.ACTIVE = 1, TCD.DONE = 0 (channel is executing).

3. TCD.START = 0, TCD.ACTIVE = 0, TCD.DONE = 0 (channel has completed the minor loop and
is idle), or

4. TCD.START = 0, TCD.ACTIVE = 0, TCD.DONE = 1 (channel has completed the major loop and
is idle).

The best method to test for minor loop completion when using hardware initiated service requests is to
read the TCD.CITER field and test for a change. The hardware request and acknowledge handshakes
signals are not visible in the programmer’s model.

The TCD status bits execute the following sequence for a hardware activated channel:

1. eDMA peripheral request asserts (channel service request via hardware).

2. TCD.START = 0, TCD.ACTIVE = 1, TCD.DONE = 0 (channel is executing).

3. TCD.START = 0, TCD.ACTIVE = 0, TCD.DONE = 0 (channel has completed the minor loop and
is idle), or

4. TCD.START = 0, TCD.ACTIVE = 0, TCD.DONE = 1 (channel has completed the major loop and
is idle).

For both activation types, the major loop complete status is explicitly indicated via the TCD.DONE bit.

The TCD.START bit is cleared automatically when the channel begins execution, regardless of how the
channel was activated.

17.6.6.2 Active channel TCD Reads

The eDMA will read back the true TCD.SADDR, TCD.DADDR, and TCD.NBYTES values if read while
a channel is executing. The true values of the SADDR, DADDR, and NBYTES are the values the eDMA
engine is currently using in its internal register file and not the values in the TCD local memory for that
channel. The addresses (SADDR and DADDR) and NBYTES (decrements to zero as the transfer
progresses) can give an indication of the progress of the transfer. All other values are read back from the
TCD local memory.

17.6.6.3 Preemption status

Preemption is available only when fixed arbitration is selected for both group- and channel-arbitration
modes. A preempt-able situation is one in which a preempt-enabled channel is running and a higher
priority request becomes active. When the eDMA engine is not operating in fixed group, fixed-channel
arbitration mode, the determination of the relative priority of the actively running and the outstanding
requests become undefined. Channel and group priorities are treated as equal (or more exactly, constantly
rotating) when round-robin arbitration mode is selected.

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 377

The TCD.ACTIVE bit for the preempted channel remains asserted throughout the preemption. The
preempted channel is temporarily suspended while the preempting channel executes one iteration of the
major loop. Two TCD.ACTIVE bits set at the same time in the overall TCD map indicates a higher priority
channel is actively preempting a lower priority channel.

17.6.7 Channel linking

Channel linking (or chaining) is a mechanism in which one channel sets the TCD.START bit of another
channel (or itself), thus initiating a service request for that channel. This operation is automatically
performed by the eDMA engine at the conclusion of the major or minor loop when properly enabled.

The minor loop channel linking occurs at the completion of the minor loop (or one iteration of the major
loop). The TCD.CITER.E_LINK field are used to determine whether a minor loop link is requested. When
enabled, the channel link is made after each iteration of the minor loop except for the last. When the major
loop is exhausted, only the major loop channel link fields are used to determine if a channel link should be
made. For example, with the initial fields of:

TCD.CITER.E_LINK = 1

TCD.CITER.LINKCH = 0xC

TCD.CITER value = 0x4

TCD.MAJOR.E_LINK = 1

TCD.MAJOR.LINKCH = 0x7

will execute as:

1. Minor loop done  set channel 12 TCD.START bit

2. Minor loop done  set channel 12 TCD.START bit

3. Minor loop done  set channel 12 TCD.START bit

4. Minor loop done, major loop done  set channel 7 TCD.START bit

When minor loop linking is enabled (TCD.CITER.E_LINK = 1), the TCD.CITER field uses a nine bit
vector to form the current iteration count.

When minor loop linking is disabled (TCD.CITER.E_LINK = 0), the TCD.CITER field uses a 15-bit
vector to form the current iteration count. The bits associated with the TCD.CITER.LINKCH field are
concatenated onto the CITER value to increase the range of the CITER.

NOTE
After configuration, the TCD.CITER.E_LINK bit and the
TCD.BITER.E_LINK bit must be equal or a configuration error will be
reported. The CITER and BITER vector widths must be equal to calculate
the major loop, halfway done interrupt point.

Table 17-26 summarizes how a DMA channel can link to another DMA channel, i.e, use another channel’s
TCD, at the end of a loop.

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

378 Freescale Semiconductor

17.6.8 Dynamic programming

17.6.8.1 Dynamic channel linking

Dynamic channel linking is the process of setting the TCD.major.e_link bit during channel execution. This
bit is read from the TCD local memory at the end of channel execution, thus allowing the user to enable
the feature during channel execution.

A coherency model is needed because the user is allowed to change the configuration during execution.
Consider the scenario where the user attempts to execute a dynamic channel link by enabling the
TCD.major.e_link bit at the same time the eDMA engine is retiring the channel. The TCD.major.e_link
would be set in the programmer’s model, but it would be unclear whether the actual link was made before
the channel retired.

The coherency model in Table 17-27 is recommended when executing a dynamic channel link request.

For this request, the TCD local memory controller forces the TCD.major.e_link bit to zero on any writes
to a channel’s TCD.word7 after that channel’s TCD.done bit is set, indicating the major loop is complete.

NOTE
The user must clear the TCD.done bit before writing the TCD.major.e_link
bit. The TCD.done bit is cleared automatically by the eDMA engine after a
channel begins execution.

Table 17-26. Channel Linking Parameters

Desired Link
Behavior

TCD Control Field Name Description

Link at end of
minor loop

citer.e_link Enable channel-to-channel linking on minor loop
completion (current iteration).

citer.linkch Link channel number when linking at end of minor
loop (current iteration).

Link at end of
major loop

major.e_link Enable channel-to-channel linking on major loop
completion.

major.linkch Link channel number when linking at end of major
loop.

Table 17-27. Coherency model for a dynamic channel link request

Step Action

1 Write 1b to the TCD.major.e_link bit.

2 Read back the TCD.major.e_link bit.

3 Test the TCD.major.e_link request status:
 • If TCD.major.e_link = 1b, the dynamic link attempt was successful.
 • If TCD.major.e_link = 0b, the attempted dynamic link did not succeed (the channel was

already retiring).

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 379

17.6.8.2 Dynamic scatter/gather

Dynamic scatter/gather is the process of setting the TCD.e_sg bit during channel execution. This bit is read
from the TCD local memory at the end of channel execution, thus allowing the user to enable the feature
during channel execution.

Because the user is allowed to change the configuration during execution, a coherency model is needed.
Consider the scenario where the user attempts to execute a dynamic scatter/gather operation by enabling
the TCD.e_sg bit at the same time the eDMA engine is retiring the channel. The TCD.e_sg would be set
in the programmer’s model, but it would be unclear whether the actual scatter/gather request was honored
before the channel retired.

Two methods for this coherency model are shown in the following subsections. Method 1 has the
advantage of reading the major.linkch field and the e_sg bit with a single read. For both dynamic channel
linking and scatter/gather requests, the TCD local memory controller forces the TCD.major.e_link and
TCD.e_sg bits to zero on any writes to a channel’s TCD.word7 if that channel’s TCD.done bit is set
indicating the major loop is complete.

NOTE
The user must clear the TCD.done bit before writing the TCD.major.e_link
or TCD.e_sg bits. The TCD.done bit is cleared automatically by the eDMA
engine after a channel begins execution.

17.6.8.2.1 Method 1 (channel not using major loop channel linking)

For a channel not using major loop channel linking, the coherency model in Table 17-28 may be used for
a dynamic scatter/gather request.

When the TCD.major.e_link bit is zero, the TCD.major.linkch field is not used by the eDMA. In this case,
the TCD.major.linkch bits may be used for other purposes. This method uses the TCD.major.linkch field
as a TCD identification (ID).

Table 17-28. Coherency model for method 1

Step Action

1 When the descriptors are built, write a unique TCD ID in the TCD.major.linkch field for each
TCD associated with a channel using dynamic scatter/gather.

2 Write 1b to theTCD.d_req bit.
Note: Should a dynamic scatter/gather attempt fail, setting the d_req bit will prevent a future

hardware activation of this channel. This stops the channel from executing with a
destination address (daddr) that was calculated using a scatter/gather address
(written in the next step) instead of a dlast final offset value.

3 Write theTCD.dlast_sga field with the scatter/gather address.

4 Write 1b to the TCD.e_sg bit.

Chapter 17 Enhanced Direct Memory Access (eDMA)

MPC5646C Microcontroller Reference Manual, Rev. 5

380 Freescale Semiconductor

17.6.8.2.2 Method 2 (channel using major loop linking)

For a channel using major loop channel linking, the coherency model in Table 17-29 may be used for a
dynamic scatter/gather request. This method uses the TCD.dlast_sga field as a TCD identification (ID).

5 Read back the 16 bit TCD control/status field.

6 Test the TCD.e_sg request status and TCD.major.linkch value:
 • If e_sg = 1b, the dynamic link attempt was successful.
 • If e_sg = 0b and the major.linkch (ID) did not change, the attempted dynamic link did not

succeed (the channel was already retiring).
 • If e_sg = 0b and the major.linkch (ID) changed, the dynamic link attempt was successful

(the new TCD’s e_sg value cleared the e_sg bit).

Table 17-29. Coherency model for method 2

Step Action

1 Write 1b to theTCD.d_req bit.
Note: Should a dynamic scatter/gather attempt fail, setting the d_req bit will prevent a future

hardware activation of this channel. This stops the channel from executing with a
destination address (daddr) that was calculated using a scatter/gather address
(written in the next step) instead of a dlast final offset value.

2 Write theTCD.dlast_sga field with the scatter/gather address.

3 Write 1b to the TCD.e_sg bit.

4 Read back the TCD.e_sg bit.

5 Test the TCD.e_sg request status:
 • If e_sg = 1b, the dynamic link attempt was successful.
 • If e_sg = 0b, read the 32 bit TCD dlast_sga field.
 • If e_sg = 0b and the dlast_sga did not change, the attempted dynamic link did not

succeed (the channel was already retiring).
 • If e_sg = 0b and the dlast_sga changed, the dynamic link attempt was successful (the

new TCD’s e_sg value cleared the e_sg bit).

Table 17-28. Coherency model for method 1 (continued)

Step Action

Chapter 18 eDMA Channel Multiplexer (DMA_MUX)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 381

Chapter 18
eDMA Channel Multiplexer (DMA_MUX)

18.1 Introduction
The DMA Mux allows to route 56 DMA sources (called slots) to 32 eDMA channels. This is illustrated in
Figure 18-1.

Figure 18-1. DMA_MUX block diagram

18.2 Features
The eDMA Channel Mux provides these features:

• 52 peripheral slots + 4 always-on slots can be routed to 32 channels

• 64 independently selectable eDMA channels routers

— the first 4 channels additionally provide a trigger functionality

• Each channel router can be assigned to one of 52 possible peripheral eDMA slots or to one of the
4 always-on slots.

Source #1

Source #2

Source #3

DMA Channel #1

DMA Channel #0
DMA_MUX

Always #1

Trigger #1

DMA Channel #31

Trigger #4

Always #4

Source #52

Chapter 18 eDMA Channel Multiplexer (DMA_MUX)

MPC5646C Microcontroller Reference Manual, Rev. 5

382 Freescale Semiconductor

18.2.1 Modes of operation

The following operation modes are available:

• Disabled mode

In this mode, the eDMA channel is disabled. Since disabling and enabling of eDMA channels is
done primarily via the eDMA configuration registers, this mode is used mainly as the reset state
for a eDMA channel in the eDMA Channel Mux. It may also be used to temporarily suspend a
eDMA channel while reconfiguration of the system takes place (e.g. changing the period of a
eDMA trigger).

• Normal mode

In this mode, a eDMA source (such as DSPI transmit or DSPI receive for example) is routed
directly to the specified eDMA channel. The operation of the eDMA Mux in this mode is
completely transparent to the system.

• Periodic Trigger mode

In this mode, a eDMA source may only request a eDMA transfer (such as when a transmit buffer
becomes empty or a receive buffer becomes full) periodically. Configuration of the period is done
in the registers of the PIT_RTI. This mode is only available for channels 0-3.

18.3 External signal description

18.3.1 Overview

The eDMA Mux has no external pins.

18.4 Memory map and register definition
This section provides a detailed description of all memory-mapped registers in the eDMA Mux.

Table 18-1 shows the memory map for the eDMA Mux. Note that all addresses are offsets; the absolute
address may be computed by adding the specified offset to the base address of the eDMA Mux.

All registers are accessible via 8-bit, 16-bit or 32-bit accesses. However, 16-bit accesses must be aligned
to 16-bit boundaries, and 32-bit accesses must be aligned to 32-bit boundaries. As an example,
CHCONFIG0 through CHCONFIG3 are accessible by a 32-bit READ/WRITE to address ‘Base + 0x00’,
but performing a 32-bit access to address ‘Base + 0x01’ is illegal.

Table 18-1. DMA_MUX memory map

Base address: 0xFFFD_C000

Address offset Register Name Location

0x00 Channel #0 Configuration (CHCONFIG0) on page 383

0x01 Channel #1 Configuration (CHCONFIG1) on page 383

.. ..

0x1F Channel #31 Configuration (CHCONFIG31) on page 383

Chapter 18 eDMA Channel Multiplexer (DMA_MUX)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 383

18.4.1 Register descriptions

The following memory-mapped registers are available in the eDMA Channel Mux.

18.4.1.1 Channel Configuration Registers

Each of the eDMA channels can be independently enabled/disabled and associated with one of the eDMA
slots (peripheral slots or always-on slots) in the system.

NOTE
 Setting multiple CHCONFIG registers with the same Source value will
result in unpredictable behavior.

NOTE
Before changing the trigger or source settings a eDMA channel must be
disabled via the CHCONFIG[#n].ENBL bit.

Address: Base + #n Access: User read/write

0 1 2 3 4 5 6 7

R
ENBL TRIG SOURCE

W

Reset 0 0 0 0 0 0 0 0

Figure 18-2. Channel Configuration Registers (CHCONFIG#n)

Table 18-2. CHCONFIGxx Field Descriptions

Field Description

7
ENBL

eDMA Channel Enable. ENBL enables the eDMA Channel
0 eDMA channel is disabled. This mode is primarily used during configuration of the eDMA Mux. The

eDMA has separate channel enables/disables, which should be used to disable or re-configure a
eDMA channel.

1 eDMA channel is enabled

6
TRIG

eDMA Channel Trigger Enable (for triggered channels only). TRIG enables the periodic trigger capability
for the eDMA Channel
0 Triggering is disabled. If triggering is disabled, and the ENBL bit is set, the eDMA Channel will simply

route the specified source to the eDMA channel.
1 Triggering is enabled

5–0
SOURCE

eDMA Channel Source (slot). SOURCE specifies which eDMA source, if any, is routed to a particular
eDMA channel. For further details about the peripherals and their slot numbers, refer to Table 18-4.

Table 18-3. Channel and Trigger Enabling

ENBL TRIG Function Mode

0 X eDMA Channel is disabled Disabled Mode

1 0 eDMA Channel is enabled with no triggering (transparent) Normal Mode

1 1 eDMA Channel is enabled with triggering Periodic Trigger Mode

Chapter 18 eDMA Channel Multiplexer (DMA_MUX)

MPC5646C Microcontroller Reference Manual, Rev. 5

384 Freescale Semiconductor

18.4.2 DMA_MUX inputs

18.4.2.1 DMA_MUX peripheral sources

Table 18-4. DMA channel mapping

DMA_MUX channel Module DMA requesting module

0 — Always disabled

1 DSPI 0 DSPI_0 TX

2 DSPI 0 DSPI_0 RX

3 DSPI 1 DSPI_1 TX

4 DSPI 1 DSPI_1 RX

5 DSPI 2 DSPI_2 TX

6 DSPI 2 DSPI_2 RX

7 DSPI 3 DSPI_3 TX

8 DSPI 3 DSPI_3 RX

9 DSPI 4 DSPI_4 TX

10 DSPI 4 DSPI_4 RX

11 DSPI 5 DSPI_5 TX

12 DSPI 5 DSPI_5 RX

13 DSPI 6 DSPI_6 RX

14 DSPI 6 DSPI_6 RX

15 DSPI 7 DSPI_7 RX

16 DSPI 7 DSPI_7 RX

17 eMIOS 0 EMIOS0_CH0

18 eMIOS 0 EMIOS0_CH1

19 eMIOS 0 EMIOS0_CH9

20 eMIOS 0 EMIOS0_CH18

21 eMIOS 0 EMIOS0_CH25

22 eMIOS 0 EMIOS0_CH26

23 eMIOS 1 EMIOS1_CH0

24 eMIOS 1 EMIOS1_CH9

25 eMIOS 1 EMIOS1_CH17

26 eMIOS 1 EMIOS1_CH18

27 eMIOS 1 EMIOS1_CH25

28 eMIOS 1 EMIOS1_CH26

29 ADC 0 ADC0_EOC

Chapter 18 eDMA Channel Multiplexer (DMA_MUX)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 385

30 ADC 1 ADC1_EOC

31 I2C IIC_RX

32 I2C IIC_TX

33 LINFlexD_0 LINFlexD_0_RX

34 LINFlexD_0 LINFlexD_0_TX

35 LINFlexD_1 LINFlexD_1_RX

36 LINFlexD_1 LINFlexD_1_TX

37 LINFlexD_2 LINFlexD_2_RX

38 LINFlexD_2 LINFlexD_2_TX

39 LINFlexD_3 LINFlexD_3_RX

40 LINFlexD_3 LINFlexD_3_TX

41 LINFlexD_4 LINFlexD_4_RX

42 LINFlexD_4 LINFlexD_4_TX

43 LINFlexD_5 LINFlexD_5_RX

44 LINFlexD_5 LINFlexD_5_TX

45 LINFlexD_6 LINFlexD_6_RX

46 LINFlexD_6 LINFlexD_6_TX

47 LINFlexD_7 LINFlexD_7_RX

48 LINFlexD_7 LINFlexD_7_TX

49 LINFlexD_8 LINFlexD_8_RX

50 LINFlexD_8 LINFlexD_8_TX

51 LINFlexD_9 LINFlexD_9_RX

52 LINFlexD_9 LINFlexD_9_TX

53 — —

54 — —

55 — —

56 — —

57 — —

58 — —

59 — —

60 — ALWAYS ENABLED

61 — ALWAYS ENABLED

Table 18-4. DMA channel mapping (continued)

DMA_MUX channel Module DMA requesting module

Chapter 18 eDMA Channel Multiplexer (DMA_MUX)

MPC5646C Microcontroller Reference Manual, Rev. 5

386 Freescale Semiconductor

18.4.2.2 DMA_MUX periodic trigger inputs

18.5 Functional description
This section provides a functional description of the DMA Mux. The primary purpose of the DMA Mux
is to provide flexibility in the system’s use of the available DMA channels. As such, configuration of the
DMA Mux is intended to be a static procedure done during execution of the system boot code. However,
if the procedure outlined in Section 18.6.2, “Enabling and Configuring Sources” is followed, the
configuration of the DMA MUX may be changed during the normal operation of the system.

Functionally, the DMA Mux channels may be divided into two classes: Channels, which implement the
normal routing functionality plus periodic triggering capability, and channels, which implement only the
normal routing functionality.

18.5.1 DMA Channels with periodic triggering capability

Besides the normal routing functionality, the first 4 channels (CH0–CH3) of the DMA Mux provide a
special periodic triggering capability that can be used to provide an automatic mechanism to transmit
bytes, frames or packets at fixed intervals without the need for processor intervention. The trigger is
generated by the PIT_RTI; as such, the configuration of the periodic triggering interval is done via
configuration registers in the PIT_RTI. For details, refer to Section 31.4, Periodic Interrupt Timer with
Real-Time Interrupt (PIT_RTI).

NOTE
Because of the dynamic nature of the system (i.e. DMA channel priorities,
bus arbitration, interrupt service routine lengths, etc.), the number of clock
cycles between a trigger and the actual DMA transfer cannot be guaranteed.

62 — ALWAYS ENABLED

63 — ALWAYS ENABLED

Table 18-5. DMA_MUX periodic trigger inputs

DMA_MUX trigger input PIT_RTI channel

Trigger #1 PIT0

Trigger #2 PIT1

Trigger #3 PIT4

Trigger #4 PIT5

Table 18-4. DMA channel mapping (continued)

DMA_MUX channel Module DMA requesting module

Chapter 18 eDMA Channel Multiplexer (DMA_MUX)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 387

Figure 18-3. DMA Mux triggered channels

The DMA channel triggering capability allows the system to “schedule” regular DMA transfers, usually
on the transmit side of certain peripherals, without the intervention of the processor. This trigger works by
gating the request from the Peripheral to the DMA until a trigger event has been seen. This is illustrated
in Figure 18-4.

Figure 18-4. DMA Mux Channel Triggering: Normal Operation

Once the DMA request has been serviced, the peripheral will negate its request, effectively resetting the
gating mechanism until the peripheral re-asserts its request AND the next trigger event is seen. This means
that if a trigger is seen, but the peripheral is not requesting a transfer, that triggered will be ignored. This
situation is illustrated in Figure 18-5.

DMA Channel #0

Trigger #2

Trigger #1

Source #1

Source #2

Source #3

Always #1

DMA Channel #3

Always #4

Trigger #4

Source #52

Periph Request

Trigger

DMA Request

Chapter 18 eDMA Channel Multiplexer (DMA_MUX)

MPC5646C Microcontroller Reference Manual, Rev. 5

388 Freescale Semiconductor

Figure 18-5. DMA Mux Channel Triggering: Ignored Trigger

This triggering capability may be used with any peripheral that supports DMA transfers, and is most useful
for two types of situations:

• Periodically polling external devices on a particular bus. As an example, the transmit side of an SPI
is assigned to a DMA channel with a trigger, as described above. Once setup, the SPI will request
DMA transfers (presumably from memory) as long as its transmit buffer is empty. By using a
trigger on this channel, the SPI transfers can be automatically performed every 5s (as an
example). On the receive side of the SPI, the SPI and DMA can be configured to transfer receive
data into memory, effectively implementing a method to periodically read data from external
devices and transfer the results into memory without processor intervention.

• Using the GPIO Ports to drive or sample waveforms. By configuring the DMA to transfer data to
one or more GPIO ports, it is possible to create complex waveforms using tabular data stored in
on-chip memory. Conversely, using the DMA to periodically transfer data from one or more GPIO
ports, it is possible to sample complex waveforms and store the results in tabular form in on-chip
memory.

A more detailed description of the capability of each trigger (i.e.-resolution, range of values, etc.) may be
found in the Section 31.4, Periodic Interrupt Timer with Real-Time Interrupt (PIT_RTI).

18.5.2 DMA Channels with no triggering capability

The other channels of the DMA Mux provide the normal routing functionality as described in
Section 18.2.1, “Modes of operation.”

18.5.3 "Always Enabled" DMA Sources

In addition to the peripherals that can be used as DMA sources, there are 4 additional DMA sources that
are "always enabled". Unlike the peripheral DMA sources, where the peripheral controls the flow of data
during DMA transfers, the "always enabled" sources provide no such "throttling" of the data transfers.
These sources are most useful in the following cases:

• Doing DMA transfers to/from GPIO - Moving data from/to one or more GPIO pins, either
un-throttled (i.e.-as fast as possible), or periodically (using the DMA triggering capability).

• Doing DMA transfers from memory to memory - Moving data from memory to memory, typically
as fast as possible, sometimes with software activation.

• Doing DMA transfers from memory to the external bus (or vice-versa) - Similar to memory to
memory transfers, this is typically done as quickly as possible.

Periph Request

Trigger

DMA Request

Chapter 18 eDMA Channel Multiplexer (DMA_MUX)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 389

• Any DMA transfer that requires software activation - Any DMA transfer that should be explicitly
started by software.

In cases where software should initiate the start of a DMA transfer, a "always enabled" DMA source can
be used to provide maximum flexibility. When activating a DMA channel via software, subsequent
executions of the minor loop require a new "start" event be sent. This can either be a new software
activation, or a transfer request from the DMA Channel Mux. The options for doing this are:

• Transfer all data in a single minor loop. By configuring the DMA to transfer all of the data in a
single minor loop (i.e.-major loop counter = 1), no re-activation of the channel is necessary. The
disadvantage to this option is the reduced granularity in determining the load that the DMA transfer
will incur on the system. For this option, the DMA channel should be disabled in the DMA Channel
Mux.

• Use explicit software re-activation. In this option, the DMA is configured to transfer the data using
both minor and major loops, but the processor is required to re-activate the channel (by writing to
the DMA registers) after every minor loop. For this option, the DMA channel should be disabled
in the DMA Channel Mux.

• Use a "always enabled" DMA source. In this option, the DMA is configured to transfer the data
using both minor and major loops, and the DMA Channel Mux does the channel re-activation. For
this option, the DMA channel should be enabled and pointing to an "always enabled" source. Note
that the re-activation of the channel can be continuous (DMA triggering is disabled) or can use the
DMA triggering capability. In this manner, it is possible to execute periodic transfers of packets of
data from one source to another, without processor intervention.

18.6 Initialization/Application Information

18.6.1 Reset

The reset state of each individual bit is shown within the Register Description section (See Section 18.4.1,
“Register descriptions”). In summary, after reset, all channels are disabled and must be explicitly enabled
before use.

18.6.2 Enabling and Configuring Sources

Enabling a source with periodic triggering

1. Determine with which DMA channel the source will be associated. Note that only the first 4 DMA
channels have periodic triggering capability.

2. Clear the ENBL and TRIG bits of the DMA channel

3. Ensure that the DMA channel is properly configured in the DMA. The DMA channel may be
enabled at this point

4. Configure the corresponding timer

5. Select the source to be routed to the DMA channel. Write to the corresponding CHCONFIG
register, ensuring that the ENBL and TRIG bits are set

Chapter 18 eDMA Channel Multiplexer (DMA_MUX)

MPC5646C Microcontroller Reference Manual, Rev. 5

390 Freescale Semiconductor

Example 18-1. Configure source #5 Transmit for use with DMA Channel 2, with periodic triggering capability

1. Write 0x00 to CHCONFIG2 (Base Address + 0x02)

2. Configure Channel 2 in the DMA, including enabling the channel

3. Configure a timer for the desired trigger interval

4. Write 0xC5 to CHCONFIG2 (Base Address + 0x02)

The following code example illustrates steps #1 and #4 above:
In File registers.h:
#define DMAMUX_BASE_ADDR 0xFC084000/* Example only ! */
/* Following example assumes char is 8-bits */
volatile unsigned char *CHCONFIG0 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0000);
volatile unsigned char *CHCONFIG1 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0001);
volatile unsigned char *CHCONFIG2 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0002);
volatile unsigned char *CHCONFIG3 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0003);
volatile unsigned char *CHCONFIG4 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0004);
volatile unsigned char *CHCONFIG5 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0005);
volatile unsigned char *CHCONFIG6 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0006);
volatile unsigned char *CHCONFIG7 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0007);
volatile unsigned char *CHCONFIG8 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0008);
volatile unsigned char *CHCONFIG9 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0009);
volatile unsigned char *CHCONFIG10= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000A);
volatile unsigned char *CHCONFIG11= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000B);
volatile unsigned char *CHCONFIG12= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000C);
volatile unsigned char *CHCONFIG13= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000D);
volatile unsigned char *CHCONFIG14= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000E);
volatile unsigned char *CHCONFIG15= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000F);

In File main.c:
#include "registers.h"

:
:

*CHCONFIG2 = 0x00;
*CHCONFIG2 = 0xC5;

Enabling a source without periodic triggering

1. Determine with which DMA channel the source will be associated. Note that only the first 4 DMA
channels have periodic triggering capability.

2. Clear the ENBL and TRIG bits of the DMA channel

3. Ensure that the DMA channel is properly configured in the DMA. The DMA channel may be
enabled at this point

4. Select the source to be routed to the DMA channel. Write to the corresponding CHCONFIG
register, ensuring that the ENBL is set and the TRIG bit is cleared

Example 18-2. Configure source #5 Transmit for use with DMA Channel 2, with no periodic triggering
capability.

1. Write 0x00 to CHCONFIG2 (Base Address + 0x02)

2. Configure Channel 2 in the DMA, including enabling the channel

3. Write 0x85 to CHCONFIG2 (Base Address + 0x02)

Chapter 18 eDMA Channel Multiplexer (DMA_MUX)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 391

The following code example illustrates steps #1 and #3 above:
In File registers.h:
#define DMAMUX_BASE_ADDR 0xFC084000/* Example only ! */
/* Following example assumes char is 8-bits */
volatile unsigned char *CHCONFIG0 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0000);
volatile unsigned char *CHCONFIG1 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0001);
volatile unsigned char *CHCONFIG2 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0002);
volatile unsigned char *CHCONFIG3 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0003);
volatile unsigned char *CHCONFIG4 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0004);
volatile unsigned char *CHCONFIG5 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0005);
volatile unsigned char *CHCONFIG6 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0006);
volatile unsigned char *CHCONFIG7 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0007);
volatile unsigned char *CHCONFIG8 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0008);
volatile unsigned char *CHCONFIG9 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0009);
volatile unsigned char *CHCONFIG10= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000A);
volatile unsigned char *CHCONFIG11= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000B);
volatile unsigned char *CHCONFIG12= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000C);
volatile unsigned char *CHCONFIG13= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000D);
volatile unsigned char *CHCONFIG14= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000E);
volatile unsigned char *CHCONFIG15= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000F);

In File main.c:
#include "registers.h"

:
:

*CHCONFIG2 = 0x00;
*CHCONFIG2 = 0x85;

Disabling a source

A particular DMA source may be disabled by not writing the corresponding source value into any of the
CHCONFIG registers. Additionally, some module specific configuration may be necessary. Please refer
to the appropriate section for more details.

Switching the source of a DMA Channel

1. Disable the DMA channel in the DMA and re-configure the channel for the new source

2. Clear the ENBL and TRIG bits of the DMA channel

3. Select the source to be routed to the DMA channel. Write to the corresponding CHCONFIG
register, ensuring that the ENBL and TRIG bits are set

Example 18-3. Switch DMA Channel 8 from source #5 transmit to source #7 transmit

1. In the DMA configuration registers, disable DMA channel 8 and re-configure it to handle the
transfers to peripheral slot 7. This example assumes channel 8 doesn’t have triggering capability.

2. Write 0x00 to CHCONFIG8 (Base Address + 0x08)

3. Write 0x87 to CHCONFIG8 (Base Address + 0x08). (In this example, setting the TRIG bit would
have no effect, due to the assumption that channels 8 does not support the periodic triggering
functionality).

The following code example illustrates steps #2 and #3 above:
In File registers.h:

Chapter 18 eDMA Channel Multiplexer (DMA_MUX)

MPC5646C Microcontroller Reference Manual, Rev. 5

392 Freescale Semiconductor

#define DMAMUX_BASE_ADDR 0xFC084000/* Example only ! */
/* Following example assumes char is 8-bits */
volatile unsigned char *CHCONFIG0 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0000);
volatile unsigned char *CHCONFIG1 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0001);
volatile unsigned char *CHCONFIG2 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0002);
volatile unsigned char *CHCONFIG3 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0003);
volatile unsigned char *CHCONFIG4 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0004);
volatile unsigned char *CHCONFIG5 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0005);
volatile unsigned char *CHCONFIG6 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0006);
volatile unsigned char *CHCONFIG7 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0007);
volatile unsigned char *CHCONFIG8 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0008);
volatile unsigned char *CHCONFIG9 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0009);
volatile unsigned char *CHCONFIG10= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000A);
volatile unsigned char *CHCONFIG11= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000B);
volatile unsigned char *CHCONFIG12= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000C);
volatile unsigned char *CHCONFIG13= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000D);
volatile unsigned char *CHCONFIG14= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000E);
volatile unsigned char *CHCONFIG15= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000F);

In File main.c:
#include "registers.h"

:
:

*CHCONFIG8 = 0x00;
*CHCONFIG8 = 0x87;

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 393

Chapter 19
Interrupt Controller (INTC)

19.1 Introduction
This chapter describes the interrupts and the interrupt controller (INTC), which schedules interrupt
requests (IRQs) from software and internal peripherals to the e200z4d and e200z0h cores. The INTC
provides interrupt prioritization and preemption, interrupt masking, interrupt priority elevation, and
protocol support. The INTC supports 279 interrupt requests.

The INTC has two independent sets of priority arbitration/comparison, request selection, vector encoder
and acknowledge logic—one set for each CPU. This allows each CPU to handle its software-assigned
interrupt requests independently of the other CPU’s operation, and provides flexibility for the user to
decide which core should handle which interrupt sources in the application. This flexibility comes from a
set of configuration bits that allows any interrupt source to generate an interrupt request to either the
e200z4d or e200z0h or to both the e200z4d and e200z0h cores.

When multiple tasks share a resource, coherent accesses to that resource need to be supported. The INTC
supports the priority ceiling protocol for coherent accesses. By providing a modifiable priority mask, the
priority can be raised temporarily so that all tasks which share the resource cannot preempt each other.

Multiple processors can assert interrupt requests to each other through software settable interrupt requests,
i.e., by using application software to assert an interrupt request. These same software settable interrupt
requests also can be used to break the work involved in servicing an interrupt request into a high priority
portion and a low priority portion. The high priority portion is initiated by a peripheral interrupt request,
but then the ISR can assert a software settable interrupt request to finish the servicing in a lower priority
ISR

19.2 Features
• Supports 238 peripherals and 8 software-configurable interrupt request sources

• Each interrupt source can be steered by software to processor 0 (e200z4d), processor 1 (e200z0h),
or both processors interrupt request outputs.

NOTE
By default, processor 0 (e200z4d) receives all interrupt requests, so
backward compatibility with single processor systems is maintained.

• Unique 9-bit vector per interrupt source

• Each interrupt source can be programmed to one of 16 priorities

• Preemption

— Preemptive prioritized interrupt requests to processor

— ISR at a higher priority preempts ISRs or tasks at lower priorities

— Automatic pushing or popping of preempted priority to or from a LIFO

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

394 Freescale Semiconductor

— Ability to modify the ISR or task priority; modifying the priority can be used to implement the
priority ceiling protocol for accessing shared resources.

• Low latency–3 clocks from receipt of interrupt request from peripheral to interrupt request to
processor

Table 19-1. Interrupt sources available

Interrupt sources (246) Number available

Software 8

ECSM 1

DMA 34

Software Watchdog (SWT) 1

STM 4

Flash/RAM ECC (SEC-DED) 2

Real Time Counter (RTC/API) 2

System Integration Unit Lite (SIUL) 3

WakeUp Unit (WKPU) 4

MC_ME 4

MC_RGM 1

FXOSC 1

SXOSC 1

Periodic Interrupt Timer (PIT_RTI) 9

Analog to Digital Converter 0 (ADC0) 2

Analog to Digital Converter 1 (ADC1) 2

FlexCAN 0 (CAN0) 8

FlexCAN 1 (CAN1) 8

FlexCAN 2 (CAN2) 8

FlexCAN 3 (CAN3) 8

FlexCAN 4 (CAN4) 8

FlexCAN 5 (CAN5) 8

LINFlexD_0 3

LINFlexD_1 3

LINFlexD_2 3

LINFlexD_ 3 3

LINFlexD_4 3

LINFlexD_5 3

LINFlexD_6 3

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 395

19.3 Block diagram
Figure 19-1 provides a block diagram of the INTC.

LINFlexD_7 3

LINFlexD_8 3

LINFlexD_9 3

DSPI 0 5

DSPI 1 5

DSPI 2 5

DSPI 3 5

DSPI 4 5

DSPI 5 5

DSPI 6 5

DSPI 7 5

Inter-IC Bus Interface Controller (I2C) 1

Enhanced Modular I/O Subsystem 0 (eMIOS0) 16

Enhanced Modular I/O Subsystem 1 (eMIOS1) 16

Ethernet (FEC) 3

FlexRay 10

Semaphore 2

CSE 1

Table 19-1. Interrupt sources available (continued)

Interrupt sources (246) Number available

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

396 Freescale Semiconductor

Figure 19-1. INTC block diagram

Peripheral
Bus

Processor 0
Hardware

Vector Enable

Software
Set/Clear
Interrupt
Registers

Flag Bits

Priority
Select

Registers

Peripheral
Interrupt
Requests

Priority
Arbitrator

Request
Selector

Module
Configuration

Register

1

Highest Priority4

Priority
Comparator

Slave
Interface

for Reads
& Writes

1Processor 0 Push/Update/Acknowledge

1

1

1Update Interrupt Vector

1

Interrupt
Request to
Processor 0

Memory Mapped Registers

Non-Memory Mapped Logic

Pushed
Priority

Processor 1
Current
Priority

Register

4

Popped
Priority

4

New
Priority

4

Current
Priority

4

Priority
Comparator

Highest Priority 4
Highest
Priority

Interrupt
Requests

279 Vector
Encoder

Processor 1
Interrupt

Acknowledge
Register

Processor 1
End of

Interrupt
Register

Processor 0
End of

Interrupt
Register

1

Processor 1
Interrupt
Vector

9279

Interrupt
Vector

9

Request
Selector

Priority
Arbitrator

Highest
Priority

Interrupt
Requests

279 279 Vector
Encoder

Interrupt
Vector

9
Processor 0

Interrupt
Acknowledge

Register

Processor 0
Interrupt
Vector

9271 279

Processor 1
Hardware

Vector Enable
Vector Table

Entry Size

Processor 1 Push/Update/Acknowledge

Interrupt
Request to
Processor 1

Processor 1 Pop

1

1

1

Update Interrupt
Vector

1

1

Interrupt
Acknowledge

from
Processor 1

8

279 x
6-bits

279 x
6-bits

New
Priority

4

Current
Priority

4

Processor 0
Current
Priority

Register

Processor 0
Priority
LIFO

Processor 0 Pop

Processor 1 Pop

Processor 1 Push/Update/Acknowledge 1

1

Interrupt
Acknowledge

from
Processor 0

1

Lowest
Vector

Interrupt
Request

Lowest
Vector

Interrupt
Request

Processor 1
Priority
LIFO

1Vector Table
Entry Size

Pushed
Priority

4

Popped
Priority

4

NOTE: Processor 0 is e200z4d
and Processor 1 is e200z0h.

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 397

19.4 Modes of operation
The interrupt controller has two handshaking modes with the processor: software vector mode and
hardware vector mode. The state of the hardware vector enable bit, INTC_MCR[HVEN_PRCn],
independently determines which mode is used for each CPU.

In debug mode the interrupt controller operation is identical to its normal operation of software vector
mode or hardware vector mode.

19.4.1 Software Vector mode

In software vector mode, as shown in Figure 19-2, the CPU branches to a common interrupt exception
handler whose location is determined by an address derived from special purpose registers IVPR and
IVOR4. The interrupt exception handler reads the INTC_IACKR to determine the vector of the interrupt
request source.

Figure 19-2. INTC Software Vector mode

Typical program flow for software vector mode is shown in Figure 19-3.

Figure 19-3. Program Flow–Software Vector mode

The common interrupt exception handler address is calculated by hardware as shown in Figure 19-4 for
the e200z0h core and Figure 19-5 for the e200z4d core. The upper half of the interrupt vector prefix

IRQs Interrupt
controller

(INTC)

External interrupt
exception request

e200z4d
or
e200z0h
core

ISRISR 0 address ISR 0

ISRISR 1

•••

ISRISR n

•••

ISRISR N – 1

ISR n address

ISR N – 1 address

ISR 1 address

•••

•••

Prolog
(Including

using IACKR
to get vector

then bl ISR_n

Epilog

IVPR + IVOR4IRQ[n]
taken IACKR

InstructionsAddressInstructionsAddress

VTBA

N is the maximum number of usable interrupt vectors, which equals 279, and includes 33 reserved IRQ vectors
and eight software-settable IRQ vectors.

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

398 Freescale Semiconductor

register (IVPR) is added to the offset contained in the external input interrupt vector offset register
(IVOR4). Note that since bits IVOR4[28:31] are not part of the offset value for the e200z4d, the vector
offset must be located on a quad-word (16-byte) aligned location in memory. For the e200z0h core, the
value of IVOR4 is hard coded to 0x040.

Figure 19-4. e200z0h Software Vector Mode: Interrupt Exception Handler Address Calculation

Figure 19-5. e200z4d Software Vector Mode: Interrupt Exception Handler Address Calculation

As shown in Figure 19-3, the common interrupt exception handler reads the INTC_IACKR_PRCn to
determine the vector of the interrupt request source. The INTC_IACKR_PRCn register contains a 32-bit
address for a vector table base address (VTBA) plus an offset to access the interrupt vector (INTVEC).
The address is then used to branch to the corresponding routine for that peripheral or software interrupt
source.

Reading the INTC_IACKR_PRCn acknowledges the INTC’s interrupt request and negates the interrupt
request to the processor. The interrupt request to the processor does not clear if a higher priority interrupt
request arrives. Even in this case, INTVEC does not update to the higher priority request until the lower
priority interrupt request is acknowledged by reading the INTC_IACKR_PRCn. The reading also pushes
the PRI value in the INTC current priority register (INTC_CPR_PRCn) onto the LIFO and updates PRI in
the INTC_CPR_PRCn with the priority of the interrupt request. The INTC_CPR_PRCn masks any

+

=

IVPR

0 19 20 31
Vector base 0x000

IVOR4

0 31
0x0000_0040

Software Vector Mode Interrupt Exception Handler Address

0 19 20 31
Vector base 0x040

3116150
IVPR

31282716150
+ IVOR4

31282716150

0x00

0x00

OFFSET

OFFSETPREFIX

0x0000

PREFIX

= Interrupt exception

0x0000

handler address

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 399

peripheral or software settable interrupt request at the same or lower priority of the current value of the
PRI field in INTC_CPR_PRCn from generating an interrupt request to the processor.

The interrupt exception handler must write to the end-of-interrupt register (INTC_EOIR_PRCn) to
complete the operation. Writing to the INTC_EOIR_PRCn ends the servicing of the interrupt request. The
INTC’s LIFO is popped into the INTC_CPR_PRCn’s PRI field by writing to the INTC_EOIR_PRCn, and
the size of a write does not affect the operation of the write. Those values and sizes written to this register
neither update the INTC_EOIR_PRCn contents nor affect whether the LIFO pops. For possible future
compatibility, write four bytes of all 0s to the INTC_EOIR_PRCn. The timing relationship between
popping the LIFO and disabling recognition of external input has no restriction. The writes can happen in
either order.

However, disabling recognition of the external input before popping the LIFO eases the calculation of the
maximum stack depth at the cost of postponing the servicing of the next interrupt request.

19.4.2 Hardware Vector mode

For high priority interrupt requests, the time from the assertion of the interrupt request from the peripheral
to when the processor is performing useful work to service the interrupt request needs to be minimized.
The INTC can be optimized to support this goal through the hardware vector mode, where a unique vector
is provided for each interrupt request source. It also provides 16 priorities so that lower priority ISRs do
not delay the execution of higher priority ISRs. Since each individual application has different priorities
for each source of interrupt request, the priority of each interrupt request is configurable.

Typical program flow for hardware vector mode is shown in Figure 19-6.

Figure 19-6. Program Flow–Hardware Vector mode

In hardware vector mode, the interrupt exception handler address is specific to the peripheral or software
settable interrupt source rather than being common to all of them. No IVOR is used. The interrupt
exception handler address is calculated by hardware as shown in Figure 19-7 for the e200z0h core and in

Prologb handler 0 handler 0

ISR

•••

•••

ISR

•••

•••

Instructions
NOTE:

‘b ISR_n’ is technically

Epilog

Prolog

Epilog

ISR

Prolog

Epilog

handler n

handler N

b handler 1

•••

b handler 2

•••

b handler n

b handler N – 1

IVPR + offset[0]

IVPR + offset[1]

IVPR + offset[2]

IVPR + n [0x0010]

IVPR + offset[N – 1]

IRQ[n]
taken

Address

Address IVPR + offset[N – 1] contains the 279th interrupt vector and is the last
usable interrupt vector address in the interrupt memory map for this device.

part of the handler.

N is the maximum number of usable interrupt vectors, which equals 279, and includes 33 reserved IRQ vectors
and eight software-settable IRQ vectors.

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

400 Freescale Semiconductor

Figure 19-8 for the e200z4d core. The upper half of the interrupt vector prefix register (IVPR) is added to
an offset which corresponds to the peripheral or software interrupt source which caused the interrupt
request. The offset matches the value in the Interrupt Vector field, INTC_IACKR_PRCn[INTVEC]. Each
interrupt exception handler address is aligned on a quad word (16-byte) boundary for the e200z4d and on
a word boundary (4-byte) for the e200z0h. IVOR4 is not used in this mode, and software does not need to
read INTC_IACKR_PRCn to get the interrupt vector number.

Figure 19-7. e200z0h Hardware Vector Mode: Interrupt Exception Handler Address Calculation

Figure 19-8. e200z4d Hardware Vector Mode: Interrupt Exception Handler Address Calculation

The processor negates INTC’s interrupt request when automatically acknowledging the interrupt request.
However, the interrupt request to the processor do not negate if a higher priority interrupt request arrives.
Even in this case, the interrupt vector number does not update to the higher priority request until the lower
priority request is acknowledged by the processor.

The assertion of the interrupt acknowledge signal pushes the PRI value in the INTC_CPR_PRCn onto the
LIFO and updates PRI in the INTC_CPR_PRCn with the new priority.

+

=

IVPR

0 19 20 31
Vector base 0x000

Hardware Vector Mode Offset

0 19 20 21 29 30 31
0x0_0000 0b1 Vector 0b00

Hardware Vector Mode Interrupt Exception Handler Address

0 19 20 21 29 30 31
Vector base 0b1 Vector 0b00

3116150
IVPR

312827161500

+ Hardware vector

150

0b0000INTC_IACKR[INTVEC]

PREFIX

0x0000

PREFIX

18

0b000

19

0x0000

31282716

0b0000IRQ SPECIFIC OFFSET

18

0b000

1916

= Interrupt exception
handler address

mode offset

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 401

19.5 Memory map and register description

19.5.1 Memory map

Table 19-2 shows the INTC memory map.

19.5.2 Register description

With exception of the INTC_SSCIn and INTC_PSRn, all registers are 32 bits in width. Any combination
of accessing the four bytes of a register with a single access is supported, provided that the access does not
cross a register boundary. These supported accesses include types and sizes of eight bits, aligned 16 bits,
misaligned 16 bits to the middle two bytes, and aligned 32 bits.

Although INTC_SSCIn and INTC_PSRn are 8 bits wide, they can be accessed with a single 16-bit or
32-bit access, provided that the access does not cross a 32-bit boundary.

In software vector mode, the side effects of a read of INTC_IACKR_PRC0 and INTC_IACR_PRC1 are
the same regardless of the size of the read. In either software or hardware vector mode, the size of a write
to either INTC_SSCIR0_3–INTC_SSCIR4_7 or INTC_EOIR_PRC0 or INTC_EOIR_PRC1 does not
affect the operation of the write.

Table 19-2. INTC memory map

Base address: 0xFFF4_8000

Address offset Register Location

0x0000 INTC Module Configuration Register (INTC_MCR) on page 402

0x0004 Reserved

0x0008 INTC Current Priority Register for Processor 0 (e200z4d)
(INTC_CPR_PRC0)

on page 402

0x000C INTC Current Priority Register for Processor 1 (e200z0h)
(INTC_CPR_PRC1)

on page 404

0x0010 INTC Interrupt Acknowledge Register for Processor 0 (e200z4d)
(INTC_IACKR_PRC0)

on page 404

0x0014 INTC Interrupt Acknowledge Register for Processor 1 (e200z0h)
(INTC_IACKR_PRC1)

on page 405

0x0018 INTC End of Interrupt Register for Processor 0 (e200z4d)
(INTC_EOIR_PRC0)

on page 407

0x001C INTC End of Interrupt Register for processor 1 (e200z0h)
(INTC_EOIR_PRC1)

on page 408

0x0020–0x0027 INTC Software Set/Clear Interrupt Registers
(INTC_SSCIR0_3–INTC_SSCIR4_7)

on page 408

0x0028–0x003C Reserved

0x0040–0x0154 INTC Priority Select Registers (INTC_PSR0_3–INTC_PSR276-278)1

1 The PRI fields are “reserved” for peripheral interrupt requests whose vectors are labeled ‘Reserved’ in.

on page 409

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

402 Freescale Semiconductor

19.5.2.1 INTC Module Configuration Register (INTC_MCR)

The module configuration register is used to configure options of the INTC.

19.5.2.2 INTC Current Priority Register for Processor 0 (e200z4d)
(INTC_CPR_PRC0)

Offset: 0x0000 Access: read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 VTES_

PRC1

0 0 0 0 HVEN

_PRC

1

0 0 VTES_

PRC0

0 0 0 0 HVEN

_PRC

0
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-9. INTC Module Configuration Register (INTC_MCR)

Table 19-3. INTC_MCR Field Descriptions

Field Description

VTES_PRC
1

For software mode only, the Vector Table Entry Size for Processor 1 (e200z0h). The VTES_PRC1 bit
controls the number of 0s to the right of INTVEC_PRC1 in INTC_IACKR_PRC1. If the contents of
INTC_IACKR_PRC1 are used as an address of an entry in a vector table, then the number of
rightmost 0s will determine the size of each vector table entry.
0 4 bytes.
1 8 bytes.

HVEN_PRC
1

Hardware Vector Enable for Processor 1 (e200z0h). The HVEN bit controls whether the INTC is in
hardware vector mode or software vector mode. Refer to Section 19.4, “Modes of operation, for details
of handshaking with the processor in each mode.
0 Software vector mode.
1 Hardware vector mode.

VTES_PRC
0

For software mode only, the Vector Table Entry Size for Processor 0 (e200z4d). The VTES_PRC0 bit
controls the number of 0s to the right of INTVEC_PRC0 in INTC_IACKR_PRC0. If the contents of
INTC_IACKR_PRC0 are used as an address of an entry in a vector table, then the number of
rightmost 0s will determine the size of each vector table entry.
0 4 bytes.
1 8 bytes.

HVEN_PRC
0

Hardware Vector Enable for Processor 0 (e200z4d). The HVEN bit controls whether the INTC is in
hardware vector mode or software vector mode. Refer to Section 19.4, “Modes of operation, for details
of handshaking with the processor in each mode.
0 Software vector mode.
1 Hardware vector mode.

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 403

The INTC_CPR masks any peripheral or software configurable interrupt request set at the same or lower
priority as the current value of the INTC_CPR[PRI] field from generating an interrupt request to the
processor. When the INTC interrupt acknowledge register (INTC_IACKR) is read in software vector
mode or the interrupt acknowledge signal from the processor is asserted in hardware vector mode, the
value of PRI is pushed onto the LIFO, and PRI is updated with the priority of the preempting interrupt
request. When the INTC end-of-interrupt register (INTC_EOIR) is written, the LIFO is popped into the
INTC_CPR’s PRI field.

The masking priority can be raised or lowered by writing to the PRI field, supporting the PCP. Refer to
Section 19.10.4, “Priority Ceiling protocol.

NOTE
A store to modify the PRI field which closely precedes or follows an access
to a shared resource can result in a non-coherent access to that resource.
Refer to Section 19.10.4.2, “Ensuring Coherency for example code to
ensure coherency.

Offset: 0x0008 Access: read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 PRI

W

Reset 0 1 1 1 1

Figure 19-10. INTC Current Priority Register for Processor 0 (e200z4d) (INTC_CPR_PRC0)

Table 19-4. INTC_CPR_PRC0 Field Descriptions

Field Description

PRI Priority

PRI is the priority of the currently executing ISR according to the field values defined in Table 19-5.

Table 19-5. PRI values

PRI Meaning

1111 Priority 15—highest priority

1110 Priority 14

1101 Priority 13

1100 Priority 12

1011 Priority 11

1010 Priority 10

1001 Priority 9

1000 Priority 8

0111 Priority 7

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

404 Freescale Semiconductor

19.5.2.3 INTC Current Priority Register for Processor 1 (e200z0h)
(INTC_CPR_PRC1)

The functionality of this register is the same as described for Processor 0 in Section 19.5.2.2, “INTC
Current Priority Register for Processor 0 (e200z4d) (INTC_CPR_PRC0).

19.5.2.4 INTC Interrupt Acknowledge Register for Processor 0 (e200z4d)
(INTC_IACKR_PRC0)

0110 Priority 6

0101 Priority 5

0100 Priority 4

0011 Priority 3

0010 Priority 2

0001 Priority 1

0000 Priority 0—lowest priority

Offset: 0x000C Access: read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 PRI

W

Reset 0 1 1 1 1

Figure 19-11. INTC Current Priority Register for Processor 1 (e200z0h) (INTC_CPR_PRC1)

Offset: 0x0010 Access: read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
VTBA_PRC0[20:5]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
VTBA_PRC0[4:0]

INTVEC_PRC0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-12. INTC Interrupt Acknowledge Register for Processor 0 (e200z4d) (INTC_IACKR_PRC0) when
INTC_MCR[VTES] = 0

Table 19-5. PRI values (continued)

PRI Meaning

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 405

NOTE
When the HVEN bit in the INTC module configuration register
(INTC_MCR) is asserted, a read of the INTC_IACKR_PCRn has no side
effects.

The interrupt acknowledge register provides a value which can be used to load the address of an ISR from
a vector table. The vector table can be composed of addresses of the ISRs specific to their respective
interrupt vectors.

In software vector mode, the INTC_IACKR_PRCx has side effects from reads. Therefore, it must not be
speculatively read while in this mode. The side effects are the same regardless of the size of the read.
Reading the INTC_IACKR_PRCx does not have side effects in hardware vector mode.

NOTE

The INTC_IACKR_PRCn must not be read speculatively while in software
vector mode. Therefore, for future compatibility, the TLB entry covering the
INTC_IACKR_PRCn must be configured to be guarded.

Offset: 0x0010 Access: read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
VTBA_PRC00[19:4]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
VTBA_PRC0[3:0]

INTVEC_PRC0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-13. INTC Interrupt Acknowledge Register for Processor 0 (e200z4d) (INTC_IACKR_PRC0) when
INTC_MCR[VTES] = 1

Table 19-6. INTC_IACKR_PRC0 Field Descriptions

Field Description

VTBA_PRC0 Vector Table Base Address for Processor 0 (e200z4d)
Can be the base address of a vector table of addresses of ISRs. The VTBA only uses the
leftmost 20 bits when the VTES _PRC0 bit in INTC_MCR is asserted.

INTVEC_PRC0 Interrupt Vector for Processor 0 (e200z4d)
It is the vector of the peripheral or software configurable interrupt request that caused the
interrupt request to the processor. When the interrupt request to the processor asserts, the
INTVEC_PRC0 is updated, whether the INTC_PRC0 is in software or hardware vector mode.
Note: If INTC_MCR[VTES] = 1, then the INTVEC_PRC0 field is shifted left one position to

bits 20–28. VTBA_PRC0 is then shortened by one bit to bits 0–19.

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

406 Freescale Semiconductor

In software vector mode, the INTC_IACKR_PRCn must be read before
setting MSR[EE]. No synchronization instruction is needed after reading
the INTC_IACKR_PRCn and before setting MSR[EE].

However, the time for the processor to recognize the assertion or negation
of the external input to it is not defined by the book E architecture and can
be greater than 0. Therefore, insert instructions between the reading of the
INTC_IACKR_PRCn and the setting of MSR[EE] that consumes at least
two processor clock cycles. This length of time allows the interrupt request
negation to propagate through the processor before MSR[EE] is set.

19.5.2.5 INTC Interrupt Acknowledge Register for Processor 1 (e200z0h)
(INTC_IACKR_PRC1)

Offset: 0x0014 Access: read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
VTBA_PRC1[20:5]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
VTBA_PRC1[4:0]

INTVEC_PRC1 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-14. INTC Interrupt Acknowledge Register for Processor 1 (e200z0h) (INTC_IACKR_PRC1) when
INTC_MCR[VTES] = 0

Offset: 0x0014 Access: read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
VTBA_PRC1[19:4]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
VTBA_PRC1[3:0]

INTVEC_PRC1 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-15. INTC Interrupt Acknowledge Register for Processor 1 (e200z0h) (INTC_IACKR_PRC1) when
INTC_MCR[VTES] = 1

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 407

NOTE
When the HVEN bit in the INTC module configuration register
(INTC_MCR) is asserted, a read of the INTC_IACKR_PCRn has no side
effects.

19.5.2.6 INTC End of Interrupt Register for Processor 0 (e200z4d)
(INTC_EOIR_PRC0)

Writing to the end-of-interrupt register signals the end of the servicing of the interrupt request. When the
INTC_EOIR_PRC0 is written, the priority last pushed on the LIFO is popped into INTC_CPR_PRC0. An
exception to this behavior is described in Section 19.4.2, “Hardware Vector mode. The values and size of
data written to the INTC_EOIR_PRC0 are ignored. The values and sizes written to this register neither
update the INTC_EOIR_PRC0 contents or affect whether the LIFO pops. For possible future
compatibility, write four bytes of all 0s to the INTC_EOIR_PRC0.

Reading the INTC_EOIR_PRC0 has no effect on the LIFO.

Table 19-7. INTC_IACKR_PRC1 Field Descriptions

Field Description

VTBA_PRC1 The register’s function is the same as described for processor 0 (e200z4d) in Section 19.5.2.4,
“INTC Interrupt Acknowledge Register for Processor 0 (e200z4d) (INTC_IACKR_PRC0).

INTVEC_PRC1

Offset: 0x0018 Access: Write only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0

W

Reset 0

Figure 19-16. INTC End of Interrupt Register for Processor 0 (e200z4d) (INTC_EOIR_PRC0)

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

408 Freescale Semiconductor

19.5.2.7 INTC End of Interrupt Register for processor 1 (e200z0h)
(INTC_EOIR_PRC1)

The register’s function is the same as for processor 0 (e200z4d) as described in Section 19.5.2.6, “INTC
End of Interrupt Register for Processor 0 (e200z4d) (INTC_EOIR_PRC0).

19.5.2.8 INTC Software Set/Clear Interrupt Registers
(INTC_SSCIR0_3–INTC_SSCIR4_7)

Offset: 0x001C Access: Write only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0

W

Reset 0

Figure 19-17. INTC End of Interrupt Register for processor 1 (e200z0h) (INTC_EOIR_PRC1)

Offset: 0x0020 Access: read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 CLR0 0 0 0 0 0 0 0 CLR1

W SET0 SET1

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 CLR2 0 0 0 0 0 0 0 CLR3

W SET2 SET3

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-18. INTC Software Set/Clear Interrupt Register 0–3 (INTC_SSCIR[0:3])

Offset: 0x0024 Access: read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 CLR4 0 0 0 0 0 0 0 CLR5

W SET4 SET5

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 CLR6 0 0 0 0 0 0 0 CLR7

W SET6 SET7

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-19. INTC Software Set/Clear Interrupt Register 4–7 (INTC_SSCIR[4:7])

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 409

The software set/clear interrupt registers support the setting or clearing of software configurable interrupt
request. These registers contain eight independent sets of bits to set and clear a corresponding flag bit by
software. Excepting being set by software, this flag bit behaves the same as a flag bit set within a
peripheral. This flag bit generates an interrupt request within the INTC like a peripheral interrupt request.
Writing a 1 to SETx will leave SETx unchanged at 0 but sets CLRx. Writing a 0 to SETx has no effect.
CLRx is the flag bit. Writing a 1 to CLRx clears it. Writing a 0 to CLRx has no effect. If a 1 is written
simultaneously to a pair of SETx and CLRx bits, CLRx will be asserted, regardless of whether CLRx was
asserted before the write.

19.5.2.9 INTC Priority Select Registers (INTC_PSR0_3–INTC_PSR276-278)

Table 19-8. INTC_SSCIR[0:7] Field Descriptions

Field Description

SETx Set Flag Bits
Writing a 1 sets the corresponding CLRx bit. Writing a 0 has no effect. Each SETx always will be read
as a 0.

CLRx Clear Flag Bits

CLRx is the flag bit. Writing a 1 to CLRx clears it provided that a 1 is not written simultaneously to its
corresponding SETx bit. Writing a 0 to CLRx has no effect.
0 Interrupt request not pending within INTC
1 Interrupt request pending within INTC

Offset: 0x0040 Access: read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PRC_SEL0

0 0 PRI0
PRC_SEL01

0 0 PRI1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PRC_SEL2

0 0 PRI2
PRC_SEL3

0 0 PRI3

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-20. INTC Priority Select Register 0–3 (INTC_PSR[0:3])

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

410 Freescale Semiconductor

Offset: 0x0154 Access: read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PRC_SEL276

0 0 PRI276
PRC_SEL277

0 0 PRI277

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PRC_SEL278

0 0 PRI278 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-21. INTC Priority Select Register 276-278 (INTC_PSR[276:278])

Table 19-9. INTC_PSR0_3–INTC_PSR275-278 Field Descriptions

Field Description

PRI Priority Select
PRIx selects the priority for interrupt requests. See Section 19.6, “Functional description.

PRC_SEL Processor Select. If an interrupt source is enabled, PRC_SELn selects whether the interrupt request
is to be sent to processor 0 (e200z4d), processor 1 (e200z0h), or both. See Table 19-11.

Table 19-10. INTC Priority Select Register Address Offsets

INTC_PSRx_x Offset Address INTC_PSRx_x Offset Address

INTC_PSR0_3 0x0040 INTC_PSR140_143 0x00CC

INTC_PSR4_7 0x0044 INTC_PSR144_147 0x00D0

INTC_PSR8_11 0x0048 INTC_PSR148_151 0x00D4

INTC_PSR12_15 0x004C INTC_PSR152_155 0x00D8

INTC_PSR16_19 0x0050 INTC_PSR156_159 0x00DC

INTC_PSR20_23 0x0054 INTC_PSR160_163 0x00E0

INTC_PSR24_27 0x0058 INTC_PSR164_167 0x00E4

INTC_PSR28_31 0x005C INTC_PSR168_171 0x00E8

INTC_PSR32_35 0x0060 INTC_PSR172_175 0x00EC

INTC_PSR36_39 0x0064 INTC_PSR176_179 0x00F0

INTC_PSR40_43 0x0068 INTC_PSR180_183 0x00F4

INTC_PSR44_47 0x006C INTC_PSR184_187 0x00F8

INTC_PSR48_51 0x0070 INTC_PSR188_191 0x00FC

INTC_PSR52_55 0x0074 INTC_PSR192_195 0x0100

INTC_PSR56_59 0x0078 INTC_PSR196_199 0x0104

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 411

The priority select registers support the selection of an individual priority for each source of interrupt
request, and whether the interrupt request is to be sent to processor 0 (e200z4d), processor 1, (e200z0h) or
both. The unique vector of each peripheral or software settable interrupt request determines which
INTC_PSRx_x is assigned to that interrupt request. The software settable interrupt requests 0–7 are
assigned vectors 0–7, and their priorities are configured in INTC_PSR0_3 and INTC_PSR4_7,
respectively. The peripheral interrupt requests are assigned vectors 8–278, and their priorities are
configured in INTC_PSR8_11 through INTC_PSR275_278, respectively (see Table 19-10).

NOTE
The PRC_SELx or PRIx field of an INTC_PSRx_x must not be modified
while the corresponding peripheral or software settable interrupt request is
asserted.

INTC_PSR60_63 0x007C INTC_PSR200_203 0x0108

INTC_PSR64_67 0x0080 INTC_PSR204_207 0x010C

INTC_PSR68_71 0x0084 INTC_PSR208_211 0x0110

INTC_PSR72_75 0x0088 INTC_PSR212_215 0x0114

INTC_PSR76_79 0x008C INTC_PSR216_219 0x0118

INTC_PSR80_83 0x0090 INTC_PSR220_223 0x011C

INTC_PSR84_87 0x0094 INTC_PSR224_227 0x0120

INTC_PSR88_91 0x0098 INTC_PSR228_231 0x0124

INTC_PSR92_95 0x009C INTC_PSR232_235 0x0128

INTC_PSR96_99 0x00A0 INTC_PSR236_239 0x012C

INTC_PSR100_103 0x00A4 INTC_PSR240_243 0x0130

INTC_PSR104_107 0x00A8 INTC_PSR244_247 0x0134

INTC_PSR108_111 0x00AC INTC_PSR248_251 0x0138

INTC_PSR112_115 0x00B0 INTC_PSR252_255 0x013C

INTC_PSR116_119 0x00B4 INTC_PSR256_259 0x0140

INTC_PSR120_123 0x00B8 INTC_PSR260_263 0x0144

INTC_PSR124_127 0x00BC INTC_PSR264_267 0x0148

INTC_PSR128_131 0x00C0 INTC_PSR268_271 0x014C

INTC_PSR132_135 0x00C4 INTC_PSR272_275 0x0150

INTC_PSR136_139 0x00C8 INTC_PSR276_278 0x0154

Table 19-10. INTC Priority Select Register Address Offsets (continued)

INTC_PSRx_x Offset Address INTC_PSRx_x Offset Address

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

412 Freescale Semiconductor

19.6 Functional description
The functional description involves the areas of interrupt request sources, priority management, and
handshaking with the processor.

The INTC has no spurious vector support. Therefore, if an asserted peripheral or software settable interrupt
request, whose PRIn value in INTC_PSR0–INTC_PSR211 is higher than the PRI value in INTC_CPR,
negates before the interrupt request to the processor for that peripheral or software settable interrupt
request is acknowledged, the interrupt request to the processor still can assert or will remain asserted for
that peripheral or software settable interrupt request. In this case, the interrupt vector will correspond to
that peripheral or software settable interrupt request. Also, the PRI value in the INTC_CPR will be updated
with the corresponding PRIn value in INTC_PSRn. Furthermore, clearing the peripheral interrupt
request’s enable bit in the peripheral or, alternatively, setting its mask bit has the same consequences as
clearing its flag bit. Setting its enable bit or clearing its mask bit while its flag bit is asserted has the same
effect on the INTC as an interrupt event setting the flag bit.The INTC has two types of interrupt requests,
peripheral and software settable. The assignments between the interrupt requests from the modules to the
vectors for input to the CPU are shown in Table 19-12, Table 19-13, Table 19-14.

Table 19-11. Selected Processor for Interrupt Request

PRC_SELx[0:1] Meaning

00 Interrupt request sent to processor 0 (e200z4d)

01 Interrupt request sent to both processors

10 Reserved

11 Interrupt request sent to processor 1 (e200z0h)

Table 19-12. e200z0h core interrupts

IRQ# Offset
Size

[Byte]
Resource Module

Section A (e200z0h Core Section)

— 0x0000 16 Critical Input
 • NMI[0] (WKPU)

Core
WKPU

— 0x0010 16 Machine check / NMI
 • NMI[0] (WKPU)

Core
WKPU

— 0x0020 16 Data Storage Core

— 0x0030 16 Instruction Storage Core

— 0x0040 16 External Input
(INTC software vector mode)

Core

— 0x0050 16 Alignment Core

— 0x0060 16 Program Core

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 413

— 0x0070 16 Reserved Core

— 0x0080 16 System call Core

— 0x0090 96 Unused Core

— 0x00F0 16 Debug Core

— 0x0100 1792 Reserved Core

Table 19-13. e200z4d core interrupts

IRQ # Offset Size [Byte] Resource Module

Section A (e200z4d Core Section)

— IVOR0 16 Critical Input (INTC
software vector mode)
 • NMI[1] (WKPU)

Core
WKPU

— IVOR1 16 Machine check / NMI
 • NMI[1] (WKPU)

Core
WKPU

— IVOR2 16 Data Storage Core

— IVOR3 16 Instruction Storage Core

— IVOR4 16 External Input
(INTC software vector
mode)

Core

— IVOR5 16 Alignment Core

— IVOR6 16 Program Core

— IVOR7 16 Floating-Point unavailable Core

— IVOR8 16 System call Core

— IVOR9 16 Unused Core

— IVOR10 16 Decrementer Core

— IVOR11 16 Fixed Interval Timer Core

— IVOR12 16 Watchdog Timer Core

— IVOR13 16 Data TLB Error Core

— IVOR14 16 Instruction TLB Error Core

— IVOR15 16 Debug Core

— IVOR16-31 256 Unused Core

— IVOR32 16 SPE Unavailable Exception Core

— IVOR33 16 EFP Data Exception Core

Table 19-12. e200z0h core interrupts

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

414 Freescale Semiconductor

— IVOR34 16 EFP Round Exception Core

Table 19-14. MPC5646C Interrupt Vector Table

IRQ #

e200z0h
hardware

vector mode
offset

(vector size is
4B)

e200z4d
hardware

vector mode
offset

(vector size is
16B)

Resource Module

Section B (On-Platform Peripherals)

0 0x0800 0x0000 Software settable flag 0

Software

1 0x0804 0x0010 Software settable flag 1

2 0x0808 0x0020 Software settable flag 2

3 0x080C 0x0030 Software settable flag 3

4 0x0810 0x0040 Software settable flag 4

5 0x0814 0x0050 Software settable flag 5

6 0x0818 0x0060 Software settable flag 6

7 0x081C 0x0070 Software settable flag 7

8 0x0820 0x0080 Reserved

9 0x0824 0x0090 Platform Flash Bank 0 Abort |
Platform Flash Bank 0 Stall |
Platform Flash Bank 1 Abort |
Platform Flash Bank 1 Stall |
Platform Flash Bank 2 Abort |
Platform Flash Bank 2 Stall |

ECSM

Table 19-13. e200z4d core interrupts

IRQ # Offset Size [Byte] Resource Module

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 415

10 0x0828 0x00A0 Combined Error [15:0]

eDMA

11 0x082C 0x00B0 Channel 0

12 0x0830 0x00C0 Channel 1

13 0x0834 0x00D0 Channel 2

14 0x0838 0x00E0 Channel 3

15 0x083C 0x00F0 Channel 4

16 0x0840 0x0100 Channel 5

17 0x0844 0x0110 Channel 6

18 0x0848 0x0120 Channel 7

19 0x084C 0x0130 Channel 8

20 0x0850 0x0140 Channel 9

21 0x0854 0x0150 Channel 10

22 0x0858 0x0160 Channel 11

23 0x085C 0x0170 Channel 12

24 0x0860 0x0180 Channel 13

25 0x0864 0x0190 Channel 14

26 0x0868 0x01A0 Channel 15

27 0x086C 0x01B0 Reserved

28 0x0870 0x01C0 Timeout Software Watchdog (SWT)

29 0x0874 0x01D0 Reserved

30 0x0878 0x01E0 Match on channel 0

STM31 0x087C 0x01F0 Match on channel 1

32 0x0880 0x0200 Match on channel 2

33 0x0884 0x0210 Match on channel 3

34 0x0888 0x0220 Reserved

Table 19-14. MPC5646C Interrupt Vector Table (continued)

IRQ #

e200z0h
hardware

vector mode
offset

(vector size is
4B)

e200z4d
hardware

vector mode
offset

(vector size is
16B)

Resource Module

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

416 Freescale Semiconductor

35 0x088C 0x0230 ECC_DBD_PlatformFlash |
ECC_DBD_PlatformRAM

 ECSM - Platform ECC Double
Bit Detection

36 0x0890 0x0240 ECC_SBC_PlatformFlash |
ECC_SBC_PlatformRAM

ECSM - Platform ECC Single Bit
Correction

37 0x0894 0x0250 Reserved

Section C

38 0x0898 0x0260 RTC
Real Time Counter (RTC/API)

39 0x089C 0x0270 API

40 0x08A0 0x0280 Reserved Reserved

41 0x08A4 0x0290 SIU External IRQ_0
System Integration Unit Lite

(SIUL)42 0x08A8 0x02A0 SIU External IRQ_1

43 0x08AC 0x02B0 SIU External IRQ_2

44 0x08B0 0x02C0 Reserved

45 0x08B4 0x02D0 Reserved

46 0x08B8 0x02E0 WakeUp_IRQ_0

WakeUp Unit (WKPU)
47 0x08BC 0x02F0 WakeUp_IRQ_1

48 0x08C0 0x0300 WakeUp_IRQ_2

49 0x08C4 0x0310 WakeUp_IRQ_3

50 0x08C8 0x0320 Reserved

51 0x08CC 0x0330 Safe Mode Interrupt

MC_ME
52 0x08D0 0x0340 Mode Transition Interrupt

53 0x08D4 0x0350 Invalid Mode Interrupt

54 0x08D8 0x0360 Invalid Mode Config

55 0x08DC 0x0370 Reserved

56 0x08E0 0x0380 Functional and destructive reset
alternate event interrupt (ipi_int)

MC_RGM

Table 19-14. MPC5646C Interrupt Vector Table (continued)

IRQ #

e200z0h
hardware

vector mode
offset

(vector size is
4B)

e200z4d
hardware

vector mode
offset

(vector size is
16B)

Resource Module

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 417

57 0x08E4 0x0390 XOSC counter expired
(ipi_int_osc)

FXOSC

58 0x08E8 0x03A0 PIT_RTI Periodic Interrupt Timer- Real
Time Interrupt

59 0x08EC 0x03B0 PITimer Channel 0

PIT_RTI60 0x08F0 0x03C0 PITimer Channel 1

61 0x08F4 0x03D0 PITimer Channel 2

62 0x08F8 0x03E0 ADC_EOC Analog to Digital Converter 0
(ADC0)

63 0x08FC 0x03F0 Reserved

64 0x0900 0x0400 ADC_WD Analog to Digital Converter 0
(ADC0)

65 0x0904 0x0410 FLEXCAN_ESR[ERR_INT]

FlexCAN 0 (CAN0)66 0x0908 0x0420 FLEXCAN_ESR_BOFF |
FLEXCAN_Transmit_Warning |
FLEXCAN_Receive_Warning

67 0x090C 0x0430 Reserved

68 0x0910 0x0440 FLEXCAN_BUF_00_03

FlexCAN 0 (CAN0)

69 0x0914 0x0450 FLEXCAN_BUF_04_07

70 0x0918 0x0460 FLEXCAN_BUF_08_11

71 0x091C 0x0470 FLEXCAN_BUF_12_15

72 0x0920 0x0480 FLEXCAN_BUF_16_31

73 0x0924 0x0490 FLEXCAN_BUF_32_63

Table 19-14. MPC5646C Interrupt Vector Table (continued)

IRQ #

e200z0h
hardware

vector mode
offset

(vector size is
4B)

e200z4d
hardware

vector mode
offset

(vector size is
16B)

Resource Module

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

418 Freescale Semiconductor

74 0x0928 0x04A0 DSPI_SR[TFUF]
DSPI_SR[RFOF]
DSPI_SR[DPEF]
DSPI_SR[SPEF]

DSPI 0
75 0x092C 0x04B0 DSPI_SR[EOQF]

76 0x0930 0x04C0 DSPI_SR[TFFF]

77 0x0934 0x04D0 DSPI_SR[TCF]
DSPI_SR[DDIF]

78 0x0938 0x04E0 DSPI_SR[RFDF]

79 0x093C 0x04F0 LINFlexD_RXI

LINFlexD_080 0x0940 0x0500 LINFlexD_TXI

81 0x0944 0x0510 LINFlexD_ERR

82 0x0948 0x0520 ADC_EOC Analog to Digital Converter 1
(ADC1)

83 0x094C 0x0530 Reserved

84 0x0950 0x0540 ADC_WD Analog to Digital Converter 1
(ADC1)

85 0x0954 0x0550 FLEXCAN_ESR[ERR_INT]

FlexCAN 1 (CAN1)86 0x0958 0x0560 FLEXCAN_ESR_BOFF |
FLEXCAN_Transmit_Warning |
FLEXCAN_Receive_Warning

87 0x095C 0x0570 Reserved

88 0x0960 0x0580 FLEXCAN_BUF_00_03

FlexCAN 1 (CAN1)

89 0x0964 0x0590 FLEXCAN_BUF_04_07

90 0x0968 0x05A0 FLEXCAN_BUF_08_11

91 0x096C 0x05B0 FLEXCAN_BUF_12_15

92 0x0970 0x05C0 FLEXCAN_BUF_16_31

93 0x0974 0x05D0 FLEXCAN_BUF_32_63

Table 19-14. MPC5646C Interrupt Vector Table (continued)

IRQ #

e200z0h
hardware

vector mode
offset

(vector size is
4B)

e200z4d
hardware

vector mode
offset

(vector size is
16B)

Resource Module

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 419

94 0x0978 0x05E0 DSPI_SR[TFUF]
DSPI_SR[RFOF]
DSPI_SR[DPEF]
DSPI_SR[SPEF]

DSPI 1
95 0x097C 0x05F0 DSPI_SR[EOQF]

96 0x0980 0x0600 DSPI_SR[TFFF]

97 0x0984 0x0610 DSPI_SR[TCF]
DSPI_SR[DDIF]

98 0x0988 0x0620 DSPI_SR[RFDF]

99 0x098C 0x0630 LINFlexD_RXI

LINFlexD_1100 0x0990 0x0640 LINFlexD_TXI

101 0x0994 0x0650 LINFlexD_ERR

102 0x0998 0x0660 Reserved

103 0x099C 0x0670 Reserved

104 0x09A0 0x0680 Reserved

105 0x09A4 0x0690 FLEXCAN_ESR[ERR_INT]

FlexCAN 2 (CAN2)106 0x09A8 0x06A0 FLEXCAN_ESR_BOFF |
FLEXCAN_Transmit_Warning |
FLEXCAN_Receive_Warning

107 0x09AC 0x06B0 Reserved

108 0x09B0 0x06C0 FLEXCAN_BUF_00_03

FlexCAN 2 (CAN2)

109 0x09B4 0x06D0 FLEXCAN_BUF_04_07

110 0x09B8 0x06E0 FLEXCAN_BUF_08_11

111 0x09BC 0x06F0 FLEXCAN_BUF_12_15

112 0x09C0 0x0700 FLEXCAN_BUF_16_31

113 0x09C4 0x0710 FLEXCAN_BUF_32_63

Table 19-14. MPC5646C Interrupt Vector Table (continued)

IRQ #

e200z0h
hardware

vector mode
offset

(vector size is
4B)

e200z4d
hardware

vector mode
offset

(vector size is
16B)

Resource Module

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

420 Freescale Semiconductor

114 0x09C8 0x0720 DSPI_SR[TFUF]
DSPI_SR[RFOF]
DSPI_SR[DPEF]
DSPI_SR[SPEF]

DSPI 2
115 0x09CC 0x0730 DSPI_SR[EOQF]

116 0x09D0 0x0740 DSPI_SR[TFFF]

117 0x09D4 0x0750 DSPI_SR[TCF]
DSPI_SR[DDIF]

118 0x09D8 0x0760 DSPI_SR[RFDF]

119 0x09DC 0x0770 LINFlexD_RXI

LINFlexD_2120 0x09E0 0x0780 LINFlexD_TXI

121 0x09E4 0x0790 LINFlexD_ERR

122 0x09E8 0x07A0 LINFlexD_RXI

LINFlexD_3123 0x09EC 0x07B0 LINFlexD_TXI

124 0x09F0 0x07C0 LINFlexD_ERR

125 0x09F4 0x07D0 IIC_SR[IBAL]
IIC_SR[TCF]
IIC_SR[IAAS]

Inter-IC Bus Interface Controller
(I2C)

126 0x09F8 0x07E0 Reserved

127 0x09FC 0x07F0 PITimer Channel 3

PIT_RTI

128 0x0A00 0x0800 PITimer Channel 4

129 0x0A04 0x0810 PITimer Channel 5

130 0x0A08 0x0820 PITimer Channel 6

131 0x0A0C 0x0830 PITimer Channel 7

132 0x0A10 0x0840 Reserved

133 0x0A14 0x0850 Reserved

134 0x0A18 0x0860 Reserved

135 0x0A1C 0x0870 Reserved

Table 19-14. MPC5646C Interrupt Vector Table (continued)

IRQ #

e200z0h
hardware

vector mode
offset

(vector size is
4B)

e200z4d
hardware

vector mode
offset

(vector size is
16B)

Resource Module

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 421

136 0x0A20 0x0880 Reserved

137 0x0A24 0x0890 Reserved

138 0x0A28 0x08A0 Reserved

139 0x0A2C 0x08B0 Reserved

140 0x0A30 0x08C0 Reserved

141 0x0A34 0x08D0 EMIOS_GFR[F0,F1]

Enhanced Modular I/O
Subsystem 0 (eMIOS0)

142 0x0A38 0x08E0 EMIOS_GFR[F2,F3]

143 0x0A3C 0x08F0 EMIOS_GFR[F4,F5]

144 0x0A40 0x0900 EMIOS_GFR[F6,F7]

145 0x0A44 0x0910 EMIOS_GFR[F8,F9]

146 0x0A48 0x0920 EMIOS_GFR[F10,F11]

147 0x0A4C 0x0930 EMIOS_GFR[F12,F13]

148 0x0A50 0x0940 EMIOS_GFR[F14,F15]

149 0x0A54 0x0950 EMIOS_GFR[F16,F17]

150 0x0A58 0x0960 EMIOS_GFR[F18,F19]

151 0x0A5C 0x0970 EMIOS_GFR[F20,F21]

152 0x0A60 0x0980 EMIOS_GFR[F22,F23]

153 0x0A64 0x0990 EMIOS_GFR[F24,F25]

154 0x0A68 0x09A0 EMIOS_GFR[F26,F27]

155 0x0A6C 0x09B0 EMIOS_GFR[F28,F29]

156 0x0A70 0x09C0 EMIOS_GFR[F30,F31]

Section D (Device specific vectors)

Table 19-14. MPC5646C Interrupt Vector Table (continued)

IRQ #

e200z0h
hardware

vector mode
offset

(vector size is
4B)

e200z4d
hardware

vector mode
offset

(vector size is
16B)

Resource Module

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

422 Freescale Semiconductor

157 0x0A74 0x09D0 EMIOS_GFR[F0,F1]

Enhanced Modular I/O
Subsystem 1 (eMIOS1)

158 0x0A78 0x09E0 EMIOS_GFR[F2,F3]

159 0x0A7C 0x09F0 EMIOS_GFR[F4,F5]

160 0x0A80 0x0A00 EMIOS_GFR[F6,F7]

161 0x0A84 0x0A10 EMIOS_GFR[F8,F9]

162 0x0A88 0x0A20 EMIOS_GFR[F10,F11]

163 0x0A8C 0x0A30 EMIOS_GFR[F12,F13]

164 0x0A90 0x0A40 EMIOS_GFR[F14,F15]

165 0x0A94 0x0A50 EMIOS_GFR[F16,F17]

166 0x0A98 0x0A60 EMIOS_GFR[F18,F19]

167 0x0A9C 0x0A70 EMIOS_GFR[F20,F21]

168 0x0AA0 0x0A80 EMIOS_GFR[F22,F23]

169 0x0AA4 0x0A90 EMIOS_GFR[F24,F25]

170 0x0AA8 0x0AA0 EMIOS_GFR[F26,F27]

171 0x0AAC 0x0AB0 EMIOS_GFR[F28,F29]

172 0x0AB0 0x0AC0 EMIOS_GFR[F30,F31]

173 0x0AB4 0x0AD0 FLEXCAN_ESR
FLEXCAN 3

174 0x0AB8 0x0AE0 FLEXCAN_ESR_BOFF |
FLEXCAN_Transmit_Warning |
FLEXCAN_Receive_Warning

175 0x0ABC 0x0AF0 Reserved

Table 19-14. MPC5646C Interrupt Vector Table (continued)

IRQ #

e200z0h
hardware

vector mode
offset

(vector size is
4B)

e200z4d
hardware

vector mode
offset

(vector size is
16B)

Resource Module

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 423

176 0x0AC0 0x0B00 FLEXCAN_BUF_0_3

FLEXCAN 3

177 0x0AC4 0x0B10 FLEXCAN_BUF_4_7

178 0x0AC8 0x0B20 FLEXCAN_BUF_8_11

179 0x0ACC 0x0B30 FLEXCAN_BUF_12_15

180 0x0AD0 0x0B40 FLEXCAN_BUF_16_31

181 0x0AD4 0x0B50 FLEXCAN_BUF_32_63

182 0x0AD8 0x0B60 DSPI_SR[TFUF]
DSPI_SR[RFOF]
DSPI_SR[DPEF]
DSPI_SR[SPEF]

DSPI 3
183 0x0ADC 0x0B70 DSPI_SR[EOQF]

184 0x0AE0 0x0B80 DSPI_SR[TFFF]

185 0x0AE4 0x0B90 DSPI_SR[TCF]
DSPI_SR[DDIF]

186 0x0AE8 0x0BA0 DSPI_SR[RFDF]

187 0x0AEC 0x0BB0 LINFlexD_RXI

LINFlexD_4188 0x0AF0 0x0BC0 LINFlexD_TXI

189 0x0AF4 0x0BD0 LINFlexD_ERR

190 0x0AF8 0x0BE0 FLEXCAN_ESR

FLEXCAN 4191 0x0AFC 0x0BF0 FLEXCAN_ESR_BOFF |
FLEXCAN_Transmit_Warning |
FLEXCAN_Receive_Warning

192 0x0B00 0x0C00 Reserved

Table 19-14. MPC5646C Interrupt Vector Table (continued)

IRQ #

e200z0h
hardware

vector mode
offset

(vector size is
4B)

e200z4d
hardware

vector mode
offset

(vector size is
16B)

Resource Module

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

424 Freescale Semiconductor

193 0x0B04 0x0C10 FLEXCAN_BUF_0_3

FLEXCAN 4

194 0x0B08 0x0C20 FLEXCAN_BUF_4_7

195 0x0B0C 0x0C30 FLEXCAN_BUF_8_11

196 0x0B10 0x0C40 FLEXCAN_BUF_12_15

197 0x0B14 0x0C50 FLEXCAN_BUF_16_31

198 0x0B18 0x0C60 FLEXCAN_BUF_32_63

199 0x0B1C 0x0C70 LINFlexD_RXI

LINFlexD_5200 0x0B20 0x0C80 LINFlexD_TXI

201 0x0B24 0x0C90 LINFlexD_ERR

202 0x0B28 0x0CA0 FLEXCAN_ESR

FLEXCAN 5203 0x0B2C 0x0CB0 FLEXCAN_ESR_BOFF |
FLEXCAN_Transmit_Warning |
FLEXCAN_Receive_Warning

204 0x0B30 0x0CC0 Reserved

205 0x0B34 0x0CD0 FLEXCAN_BUF_0_3

FLEXCAN 5

206 0x0B38 0x0CE0 FLEXCAN_BUF_4_7

207 0x0B3C 0x0CF0 FLEXCAN_BUF_8_11

208 0x0B40 0x0D00 FLEXCAN_BUF_12_15

209 0x0B44 0x0D10 FLEXCAN_BUF_16_31

210 0x0B48 0x0D20 FLEXCAN_BUF_32_63

Table 19-14. MPC5646C Interrupt Vector Table (continued)

IRQ #

e200z0h
hardware

vector mode
offset

(vector size is
4B)

e200z4d
hardware

vector mode
offset

(vector size is
16B)

Resource Module

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 425

211 0x0B4C 0x0D30 DSPI_SR[TFUF]
DSPI_SR[RFOF]
DSPI_SR[DPEF]
DSPI_SR[SPEF]

DSPI 4
212 0x0B50 0x0D40 DSPI_SR[EOQF]

213 0x0B54 0x0D50 DSPI_SR[TFFF]

214 0x0B58 0x0D60 DSPI_SR[TCF]
DSPI_SR[DDIF]

215 0x0B5C 0x0D70 DSPI_SR[RFDF]

216 0x0B60 0x0D80 LINFlexD_RXI

LINFlexD_6217 0x0B64 0x0D90 LINFlexD_TXI

218 0x0B68 0x0DA0 LINFlexD_ERR

219 0x0B6C 0x0DB0 DSPI_SR[TFUF]
DSPI_SR[RFOF]
DSPI_SR[DPEF]
DSPI_SR[SPEF]

DSPI 5
220 0x0B70 0x0DC0 DSPI_SR[EOQF]

221 0x0B74 0x0DD0 DSPI_SR[TFFF]

222 0x0B78 0x0DE0 DSPI_SR[TCF]
DSPI_SR[DDIF]

223 0x0B7C 0x0DF0 DSPI_SR[RFDF]

224 0x0B80 0x0E00 LINFlexD_RXI

LINFlexD_7225 0x0B84 0x0E10 LINFlexD_TXI

226 0x0B88 0x0E20 LINFlexD_ERR

227 0x0B8C 0x0E30 LINFlexD_RXI

LINFlexD_8228 0x0B90 0x0E40 LINFlexD_TXI

229 0x0B94 0x0E50 LINFlexD_ERR

Table 19-14. MPC5646C Interrupt Vector Table (continued)

IRQ #

e200z0h
hardware

vector mode
offset

(vector size is
4B)

e200z4d
hardware

vector mode
offset

(vector size is
16B)

Resource Module

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

426 Freescale Semiconductor

230 0x0B98 0x0E60 LINFlexD_RXI

LINFlexD_9231 0x0B9C 0x0E70 LINFlexD_TXI

232 0x0BA0 0x0E80 LINFlexD_ERR

233 0x0BA4 0x0E90 32KXOSC counter expired 32KFXOSC

234 0x0BA8 0x0EA0 DSPI_SR[TFUF]
DSPI_SR[RFOF]
DSPI_SR[DPEF]
DSPI_SR[SPEF]

DSPI 6
235 0x0BAC 0x0EB0 DSPI_SR[EOQF]

236 0x0BB0 0x0EC0 DSPI_SR[TFFF]

237 0x0BB4 0x0ED0 DSPI_SR[TCF]
DSPI_SR[DDIF]

238 0x0BB8 0x0EE0 DSPI_SR[RFDF]

239 0x0BBC 0x0EF0 DSPI_SR[TFUF]
DSPI_SR[RFOF]
DSPI_SR[DPEF]
DSPI_SR[SPEF]

DSPI 7
240 0x0BC0 0x0F00 DSPI_SR[EOQF]

241 0x0BC4 0x0F10 DSPI_SR[TFFF]

242 0x0BC8 0x0F20 DSPI_SR[TCF]
DSPI_SR[DDIF]

243 0x0BCC 0x0F30 DSPI_SR[RFDF]

Table 19-14. MPC5646C Interrupt Vector Table (continued)

IRQ #

e200z0h
hardware

vector mode
offset

(vector size is
4B)

e200z4d
hardware

vector mode
offset

(vector size is
16B)

Resource Module

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 427

244 0x0BD0 0x0F40 EIR[TXF]

FEC

245 0x0BD4 0x0F50 EIR[RXF]

246 0x0BD8 0x0F60 EIR[HBERR]
EIR[BABR]
EIR[BABT]
EIR[GRA]
EIR[TXB]
EIR[RXB]
EIR[MII]
EIR[EBERR]
EIR[LC]
EIR[RL]
EIR[UN]

247 0x0BDC 0x0F70 CIFRR.FAFAIF

FlexRay Controller (FlexRay)

248 0x0BE0 0x0F80 CIFRR.FAFBIF

249 0x0BE4 0x0F90 CIFRR.WUPIF

250 0x0BE8 0x0FA0 CIFRR.PRIF

251 0x0BEC 0x0FB0 CIFRR.CHIF

252 0x0BF0 0x0FC0 CIFRR.TBIF

253 0x0BF4 0x0FD0 CIFRR.RBIF

254 0x0BF8 0x0FE0 CIFRR.MIF

255 0x0BFC 0x0FF0 LRCEIF DRCEIF

256 0x0C00 0x1000 LRNEIF DRNEIF

257 0x0C04 0x1010 Semaphore Int 0
Semaphore

258 0x0C08 0x1020 Semaphore Int 1

259 0x0C0C 0x1030 CSE Complete CSE

260 0x0C10 0x1040 Reserved

261 0x0C14 0x1050 Reserved

Table 19-14. MPC5646C Interrupt Vector Table (continued)

IRQ #

e200z0h
hardware

vector mode
offset

(vector size is
4B)

e200z4d
hardware

vector mode
offset

(vector size is
16B)

Resource Module

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

428 Freescale Semiconductor

19.7 SIUL external interrupts
MPC5646C supports three interrupt vectors dedicated to the 24 external interrupts.

19.8 Wakeup line interrupts
MPC5646C supports four interrupts vectors dedicated to the 32 wakeup lines into wake-up unit (30
external pins + 1 internal from RTC + 1 internal from API).

19.9 Non-maskable interrupt (NMI)
MPC5646C supports two NMI inputs which are mapped on the NMI[0;1] input port of the Wake Up unit.

262 0x0C18 0x1060 Combined Error [31:16]

DMA

263 0x0C19 0x1070 Channel 16

264 0x0C1A 0x1080 Channel 17

265 0x0C1B 0x1090 Channel 18

266 0x0C1C 0x10A0 Channel 19

267 0x0C1D 0x10B0 Channel 20

268 0x0C1E 0x10C0 Channel 21

269 0x0C1F 0x10D0 Channel 22

270 0x0C20 0x10E0 Channel 23

271 0x0C21 0x10F0 Channel 24

272 0x0C22 0x1100 Channel 25

273 0x0C23 0x1110 Channel 26

274 0x0C24 0x1120 Channel 27

275 0x0C25 0x1130 Channel 28

276 0x0C26 0x1140 Channel 39

277 0x0C27 0x1150 Channel 30

278 0x0C28 0x1160 Channel 31

Table 19-14. MPC5646C Interrupt Vector Table (continued)

IRQ #

e200z0h
hardware

vector mode
offset

(vector size is
4B)

e200z4d
hardware

vector mode
offset

(vector size is
16B)

Resource Module

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 429

MPC5646C NMI connection is as described in the Figure 19-22.

There are two NMI inputs mapped from I/Os to the wake up unit NMI inputs:

PA1 -> NMI[0] -> e200z0h CI (IVOR0) and MC_NMI (IVOR1).

PA2 -> NMI[1] -> e200z4d C I(IVOR0) and MC_NMI (IVOR1).

Figure 19-22. Cores NMI sources

Each NMI input of the wake up unit is as well a source of the Interrupt Vector 0.

19.9.1 Interrupt Request sources

The INTC has two types of interrupt requests, peripheral and software configurable. These interrupt
requests can assert on any clock cycle.

19.9.1.1 Peripheral Interrupt requests

An interrupt event in a peripheral’s hardware sets a flag bit that resides in the peripheral. The interrupt
request from the peripheral is driven by that flag bit.

The time from when the peripheral starts to drive its peripheral interrupt request to the INTC to the time
that the INTC starts to drive the interrupt request to the processor is three clocks.

External interrupts are handled by the SIUL.

19.9.1.2 Software configurable interrupt requests

An interrupt request is triggered by software by writing a 1 to a SETx bit in
INTC_SSCIR0_3–INTC_SSCIR4_7. This write sets the corresponding flag bit, CLRx, resulting in the
interrupt request. The interrupt request is cleared by writing a 1 to the CLRx bit.

Critical Input int.

Machine Check (NMI) int.

Critical Input int.

Machine Check (NMI) int.

e200z0h

e200z4d

PA1

Wake up unit

PA2

NMI[0]

NMI[1]

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

430 Freescale Semiconductor

The time from the write to the SETx bit to the time that the INTC starts to drive the interrupt request to the
processor is four clocks.

19.9.1.3 Unique Vector for each interrupt request source

Each peripheral and software configurable interrupt request is assigned a hardwired unique 9-bit vector.
Software configurable interrupts 0–7 are assigned vectors 0–7 respectively. The peripheral interrupt
requests are assigned vectors 8 to as high as needed to include all the peripheral interrupt requests. The
peripheral interrupt request input ports at the boundary of the INTC block are assigned specific hardwired
vectors within the INTC (see Table 19-1).

19.9.2 Priority management

The asserted interrupt requests are compared to each other based on their PRIx values set in the INTC
Priority Select Registers (INTC_PSR0_3–INTC_PSR276-278). The result is compared to PRI in the
associated INTC_CPR. The results of those comparisons manage the priority of the ISR executed by the
associated processor. The associated LIFO also assists in managing that priority.

19.9.2.1 Current priority and preemption

The priority arbitrator, selector, encoder, and comparator subblocks shown in Figure 19-1 compare the
priority of the asserted interrupt requests to the current priority. If the priority of any asserted peripheral or
software configurable interrupt request is higher than the current priority for a given processor, then the
interrupt request to the processor is asserted. Also, a unique vector for the preempting peripheral or
software configurable interrupt request is generated for INTC interrupt acknowledge register
((INTC_IACKR_PRC0 or INTC_IACKR_PRC1), and if in hardware vector mode, for the interrupt vector
provided to the processor.

19.9.2.1.1 Priority Arbitrator Subblock

The priority arbitrator subblock for each processor compares all the priorities of all of the asserted interrupt
requests assigned to that processor, both peripheral and software configurable. The output of the priority
arbitrator subblock is the highest of those priorities assigned to a given processor. Also, any interrupt
requests which have this highest priority are output as asserted interrupt requests to the associated request
selector subblock.

19.9.2.1.2 Request Selector Subblock

If only one interrupt request from the associated priority arbitrator subblock is asserted, then it is passed
as asserted to the associated vector encoder subblock. If multiple interrupt requests from the associated
priority arbitrator subblock are asserted, the only the one with the lowest vector is passed as asserted to the
associated vector encoder subblock. The lower vector is chosen regardless of the time order of the
assertions of the peripheral or software configurable interrupt requests.

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 431

19.9.2.1.3 Vector Encoder Subblock

The vector encoder subblock generates the unique 9-bit vector for the asserted interrupt request from the
request selector subblock for the associated processor.

19.9.2.1.4 Priority Comparator Subblock

The priority comparator subblock compares the highest priority output from the priority arbitrator
subblock with PRI in INTC_CPR_PRC0 or INTC_CPR_PRC1. If the priority comparator subblock
detects that this highest priority is higher than the current priority, then it asserts the interrupt request to
the associated processor. This interrupt request to the processor asserts whether this highest priority is
raised above the value of PRI in INTC_CPR_PRC0 or INTC_CPR_PRC1 or the PRI value in
INTC_CPR_PRC0 or INTC_CPR_PRC1 is lowered below this highest priority. This highest priority then
becomes the new priority which will be written to PRI in INTC_CPR_PRC0 or INTC_CPR_PRC1 when
the interrupt request to the processor is acknowledged. Interrupt requests whose PRIn in INTC_PSRn are
zero will not cause a preemption because their PRIn will not be higher than PRI in INTC_CPR_PRC0 or
INTC_CPR_PRC1.

Another function of the priority comparator subblock is to signal an update of the INTC_IACKR_PRC0
and INTC_IACKR_PRC1 with the vector number of the first interrupt that arrives that has a priority higher
than the current priority. Once the vector number and priority are captured, they cannot be superseded by
a higher priority interrupt until an update of the INTC_CPR_PRC0 or INTC_CPR_PRC1 occurs. An
optional design definition can be used at module instantiation to change this behavior such that higher
priority interrupts can supersede the previously captured interrupt vector number and priority up until a
hardware or software interrupt acknowledge is processed.

19.9.2.2 Last-In First-Out (LIFO)

The LIFO stores the preempted PRI values from the INTC_CPR_PRC0 or INTC_CPR_PRC1. Therefore,
because these priorities are stacked within the INTC, if interrupts need to be enabled during the ISR, at the
beginning of the interrupt exception handler the PRI value in the INTC_CPR_PRC0 or INTC_CPR_PRC1
does not need to be loaded from the INTC_CPR_PRC0 or INTC_CPR_PRC1 and stored onto the context
stack. Likewise at the end of the interrupt exception handler, the priority does not need to be loaded from
the context stack and stored into the INTC_CPR_PRC0 or INTC_CPR_PRC1.

The PRI value in the INTC_CPR_PRC0 or INTC_CPR_PRC1 is pushed onto the LIFO when the
INTC_IACKR_PRC0 or INTC_IACKR_PRC1 is read in softwarevector mode or the interrupt
acknowledge signal from the processor is asserted in hardware vector mode. The priority is popped into
PRI in the INTC_CPR_PRC0 or INTC_CPR_PRC1 whenever the INTC_EOIR_PRC0 or
INTC_EOIR_PRC1 is written.

Although the INTC supports 16 priorities, an ISR executing with PRI in the INTC_CPR_PRC0 or
INTC_CPR_PRC1 equal to 15 will not be preempted. Therefore, the LIFO supports the stacking of 15
priorities. However, the LIFO is only 14 entries deep. An entry for a priority of 0 is not needed because of
how pushing onto a full LIFO and popping an empty LIFO are treated. If the LIFO is pushed 15 or more
times than it is popped, the priorities first pushed are overwritten. A priority of 0 would be an overwritten
priority. However, the LIFO will pop ‘0’s if it is popped more times than it is pushed. Therefore, although
a priority of 0 was overwritten, it is regenerated with the popping of an empty LIFO.

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

432 Freescale Semiconductor

The LIFO is not memory mapped.

19.9.3 Handshaking with processor

19.9.3.1 Software Vector Mode Handshaking

This section describes handshaking in software vector mode.

19.9.3.1.1 Acknowledging Interrupt Request to Processor

A timing diagram of the interrupt request and acknowledge handshaking in software vector mode, along
with the handshaking near the end of the interrupt exception handler, is shown in Figure 19-23. The INTC
examines the peripheral and software configurable interrupt requests. When it finds an asserted peripheral
or software configurable interrupt request with a higher priority than PRI in the associated
INTC_CPR_PRC0 or INTC_CPR_PRC1 register, it asserts the interrupt request to the processor. The
INTVEC field in the associated INTC_IACKR_PRC0 or INTC_IACKR_PRC1 register is updated with
the preempting interrupt request’s vector when the interrupt request to the processor is asserted. The
INTVEC field retains that value until the next time the interrupt request to the processor is asserted. The
rest of the handshaking is described in Section 19.4.1, “Software Vector mode.

19.9.3.1.2 End of Interrupt Exception Handler

Before the interrupt exception handling completes, INTC end-of-interrupt register (INTC_EOIR_PRC0 or
INTC_EOIR_PRC1) must be written.When written, the associated LIFO is popped so the preempted
priority is restored into PRI of the INTC_CPR_PRC0 or INTC_CPR_PRC1. Before it is written, the
peripheral or software configurable flag bit must be cleared so that the peripheral or software configurable
interrupt request is negated.

NOTE
To ensure proper operation across all Power Architecture MCUs, execute
an mbar or msync instruction between the access to clear the flag bit and the
write to the INTC_EOIR_PRC0 or INTC_EOIR_PRC1.

When returning from the preemption, the INTC does not search for the peripheral or software settable
interrupt request whose ISR was preempted. Depending on how much the ISR progressed, that interrupt
request may no longer even be asserted. When PRI in INTC_CPR_PRC0 or INTC_CPR_PRC1 is lowered
to the priority of the preempted ISR, the interrupt request for the preempted ISR or any other asserted
peripheral or software settable interrupt request at or below that priority will not cause a preemption.
Instead, after the restoration of the preempted context, the processor will return to the instruction address
that it was to next execute before it was preempted. This next instruction is part of the preempted ISR or
the interrupt exception handler’s prolog or epilog.

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 433

Figure 19-23. Software Vector Mode Handshaking Timing Diagram

19.9.3.2 Hardware Vector mode handshaking

A timing diagram of the interrupt request and acknowledge handshaking in hardware vector mode, along
with the handshaking near the end of the interrupt exception handler, is shown in Figure 19-24. As in
software vector mode, the INTC examines the peripheral and software settable interrupt requests, and
when it finds an asserted one with a higher priority than PRI in INTC_CPR_PRC0 or INTC_CPR_PRC1,
it asserts the interrupt request to the processor. The INTVEC field in the INTC_IACKR_PRC0 or
INTC_IACKR_PRC1 is updated with the preempting peripheral or software settable interrupt request’s
vector when the interrupt request to the processor is asserted. The INTVEC field retains that value until
the next time the interrupt request to the processor is asserted. In addition, the value of the interrupt vector
to the processor matches the value of the INTVEC field in the INTC_IACKR_PRC0 or
INTC_IACKR_PRC1. The rest of the handshaking is described in Section 19.10.2.2, “Hardware vector
mode.

The handshaking near the end of the interrupt exception handler, that is the writing to the
INTC_EOIR_PRC0 or INTC_EOIR_PRC1, is the same as in software vector mode. Refer to
Section 19.9.3.1.2, “End of Interrupt Exception Handler.

010

Clock

Interrupt request to processor

Hardware vector enable

Interrupt vector

Interrupt acknowledge

Read INTC_IACKR_PCRn

Write INTC_EOIR_PCRn

INTVEC in INTC_IACKR_PCRn

PRI in INTC_CPR_PCRn

Peripheral interrupt request 100

0 108

0

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

434 Freescale Semiconductor

Figure 19-24. Hardware Vector Mode Handshaking Timing Diagram

19.10 Initialization/Application Information

19.10.1 Initialization flow

After exiting reset, all of the PRIn fields in INTC priority select registers (INTC_PSR0–INTC_PSR278)
will be zero, and PRI in INTC current priority register (INTC_CPR_PRC0 and INTC_CPR_PRC1) will
be 15. These reset values will prevent the INTC from asserting the interrupt request to the processor. The
enable or mask bits in the peripherals are reset such that the peripheral interrupt requests are negated. An
initialization sequence for allowing the peripheral and software settable interrupt requests to cause an
interrupt request to the processor is: interrupt_request_initialization:

interrupt_request_initialization:
configure VTES_PRC0,VTES_PRC1,HVEN_PRC0 and HVEN_PRC1 in INTC_MCR
configure VTBA_PRCn in INTC_IACKR_PRCn
raise the PRIn fields and set the PRC_SELx fields to the desired processor in INTC_PSRn_n
set the enable bits or clear the mask bits for the peripheral interrupt requests
lower PRI in INTC_CPR_PRCn to zero
enable processor(s) recognition of interrupts

19.10.2 Interrupt exception handler

These example interrupt exception handlers use Power Architecture assembly code.

0 108

010

Clock

Interrupt request to processor

Hardware vector enable

Interrupt vector

Interrupt acknowledge

Read INTC_IACKR_PCRn

Write INTC_EOIR_PCRn

INTVEC in INTC_IACKR_PCRn

PRI in INTC_CPR_PCRn

Peripheral interrupt request 100

0 108

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 435

19.10.2.1 Software vector mode
interrupt_exception_handler:
code to save SRR0 and SRR1

lis r3,hi(INTC_IACKR_PRCx) # form INTC_IACKR_PRCx address
ori r3,r3,lo(INTC_IACKR_PRCx)
lwz r3,0x0(r3) # load INTC_IACKR_PRCx, which clears request to processor
lwz r3,0x0(r3) # load address of ISR from vector table

code to enable processor recognition of interrupts and save context required by EABI

mtlr r3 # move INTC_IACKR_PRCx contents into link register
blrl # branch to ISR; link register updated with epilog

address

epilog:
lis r3,hi(INTC_EOIR_PRCx) # form INTC_EOIR_PRC0 address
ori r3,r3,lo(INTC_EOIR_PRCx)
li r4,0x0 # form 0 to write to INTC_EOIR_PRCx
stw r4,0x0(r3) # store to INTC_EOIR_PRCx, informing INTC to lower priority

code to restore context required by EABI and disable processor recognition of interrupts
code to restore SRR0 and SRR1

rfi

vector_table_base_address:
address of ISR for interrupt with vector 0
address of ISR for interrupt with vector 1

.

.

.
address of ISR for interrupt with vector 510
address of ISR for interrupt with vector 511

ISRx:
code to service the interrupt event
code to clear flag bit which drives interrupt request to INTC

blr # return to epilog

19.10.2.2 Hardware vector mode

This interrupt exception handler is useful with processor and system bus implementations which support
a hardware vector. This example assumes that each interrupt_exception_handlerx only has space for four
instructions, and therefore a branch to interrupt_exception_handler_continuedx is needed.
interrupt_exception_handlerx:
b interrupt_exception_handler_continuedx# 4 instructions available, branch to continue

interrupt_exception_handler_continuedx:
code to create stack frame, save working register, and save SRR0 and SRR1

wrteei 1 # enable processor recognition of interrupts

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

436 Freescale Semiconductor

code to save rest of context required by e500 EABI

bl ISRx # branch to ISR for interrupt with vector x

epilog:
code to restore most of context required by e500 EABI

Popping the LIFO after the restoration of most of the context and the disabling of processor
recognition of interrupts eases the calculation of the maximum stack depth at the cost of
postponing the servicing of the next interrupt request.
mbar # ensure store to clear flag bit has completed
lis r3,INTC_EOIR_PRCn@ha # form adjusted upper half of INTC_EOIR_PRCn address
li r4,0x0 # form 0 to write to INTC_EOIR_PRCn
wrteei 0 # disable processor recognition of interrupts
stw r4,INTC_EOIR_PRCn@l(r3) # store to INTC_EOIR_PRCn, informing INTC to lower priority

code to restore SRR0 and SRR1, restore working registers, and delete stack frame

rfi

ISRx:
code to service the interrupt event
code to clear flag bit which drives interrupt request to INTC

blr # branch to epilog

19.10.3 ISR, RTOS, and Task hierarchy

The RTOS and all of the tasks under its control typically execute with PRI in INTC current priority register
(INTC_CPR_PRC0 or INTC_CPR_PRC1) having a value of 0. The RTOS executes the tasks according
to whatever priority scheme it may have, but that priority scheme is independent and has a lower priority
of execution than the priority scheme of the INTC. In other words, the ISRs execute above
INTC_CPR_PRCn priority 0 and outside the control of the RTOS, the RTOS executes at
INTC_CPR_PRCn priority 0, and while the tasks execute at different priorities under the control of the
RTOS, they also execute at INTC_CPR_PRCn priority 0.

If a task shares a resource with an ISR and the PCP is being used to manage that shared resource, then the
task’s priority can be elevated in the INTC_CPR_PRCn while the shared resource is being accessed.An
ISR whose PRIn in INTC priority select registers (INTC_PSR0–INTC_PSR278) has a value of 0 does not
cause an interrupt request to the selected processor, even if its peripheral or software settable interrupt
request is asserted. For a peripheral interrupt request, not setting its enable bit or disabling the mask bit
causes it to remain negated, which consequently also does not cause an interrupt request to the processor.
Since the ISRs are outside the control of the RTOS, this ISR does not run unless called by another ISR or
the interrupt exception handler, perhaps after executing another ISROrder of Execution

An ISR with a higher priority can preempt an ISR with a lower priority, regardless of the unique vectors
associated with each of their peripheral or software configurable interrupt requests. However, if multiple
peripheral or software configurable interrupt requests are asserted, more than one has the highest priority,
and that priority is high enough to cause preemption, the INTC selects the one with the lowest unique

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 437

vector regardless of the order in time that they asserted. However, the ability to meet deadlines with this
scheduling scheme is no less than if the ISRs execute in the time order that their peripheral or software
configurable interrupt requests asserted.

The example in Table 19-15 shows the order of execution of both ISRs with different priorities and the
same priority.

Table 19-15. Order of ISR Execution Example

Step
No.

Step description

Code Executing at End of Step
PRI in

INTC_CPR
at End of

Step
RTOS ISR1081

1 ISR108 executes for peripheral interrupt request 100 because the first eight ISRs are for software configurable
interrupt requests.

ISR208 ISR308 ISR408
Interrupt
exception
handler

1 RTOS at priority 0 is executing. X 0

2 Peripheral interrupt request 100 at
priority 1 asserts. Interrupt taken.

X 1

3 Peripheral interrupt request 400 at
priority 4 is asserts. Interrupt taken.

X 4

4 Peripheral interrupt request 300 at
priority 3 is asserts.

X 4

5 Peripheral interrupt request 200 at
priority 3 is asserts.

X 4

6 ISR408 completes. Interrupt
exception handler writes to
INTC_EOIR_PRCn.

X 1

7 Interrupt taken. ISR208 starts to
execute, even though peripheral
interrupt request 300 asserted first.

X 3

8 ISR208 completes. Interrupt
exception handler writes to
INTC_EOIR_PRCn.

X 1

9 Interrupt taken. ISR308 starts to
execute.

X 3

10 ISR308 completes. Interrupt
exception handler writes to
INTC_EOIR_PRCn.

X 1

11 ISR108 completes. Interrupt
exception handler writes to
INTC_EOIR_PRCn.

X 0

12 RTOS continues execution. X 0

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

438 Freescale Semiconductor

19.10.4 Priority Ceiling protocol

19.10.4.1 Elevating priority

The PRI field in INTC current priority register (INTC_CPR_PRC0 or INTC_CPR_PRC1) is elevated in
the OSEK PCP to the ceiling of all of the priorities of the ISRs that share a resource. This protocol allows
coherent accesses of the ISRs to that shared resource.

For example, ISR1 has a priority of 1, ISR2 has a priority of 2, and ISR3 has a priority of 3. They all share
the same resource. Before ISR1 or ISR2 can access that resource, they must raise the PRI value in
INTC_CPR_PRCn to 3, the ceiling of all of the ISR priorities. After they release the resource, the PRI
value in INTC_CPR_PRCn can be lowered. If they do not raise their priority, ISR2 can preempt ISR1, and
ISR3 can preempt ISR1 or ISR2, possibly corrupting the shared resource. Another possible failure
mechanism is deadlock if the higher priority ISR needs the lower priority ISR to release the resource before
it can continue, but the lower priority ISR cannot release the resource until the higher priority ISR
completes and execution returns to the lower priority ISR.Using the PCP instead of disabling processor
recognition of all interrupts eliminates the time when accessing a shared resource that all higher priority
interrupts are blocked. For example, while ISR3 cannot preempt ISR1 while it is accessing the shared
resource, all of the ISRs with a priority higher than 3 can preempt ISR1.

19.10.4.2 Ensuring Coherency

19.10.4.2.1 Interrupt with Blocked Priority

Non-coherent accesses to a shared resource can occur. As an example, ISR1 and ISR2 both share a
resource. ISR1 has a lower priority, therefore it executes and then writes the new PRI value to the current
priority register (INTC_CPR_PRCn). The next instruction writes a value to a shared coherent data block.

If INTC asserts the ISR2 interrupt request to the processor just before or at the same time as the first ISR1
write, it is possible for both the ISR1 and ISR2 writes to execute while the processor responds to the INTC
request, discards the transactions, and flushes the processing pipeline. However, ISR2 cannot access the
data block coherently because the data block is now corrupted.

OSEK uses the GetResource and ReleaseResource system services to manage access to a shared resource.
To prevent corrupting a coherent data block, use the following code to modify the PRI in
INTC_CPR_PRCn. Interrupts must be disabled before executing the following GetResource code
sequence:

disable processor recognition of interrupts
PRI modification
enable processor recognition of interrupts

19.10.4.2.2 Raised Priority Preserved

Before the instruction after the GetResource system service executes, all pending transactions have
completed. These pending transactions can include an ISR for a peripheral or software settable interrupt
request whose priority was equal to or lower than the raised priority. Also, during the epilog of the interrupt
exception handler for this preempting ISR, the raised priority has been restored from the LIFO to PRI in
INTC_CPR. The shared coherent data block now can be accessed coherently. Figure 19-25 shows the

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 439

timing diagram for this scenario, and Table 19-16 explains the events. The example is for software vector
mode, but except for the method of retrieving the vector and acknowledging the interrupt request to the
processor, hardware vector mode is identical.

Figure 19-25. Raised Priority Preserved Timing Diagram

Table 19-16. Raised Priority Preserved Events

Event Description

A Peripheral interrupt request 200 asserts during execution of ISR108 running at priority 1.

B Interrupt request to processor asserts. INTVEC in INTC_IACKR updates with vector for that peripheral interrupt
request.

C ISR108 writes to INTC_CPR to raise priority to 3 before accessing shared coherent data block.

D PRI in INTC_CPR now at 3, reflecting the write. This write, just before accessing data block, is the last instruction the
processor executes before being interrupted.

E Interrupt exception handler prolog acknowledges interrupt by reading INTC_IACKR.

F PRI of 3 pushed onto LIFO. PRI in INTC_CPR updates to 2, the priority of ISR208.

G ISR208 clears its flag bit, deasserting its peripheral interrupt request.

Last In / First Out
Entry in LIFO

Write
INTC_CPR

Clock

Interrupt Request
to Processor

Hardware Vector
Enable

Interrupt
Acknowledge

Interrupt Vector

Read
INTC_IACKR

Write
INTC_EOIR

INTVEC in
INTC_IACKR

PRI in
INTC_CPR

Peripheral Interrupt
Request 100

0

108

1

208

2 3

Peripheral Interrupt
Request 200

0 3 0

3

A

B

C

D

E

F

G

H

I

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

440 Freescale Semiconductor

19.10.5 Selecting Priorities According to Request Rates and Deadlines

The selection of the priorities for the ISRs can be made using rate monotonic scheduling (RMS) or a
superset of it, deadline monotonic scheduling (DMS). In RMS, the ISRs which have higher request rates
have higher priorities. In DMS, if the deadline is before the next time the ISR is requested, then the ISR is
assigned a priority according to the time from the request for the ISR to the deadline, not from the time of
the request for the ISR to the next request for it.

For example, ISR1 executes every 100 µs, ISR2 executes every 200 µs, and ISR3 executes every 300 µs.
ISR1 has a higher priority than ISR2 which has a higher priority than ISR3; however, if ISR3 has a
deadline of 150 µs, then it has a higher priority than ISR2.

The INTC has 16 priorities, which may be less than the number of ISRs. In this case, the ISRs should be
grouped with other ISRs that have similar deadlines. For example, a priority could be allocated for every
time the request rate doubles. ISRs with request rates around 1 ms would share a priority, ISRs with request
rates around 500 µs would share a priority, ISRs with request rates around 250 µs would share a priority,
etc. With this approach, a range of ISR request rates of 216 could be included, regardless of the number of
ISRs.

Reducing the number of priorities reduces the processor’s ability to meet its deadlines. However, reducing
the number of priorities can reduce the size and latency through the interrupt controller. It also allows
easier management of ISRs with similar deadlines that share a resource. They do not need to use the PCP
to access the shared resource.

19.10.6 Software configurable Interrupt Requests

The software configurable interrupt requests can be used in two ways. They can be used to schedule a
lower priority portion of an ISR and they may also be used by processors to interrupt other processors in
a multiple processor system.

19.10.6.1 Scheduling a Lower Priority Portion of an ISR

A portion of an ISR needs to be executed at the PRIn value in INTC priority select registers
(INTC_PSR0–INTC_PSR278), which becomes the PRI value in INTC current priority register
(INTC_CPR_PRC0 or INTC_CPR_PRC1) with the interrupt acknowledge. The ISR, however, can have
a portion of it which does not need to be executed at this higher priority. Therefore, executing this later
portion that does not need to be executed at this higher priority can prevent the execution of ISRs that do
not have a higher priority than the earlier portion of the ISR but do have a higher priority than what the

H Interrupt exception handler epilog writes to INTC_EOIR.

I LIFO pops 3, restoring the raised priority onto PRI in INTC_CPR. Next value to pop from LIFO is the priority from
before peripheral interrupt request 100 interrupted. ISR108 now can access data block coherently after interrupt
exception handler executes rfi instruction.

Table 19-16. Raised Priority Preserved Events

Event Description

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 441

later portion of the ISR needs. This preemptive scheduling inefficiency reduces the processor’s ability to
meet its deadlines.

One option is for the ISR to complete the earlier higher priority portion, but then schedule through the
RTOS a task to execute the later lower priority portion. However, some RTOSs can require a large amount
of time for an ISR to schedule a task. Therefore, a second option is for the ISR, after completing the higher
priority portion, to set a SETn bit in INTC software set/clear interrupt registers
(INTC_SSCIR0–INTC_SSCIR7). Writing a 1 to SETn causes a software settable interrupt request. This
software settable interrupt request usually has a lower PRIn value in the INTC_PSRn, and therefore does
not cause preemptive scheduling inefficiencies.

After generating a software settable interrupt request, the higher priority ISR completes. The lower priority
ISR is scheduled according to its priority. Execution of the higher priority ISR is not resumed after the
completion of the lower priority ISR.

19.10.6.2 Scheduling an ISR on Another Processor

Because the SETx bits in the INTC_SSCIRx_x are memory mapped, processors in multiple-processor
systems can schedule ISRs on the other processors. One application is that one processor wants to
command another processor to perform a piece of work and the initiating processor does not need to use
the results of that work. If the initiating processor is concerned that the processor executing the software
configurable ISR has not completed the work before asking it to again execute the ISR, it can check if the
corresponding CLRx bit in INTC_SSCIRx_x is asserted before again writing a 1 to the SETx bit.

Another application is the sharing of a block of data. For example, a first processor has completed
accessing a block of data and wants a second processor to then access it. Furthermore, after the second
processor has completed accessing the block of data, the first processor again wants to access it. The
accesses to the block of data must be done coherently. To do this, the first processor writes a 1 to a SETx
bit on the second processor. After accessing the block of data, the second processor clears the
corresponding CLRx bit and then writes 1 to a SETx bit on the first processor, informing it that it can now
access the block of data.

19.10.7 Lowering Priority Within an ISR

In implementations without the software-settable interrupt requests in the INTC software set/clear
interrupt registers (INTC_SSCIR0–INTC_SSCIR7), one way — besides scheduling a task through an
RTOS — to prevent preemptive scheduling inefficiencies with an ISR whose work spans multiple
priorities is to lower the current priority (see Section 19.10.6.1, “Scheduling a Lower Priority Portion of
an ISR). However, the INTC has a LIFO whose depth is determined by the number of priorities.

NOTE
Lowering the PRI value in either INTC_CPR_PRC0 or INTC_CPR_PRC1
within an ISR to below the ISR’s corresponding PRI value in
INTC_PSR0–INTC_PSR278 allows more preemptions than the LIFO
depth can support.

Therefore, through its use of the LIFO, the INTC does not support lowering the current priority within an
ISR as a way to avoid preemptive scheduling inefficiencies.

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

442 Freescale Semiconductor

19.10.8 Negating an Interrupt Request Outside of its ISR

19.10.8.1 Negating an Interrupt Request as a Side Effect of an ISR

Some peripherals have flag bits that can be cleared as a side effect of servicing a peripheral interrupt
request. For example, reading a specific register can clear the flag bits and their corresponding interrupt
requests. This clearing as a side effect of servicing a peripheral interrupt request can cause the negation of
other peripheral interrupt requests besides the peripheral interrupt request whose ISR presently is
executing. This negating of a peripheral interrupt request outside of its ISR can be a desired effect.

19.10.8.2 Negating Multiple Interrupt Requests in One ISR

An ISR can clear other flag bits besides its own. One reason that an ISR clears multiple flag bits is because
it serviced those flag bits, and therefore the ISRs for these flag bits do not need to be executed.

19.10.8.3 Proper Setting of Interrupt Request Priority

Whether an interrupt request negates outside its own ISR due to the side effect of an ISR execution or the
intentional clearing a flag bit, the priorities of the peripheral or software configurable interrupt requests for
these other flag bits must be selected properly. Their PRIx values in the INTC Priority Select Registers
(INTC_PSR0_3–INTC_PSR276-278) must be selected to be at or lower than the priority of the ISR that
cleared their flag bits. Otherwise, those flag bits can cause the interrupt request to the processor to assert.
Furthermore, the clearing of these other flag bits also has the same timing relationship to the writing to
INTC_SSCIR0_3–INTC_SSCIR4_7 as the clearing of the flag bit that caused the present ISR to be
executed (see Section 19.9.3.1.2, “End of Interrupt Exception Handler).

A flag bit whose enable bit or mask bit negates its peripheral interrupt request can be cleared at any time,
regardless of the peripheral interrupt request’s PRIx value in INTC_PSRx_x.

19.10.9 Examining LIFO contents

In normal mode, the user does not need to know the contents of the LIFO. He may not even know how
deeply the LIFO is nested. However, if he wants to read the contents, such as in debug mode, they are not
memory mapped. The contents can be read by popping the LIFO and reading the PRI field in either
INTC_CPR. The code sequence is:

pop_lifo:
store to INTC_EOIR_PRCn
load INTC_CPR_PRCn, examine PRI, and store onto stack
if PRI is not zero or value when interrupts were enabled, branch to pop_lifo

When the examination is complete, the LIFO can be restored using this code sequence:
push_lifo:
load stacked PRI value and store to INTC_CPR_PRCn
load INTC_IACKR_PRCn
if stacked PRI values are not depleted, branch to push_lifo

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 443

NOTE
Reading the INTC_IACKR_PRCn acknowledges the interrupt request to
the processor and updates the INTC_CPR_PRCn[PRI] with the priority of
the preempting interrupt request. If the processor recognition of interrupts is
disabled during the LIFO restoration, interrupt requests to the processor can
go undetected. However, since the peripheral or software settable interrupt
requests are not cleared, the peripheral interrupt request to the processor
re-asserts when INTC_CPR_PRCn[PRI] is lower than the priorities of those
peripheral or software settable interrupt requests.

Chapter 19 Interrupt Controller (INTC)

MPC5646C Microcontroller Reference Manual, Rev. 5

444 Freescale Semiconductor

Chapter 20 Crossbar Switch (XBAR)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 445

Chapter 20
Crossbar Switch (XBAR)

20.1 Features
The following summarizes the device-specific implementation of the crossbar switch:

• Eight master ports

— e200z4d Instruction port

— e200z4d Data port

— e200z0h Instruction port

— e200z0h Data port

— eDMA

— FEC

— FlexRay

— CSE

• Five slave ports:

— Flash controller supports 2 slave ports

— PRAM controller supports 2 slave ports

— PBRIDGE

Table 20-1. Master/slave mappings

 XBAR Module

XBAR Port

Master ID
Type

XBAR Port
number

e200z4d ifetch Master m0 0000

e200z4d dfetch Master m1

e200z4d Nexus3+ 1000

eDMA Master m2 0010

e200z0h ifetch Master m3 0001

e200z0h dfetch Master m4

e200z0h Nexus3+ 1001

FEC Master m5 0101

FlexRay Master m6 0110

Crypto XBAR_IF (CSE) Master m7 0111

Flash port dedicated to e200z4d
ifetch

Slave s0 —

Flash port dedicated to everything
else

Slave s1 —

Chapter 20 Crossbar Switch (XBAR)

MPC5646C Microcontroller Reference Manual, Rev. 5

446 Freescale Semiconductor

NOTE
Beware that the MPU module only reads the last three bits of a Master ID
reference. Therefore Nexus masters (Master ID 8 and 9)" share the same
permissions as cores Z4 and Z0 (masters 0

20.2 Introduction

20.2.1 Overview

This section provides an overview of the crossbar switch (XBAR). The purpose of the XBAR is to
concurrently support up to 5 simultaneous connections between master ports and slave ports. The XBAR
supports a 32-bit address bus width and 64-bit data bus width at all master and slave ports. Only a single
data bus width is supported throughout the design, thus, all master and slave ports have the same data bus
width.

PRAM Controller 0 Slave s2 —

PRAM Controller 1 Slave s3 —

PBRIDGE Slave s7 —

Table 20-1. Master/slave mappings

 XBAR Module

XBAR Port

Master ID
Type

XBAR Port
number

Chapter 20 Crossbar Switch (XBAR)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 447

Figure 20-1. XBAR block diagram

20.2.2 Features

The XBAR has the ability to gain control of all the slave ports and prevent any masters from making
accesses to the slave ports. This feature is useful when the user wishes to turn off the clocks to the system
and needs to ensure that no bus activity will be interrupted.

The XBAR can put each slave port into a low power park mode so that slave port will not dissipate any
power transitioning address, control or data signals when not being actively accessed by a master port.

Each slave port can also support multiple master priority schemes. Each slave port has a hardware input
which selects the master priority scheme so the user can dynamically change master priority levels on a
slave port by slave port basis.

The XBAR allows concurrent accesses between unique master and unique slave ports with no contention.
It is possible for all master ports and slave ports to be in use at the same time as a result of independent

JTAG

Nexus
 Class 3+
Nexus
Class 3+

DEBUG

e200z4d
Core
(4k I-Cache)

MMU
e200z0h

Core

Ethernet
(FEC)

FlexRay CSE
(Security)

32ch
eDMA

Master modules

128 KB
SRAM

(with ECC)

128 KB
SRAM

(with ECC)

Flash memory controller

1.5 MB
Code flash

64 KB
Data flash
memory

Slave modules

1.5 MB
Code flash

CROSSBAR SWITCH

PBRIDGE

MPU

memory memory
(ECC)

M2 M0
ifetch

M1
dfetch

M3
ifetch

M4
dfetch

M5 M6 M7

S7 S2 S3 S1 S0

Chapter 20 Crossbar Switch (XBAR)

MPC5646C Microcontroller Reference Manual, Rev. 5

448 Freescale Semiconductor

master requests. If a slave port is simultaneously requested by more than one master port, arbitration logic
will select the higher priority master and grant it ownership of the slave port. All other masters requesting
that slave port will be stalled until the higher priority master completes its transactions.

20.2.3 Limitations

The XBAR routes bus transactions initiated on the master ports to the appropriate slave ports. There is no
provision included to route transactions initiated on the slave ports to other slave ports or to master ports.
Simply put, the slave ports do not support the bus request/bus grant protocol, the XBAR assumes it is the
sole master of each slave port.

20.2.4 General operation

When a master makes an access to the XBAR the access will be immediately taken by the XBAR. If the
targeted slave port of the access is available then the access will be presented on the slave port. If the slave
port is parked on the master initiating the access then there will be a zero clock delay through the crossbar
for that access. If the targeted slave port of the access is busy or parked on a different master port the
requesting master will see wait states inserted until the targeted slave port can service the master’s request.
The latency in servicing the request will depend on each master’s priority level and the responding
peripheral’s access time.

Since the XBAR appears to be just another slave to the master device, the master device will have no
knowledge of whether or not it actually owns the slave port it is targeting. While the master does not have
control of the slave port it is targeting, wait states will be inserted until the slave port becomes available.

A master will be given control of the targeted slave port only after a previous access to a different slave
port has completed, regardless of its priority on the newly targeted slave port. This prevents deadlock from
occurring when a master has an outstanding request to one slave port that has a long response time, has a
pending access to a different slave port, and a lower priority master is also making a request to the same
slave port as the pending access of the higher priority master.

After the master has control of the slave port it is targeting, the master remains in control of that slave port
until it gives up the slave port by running an IDLE cycle or by leaving that slave port for its next access.
The master could also lose control of the slave port if another higher priority master makes a request to the
slave port; however, if the master is running a locked or fixed length burst transfer it will retain control of
the slave port until that transfer is completed. Based on the AULB bit in the MGPCR (Master General
Purpose Control Register) the master will either retain control of the slave port when doing undefined
length incrementing burst transfers or will lose the bus to a higher priority master.

The XBAR will terminate all master IDLE transfers (as opposed to allowing the termination to come from
one of the slave busses). Additionally, when no master is requesting access to a slave port the XBAR will
drive IDLE transfers onto the slave bus, even though a default master may be granted access to the slave
port.

When a slave bus is being IDLEd by the XBAR it can park the slave port on the master port indicated by
the PARK bits in the SGPCR (Slave General Purpose Control Register). This can be done in an attempt to
save the initial clock of arbitration delay that would otherwise be seen if the master had to arbitrate to gain
control of the slave port. The slave port can also be put into low power park mode in attempt to save power.

Chapter 20 Crossbar Switch (XBAR)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 449

20.3 XBAR registers
This section provides information on XBAR registers.

20.3.1 Register summary

There are 2 registers that reside in each slave port of the XBAR and one register that resides in each master
port of the XBAR. These registers can only be read or written to via a 32-bit access in supervisor mode.

Each SGPCRn register includes a Read Only (RO) bit to protect both registers associated with that slave
port. Once set, any attempt to write to the affected slave port registers will result in an IVOR1 exception.
The RO bit setting remains in force until the next reset.

The memory map for the XBAR registers is shown in Table 20-2. All registers are 32 bits in size. All
address offsets not explicitly mentioned in the table are reserved.

20.3.2 XBAR register descriptions

The following sections provide detailed descriptions of the various XBAR registers.

Table 20-2. XBAR memory map

Base address: 0xFFF0_4000

Address offset Register Location

0x000 Master Priority Register for Slave port 0 (MPR0) on page 450

0x010 General Purpose Control Register for Slave port 0 (SGPCR0) on page 451

0x100 Master Priority Register for Slave port 1 (MPR1) on page 450

0x110 General Purpose Control Register for Slave port 1 (SGPCR1) on page 451

0x200 Master Priority Register for Slave port 2 (MPR2) on page 450

0x210 General Purpose Control Register for Slave port 2 (SGPCR2) on page 451

0x300 Master Priority Register for Slave port 3 (MPR3) on page 450

0x310 General Purpose Control Register for Slave port 3 (SGPCR3) on page 451

0x700 Master Priority Register for Slave port 7 (MPR7) on page 450

0x710 General Purpose Control Register for Slave port 7 (SGPCR7) on page 451

0x800 General Purpose Control Register for Master port 0 (MGPCR0) on page 453

0x900 General Purpose Control Register for Master port 1 (MGPCR1) on page 453

0xA00 General Purpose Control Register for Master port 2 (MGPCR2) on page 453

0xB00 General Purpose Control Register for Master port 3 (MGPCR3) on page 453

0xC00 General Purpose Control Register for Master port 4 (MGPCR4) on page 453

0xD00 General Purpose Control Register for Master port 5 (MGPCR5) on page 453

0xE00 General Purpose Control Register for Master port 6 (MGPCR6) on page 453

0xF00 General Purpose Control Register for Master port 7 (MGPCR7) on page 453

Chapter 20 Crossbar Switch (XBAR)

MPC5646C Microcontroller Reference Manual, Rev. 5

450 Freescale Semiconductor

20.3.2.1 Master Priority Registers (MPRn)

The Master Priority Registers (MPRn) sets the priority of each master port on a per slave port basis and
resides in each slave port.

Note: n represents the slave port number from 0 to 7.

Offset: 0x000 + n*100 Access: Supervisor
Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
MSTR_7

0
MSTR_6

0
MSTR_5

0
MSTR_4

W

Reset: 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0
MSTR_3

0
MSTR_2

0
MSTR_1

0
MSTR_0

W

Reset: 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0

Figure 20-2. Master Priority Registers (MPRn)

Table 20-3. MPRn field descriptions

Field Description

MSTR_7 Master 7 Priority - These bits set the arbitration priority for master port 7 on the associated
slave port. These bits are initialized by hardware reset.
000This master has the highest priority when accessing the slave port.
111This master has the lowest priority when accessing the slave port.

MSTR_6 Master 6 Priority - These bits set the arbitration priority for master port 6 on the associated
slave port. These bits are initialized by hardware reset.
000This master has the highest priority when accessing the slave port.
111This master has the lowest priority when accessing the slave port.

MSTR_5 Master 5 Priority - These bits set the arbitration priority for master port 5 on the associated
slave port. These bits are initialized by hardware reset.
000This master has the highest priority when accessing the slave port.
111This master has the lowest priority when accessing the slave port.

MSTR_4 Master 4 Priority - These bits set the arbitration priority for master port 4 on the associated
slave port. These bits are initialized by hardware reset.
000This master has the highest priority when accessing the slave port.
111This master has the lowest priority when accessing the slave port.

MSTR_3 Master 3 Priority - These bits set the arbitration priority for master port 3 on the associated
slave port. These bits are initialized by hardware reset.
000This master has the highest priority when accessing the slave port.
111This master has the lowest priority when accessing the slave port.

MSTR_2 Master 2 Priority - These bits set the arbitration priority for master port 2 on the associated
slave port. These bits are initialized by hardware reset.
000This master has the highest priority when accessing the slave port.
111This master has the lowest priority when accessing the slave port.

MSTR_1 Master 1 Priority - These bits set the arbitration priority for master port 1 on the associated
slave port. These bits are initialized by hardware reset.
000This master has the highest priority when accessing the slave port.
111This master has the lowest priority when accessing the slave port.

Chapter 20 Crossbar Switch (XBAR)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 451

NOTE
No two master ports within the same MPR may be programmed with the
same priority level. Any attempt to do so will result in a bus error and the
MPR will not be updated.

20.3.2.2 Slave General Purpose Control Registers (SGPCRn)

The Slave General Purpose Control Registers (SGPCR) control several features of each slave port.

The Read Only (RO) bit will prevent any registers associated with this slave port from being written to
once set. After RO is set, it can only be cleared by a reset.

The PCTL bits determine how the slave port will park when no master is actively making a request. The
available options are:

• Park on a specific master defined by the PARK bits

• Park on the last master to use the slave port

• Park on no master and enter a low power park mode which will force all of the outputs of the slave
port to inactive when no master is requesting an access.

The low power park feature can result in an overall power savings if a the slave port is not saturated;
however, it will always result in an extra clock whenever the slave port is accessed by any master.

The PARK bits determine which master the slave will park on when no master is making an active request.
Ensure that the slave is only parked on a master that exists in your microcontroller. If the slave is parked
to master that does not exist, then undefined behavior will result.

MSTR_0 Master 0 Priority - These bits set the arbitration priority for master port 0 on the associated
slave port. These bits are initialized by hardware reset.
000This master has the highest priority when accessing the slave port.
111This master has the lowest priority when accessing the slave port.

Table 20-3. MPRn field descriptions (continued)

Field Description

Chapter 20 Crossbar Switch (XBAR)

MPC5646C Microcontroller Reference Manual, Rev. 5

452 Freescale Semiconductor

Note: n represents the slave port number.

Offset: 0x010 + n*100 Access: Supervisor Read
/ Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
RO

0 0 0 0 0 0 0

H
P

E
7

H
P

E
6

H
P

E
5

H
P

E
4

H
P

E
3

H
P

E
2

H
P

E
1

H
P

E
0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Note: Once the RO bit is written to a 1, only hardware reset will return it to a 0.

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0
ARB

0 0
PCTL

0
PARK

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Note: - - - - - - - - - - - - - - - -

Figure 20-3. Slave General Purpose Control Register n (SGPCRn)

Table 20-4. SGPCRn field descriptions

Field Description

RO Read Only - This bit is used to force all of a slave port’s registers to be read only. Once written
to 1 it can only be cleared by hardware reset. This bit is initialized by hardware reset. The reset
value is 0.
0 All this slave port’s registers can be written.
1 All this slave port’s registers are read only and cannot be written (attempted writes have no
effect and result in an error response).

HPEx High Priority Enable - These bits allow the respective master to assert a high priority, they do
not enable the high priority access. In order to elevate priority for the cores or eDMA access, see
Section 20.4.2.1, Priority elevation.
0 Priority elevation is gated on this slave port
1 Priority elevation is not gated on this slave port

ARB Arbitration Mode - These bits are used to select the arbitration policy for the slave port. These
bits are initialized by hardware reset. The reset value is 00.
00 Fixed Priority.
01 Round Robin (rotating) Priority.
10 Reserved
11 Reserved

PCTL Parking Control - These bits determine the parking control used by this slave port. These bits
are initialized by hardware reset. The reset value is 00.
00 When no master is making a request the arbiter will park the slave port on the master port
defined by the PARK bit field.
01 When no master is making a request the arbiter will park the slave port on the last master to
be in control of the slave port.
10 When no master is making a request the arbiter will park the slave port on no master and will
drive all outputs to a constant safe state.
11 Reserved

Chapter 20 Crossbar Switch (XBAR)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 453

20.3.2.3 Master General Purpose Control Registers (MGPCRn)

The MGPCRs contain a field, AULB (Arbitrate on Undefined Length Bursts), that determines whether
(and when) or not the XBAR will arbitrate away the slave port the master owns when the master is
performing undefined length burst accesses.

Note: n represents the master port number from 0 to 7.

PARK PARK - These bits are used to determine which master port this slave port parks on when no
masters are actively making requests and the PCTL bits are set to 00. These bits are initialized
by hardware reset. The reset value is 000.
000 Park on Master Port 0
001 Park on Master Port 1
010 Park on Master Port 2
011 Park on Master Port 3
100 Park on Master Port 4
101 Park on Master Port 5
110 Park on Master Port 6
111 Park on Master Port 7

Offset: 0x800 + n*100 Access: Supervisor Read
/ Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Note: - - - - - - - - - - - - - - - -

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0
AULB

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Note: - - - - - - - - - - - - - - - -

Figure 20-4. Master General Purpose Control Register n (MGPCRn)

Table 20-4. SGPCRn field descriptions (continued)

Field Description

Chapter 20 Crossbar Switch (XBAR)

MPC5646C Microcontroller Reference Manual, Rev. 5

454 Freescale Semiconductor

The MGPCR can only be accessed in supervisor mode with 32-bit accesses.

20.3.3 Coherency

Since the content of the registers has a real time effect on the operation of the XBAR it is important for the
user to understand that any register modifications take effect as soon as the register is written.

The exception to this rule are the MGPCRn[AULB] bits. The effect of modifying these bits is only realized
when the master runs an IDLE cycle where the new settings take effect. If the AULB bits in the MGPCR
are written in between two burst accesses the new AULB encodings will not take effect until an IDLE cycle
has been initiated by the master on that master port.

20.4 Function
This section describes in more detail the functionality of the XBAR.

20.4.1 Arbitration

The XBAR supports two arbitration schemes:

• A fixed-priority comparison algorithm

• A round-robin fairness algorithm

The arbitration scheme is independently programmable for each slave port.

20.4.1.1 Arbitration During Undefined Length Bursts

Arbitration during an undefined length burst are defined by the current master’s MGPCR AULB field
setting. When a defined length is imposed on the burst via the AULB bits the undefined length burst will
be treated as a single or series of single back to back fixed length burst accesses.

Example: A master runs an undefined length burst and the AULB bits in the MGPCR indicate arbitration
will occur after the fourth beat of the burst. The master runs two sequential beats and then starts what will
be an 12 beat undefined length burst access to a new address within the same slave port region as the
previous access. The XBAR will not allow an arbitration point until the fourth overall access (second beat

Table 20-5. MGPCRn field descriptions

Field Description

AULB Arbitrate on Undefined Length Bursts - These bits are used to select the arbitration
policy during undefined length bursts by this master. These bits are initialized by
hardware reset. The reset value is 000.
000 No arbitration will be allowed during an undefined length burst.
001 Arbitration will be allowed at any time during an undefined length burst.
010 Arbitration will be allowed after four beats of an undefined length burst.
011 Arbitration will be allowed after eight beats of an undefined length burst.
100 Arbitration will be allowed after 16 beats of an undefined length burst.
101 Reserved
110 Reserved
111 Reserved

Chapter 20 Crossbar Switch (XBAR)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 455

of the second burst). At that point all remaining accesses will be open for arbitration until the master loses
control of the slave port.

Assume the master loses control of the slave port after the fifth beat of the second burst. Once the master
regains control of the slave port no arbitration point will be available until after the master has run four
more beats of its burst. After the fourth beat of the (now continued) burst (ninth beat of the second burst
from the master’s perspective) is taken all beats of the burst will once again be open for arbitration until
the master loses control of the slave port.

Assume the master again loses control of the slave port on the fifth beat of the third (now continued) burst
(10th beat of the second burst from the master’s perspective). Once the master regains control of the slave
port it will be allowed to complete its final two beats of its burst without facing arbitration.

NOTE
Fixed length burst accesses are not affected by the AULB bits. All fixed
length burst accesses lock out arbitration until the last beat of the fixed
length burst.

20.4.1.2 Fixed priority operation

When operating in fixed-priority mode, each master is assigned a unique priority level in the MPR (Master
Priority Register). If two masters both request access to a slave port the master with the highest priority in
the selected priority register will gain control over the slave port.

Since the e200z0 instruction bus can make indefinitely long accesses on XBAR, there is a strong
possibility of starving all other masters for flash memory access if e200z0 instruction bus is made the
highest-priority bus master while it is fetching code. Extra care with respect to other expected transactions
from other masters should be taken if the e200z0 instruction bus is made highest priority bus master.

Any time a master makes a request to a slave port the slave port checks to see if the new requesting master’s
priority level is higher than that of the master that currently has control over the slave port (unless the slave
port is in a parked state). The slave port does an arbitration check at every clock edge to ensure that the
proper master (if any) has control of the slave port.

If the new requesting master’s priority level is higher than that of the master that currently has control of
the slave port the new requesting master will be granted control over the slave port at the next clock edge.
The exception to this rule is if the master that currently has control over the slave port is running a fixed
length burst transfer or a locked transfer. In this case the new requesting master will have to wait until the
end of the burst transfer or locked transfer before it will be granted control of the slave port. If the master
is running an undefined length burst transfer the new requesting master must wait until an arbitration point
for the undefined length burst transfer before it will be granted control of the slave port. Arbitration points
for an undefined length burst are defined in the MGPCR for each master.

If the new requesting master’s priority level is lower than that of the master that currently has control of
the slave port the new requesting master will be forced to wait until the master that currently has control
of the slave port either runs an IDLE cycle or runs a non IDLE cycle to a location other than the current
slave port.

Chapter 20 Crossbar Switch (XBAR)

MPC5646C Microcontroller Reference Manual, Rev. 5

456 Freescale Semiconductor

20.4.1.3 Round-Robin Priority Operation

When operating in round-robin mode, each master is assigned a relative priority based on the master
number.This relative priority is compared to the ID of the last master to perform a transfer on the slave bus.
The highest priority requesting master will become owner of the slave bus as the next transfer boundary
(accounting for locked and fixed-length burst transfers). Priority is based on how far ahead the ID of the
requesting master is to the ID of the last master (ID is defined by master port number, not the hmaster
field).

Once granted access to a slave port, a master may perform as many transfers as desired to that port until
another master makes a request to the same slave port. The next master in line will be granted access to
the slave port at the next assertion of sX_hready, or possibly on the next clock cycle if the current master
has no pending access request.

As an example of arbitration in round-robin mode, assume the XBAR is implemented with master ports 0,
1, 4 and 5. If the last master of the slave port was master 1, and master 0, 4 and 5 make simultaneous
requests, they will be serviced in the order 4, 5 and then 0.

Parking may still be used in a round-robin mode, but will not affect the round-robin pointer unless the
parked master actually performs a transfer. Handoff will occur to the next master in line after one cycle of
arbitration. If the slave port is put into low power park mode the round-robin pointer will be reset to point
at master port 0, giving it the highest priority.

Each master port has an mX_high_priority input which can be enabled by writing the correct data to the
SGPCR or ASGPCR. If a master’s mX_high_priority input is enabled for a slave port programmed for
round-robin mode, that master can force the slave port into fixed priority mode by asserting its
mX_high_priority input while making a request to that particular slave port. While that (or any enabled)
master’s mX_high_priority input is asserted while making an access attempt to that particular slave port,
the slave port will remain in fixed priority mode. Once that (or any enabled) master’s mX_high_priority
input is negated, or the master no longer attempts to make accesses to that particular slave port, the slave
port will revert back to round-robin priority mode and the pointer will be set on the last master to access
the slave port.

20.4.2 Priority assignment

Each master port needs to be assigned a unique 3-Bit priority level. If an attempt is made to program
multiple master ports with the same priority level within a register (MPR) the XBAR will respond with an
error and the registers will not be updated.

20.4.2.1 Priority elevation

The XBAR has a hardware input per master port (mX_high_priority) which is used to temporarily elevate
the master’s priority level on all slave ports. When the master’s mX_high_priority input is asserted the
master port will automatically have higher priority than all other master ports that do not have their
mX_high_priority input asserted regardless of the priority levels programmed in the MPR and AMPR. If
multiple master ports have their mX_high_priority input asserted they will have higher priority than all
master ports which do not have their mX_high_priority inputs asserted. The MPR or AMPR priority level

Chapter 20 Crossbar Switch (XBAR)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 457

(dependent on the state of sX_ampr_sel) will determine which master port that has its mX_high_priority
input asserted has the highest priority on a slave port by slave port basis.

This functionality is useful because it allows the user to automatically elevate a master port’s priority level
throughout the XBAR in order to quickly perform temporary tasks such as servicing interrupts.

Please note that the HPEx bits must be set in the SGPCR or ASGPCR in the slave port in order for the
mX_high_priority inputs to be received by the slave port.

Priority elevation is only valid for e200z0, e200z4, and eDMA masters.

For priority elevation to work:

1. Write SYSCTL field in HID1 and set either EE or ME bit. This activates priority elevation.

2. Gate the priority elevation by writing respective HPEx bit within the ISR.
Priority should now be elevated for access within the ISR

3. Set HPEx from slave port register that you are wanting elevate within an ISR.

20.4.3 Master Port Functionality

20.4.3.1 General

Each master port consists of two decoders, a capture unit, a register slice, a mux and a small state machine.

The first decoder is used to decode the mX_hsel_slv and control signals coming directly from the master,
telling the state machine where the master’s next access will be and if it is in fact a legal access. The second
decoder receives its input from the capture unit, so it may be looking directly at the signals coming from
the master or it may be looking at captured signals coming from the master, depending entirely on the state
of the targeted slave port. The second decoder is then used to generate the access requests that go to the
slave ports.

The capture unit is used to capture the address and control information coming from the master in the event
that the targeted slave port cannot immediately service the master. The capture unit is controlled by outputs
from the state machine which tell it to either pass through the original master signals or the captured
signals.

The register slice contains the registers associated with the specific master port. The registers have a
quasi-IP bus interface at this level for reads and writes and the outputs feed directly into the state machine.

The mux is used simply to select which slave’s read data is sent back to the master. The mux is controlled
by the state machine.

The state machine controls all aspects of the master port. It knows which slave port the master wants to
make a request to and controls when that request is made. It also has knowledge of each slave port,
knowing whether or not the slave port is ready to accept an access from the master port. This will
determine whether or not the master may immediately have its request taken by the slave port or whether
the master port will have to capture the master’s request and queue it at the slave port boundary.

Chapter 20 Crossbar Switch (XBAR)

MPC5646C Microcontroller Reference Manual, Rev. 5

458 Freescale Semiconductor

20.4.3.2 Master Port Decoders

The decoders are very simple as they ensure an access request is allowed to be made and that the slave port
targeted is actually present in the design. The decoders feeding the state machine are always enabled. The
decoders that select the slave are enabled only when the master port controlling state machine wants to
make a request to a slave port. This is necessary so that if a master port is making an access to a slave port
and is being wait stated, and its next access is to a different slave port, the request to the second slave port
can be held off until the access to the first slave port is terminated.

The decoders also output a “hole decode” or illegal access signal which tells the state machine that the
master is trying to access a slave port that does not exist.

20.4.3.3 Master Port Capture Unit

The capture unit simply captures the state of the master’s address and control signals if the XBAR cannot
immediately pass the master’s request through to the proper slave port. The capture unit consists of a set
of flops and a mux which selects either the asynchronous path from address and control or the flopped
(captured) address and control information.

20.4.3.4 Master Port Registers

The registers in the master port are only those registers associated with this particular master port. The read
and write interface for the registers is a quasi-IP bus interface. It is not a full IP bus interface at this level
because not all the IP bus signals are routed this deep in the design.

There is a register control block at the same level of the master port and slave port instantiations in the
XBAR. This control block ensures that all accesses are 32-bit supervisor accesses before passing them on
to the master ports.

The register outputs are connected directly to the state machine.

20.4.3.5 Master Port State Machine

20.4.3.5.1 Master Port State Machine States

The master side state machine’s main function is to monitor the activities of the master port. The state
machine has six states: busy, idle, waiting, stalled, steady state, first cycle error response and second
cycle error response.

The busy state is used when the master runs a BUSY cycle to the master port. The master port maintains
its request to the slave port if it currently owns the slave port; however, if it loses control of the slave port
it will no longer maintain its request. If the master port loses control of the slave port it will not be allowed
to make another request to the slave port until it runs a NSEQ or SEQ cycle.

The idle state is used when the master runs a valid IDLE cycle to the master port. The master port makes
no requests to the slave ports (disables the slave port decoder) and terminates the IDLE cycle.

Chapter 20 Crossbar Switch (XBAR)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 459

The waiting state is used when the hsel signal is negated to the master port, indicating the master is
running valid cycles to a local slave other than the XBAR. In this case the max disables the slave port
decoder and holds hresp and hready negated.

The stalled state is used when the master makes a request to a slave port that is not immediately ready to
receive the request. In this case the state machine will direct the capture unit to send out the captured
address and control signals and will enable the slave port decoder to indicate a pending request to the
appropriate slave port.

The steady state state is used when the master port and slave port are in fully asynchronous mode, making
the XBAR completely transparent in the access. The state machine selects the appropriate slave’s hresp,
hready and hrdata to pass back to the master.

The first cycle error response and second cycle error response states are self explanatory. The XBAR
will respond with an error response to the master if the master tries to access an unimplemented memory
location through the XBAR (that is, a slave port that does not exist).

20.4.3.5.2 Master Port State Machine Slave Swapping

The design of the master side state machine is fairly straightforward. The one real decision to be made is
how to handle the master moving from one slave port access to another slave port access. The approach
that was taken is to minimize or eliminate when possible any “bubbles” that would be inserted into the
access due to switching slave ports.

The state machine will not allow the master to request access to another slave port until the current access
being made is terminated. This prevents a single master from owning two slave ports at the same time (the
slave port it is currently accessing and the slave port it wishes to access next).

The state machine also maintains watch on the slave port the master is accessing as well as the slave port
the master wishes to switch to. If the new slave port is parked on the master then the master will be able
to make the switch without incurring any delays. The termination of the current access will also act as the
launch of the new access on the new slave port. If the new slave port is not parked on the master then the
master will incur a minimum one clock delay before it can launch its access on the new slave port.

This is the same for switching from the busy, idle or waiting state to actively accessing a slave port. If the
slave port is parked on the master the state machine will go to the steady state state and the access will
begin immediately. If the slave port is not parked on the master (serving another master, parked on another
master or in low power park mode) then the state machine will transition to the stalled state and at least a
one clock penalty will be paid.

20.4.4 Slave Port Functionality

20.4.4.1 General

Each slave port consists of a register slice, a bank of muxes and a state machine.

The register slice contains the registers associated with the specific slave port. The registers have a
quasi-IP bus interface at this level for reads and writes and the outputs feed directly into the state machine.

Chapter 20 Crossbar Switch (XBAR)

MPC5646C Microcontroller Reference Manual, Rev. 5

460 Freescale Semiconductor

The muxes are a series of 8 to 1 muxes that take in all the address, control and write data information from
each of the master ports and then pass the correct master’s signals to the slave port. The state machine
controls all the muxes.

The state machine is where the main slave port arbitration occurs, it decides which master is in control of
the slave port and which master will be in control of the slave port in the next bus cycle.

20.4.4.2 Slave Port Muxes

The block diagram shows only one block for all the muxes. In reality that block instantiates many 8 to 1
muxes, one for each master-to-slave signal in fact. All the muxes are designed in an AND - OR fashion,
so that if no master is selected the output of the muxes will be zero. (This is an important feature for low
power park mode.)

The muxes also have an override signal which is used by the slave port to asynchronously force IDLE
cycles onto the slave bus. When the state machine forces an IDLE cycle it zeros out htrans and hmastlock,
making sure the slave bus sees a valid IDLE cycle being run by the XBAR.

The enable to the mux controlling htrans also contains an additional control signal from the state machine
so that a NSEQ transaction can be forced. This is done any time the slave port switches masters to ensure
that no IDLE-SEQ, BUSY-SEQ or NSEQ-SEQ transactions are seen on the slave port when they shouldn’t
be. If the state machine indicates to run both an IDLE and an NSEQ cycle, the IDLE directive will have
priority.

NOTE
IDLE-SEQ is in fact an illegal access, but a possible scenario given the
multi-master environment in the XBAR unless corrected by the XBAR.

20.4.4.3 Slave Port Registers

There is a register control block at the same level of the master port and slave port instantiations in the
XBAR. This control block ensures that all accesses are 32-bit supervisor accesses before passing them on
to the master and slave ports.

The registers in the slave port are only those registers associated with this particular slave port. The read
and write interface for the registers is a quasi-IP bus interface. It is not a full IP bus interface at this level
because not all the IP bus signals are routed this deep in the design.

The register outputs are connected directly to the slave state machine with the sX_ampr_sel input
determining which priority register values, halt priority value, arbitration algorithm and parking control
bits are passed to the state machine. The registers can be read from an unlimited number of times. The
registers can only be written to as long as the RO bit is written to 0 in the SGPCR, once it is written to a 1
only a hardware reset will allow the registers to be written again.

Chapter 20 Crossbar Switch (XBAR)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 461

20.4.4.4 Slave Port State Machine

20.4.4.4.1 Slave Port State Machine States

At the heart of the slave port is the state machine. The state machine is simplicity itself, requiring only four
states - steady state, transition state, transition hold state and hold state. Either the slave port is owned
by the same master it was in the last clock cycle (either by active use or by parking), it is transitioning to
a new master (either for active use or parking), it is transitioning to a new master during wait states or it is
being held on the same master pending a transition to a new master.

20.4.4.4.2 Slave Port State Machine Arbitration

The real work in the state machine is determining which master port will be in control of the slave port in
the next clock cycle, the arbitration. Each master is programmed with a fixed 3 bit priority level. A fourth
priority bit is derived from the mX_high_priority inputs on the master ports, effectively making each
master’s priority level a 4 bit field with mX_high_priority being the MSB. The XBAR uses these bits in
determining priority levels when programmed for fixed priority mode of operation or when one of the
enabled mX_high_priority inputs is asserted.

Arbitration always occurs on a clock edge, but only occurs on edges when a change in mastership will not
violate AHB-Lite protocols. Valid arbitrations points include any clock cycle in which sX_hready is
asserted (provide the master is not performing a burst or locked cycle) and any wait state in which the
master owning the bus indicates a transfer type of IDLE (provided the master is not performing a locked
cycle).

Since arbitration can occur on every clock cycle the slave port masks off all master requests if the current
master is performing a locked transfer or a protected burst transfer, guaranteeing that no matter how low
its priority level it will be allowed to finish its locked or protected portion of a burst sequence.

20.4.4.4.3 Slave Port State Machine Master Handoff

The only times the slave port will switch masters when programmed for fixed priority mode of operation
is when a higher priority master makes a request or when the current master is the highest priority and it
gives up the slave port by either running and IDLE cycle to the slave port or running a valid access to a
location other than the slave port.

If the current master loses control of the slave port because a higher priority master takes it away, the slave
port will not incur any wasted cycles. The current master has its current cycle terminated by the slave port
at the same time the new master’s address and control information are recognized by the slave port. This
appears as a seamless transition on the slave port.

If the current master is being wait-stated when the higher priority master makes its request, then the current
master will be allowed to make one more transaction on the slave bus before giving it up to the new master.
Figure 20-5 illustrates the effect of a higher priority master taking control of the bus when the slave port
is programmed for a fixed priority mode of operation.

Chapter 20 Crossbar Switch (XBAR)

MPC5646C Microcontroller Reference Manual, Rev. 5

462 Freescale Semiconductor

Figure 20-5. Low to high priority mastership change

If the current master is the highest priority master and it gives up the slave port by running an IDLE cycle
or by running a valid cycle to another location other than the slave port the next highest priority master
will gain control of the slave port. If the current access incurs any wait states then the transition will be
seamless and no bandwidth will be lost; however, if the current transaction is terminated without wait
states then one IDLE cycle will be forced onto the slave bus by the XBAR before the new master will be
able to take control of the slave port. If no other master is requesting the bus then IDLE cycles will be run
by the XBAR but no bandwidth will truly be lost since no master is making a request. Figure 20-6
illustrates the effect of a higher priority master giving up control of the bus.

1 2 3 4 5 6 7 8 9

Master 5 Master 5 Master 4 Master 3 Master 2 Master 3 Master 4 None

XBAR Master 5 Master 5 Master 2 Master 3 Master 4 XBAR

IDLE NSEQ NSEQ NSEQ NSEQ NSEQ IDLE

hclk

m2 request

m3 request

m4 request

m5 request

htrans

hready

Requester
Priority
Highest

Address/Cntrl
owner

10

Chapter 20 Crossbar Switch (XBAR)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 463

Figure 20-6. High to low priority mastership change

When the slave port is programmed for round-robin mode of arbitration then the slave port will switch
masters any time there is more than one master actively making a request to the slave port. This will
happen because any master other than the one which presently owns the bus will be considered to have
higher priority. Figure 20-7 shows an example of round-robin mode of operation.

Figure 20-7. Round-robin mastership change

1 2 3 4 5 6 7 8 9

Master 0 Master 2 None Master 4 None

XBAR Master 0 XBAR Master 2 XBAR Master 4 XBAR

IDLE NSEQ IDLE NSEQ IDLE NSEQ IDLE

hclk

m0 request

m2 request

m4 request

Highest

Address/Cntrl

htrans

hready

Priority
Requester

owner

1 2 3 4 5 6 7 8 9 10

Master 1 Master 4 Master 0 Master 4 Master 5 None

XBAR Master 1 Master 4 Master 5 Master 0 Master 4 Master 5 XBAR

IDLE NSEQ NSEQ NSEQ NSEQ NSEQ NSEQ IDLE

hclk

m0 request

m1 request

m4 request

m5 request

Highest

Address/Cntrl

htrans

hready

Priority
Requester

owner

Master 5

Chapter 20 Crossbar Switch (XBAR)

MPC5646C Microcontroller Reference Manual, Rev. 5

464 Freescale Semiconductor

20.4.4.4.4 Slave Port State Machine Parking

If no master is currently making a request to the slave port then the slave port will be parked. It will park
in one of four places, dictated by the PCTL and PARK bits in the GPCR or AGPCR (depending on the
state of the sX_ampr_sel) and the locked state of the last master to access it.

If the last master to access the slave port ran a locked cycle and continues to run locked cycles even after
leaving the slave port the slave port will park on that master without regard to the bit settings in the GPCR
and without regard to pending requests from other masters. This is done so a master can run a locked
transfer to the slave port, leave it, and return to it and be guaranteed that no other master has had access to
it (provided the master maintains all transfers are locked transfers). If locking is not an issue for parking
the GPCR bits will dictate the parking method.

If the PCTL bits are set for “low power park” mode then the slave port will enter low power park mode. It
will not recognize any master as being in control of it and it will not select any master’s signals to pass
through to the slave bus. In this case all slave bus activity will effectively halt because all slave bus signals
being driven from the XBAR will be 0. This of course can save quite a bit of power if the slave port will
not be in use for some time. The down side is that when a master does make a request to the slave port it
will be delayed by one clock since it will have to arbitrate to acquire ownership of the slave port.

If the PCTL bits are set to “park on last” mode then the slave port will park on the last master to access it,
passing all that masters signals through to the slave bus. The XBAR will asynchronously force
htrans[1:0], hmaster[3:0], hburst[2:0] and hmastlock to 0 for all access that the master does not run to
the slave port. When that master access the slave port again it will not pay any arbitration penalty; however,
if any other master wishes to access the slave port a one clock arbitration penalty will be imposed.

If the PCTL bits are set to “use PARK/APARK” mode then the slave port will park on the master
designated by the PARK bits. The behavior here is the same as for the “park on last” mode with the
exception that a specific master will be parked on instead of the last master to access the slave port. If the
master designated by the PARK bits tries to access the slave port it will not pay an arbitration penalty while
any other master will pay a one clock penalty. Figure 20-8 illustrates parking on a specific master.

Chapter 20 Crossbar Switch (XBAR)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 465

Figure 20-8. Parking on a specific master

Figure 20-9 illustrates parking on the last master. Note that in cycle 6 simultaneous requests are made by
master 2 and master 4. Although master 2 has higher priority, the slave bus is parked on master 4 so master
4’s access will be taken first. The slave port parks on master 2 once it has given control to master 2. This
same situation can occur when parking on a specific master as well.

Figure 20-9. Parking on last master

1 2 3 4 5 6 7 8 9

Master 2

Master 0 None Master 2 None Master 4 None Master 2 None

XBAR Master 0 Master 2 XBAR XBAR Master 4 Master 2 XBAR

IDLE NSEQ NSEQ IDLE IDLE NSEQ NSEQ IDLE

hclk

m0 request

m2 request

m4 request

Park

Highest

Address/Cntrl

htrans

hready

Priority
Requester

owner

1 2 3 4 5 6 7 8 9

Last Master Master 0 Master 4 Master 2

Master 0 None Master 4 None Master 2 None

XBAR Master 0 XBAR Master 4 XBAR Master 4 Master 2 XBAR

IDLE NSEQ IDLE NSEQ IDLE NSEQ NSEQ IDLE

hclk

m0 request

m2 request

m4 request

Park

Highest

Address/Cntrl

htrans

hready

Priority
Requester

owner

Chapter 20 Crossbar Switch (XBAR)

MPC5646C Microcontroller Reference Manual, Rev. 5

466 Freescale Semiconductor

20.4.4.4.5 Slave Port State Machine Halt Mode

If the max_halt_request input is asserted the slave port will eventually halt all slave bus activity and go
into halt mode, which is almost identical to low power park mode. The HLP bit in the GPCR controls the
priority level of the max_halt_request in the arbitration algorithm. If the HLP bit is cleared then the
max_halt_request will have the highest priority of any master and will gain control of the slave port at
the next arbitration point (most likely the next bus cycle, unless the current master is running a locked or
fixed length burst transfer). If the HLP bit is set then the slave port will wait until no masters are actively
making requests before moving to halt mode.

Regardless of the state of the HLP bit, once the slave port has gone into halt mode as a result of
max_halt_request being asserted, it will remain in halt mode until max_halt_request is negated,
regardless of the priority level of any masters that may make requests.

In halt mode no master is selected to own the slave port so all the outputs of the slave port are set to 0.

20.5 Initialization/Application Information
No initialization is required by or for the XBAR. Hardware reset ensures all the register bits used by the
XBAR are properly initialized.

20.6 Interface
This section provides information on the XBAR interface.

20.6.1 Overview

The main goal of the XBAR is to increase overall system performance by allowing multiple masters to
communicate in parallel with multiple slaves. In order to maximize data throughput it is essential to keep
arbitration delays to a minimum.

This section examines data throughput from the point of view of masters and slaves, detailing when the
XBAR will stall the masters or insert bubbles on the slave side.

20.6.2 Master Ports

Master accesses will receive one of four responses from the XBAR. They will either be ignored,
terminated, taken, stalled or responded to with an error.

20.6.2.1 Ignored Accesses

A master access will be ignored if the hsel input of the XBAR is not asserted. The XBAR will respond to
IDLE transfers when the hsel input is asserted but will not allow the access to pass through the XBAR.

20.6.2.2 Terminated Accesses

A master access will be terminated if the hsel input of the XBAR is asserted and the transfer type is IDLE.
The XBAR will terminated the access and it will not be allowed to pass through the XBAR.

Chapter 20 Crossbar Switch (XBAR)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 467

20.6.2.3 Taken Accesses

A master access will be taken if the hsel input of the XBAR is asserted and the transfer type is non IDLE
and the slave port to which the access decodes is either currently servicing the master or is parked on the
master. In this case the XBAR will be completely transparent and the master’s access will be immediately
seen on the slave bus and no arbitration delays will be incurred.

20.6.2.4 Stalled Accesses

A master access will be stalled if the hsel input of the XBAR is asserted and the transfer type is non IDLE
and the access decodes to a slave port that is busy serving another master, parked on another master or is
in low power park mode. The XBAR will indicate to the master that the address phase of the access has
been taken but will then queue the access to the appropriate slave port to enter into arbitration for access
to that slave port.

If the slave port is currently parked on another master or is in low power park mode and no other master
is requesting access to the slave port then only one clock of arbitration will be incurred. If the slave port is
currently serving another master of a lower priority and the master has a higher priority than all other
requesting masters then the master will gain control over the slave port as soon as the data phase of the
current access is completed (burst and locked transfers excluded). If the slave port is currently servicing
another master of a higher priority then the master will gain control of the slave port once the other master
releases control of the slave port if no other higher priority master is also waiting for the slave port.

20.6.2.5 Error Response Terminated Accesses

A master access will be responded to with an error if the hsel input of the XBAR is asserted and the transfer
type is non IDLE and the access decodes to a location not occupied by a slave port. This is the only time
the XBAR will respond with an error response. All other error responses received by the master are the
result of error responses on the slave ports being passed through the XBAR.

20.6.3 Slave Ports

The goal of the XBAR with respect to the slave ports is to keep them 100% saturated when masters are
actively making requests. In order to do this the XBAR must not insert any bubbles onto the slave bus
unless absolutely necessary.

There is only one instance when the XBAR will force a bubble onto the slave bus when a master is actively
making a request. This occurs when a higher priority master has control of the slave port and is running
single clock (zero wait state) accesses while a lower priority master is stalled waiting for control of the
slave port. When the higher priority master either leaves the slave port or runs an IDLE cycle to the slave
port the XBAR will take control of the slave bus and run a single IDLE cycle before giving the slave port
to the lower priority master that was waiting for control of the slave port.

The only other times the XBAR will have control of the slave port is when the XBAR is halting or when
no masters are making access requests to the slave port and the XBAR is forced to either park the slave
port on a specific master or put the slave port into low power park mode.

Chapter 20 Crossbar Switch (XBAR)

MPC5646C Microcontroller Reference Manual, Rev. 5

468 Freescale Semiconductor

In most instances when the XBAR has control of the slave port it will indicate IDLE for the transfer type,
negate all control signals and indicate ownership of the slave bus via the hmaster encoding of 4’b0000.
One exception to this rule is when a master running locked cycles has left the slave port but continues to
run locked cycles. In this case the XBAR will control the slave port and will indicate IDLE for the transfer
type but it will not affect any other signals.

NOTE
When a master runs a locked cycle through the XBAR, the master will be
guaranteed ownership of all slave ports it accesses while running locked
cycles for one cycle beyond when the master finishes running locked cycles.

Chapter 21 Memory protection unit (MPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 469

Chapter 21
Memory protection unit (MPU)

21.1 Introduction
The AMBA-AHB Memory Protection Unit (MPU) provides hardware access control for all memory
references generated in the device. Using preprogrammed region descriptors which define memory spaces
and their associated access rights, the MPU concurrently monitors all system bus transactions and
evaluates the appropriateness of each transfer. Memory references that have sufficient access control rights
are allowed to complete, while references that are not mapped to any region descriptor or have insufficient
rights are terminated with a protection error response. This module is commonly included as part of the
platform.

21.1.1 Overview

The MPU module provides the following capabilities:

• Support for 16 program-visible 128-bit (4-word) region descriptors

— Each region descriptor defines a modulo-32 byte space, aligned anywhere in memory

– Region sizes can vary from a minimum of 32 bytes to a maximum of 4 Gbytes

— Two types of access control permissions defined in single descriptor word

– Processors have separate {read, write, execute} attributes for supervisor and user accesses

– Non-processor masters have {read, write} attributes

— Hardware-assisted maintenance of the descriptor valid bit minimizes coherency issues

— Alternate programming model view of the access control permissions word

• Memory-mapped platform device

— Interface to five slave AHB ports: flash controller, system RAM controller and IPS peripherals
bus

– Connections to the AHB address phase address and attributes

– Typical location is immediately “downstream” of the platform’s crossbar switch

— Connection to the IPS bus provides access to the MPU’s programming model

A simplified block diagram of the AHB_MPU module is shown in Figure 21-1. The AHB bus slave ports
(s{0,1,2,3}_h*) are shown on the right side of the diagram, the region descriptor registers in the middle
and the IPS bus interface (ips_*) on the left side. The evaluation macro contains the two magnitude
comparators connected to the start and end address registers from each region descriptor (rgdn) as well as
the combinational logic blocks to determine the region hit and the access protection error. For information
on the details of the access evaluation macro, see Section 21.3.1, “Access evaluation macro.”

Chapter 21 Memory protection unit (MPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

470 Freescale Semiconductor

Figure 21-1. MPU block diagram

NOTE
This diagram refers to the XBAR port numbers and not the Master IDs. For
more information, please refer to Table 20-2, XBAR memory map. Beware
that the MPU module only reads the last three bits of a Master ID reference.
Therefore, Nexus masters (Master ID 8 and 9) share the same permissions
as cores Z4 and Z0 (Masters IDs 0 and 1).

21.1.2 Features

The Memory Protection Unit implements a two-dimensional hardware array of memory region descriptors
and the crossbar slave AHB ports to continuously monitor the legality of every memory reference
generated by each bus master in the system. The feature set includes:

• Support for 16 memory region descriptors, each 128 bits in size

— Specification of start and end addresses provide granularity for region sizes from 32 bytes to
4 Gbytes

— Access control definitions:
2 bus masters (processor cores) support the traditional {read, write, execute} permissions with
independent definitions for supervisor and user mode accesses.
Reset of the bus masters (CSE, eDMA, etc.) {read, write}

— Automatic hardware maintenance of the region descriptor valid bit removes issues associated
with maintaining a coherent image of the descriptor

— Alternate memory view of the access control word for each descriptor provides an efficient
mechanism to dynamically alter only the access rights of a descriptor

PFlash Controller

SRAMC 0

PBridge

MPU

s0

s2

s7

e200z4d Core

m0

m1

FEC

FlexRay

e200z0h Core
m3

m4

eDMA
m2

m5

m6

CSE
m7

s1

SRAMC 1
s3

C
R

O
S

S
B

A
R

 S
W

IT
C

H

Chapter 21 Memory protection unit (MPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 471

— For overlapping region descriptors, priority is given to permission granting over access
denying as this approach provides more flexibility to system software. See Section 21.3.2,
“Putting it all together and AHB error terminations,” for details and Section 21.5, “Application
information,” for an example.

• Support for five AHB slave port connections: flash controller, system RAM controller and IPS
peripherals bus

— MPU hardware continuously monitors every AHB slave port access using the preprogrammed
memory region descriptors

— An access protection error is detected if a memory reference does not hit in any memory region
or the reference is flagged as illegal in all memory regions where it does hit. In the event of an
access error, the AHB reference is terminated with an error response and the MPU inhibits the
bus cycle being sent to the targeted slave device.

— 64-bit error registers, one for each AHB slave port, capture the last faulting address, attributes
and “detail” information

• Global MPU enable/disable control bit provides a mechanism to easily load region descriptors
during system startup or allow complete access rights during debug with the module disabled

21.1.3 Modes of operation

The MPU module does not support any special modes of operation. As a memory-mapped device located
on the platform’s high-speed system bus, it responds based strictly on the memory addresses of the
connected system buses. The IPS bus is used to access the MPU’s programming model and the memory
protection functions are evaluated on a reference-by-reference basis using the addresses from the AHB
system bus port(s).

Power dissipation is minimized when the MPU’s global enable/disable bit is cleared
(MPU_CESR[VLD] = 0).

21.1.4 External signal description

The MPU module does not include any external interface. The MPU’s internal interfaces include an IPS
connection for accessing the programming model and multiple connections to the address phase signals of
the platform crossbar’s slave AHB ports. From a platform topology viewpoint, the MPU module appears
to be directly connected “downstream” from the crossbar switch with interfaces to the AHB slave ports.

21.2 Memory map and register description
The MPU module provides an IPS programming model mapped to an SPP-standard on-platform 16 Kbyte
space. The programming model is partitioned into three groups: control/status registers, the data structure
containing the region descriptors and the alternate view of the region descriptor access control values.

The programming model can only be referenced using 32-bit (word) accesses. Attempted references using
different access sizes, to undefined (reserved) addresses, or with a non-supported access type (for example,
a write to a read-only register or a read of a write-only register) generate an IPS error termination.

Chapter 21 Memory protection unit (MPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

472 Freescale Semiconductor

Finally, the programming model allocates space for an MPU definition with 16 region descriptors and up
to 5 AHB slave ports, like flash controller, system RAM controller and IPS peripherals bus.

21.2.1 Memory map

The MPU programming model map is shown in Table 21-1.

Table 21-1. MPU memory map

Base address: 0xFFF1_1000

Address offset Register Location

0x0000 MPU Control/Error Status Register
(MPU_CESR)

on page 474

0x0004–0x000F Reserved

0x0010 MPU Error Address Register, Slave Port 0
(MPU_EAR0)

on page 476

0x0014 MPU Error Detail Register, Slave Port 0
(MPU_EDR0)

on page 476

0x0018 MPU Error Address Register, Slave Port 1
(MPU_EAR1)

on page 476

0X001C MPU Error Detail Register, Slave Port 1
(MPU_EDR1)

on page 476

0x0020 MPU Error Address Register, Slave Port 2
(MPU_EAR2)

on page 476

0x0024 MPU Error Detail Register, Slave Port 2
(MPU_EDR2)

on page 476

0x0028 MPU Error Address Register, Slave Port 3
(MPU_EAR3)

on page 476

0x002C MPU Error Detail Register, Slave Port 3
(MPU_EDR3)

on page 476

0x0030 MPU Error Address Register, Slave Port 4
(MPU_EAR4)

on page 476

0x0034 MPU Error Detail Register, Slave Port 4
(MPU_EDR4)

on page 476

0x0038–0x03FF

0x0400 MPU Region Descriptor 0
(MPU_RGD0)

on page 478

0x0410 MPU Region Descriptor 1
(MPU_RGD1)

on page 478

0x0420 MPU Region Descriptor 2
(MPU_RGD2)

on page 478

0x0430 MPU Region Descriptor 3
(MPU_RGD3)

on page 478

Chapter 21 Memory protection unit (MPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 473

0x0440 MPU Region Descriptor 4
(MPU_RGD4)

on page 478

0x0450 MPU Region Descriptor 5
(MPU_RGD5)

on page 478

0x0460 MPU Region Descriptor 6
(MPU_RGD6)

on page 478

0x0470 MPU Region Descriptor 7
(MPU_RGD7)

on page 478

0x0480 MPU Region Descriptor 8
(MPU_RGD8)

on page 478

0x0490 MPU Region Descriptor 9
(MPU_RGD9)

on page 478

0x04A0 MPU Region Descriptor 10
(MPU_RGD10)

on page 478

0x04B0 MPU Region Descriptor 11
(MPU_RGD11)

on page 478

0x04C0 MPU Region Descriptor 12
(MPU_RGD12)

on page 478

0x04D0 MPU Region Descriptor 13
(MPU_RGD13)

on page 478

0x04E0 MPU Region Descriptor 14
(MPU_RGD14)

on page 478

0x04F0 MPU Region Descriptor 15
(MPU_RGD15)

on page 478

0x0500–0x07FF

0x0800 MPU RGD Alternate Access Control 0
(MPU_RGDAAC0)

on page 484

0x0804 MPU RGD Alternate Access Control 1
(MPU_RGDAAC1)

on page 484

0x0808 MPU RGD Alternate Access Control 2
(MPU_RGDAAC2)

on page 484

0x080C MPU RGD Alternate Access Control 3
(MPU_RGDAAC3)

on page 484

0x0810 MPU RGD Alternate Access Control 4
(MPU_RGDAAC4)

on page 484

0x0814 MPU RGD Alternate Access Control 5
(MPU_RGDAAC5)

on page 484

0x0818 MPU RGD Alternate Access Control 6
(MPU_RGDAAC6)

on page 484

Table 21-1. MPU memory map (continued)

Base address: 0xFFF1_1000

Address offset Register Location

Chapter 21 Memory protection unit (MPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

474 Freescale Semiconductor

21.2.2 Register description

21.2.2.1 MPU Control/Error Status Register (MPU_CESR)

The MPU_CESR provides one byte of error status plus three bytes of configuration information. A global
MPU enable/disable bit is also included in this register.

0X081C MPU RGD Alternate Access Control 7
(MPU_RGDAAC7)

on page 484

0X0820 MPU RGD Alternate Access Control 8
(MPU_RGDAAC8)

on page 484

0X0824 MPU RGD Alternate Access Control 9
(MPU_RGDAAC9)

on page 484

0X0828 MPU RGD Alternate Access Control 10
(MPU_RGDAAC10)

on page 484

0X082C MPU RGD Alternate Access Control 11
(MPU_RGDAAC11)

on page 484

0X0830 MPU RGD Alternate Access Control 12
(MPU_RGDAAC12)

on page 484

0X0834 MPU RGD Alternate Access Control 13
(MPU_RGDAAC13)

on page 484

0X0838 MPU RGD Alternate Access Control 14
(MPU_RGDAAC14)

on page 484

0X083C MPU RGD Alternate Access Control 15
(MPU_RGDAAC15)

on page 484

0x0840–0x3FFF

Table 21-1. MPU memory map (continued)

Base address: 0xFFF1_1000

Address offset Register Location

Chapter 21 Memory protection unit (MPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 475

Offset: 0x000 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SPERR[7:0]1

1 SPERR[7:5] are not used.

1 0 0 0 HRL

W w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R NSP NRGD 0 0 0 0 0 0 0
VLD

W

Reset 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0

Figure 21-2. MPU Control/Error Status Register (MPU_CESR)

Table 21-2. MPU_CESR field descriptions

Field Description

SPERR[7:0
]

Slave Port n Error, where the slave port number matches the bit number
SPERR[7] - Flash controller slave port
SPERR[6] - Flash controller slave port
SPERR[5] - System RAM controller slave port
SPERR[4] - System RAM controller slave port
SPERR[3] - IPS peripheral bus slave port
Each bit in this field represents a flag maintained by the MPU for signaling the presence of a captured
error contained in the MPU_EARn and MPU_EDRn registers. The individual bit is set when the
hardware detects an error and records the faulting address and attributes. It is cleared when the
corresponding bit is written as a logical one. If another error is captured at the exact same cycle as a
write of a logical one, this flag remains set. A “find first one” instruction (or equivalent) can be used to
detect the presence of a captured error.
0 The corresponding MPU_EARn/MPU_EDRn registers do not contain a captured error.
1 The corresponding MPU_EARn/MPU_EDRn registers do contain a captured error.

HRL Hardware Revision Level
This field specifies the MPU’s hardware and definition revision level. It can be read by software to
determine the functional definition of the module.

NSP Number of Slave Ports
This field specifies the number of slave ports [1–8] connected to the MPU. This field contains values of
0b0001–0b1000, depending on the device configuration.

NRGD Number of Region Descriptors
This field specifies the number of region descriptors implemented in the MPU. The defined encodings
include:
0b0000 8 region descriptors
0b0001 12 region descriptors
0b0010 16 region descriptors

Chapter 21 Memory protection unit (MPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

476 Freescale Semiconductor

21.2.2.2 MPU Error Address Register, Slave Port n (MPU_EARn)

When the MPU detects an access error on slave port n, the 32-bit reference address is captured in this
read-only register and the corresponding bit in the MPU_CESR[SPERR] field set. Additional information
about the faulting access is captured in the corresponding MPU_EDRn register at the same time. Note this
register and the corresponding MPU_EDRn register contain the most recent access error; there are no
hardware interlocks with the MPU_CESR[SPERR] field as the error registers are always loaded upon the
occurrence of each protection violation.

21.2.2.3 MPU Error Detail Register, Slave Port n (MPU_EDRn)

When the MPU detects an access error on slave port n, 32 bits of error detail are captured in this read-only
register and the corresponding bit in the MPU_CESR[SPERR] field set. Information on the faulting
address is captured in the corresponding MPU_EARn register at the same time. Note that this register and
the corresponding MPU_EARn register contain the most recent access error; there are no hardware

VLD Valid
This bit provides a global enable/disable for the MPU.
0 The MPU is disabled.
1 The MPU is enabled.
While the MPU is disabled, all accesses from all bus masters are allowed.

Offsets: 0x010–0x030 (5 registers) Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EADDR [31:16]

W

Reset – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EADDR [15:0]

W

Reset – – – – – – – – – – – – – – – –

Figure 21-3. MPU Error Address Register, Slave Port n1 (MPU_EARn)
1 MPU_EAR4 register is for slave port 7.

Table 21-3. MPU_EARn field descriptions

Field Description

EADDR Error Address
This field is the reference address from slave port n that generated the access error.

Table 21-2. MPU_CESR field descriptions (continued)

Field Description

Chapter 21 Memory protection unit (MPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 477

interlocks with the MPU_CESR[SPERR] field as the error registers are always loaded upon the occurrence
of each protection violation.

Offsets: 0x014–0x024 (5 registers) Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EACD

W

Reset – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EPID EMN EATTR ERW

W

Reset – – – – – – – – – – – – – – – –

Figure 21-4. MPU Error Detail Register, Slave Port n (MPU_EDRn)

Table 21-4. MPU_EDRn field descriptions

Field Description

EACD Error Access Control Detail
This field implements one bit per region descriptor and is an indication of the region descriptor hit
logically ANDed with the access error indication. The MPU performs a reference-by-reference
evaluation to determine the presence/absence of an access error. When an error is detected, the
hit-qualified access control vector is captured in this field.

If the MPU_EDRn register contains a captured error and the EACD field is all zeroes, this signals an
access that did not hit in any region descriptor. All non-zero EACD values signal references that hit in
a region descriptor(s), but failed due to a protection error as defined by the specific set bits. If only a
single EACD bit is set, then the protection error was caused by a single non-overlapping region
descriptor. If two or more EACD bits are set, then the protection error was caused in an overlapping set
of region descriptors.

EPID Error Process Identification
This field records the process identifier of the faulting reference. The process identifier is typically driven
only by processor cores; for other bus masters, this field is cleared.

EMN Error Master Number
This field records the Master ID of the faulting reference. This field is used to determine the bus master
that generated the access error.

EATTR Error Attributes
This field records attribute information about the faulting reference. The supported encodings are
defined as:
0b000 User mode, instruction access
0b001 User mode, data access
0b010Supervisor mode, instruction access
0b011Supervisor mode, data access
All other encodings are reserved. For non-core bus masters, the access attribute information is typically
wired to supervisor, data (0b011).

Chapter 21 Memory protection unit (MPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

478 Freescale Semiconductor

21.2.2.4 MPU Region Descriptor n (MPU_RGDn)

Each 128-bit (16 byte) region descriptor specifies a given memory space and the access attributes
associated with that space. The descriptor definition is the very essence of the operation of the Memory
Protection Unit.

The region descriptors are organized sequentially in the MPU’s programming model and each of the four
32-bit words are detailed in the subsequent sections.

21.2.2.4.1 MPU Region Descriptor n, Word 0 (MPU_RGDn.Word0)

The first word of the MPU region descriptor defines the 0-modulo-32 byte start address of the memory
region. Writes to this word clear the region descriptor’s valid bit (see Section 21.2.2.4.4, “MPU Region
Descriptor n, Word 3 (MPU_RGDn.Word3) for more information).

ERW Error Read/Write
This field signals the access type (read, write) of the faulting reference.
0 Read
1 Write

Offset: 0x400 + (16*n) + 0x0 (MPU_RGDn.Word0) Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SRTADDR[26:11]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
SRTADDR[10:0]

0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-5. MPU Region Descriptor, Word 0 Register (MPU_RGDn.Word0)

Table 21-5. MPU_RGDn.Word0 field descriptions

Field Description

SRTADDR Start Address
This field defines the most significant bits of the 0-modulo-32 byte start address of the memory
region.

Table 21-4. MPU_EDRn field descriptions (continued)

Field Description

Chapter 21 Memory protection unit (MPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 479

21.2.2.4.2 MPU Region Descriptor n, Word 1 (MPU_RGDn.Word1)

The second word of the MPU region descriptor defines the 31-modulo-32 byte end address of the memory
region. Writes to this word clear the region descriptor’s valid bit (see Section 21.2.2.4.4, “MPU Region
Descriptor n, Word 3 (MPU_RGDn.Word3) for more information).

21.2.2.4.3 MPU Region Descriptor n, Word 2 (MPU_RGDn.Word2)

The third word of the MPU region descriptor defines the access control rights of the memory region. The
access control privileges are dependent on two broad classifications of bus masters. Bus masters 0–3 are
typically reserved for processor cores and the corresponding access control is a 6-bit field defining
separate privilege rights for user and supervisor mode accesses as well as the optional inclusion of a
process identification field within the definition. Bus masters 4–7 are typically reserved for data movement
engines and their capabilities are limited to separate read and write permissions. For these fields, the bus
master number refers to the logical master number defined as the AHB hmaster[3:0] signal.

For the processor privilege rights, there are three flags associated with this function: {read, write, execute}.
In this context, these flags follow the traditional definition:

Offset: 0x400 + (16 x n) + 0x4 (MPU_RGDn.Word1) Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R ENDADDR[26:11]

W

Reset
(n = 0)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Reset
(n >0)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
ENDADDR[10:0]

1 1 1 1 1

W

Reset
(n = 0)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Reset
(n >0)

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

Figure 21-6. MPU Region Descriptor, Word 1 Register (MPU_RGDn.Word1)

Table 21-6. MPU_RGDn.Word1 field descriptions

Field Description

ENDADDR End Address
This field defines the most significant bits of the 31-modulo-32 byte end address of the memory
region. There are no hardware checks to verify that ENDADDR >= SRTADDR; it is software’s
responsibility to properly load these region descriptor fields.

Chapter 21 Memory protection unit (MPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

480 Freescale Semiconductor

• Read (r) permission refers to the ability to access the referenced memory address using an operand
(data) fetch.

• Write (w) permission refers to the ability to update the referenced memory address using a store
(data) instruction.

• Execute (x) permission refers to the ability to read the referenced memory address using an
instruction fetch.

The evaluation logic defines the processor access type based on multiple AHB signals, as hwrite and
hprot[1:0].

For non-processor data movement engines (bus masters 4–7), the evaluation logic simply uses hwrite to
determine if the access is a read or write.

Writes to this word clear the region descriptor’s valid bit (see Section 21.2.2.4.4, “MPU Region Descriptor
n, Word 3 (MPU_RGDn.Word3) for more information). Since it is also expected that system software may
adjust only the access controls within a region descriptor (MPU_RGDn.Word2) as different tasks execute,
an alternate programming view of this 32-bit entity is provided. If only the access controls are being
updated, this operation should be performed by writing to MPU_RGDAACn (Alternate Access Control n)
as stores to these locations do not affect the descriptor’s valid bit.

Offset: 0x400 + (16*n) + 0x8 (MPU_RGDn.Word2) Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

M
7R

E

M
7W

E

M
6R

E

M
6W

E

M
5R

E

M
5W

E

M
4R

E
1

M
4W

E
1

M
3P

E
1

M3SM1 M3UM1

1 In MPC564x, there is no e200z0 core so masters with ID's 0011 and 0100 are not present. In this case, M3UM[2:0],
M3SM[1:0], M3PE, M4WE, and M4RE bits are not valid.

M
2P

E

M
2S

M
[1

]

W

Reset
(n = 0)

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1

Reset
(n > 1)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

M
2S

M
[0

]

M2UM2

2 M2UM[0] (eDMA) that corresponds to x (excute) is not valid.

M
1P

E

M1SM M1UM

M
0P

E

M0SM M0UM
W

Reset
(n = 0)

1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

Reset
(n > 1)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-7. MPU Region Descriptor, Word 2 Register (MPU_RGDn.Word2)

Chapter 21 Memory protection unit (MPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 481

Table 21-7. MPU_RGDn.Word2 field descriptions

Field Description

M7RE Bus master 7 read enable
If set, this flag allows bus master 7 to perform read operations. If cleared, any attempted read by bus
master 7 terminates with an access error and the read is not performed.

M7WE Bus master 7 write enable
If set, this flag allows bus master 7 to perform write operations. If cleared, any attempted write by bus
master 7 terminates with an access error and the write is not performed.

M6RE Bus master 6 read enable
If set, this flag allows bus master 6 to perform read operations. If cleared, any attempted read by bus
master 6 terminates with an access error and the read is not performed.

M6WE Bus master 6 write enable
If set, this flag allows bus master 6 to perform write operations. If cleared, any attempted write by bus
master 6 terminates with an access error and the write is not performed.

M5RE Bus master 5 read enable
If set, this flag allows bus master 5 to perform read operations. If cleared, any attempted read by bus
master 5 terminates with an access error and the read is not performed.

M5WE Bus master 5 write enable
If set, this flag allows bus master 5 to perform write operations. If cleared, any attempted write by bus
master 5 terminates with an access error and the write is not performed.

M4RE Bus master 4 read enable
If set, this flag allows bus master 4 to perform read operations. If cleared, any attempted read by bus
master 4 terminates with an access error and the read is not performed.

M4WE Bus master 4 write enable
If set, this flag allows bus master 4 to perform write operations. If cleared, any attempted write by bus
master 4 terminates with an access error and the write is not performed.

M3PE Bus master 3 process identifier enable
If set, this flag specifies that the process identifier and mask (defined in MPU_RGDn.Word3) are to be
included in the region hit evaluation. If cleared, then the region hit evaluation does not include the
process identifier.

M3SM Bus master 3 supervisor mode access control
This field defines the access controls for bus master 3 when operating in supervisor mode. The M3SM
field is defined as:
0b00 r, w, x = read, write and execute allowed
0b01 r, –, x = read and execute allowed, but no write
0b10 r, w, – = read and write allowed, but no execute
0b11 Same access controls as that defined by M3UM for user mode

M3UM Bus master 3 user mode access control
This field defines the access controls for bus master 3 when operating in user mode. The M3UM field
consists of three independent bits, enabling read, write and execute permissions: {r,w,x}. If set, the bit
allows the given access type to occur; if cleared, an attempted access of that mode may be terminated
with an access error (if not allowed by any other descriptor) and the access not performed.

M2PE Bus master 2 process identifier enable
If set, this flag specifies that the process identifier and mask (defined in MPU_RGDn.Word3) are to be
included in the region hit evaluation. If cleared, then the region hit evaluation does not include the
process identifier.

Chapter 21 Memory protection unit (MPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

482 Freescale Semiconductor

M2SM[1:0] Bus master 2 supervisor mode access control
This field defines the access controls for bus master 2 when operating in supervisor mode. The M2SM
field is defined as:
0b00 r, w, x = read, write and execute allowed
0b01 r, –, x = read and execute allowed, but no write
0b10 r, w, – = read and write allowed, but no execute
0b11 Same access controls as that defined by M2UM for user mode

M2UM Bus master 2 user mode access control
This field defines the access controls for bus master 2 when operating in user mode. The M2UM field
consists of three independent bits, enabling read, write and execute permissions: {r,w,x}. If set, the bit
allows the given access type to occur; if cleared, an attempted access of that mode may be terminated
with an access error (if not allowed by any other descriptor) and the access not performed.

M1PE Bus master 1 process identifier enable
If set, this flag specifies that the process identifier and mask (defined in MPU_RGDn.Word3) are to be
included in the region hit evaluation. If cleared, then the region hit evaluation does not include the
process identifier.

M1SM Bus master 1 supervisor mode access control
This field defines the access controls for bus master 1 when operating in supervisor mode. The M1SM
field is defined as:
0b00 r, w, x = read, write and execute allowed
0b01 r, –, x = read and execute allowed, but no write
0b10 r, w, – = read and write allowed, but no execute
0b11 Same access controls as that defined by M1UM for user mode

M1UM Bus master 1 user mode access control
This field defines the access controls for bus master 1 when operating in user mode. The M1UM field
consists of three independent bits, enabling read, write and execute permissions: {r,w,x}. If set, the bit
allows the given access type to occur; if cleared, an attempted access of that mode may be terminated
with an access error (if not allowed by any other descriptor) and the access not performed.

M0PE Bus master 0 process identifier enable
If set, this flag specifies that the process identifier and mask (defined in MPU_RGDn.Word3) are to be
included in the region hit evaluation. If cleared, then the region hit evaluation does not include the
process identifier.

M0SM Bus master 0 supervisor mode access control
This field defines the access controls for bus master 0 when operating in supervisor mode. The M0SM
field is defined as:
0b00 r, w, x = read, write and execute allowed
0b01 r, –, x = read and execute allowed, but no write
0b10 r, w, – = read and write allowed, but no execute
0b11 Same access controls as that defined by M0UM for user mode

M0UM Bus master 0 user mode access control
This field defines the access controls for bus master 0 when operating in user mode. The M0UM field
consists of three independent bits, enabling read, write and execute permissions: {r,w,x}. If set, the bit
allows the given access type to occur; if cleared, an attempted access of that mode may be terminated
with an access error (if not allowed by any other descriptor) and the access not performed.

Table 21-7. MPU_RGDn.Word2 field descriptions (continued)

Field Description

Chapter 21 Memory protection unit (MPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 483

21.2.2.4.4 MPU Region Descriptor n, Word 3 (MPU_RGDn.Word3)

The fourth word of the MPU region descriptor contains the optional process identifier and mask, plus the
region descriptor’s valid bit.

Since the region descriptor is a 128-bit entity, there are potential coherency issues as this structure is being
updated since multiple writes are required to update the entire descriptor. Accordingly, the MPU hardware
assists in the operation of the descriptor valid bit to prevent incoherent region descriptors from generating
spurious access errors. In particular, it is expected that a complete update of a region descriptor is typically
done with sequential writes to MPU_RGDn.Word0, then MPU_RGDn.Word1,... and finally
MPU_RGDn.Word3. The MPU hardware automatically clears the valid bit on any writes to words {0,1,2}
of the descriptor. Writes to this word set/clear the valid bit in a normal manner.

Since it is also expected that system software may adjust only the access controls within a region descriptor
(MPU_RGDn.Word2) as different tasks execute, an alternate programming view of this 32-bit entity is
provided. If only the access controls are being updated, this operation should be performed by writing to
MPU_RGDAACn (Alternate Access Control n) as stores to these locations do not affect the descriptor’s
valid bit.

Offset: 0x400 + (16*n) + 0xc (MPU_RGDn.Word3) Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PID PIDMASK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VLD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-8. MPU Region Descriptor, Word 3 Register (MPU_RGDn.Word3)

Table 21-8. MPU_RGDn.Word3 field descriptions

Field Description

PID[7:0] Process Identifier
This field specifies that the optional process identifier is to be included in the determination of whether
the current access hits in the region descriptor. This field is combined with the PIDMASK and included
in the region hit determination if MPU_RGDn.Word2[MxPE] is set.

PIDMASK Process Identifier Mask
This field provides a masking capability so that multiple process identifiers can be included as part of
the region hit determination. If a bit in the PIDMASK is set, then the corresponding bit of the PID is
ignored in the comparison. This field is combined with the PID and included in the region hit
determination if MPU_RGDn.Word2[MxPE] is set. For more information on the handling of the PID
and PIDMASK, see Section 21.3.1.1, “Access evaluation – Hit determination.

Chapter 21 Memory protection unit (MPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

484 Freescale Semiconductor

21.2.2.5 MPU Region Descriptor Alternate Access Control n (MPU_RGDAACn)

As noted in Section 21.2.2.4.3, “MPU Region Descriptor n, Word 2 (MPU_RGDn.Word2), it is expected
that since system software may adjust only the access controls within a region descriptor
(MPU_RGDn.Word2) as different tasks execute, an alternate programming view of this 32-bit entity is
desired. If only the access controls are being updated, this operation should be performed by writing to
MPU_RGDAACn (Alternate Access Control n) as stores to these locations do not affect the descriptor’s
valid bit.

The memory address therefore provides an alternate location for updating MPU_RGDn.Word2.

Since the MPU_RGDAACn register is simply another memory mapping for MPU_RGDn.Word2, the field
definitions shown in Table 21-9 are identical to those presented in Table 21-7.

VLD Valid
This bit signals the region descriptor is valid. Any write to MPU_RGDn.Word{0,1,2} clears this bit,
while a write to MPU_RGDn.Word3 sets or clears this bit depending on bit 31 of the write operand.
0 Region descriptor is invalid
1 Region descriptor is valid

Offset: 0x800 + (4*n) (MPU_RGDAACn) Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

M
7R

E

M
7W

E

M
6R

E

M
6W

E

M
5R

E

M
5W

E

M
4R

E

M
4W

E

M
3P

E

M3SM M3UM[

M
2P

E

M
2S

M
[1

]

W

Reset
(n = 0)

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1

Reset
(n = 1)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

M
2S

M
[0

]

M2UM

M
1P

E

M1SM M1UM

M
0P

E

M0SM M0UM[
W

Reset
(n = 0)

1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

Reset
(n = 1)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-9. MPU RGD Alternate Access Control n (MPU_RGDAACn)

Table 21-8. MPU_RGDn.Word3 field descriptions (continued)

Field Description

Chapter 21 Memory protection unit (MPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 485

Table 21-9. MPU_RGDAACn field descriptions

Field Description

M7RE Bus master 7 read enable.
If set, this flag allows bus master 7 to perform read operations. If cleared, any attempted read by bus
master 7 terminates with an access error and the read is not performed.

M7WE Bus master 7 write enable
If set, this flag allows bus master 7 to perform write operations. If cleared, any attempted write by bus
master 7 terminates with an access error and the write is not performed.

M6RE Bus master 6 read enable
If set, this flag allows bus master 6 to perform read operations. If cleared, any attempted read by bus
master 6 terminates with an access error and the read is not performed.

M6WE Bus master 6 write enable
If set, this flag allows bus master 6 to perform write operations. If cleared, any attempted write by bus
master 6 terminates with an access error and the write is not performed.

M5RE Bus master 5 read enable
If set, this flag allows bus master 5 to perform read operations. If cleared, any attempted read by bus
master 5 terminates with an access error and the read is not performed.

M5WE Bus master 5 write enable
If set, this flag allows bus master 5 to perform write operations. If cleared, any attempted write by bus
master 5 terminates with an access error and the write is not performed.

M4RE Bus master 4 read enable
If set, this flag allows bus master 4 to perform read operations. If cleared, any attempted read by bus
master 4 terminates with an access error and the read is not performed.

M4WE Bus master 4 write enable
If set, this flag allows bus master 4 to perform write operations. If cleared, any attempted write by bus
master 4 terminates with an access error and the write is not performed.

M3PE Bus master 3 process identifier enable
If set, this flag specifies that the process identifier and mask (defined in MPU_RGDn.Word3) are to be
included in the region hit evaluation. If cleared, then the region hit evaluation does not include the
process identifier.

M3SM Bus master 3 supervisor mode access control
This field defines the access controls for bus master 3 when operating in supervisor mode. The M3SM
field is defined as:
0b00 r, w, x = read, write and execute allowed
0b01 r, –, x = read and execute allowed, but no write
0b10 r, w, – = read and write allowed, but no execute
0b11 Same access controls as that defined by M3UM for user mode

M3UM Bus master 3 user mode access control
This field defines the access controls for bus master 3 when operating in user mode. The M3UM field
consists of three independent bits, enabling read, write and execute permissions: {r,w,x}. If set, the bit
allows the given access type to occur; if cleared, an attempted access of that mode may be terminated
with an access error (if not allowed by any other descriptor) and the access not performed.

M2PE Bus master 2 process identifier enable
If set, this flag specifies that the process identifier and mask (defined in MPU_RGDn.Word3) are to be
included in the region hit evaluation. If cleared, then the region hit evaluation does not include the
process identifier.

Chapter 21 Memory protection unit (MPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

486 Freescale Semiconductor

M2SM Bus master 2 supervisor mode access control
This field defines the access controls for bus master 2 when operating in supervisor mode. The M2SM
field is defined as:
0b00 r, w, x = read, write and execute allowed
0b01 r, –, x = read and execute allowed, but no write
0b10 r, w, – = read and write allowed, but no execute
0b11 Same access controls as that defined by M2UM for user mode

M2UM Bus master 2 user mode access control
This field defines the access controls for bus master 2 when operating in user mode. The M2UM field
consists of three independent bits, enabling read, write and execute permissions: {r,w,x}. If set, the bit
allows the given access type to occur; if cleared, an attempted access of that mode may be terminated
with an access error (if not allowed by any other descriptor) and the access not performed.

M1PE Bus master 1 process identifier enable
If set, this flag specifies that the process identifier and mask (defined in MPU_RGDn.Word3) are to be
included in the region hit evaluation. If cleared, then the region hit evaluation does not include the
process identifier.

M1SM Bus master 1 supervisor mode access control
This field defines the access controls for bus master 1 when operating in supervisor mode. The M1SM
field is defined as:
0b00 r, w, x = read, write and execute allowed
0b01 r, –, x = read and execute allowed, but no write
0b10 r, w, – = read and write allowed, but no execute
0b11 Same access controls as that defined by M1UM for user mode

M1UM Bus master 1 user mode access control
This field defines the access controls for bus master 1 when operating in user mode. The M1UM field
consists of three independent bits, enabling read, write and execute permissions: {r,w,x}. If set, the bit
allows the given access type to occur; if cleared, an attempted access of that mode may be terminated
with an access error (if not allowed by any other descriptor) and the access not performed.

M0PE Bus master 0 process identifier enable
If set, this flag specifies that the process identifier and mask (defined in MPU_RGDn.Word3) are to be
included in the region hit evaluation. If cleared, then the region hit evaluation does not include the
process identifier.

M0SM Bus master 0 supervisor mode access control
This field defines the access controls for bus master 0 when operating in supervisor mode. The M0SM
field is defined as:
0b00 r, w, x = read, write and execute allowed
0b01 r, –, x = read and execute allowed, but no write
0b10 r, w, – = read and write allowed, but no execute
0b11 Same access controls as that defined by M0UM for user mode

M0UM Bus master 0 user mode access control
This field defines the access controls for bus master 0 when operating in user mode. The M0UM field
consists of three independent bits, enabling read, write and execute permissions: {r,w,x}. If set, the bit
allows the given access type to occur; if cleared, an attempted access of that mode may be terminated
with an access error (if not allowed by any other descriptor) and the access not performed.

Table 21-9. MPU_RGDAACn field descriptions (continued)

Field Description

Chapter 21 Memory protection unit (MPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 487

21.3 Functional description
In this section, the functional operation of the MPU is detailed. In particular, subsequent sections discuss
the operation of the access evaluation macro as well as the handling of error-terminated AHB bus cycles.

21.3.1 Access evaluation macro

As previously discussed, the basic operation of the MPU is performed in the access evaluation macro, a
hardware structure replicated in the two-dimensional connection matrix. As shown in Figure 21-10, the
access evaluation macro inputs the AHB system bus address phase signals (AHB_ap) and the contents of
a region descriptor (RGDn) and performs two major functions: region hit determination (hit_b) and
detection of an access protection violation (error).

Figure 21-10. MPU access evaluation macro

Figure 21-10 is not intended to be a schematic of the actual access evaluation macro, but rather a
generalized block diagram showing the major functions included in this logic block.

21.3.1.1 Access evaluation – Hit determination

To evaluate the region hit determination, the MPU uses two magnitude comparators in conjunction with
the contents of a region descriptor: the current access must be included between the region's “start” and
“end” addresses and simultaneously the region's valid bit must be active.

Recall there are no hardware checks to verify that region's “end” address is greater then region's “start”
address, and it is software’s responsibility to properly load appropriate values into these fields of the region
descriptor.

hit_b

start end

error

> >

RGDn

AHB_ap

hit & error hit_b | error

>= <=

r,w,x

Chapter 21 Memory protection unit (MPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

488 Freescale Semiconductor

In addition to this, the optional process identifier is examined against the region descriptor’s PID and
PIDMASK fields. In order to generate the pid_hit indication: the current PID with its PIDMASK must be
equal to the region's PID with its PIDMASK. Also the process identifier enable is take into account in this
comparison so that the MPU forces the pid_hit term to be asserted in the case of AHB bus master doesn't
provide its process identifier.

21.3.1.2 Access evaluation – Privilege violation determination

While the access evaluation macro is making the region hit determination, the logic is also evaluating if
the current access is allowed by the permissions defined in the region descriptor. The protection violation
logic then evaluates the access against the effective permissions using the specification shown in
Table 21-10.

As shown in Figure 21-10, the output of the protection violation logic is the error signal.

The access evaluation macro then uses the hit_b and error signals to form two outputs. The combined
(hit_b | error) signal is used to signal the current access is not allowed and (~hit_b & error) is used as the
input to MPU_EDRn (error detail register) in the event of an error.

21.3.2 Putting it all together and AHB error terminations

For each AHB slave port being monitored, the MPU performs a reduction-AND of all the individual
(hit_b | error) terms from each access evaluation macro. This expression then terminates the bus cycle with
an error and reports a protection error for three conditions:

1. If the access does not hit in any region descriptor, a protection error is reported.

2. If the access hits in a single region descriptor and that region signals a protection violation, then a
protection error is reported.

3. If the access hits in multiple (overlapping) regions and all regions signal protection violations, then
a protection error is reported.

The third condition reflects that priority is given to permission granting over access denying for
overlapping regions as this approach provides more flexibility to system software in region descriptor

Table 21-10. Protection violation definition

Description
Inputs Output

eff_rgd[r] eff_rgd[w] eff_rgd[x] Protection violation?

inst fetch read — — 0 yes, no x permission

inst fetch read — — 1 no, access is allowed

data read 0 — — yes, no r permission

data read 1 — — no, access is allowed

data write — 0 — yes, no w permission

data write — 1 — no, access is allowed

Chapter 21 Memory protection unit (MPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 489

assignments. For an example of the use of overlapping region descriptors, see Section 21.5, “Application
information.

In event of a protection error, the MPU requires two distinct actions:

1. Intercepting the error during the AHB address phase (first cycle out of two) and cancelling the
transaction before it is seen by the slave device

2. Performing the required logic functions to force the standard 2-cycle AHB error response to
properly terminate the bus transaction and then providing the right values to the crossbar switch to
commit the AHB transaction to other portions of the platform.

If, instead, the access is allowed, then the MPU simply passes all “original” AHB signals to the slave
device. In this case, from a functionality point of view, the MPU is fully transparent.

21.4 Initialization information
The reset state of MPU_CESR[VLD] disables the entire module. Recall that, while the MPU is disabled,
all accesses from all bus masters are allowed. This state also minimizes the power dissipation of the MPU.
The power dissipation of each access evaluation macro is minimized when the associated region descriptor
is marked as invalid or when MPU_CESR[VLD] = 0.

Typically the appropriate number of region descriptors (MPU_RGDn) is loaded at system startup,
including the setting of the MPU_RGDn.Word3[VLD] bits, before MPU_CESR[VLD] is set, enabling the
module. This approach allows all the loaded region descriptors to be enabled simultaneously. Recall if a
memory reference does not hit in any region descriptor, the attempted access is terminated with an error.

21.5 Application information
In an operational system, interfacing with the MPU can generally be classified into the following activities:

1. Creation of a new memory region requires loading the appropriate region descriptor into an
available register location. When a new descriptor is loaded into a RGDn, it would typically be
performed using four 32-bit word writes. As discussed in Section 21.2.2.4.4, “MPU Region
Descriptor n, Word 3 (MPU_RGDn.Word3), the hardware assists in the maintenance of the valid
bit, so if this approach is followed, there are no coherency issues associated with the multi-cycle
descriptor writes. Deletion/removal of an existing memory region is performed simply by clearing
MPU_RGDn.Word3[VLD].

2. If only the access rights for an existing region descriptor need to change, a 32-bit write to the
alternate version of the access control word (MPU_RGDAACn) would typically be performed.
Recall writes to the region descriptor using this alternate access control location do not affect the
valid bit, so there are, by definition, no coherency issues involved with the update. The access
rights associated with the memory region switch instantaneously to the new value as the IPS write
completes.

3. If the region’s start and end addresses are to be changed, this would typically be performed by
writing a minimum of three words of the region descriptor: MPU_RGDn.Word{0,1,3}, where the
writes to Word0 and Word1 redefine the start and end addresses respectively and the write to
Word3 re-enables the region descriptor valid bit. In many situations, all four words of the region
descriptor would be rewritten.

Chapter 21 Memory protection unit (MPU)

MPC5646C Microcontroller Reference Manual, Rev. 5

490 Freescale Semiconductor

4. Typically, references to the MPU’s programming model would be restricted to supervisor mode
accesses from a specific processor(s), so a region descriptor would be specifically allocated for this
purpose with attempted accesses from other masters or while in user mode terminated with an error.

When the MPU detects an access error, the current AHB bus cycle is terminated with an error response
and information on the faulting reference captured in the MPU_EARn and MPU_EDRn registers. The
error-terminated AHB bus cycle typically initiates some type of error response in the originating bus
master. For example, the CPU errors will generate a core exception, whereas the DMA errors will generate
a MPU (external) interrupt. It is important to highlight that in case of DMA access violations the core will
continue to run, but if a core violation occurs the system will stop. In any event, the processor can retrieve
the captured error address and detail information simply be reading the MPU_E{A,D}Rn registers.
Information on which error registers contain captured fault data is signaled by MPU_CESR[SPERR].

Chapter 22 Semaphores

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 491

Chapter 22
Semaphores

22.1 Introduction
In a dual processor chip, semaphores are used to let each processor know who has control of common
memory. Before a core can update or read memory coherently, it has to check the semaphore to see if the
other core is not already updating the memory. If the semaphore is clear, it can write common memory, but
if it is set, it has to wait for the other core to finish and clear the semaphore.

The semaphores module provides the hardware support needed in multi-core systems for implementing
semaphores and provide a simple mechanism to achieve lock/unlock operations via a single write access.
This approach eliminates architecture-specific implementations like atomic (indivisible)
read-modify-write instructions or reservation mechanisms. The result is an architecture-neutral solution
that provides hardware-enforced gates as well as other useful system functions related to the gating
mechanisms.

22.1.1 Block diagram

Figure 22-1 is a simplified block diagram of the semaphores module that illustrates the functionality and
interdependence of major blocks. In the diagram, the register blocks named gate0, gate1, ..., gate 15
include the finite state machines implementing the semaphore gates plus the interrupt notification logic.

Chapter 22 Semaphores

MPC5646C Microcontroller Reference Manual, Rev. 5

492 Freescale Semiconductor

Figure 22-1. Semaphores block diagram

22.1.2 Features

The semaphores module implements hardware-enforced semaphores as a peripheral device and has these
major features:

• Support for 16 hardware-enforced gates in a dual-processor configuration

— Each hardware gate appears as a three-state, 2-bit state machine, with all 16 gates mapped as
an array of bytes

• Three-state implementation

— if gate = 0b00, then state = unlocked

ips_wdata

ips_addr
decode

mux

IPS Bus

31

0

control

ips_rdata

31

0

2

0

= =
master_eq_cp{0,1}

gate0 gate1 gate2 gate3

gate12 gate13 gate14 gate15

= =
wdata_eq_{unlock, cp[0-1]_lock}

=

cp0_semaphore_int cp1_semaphore_int

PBRIDGE master

Chapter 22 Semaphores

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 493

— if gate = 0b01, then state = locked by e200z4d (master ID = 0)

— if gate = 0b10, then state = locked by e200z0h (master ID = 1)

a) Uses the bus master ID number as a reference attribute plus the specified data patterns to
validate all write operations

b) After it is locked, the gate must be unlocked by a write of zeroes from the locking processor

• Optionally enabled interrupt notification after a failed lock write provides a mechanism to indicate
the gate is unlocked

• Secure reset mechanisms are supported to clear the contents of individual semaphore gates or
notification logic, and clear_all capability

22.1.3 Modes of operation

The semaphores module does not support any special modes of operation.

22.2 Signal description
The semaphores module does not include any external signals.

22.3 Memory map and registers
This section provides a detailed description of all semaphores registers.

22.3.1 Module memory map

The semaphores programming model map is shown in Table 22-1. The address of each register is given as
an offset to the semaphore base address. Registers are listed in address order, identified by complete name
and mnemonic, and list the type of accesses allowed.

Table 22-1. Semaphores memory map

Base address: 0xFFF2_4000

Address offset Register Location

0x0000 SEMA4_Gate00—Semaphores gate 0 on page 494

0x0001 SEMA4_Gate01—Semaphores gate 1 on page 494

0x0002 SEMA4_Gate02—Semaphores gate 2 on page 494

0x0003 SEMA4_Gate03—Semaphores gate 3 on page 494

0x0004 SEMA4_Gate04—Semaphores gate 4 on page 494

0x0005 SEMA4_Gate05—Semaphores gate 5 on page 494

0x0006 SEMA4_Gate06—Semaphores gate 6 on page 494

0x0007 SEMA4_Gate07—Semaphores gate 7 on page 494

0x0008 SEMA4_Gate08—Semaphores gate 8 on page 494

0x0009 SEMA4_Gate09—Semaphores gate 9 on page 494

Chapter 22 Semaphores

MPC5646C Microcontroller Reference Manual, Rev. 5

494 Freescale Semiconductor

22.3.2 Register descriptions

This section lists the semaphores registers in address order and describes the registers and their bit fields.

22.3.2.1 Semaphores Gate n Register (SEMA4_GATEn)

Each semaphore gate is implemented in a 2-bit finite state machine, right-justified in a byte data structure.
The hardware uses the bus master number in conjunction with the data patterns to validate all attempted
write operations. Only processor bus masters can modify the gate registers. After it is locked, a gate must
be opened (unlocked) by the locking processor core.

Multiple gate values can be read in a single access, but only a single gate at a time can be updated via a
write operation. 16- and 32-bit writes to multiple gates are allowed, but the write data operand must update
the state of a single gate only. A byte write data value of 0x03 is defined as no operation and does not affect
the state of the corresponding gate register. Attempts to write multiple gates in a single-aligned access with

0x000A SEMA4_Gate10—Semaphores gate 10 on page 494

0x000B SEMA4_Gate11—Semaphores gate 11 on page 494

0x000C SEMA4_Gate12—Semaphores gate 12 on page 494

0x000D SEMA4_Gate13—Semaphores gate 13 on page 494

0x000E SEMA4_Gate14—Semaphores gate 14 on page 494

0x000F SEMA4_Gate15—Semaphores gate 15 on page 494

0x0010–0x003F Reserved

0x040 SEMA4_CP0INE—Semaphores CP0 IRQ notification enable on page 495

0x0042–0x0047 Reserved

0x0048 SEMA4_CP1INE—Semaphores CP1 IRQ notification enable on page 495

0x004A–0x07F Reserved

0x0080 SEMA4_CP0NTF—Semaphores CP0 IRQ notification on page 496

0x008 2–00x087 Reserved

0x0088 SEMA4_CP1NTF—Semaphores CP1 IRQ notification on page 495

0x008A–0x00FF Reserved

0x0100 SEMA4_RSTGT—Semaphores reset gate on page 496

0x0102—0x0103 Reserved

0x0104 SEMA4_RSTNTF—Semaphores reset IRQ notification on page 498

0x0106–0x3FFF Reserved

Table 22-1. Semaphores memory map (continued)

Base address: 0xFFF2_4000

Address offset Register Location

Chapter 22 Semaphores

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 495

a size larger than an 8-bit (byte) reference generate an error termination and do not allow any gate state
changes.

Figure 22-2. SEMA4 Gate n Register (SEMA4_GATEn)

22.3.2.2 Semaphores Processor n IRQ Notification Enable (SEMA4_CP{0,1}INE)

The application of a hardware semaphore module provides an opportunity for implementation of helpful
system-level features. An example is an optional mechanism to generate a processor interrupt after a failed
lock attempt. Traditional software gate functions execute a spin-wait loop in an effort to obtain and lock
the referenced gate. With this module, the processor that fails in the lock attempt could continue with other
tasks and allow a properly-enabled notification interrupt to return its execution to the original lock
function.

The optional notification interrupt function consists of two registers for each processor: an interrupt
notification enable register (SEMA4_CPnINE) and the interrupt request register (SEMA4_CPnNTF). To
support implementations with more than 16 gates, these registers can be referenced with aligned 16- or
32-bit accesses. For the SEMA4_CPnINE registers, unimplemented bits read as zeroes and writes are
ignored.

Figure 22-3. Semaphores Processor n IRQ Notification Enable (SEMA4_CP{0,1}INE)

Offset: SEMA4_BASE + n (n = 0, 1, 2,..., 15) Access: User read/write

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0
GTFSM

W

Reset 0 0 0 0 0 0 0 0

Table 22-2. SEMA4_GATEn Field Descriptions

Field Description

GTFSM Gate Finite State Machine. The hardware gate is maintained in a three-state implementation, defined as:
00 The gate is unlocked (free).
01 The gate has been locked by the processor e200z4d.
10 The gate has been locked by the processor e200z0h.
11 This state encoding is never used and therefore reserved. Attempted writes of 0x03 are treated as no operation

and do not affect the gate state machine.
Note: The state of the gate reflects the last processor that locked it, which can be useful during system debug.

Offset: SEMA4_BASE + 0x0040 (SEMA4_CP0INE)
SEMA4_BASE + 0x0048 (SEMA4_CP1INE)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
INE0 INE1 INE2 INE3 INE4 INE5 INE6 INE7 INE8 INE9 INE10 INE11 INE12 INE13 INE14 INE15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 22 Semaphores

MPC5646C Microcontroller Reference Manual, Rev. 5

496 Freescale Semiconductor

22.3.2.3 Semaphores Processor n IRQ Notification (SEMA4_CP{0,1}NTF)

The notification interrupt is generated via a unique finite state machine, one per hardware gate. This
machine operates in the following manner:

• When an attempted lock fails, the FSM enters a first state where it waits until the gate is unlocked.

• After it is unlocked, the FSM enters a second state where it generates an interrupt request to the
failed lock processor.

• When the failed lock processor succeeds in locking the gate, the IRQ is automatically negated and
the FSM returns to the idle state. However, if the other processor locks the gate again, the FSM
returns to the first state, negates the interrupt request, and waits for the gate to be unlocked again.

The notification interrupt request is implemented in a 3-bit, five-state machine, where two specific states
are encoded and program-visible as SEMA4_CP0NTF[GNn] and SEMA4_CP1NTF[GNn].

Figure 22-4. Semaphores Processor n IRQ Notification (SEMA4_CP{0,1}NTF)

22.3.2.4 Semaphores (Secure) Reset Gate n (SEMA4_RSTGT)

Although the intent of the hardware gate implementation specifies a protocol where the locking processor
must unlock the gate, it is recognized that system operation may require a reset function to re-initialize the
state of any gate(s) without requiring a system-level reset.

To support this special gate reset requirement, the semaphores module implements a secure reset
mechanism which allows a hardware gate (or all the gates) to be initialized by following a specific
dual-write access pattern. Using a technique similar to that required for the servicing of a software

Table 22-3. SEMA4_CP{0,1}NTF Field Descriptions

Field Description

INEn Interrupt Request Notification Enable n. This field is a bitmap to enable the generation of an interrupt notification
from a failed attempt to lock gate n.
0 The generation of the notification interrupt is disabled.
1 The generation of the notification interrupt is enabled.

Offset: SEMA4_BASE + 0x0080 (SEMA4_CP0NTF)
SEMA4_BASE + 0x0088 (SEMA4_CP1NTF)

Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R GN0 GN1 GN2 GN3 GN4 GN5 GN6 GN7 GN8 GN9 GN10 GN11 GN12 GN13 GN14 GN15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 22-4. SEMA4_CP{0,1}NTF Field Descriptions

Field Description

GNn Gate n Notification. This read-only field is a bitmap of the interrupt request notification from a failed attempt to lock
gate n.
0 No notification interrupt generated.
1 Notification interrupt generated.

Chapter 22 Semaphores

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 497

watchdog timer, the secure gate reset requires two consecutive writes with predefined data patterns from
the same processor to force the clearing of the specified gate(s). The required access pattern is:

1. A processor performs a 16-bit write to the SEMA4_RSTGT memory location. The most significant
byte (SEMA4_RSTGT[RSTGDP]) must be 0xE2; the least significant byte is a “don’t care” for this
reference.

2. The same processor then performs a second 16-bit write to the SEMA4_RSTGT location. For this
write, the upper byte (SEMA4_RSTGT[RSTGDP]) is the logical complement of the first data
pattern (0x1D) and the lower byte (SEMA4_RSTGT[RSTGTN]) specifies the gate(s) to be reset.
This gate field can specify a single gate be cleared or that all gates are cleared.

3. Reads of the SEMA4_RSTGT location return information on the 2-bit state machine
(SEMA4_RSTGT[RSTGSM]) which implements this function, the bus master performing the
reset (SEMA4_RSTGT[RSTGMS]) and the gate number(s) last cleared
(SEMA4_RSTGT[RSTGTN]). Reads of the SEMA4_RSTGT register do not affect the secure reset
finite state machine in any manner.

Figure 22-5. Semaphores (Secure) Reset Gate n (SEMA4_RSTGT)

Offset: SEMA4_BASE + 0x0100 (SEMA4_RSTGT) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 RSTGSM 0 RSTGMS
RSTGTN

W RSTGDP

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 22-5. SEMA4_RSTGT Field Descriptions

Field Description

RSTGSM Reset Gate Finite State Machine. The reset state machine is maintained in a 2-bit, three-state implementation,
defined as:
00 Idle, waiting for the first data pattern write.
01 Waiting for the second data pattern write.
10 The 2-write sequence has completed. Generate the specified gate reset(s). After the reset is performed, this

machine returns to the idle (waiting for first data pattern write) state.
11 This state encoding is never used and therefore reserved.
Reads of the SEMA4_RSTGT register return the encoded state machine value. Note the RSTGSM = 0b10 state
is valid for a single machine cycle only, so it is impossible for a read to return this value.

RSTGMS Reset Gate Bus Master. This 3-bit read-only field records the logical number of the bus master performing the
gate reset function. The reset function requires that the two consecutive writes to this register be initiated by the
same bus master to succeed. This field is updated each time a write to this register occurs.

Master Master ID

e200z4d 0

e200z0h 1

Chapter 22 Semaphores

MPC5646C Microcontroller Reference Manual, Rev. 5

498 Freescale Semiconductor

22.3.2.5 Semaphores (Secure) Reset IRQ Notification (SEMA4_RSTNTF)

As with the case of the secure reset function and the hardware gates, it is recognized that system operation
may require a reset function to re-initialize the state of the IRQ notification logic without requiring a
system-level reset.

To support this special notification reset requirement, the semaphores module implements a secure reset
mechanism which allows an IRQ notification (or all the notifications) to be initialized by following a
specific dual-write access pattern. When successful, the specified IRQ notification state machine(s) are
reset. Using a technique similar to that required for the servicing of a software watchdog timer, the secure
reset mechanism requires two consecutive writes with predefined data patterns from the same processor
to force the clearing of the IRQ notification(s). The required access pattern is:

1. A processor performs a 16-bit write to the SEMA4_RSTNTF memory location. The most
significant byte (SEMA4_RSTNTF[RSTNDP]) must be 0x47; the least significant byte is a “don’t
care” for this reference.

2. The same processor performs a second 16-bit write to the SEMA4_RSTNTF location. For this
write, the upper byte (SEMA4_RSTNTF[RSTNDP]) is the logical complement of the first data
pattern (0xb8) and the lower byte (SEMA4_RSTNTF[RSTNTN]) specifies the notification(s) to
be reset. This field can specify a single notification be cleared or that all notifications are cleared.

3. Reads of the SEMA4_RSTNTF location return information on the 2-bit state machine
(SEMA4_RSTNTF[RSTNSM]) that implements this function, the bus master performing the reset
(SEMA4_RSTNTF[RSTNMS]) and the notification number(s) last cleared
(SEMA4_RSTNTF[RSTNTN]). Reads of the SEMA4_RSTNTF register do not affect the secure
reset finite state machine in any manner.

Figure 22-6. Semaphores (Secure) Reset IRQ Notification (SEMA4_RSTNTF)

RSTGTN Reset Gate Number. This 8-bit field specifies the specific hardware gate to be reset. This field is updated by the
second write.
If RSTGTN < 64, then reset the single gate defined by RSTGTN, else reset all the gates. The corresponding
secure IRQ notification state machine(s) are also reset.

RSTGDP Reset Gate Data Pattern. This write-only field is accessed with the specified data patterns on the two consecutive
writes to enable the gate reset mechanism. For the first write, RSTGDP = 0xe2 while the second write requires
RSTGDP = 0x1d.

Offset: SEMA4_BASE + 0x0104 (SEMA4_RSTNTF) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 RSTNSM 0 RSTNMS
RSTNTN

W RSTNDP

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 22-5. SEMA4_RSTGT Field Descriptions

Field Description

Chapter 22 Semaphores

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 499

22.4 Functional description
Multi-processor systems require a function that can be used to safely and easily provide a locking
mechanism that is then used by system software to control access to shared data structures, shared
hardware resources, and etc. These gating mechanisms are used by the software to serialize (and
synchronize) writes to shared data and/or resources to prevent race conditions and preserve memory
coherency between processes and processors.

For example, if processor X enters a section of code where shared data values are to be updated or read
coherently, it must first acquire a semaphore. This locks, or closes, a software gate. After the gate has been
locked, a properly architected software system does not allow other processes (or processors) to execute
the same code segment or modify the shared data structure protected by the gate, that is, other
processes/processors are locked out. Many software implementations include a spin-wait loop within the
lock function until the locking of the gate is accomplished. After the lock has been obtained, processor X
continues execution and updates the data values protected by the particular lock. After the updates are
complete, processor X unlocks (or opens) the software gate, allowing other processes/processors access to
the updated data values.

There are three important rules that must be followed for a correctly implemented system solution:

• All writes to shared data values or shared hardware resources must be protected by a gate variable.

Table 22-6. SEMA4_RSTGT Field Descriptions

Field Description

RSTNSM Reset Notification Finite State Machine. The reset state machine is maintained in a 2-bit, three-state
implementation, defined as:
00 Idle, waiting for the first data pattern write.
01 Waiting for the second data pattern write.
10 The two-write sequence has completed. Generate the specified notification reset(s). After the reset is

performed, this machine returns to the idle (waiting for first data pattern write) state.
11 This state encoding is never used and therefore reserved.
Reads of the SEMA4_RSTNTF register return the encoded state machine value. Note the RSTNSM = 0b10 state
is valid for a single machine cycle only, so it is impossible for a read to return this value.

RSTNMS Reset Notification Bus Master. This 3-bit read-only field records the logical number of the bus master performing
the notification reset function. The reset function requires that the two consecutive writes to this register be
initiated by the same bus master to succeed. This field is updated each time a write to this register occurs.

RSTNTN Reset Notification Number. This 8-bit field specifies the specific IRQ notification state machine to be reset. This
field is updated by the second write.
If RSTNTN < 64, then reset the single IRQ notification machine defined by RSTNTN, else reset all the
notifications.

RSTNDP Reset Notification Data Pattern. This write-only field is accessed with the specified data patterns on the two
consecutive writes to enable the notification reset mechanism. For the first write, RSTNDP = 0x47 while the
second write requires RSTNDP = 0xb8.

Master Master ID

e200z4d 0

e200z0h 1

Chapter 22 Semaphores

MPC5646C Microcontroller Reference Manual, Rev. 5

500 Freescale Semiconductor

• After a processor locks a gate, accesses to the shared data or resources by other
processes/processors must be blocked. This is enforced by software conventions.

• The processor that locks a particular gate is the only processor that can unlock, or open, that gate.

Information in the hardware gate identifying the locking processor can be useful for system-level
debugging.

The Hennessy/Patterson text on computer architecture offers this description of software gating:

“One of the major requirements of a shared-memory architecture multiprocessor is being able to
coordinate processes that are working on a common task. Typically, a programmer will use lock
variables to synchronize the processes.

The difficulty for the architect of a multiprocessor is to provide a mechanism to decide which
processor gets the lock and to provide the operation that locks a variable. Arbitration is easy for
shared-bus multiprocessors, since the bus is the only path to memory. The processor that gets the
bus locks out all the other processors from memory. If the CPU and bus provide an atomic swap
operation, programmers can create locks with the proper semantics. The adjective atomic is key,
for it means that a processor can both read a location and set it to the locked value in the same bus
operation, preventing any other processor from reading or writing memory.” [Hennessy/Patterson,
Computer Architecture: A Quantitative Approach, ppg. 471-472]

The classic text continues with a description of the steps required to lock/unlock a variable using an atomic
swap instruction.

“Assume that 0 means unlocked and 1 means locked. A processor first reads the lock variable to
test its state. A processor keeps reading and testing until the value indicates that the lock is
unlocked. The processor then races against all other processes that were similarly “spin waiting”
to see who can lock the variable first. All processes use a swap instruction that reads the old value
and stores a 1 into the lock variable. The single winner will see the 0, and the losers will see a 1
that was placed there by the winner. (The losers will continue to set the variable to the locked value,
but that doesn’t matter.) The winning processor executes the code after the lock and then stores a
0 into the lock when it exits, starting the race all over again. Testing the old value and then setting
to a new value is why the atomic swap instruction is called test and set in some instruction sets.”
[Hennessy/Patterson, Computer Architecture: A Quantitative Approach, ppg. 472-473]

The sole drawback to a hardware-based semaphore module is the limited number of semaphores versus
the infinite number that can be supported with Power Architecture reservation instructions.

22.4.1 Semaphore usage

Example 1: Inter-processor communication done with software interrupts and semaphores...

• The e200z0h uses software interrupts to tell the e200z4d that new data is available, or the e200z4d
does the same to tell the e200z0h that there is new data available for transmission.

• Because only eight software interrupts are available, the user may need RAM locations or
general-purpose registers in the SIU to refine the meaning of the software interrupt.

• Messages are passed between cores in a defined section of system RAM.

Chapter 22 Semaphores

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 501

• Before a core updates a message, it must check the associated semaphore to see if the other core is
in the process of updating the same message. If the RAM not being updated, then the semaphore
must first be locked, then the message can be updated. A software interrupt can be sent to the other
core and the semaphore can be unlocked. If the RAM is being updated, the CPU must wait for the
other core to unlock the semaphore before proceeding with update.

• Using the same memory location for bidirectional communication might be difficult, so two
one-way message areas might work better.

— For example, if both cores want to update the same location, then the following sequence may
occur.

1. The e200z0h locks the semaphore, updates the memory, unlocks the semaphore, and
generates a software interrupt to the e200z4d.

2. Before the e200z4d takes the software interrupt request, it finds the semaphore to be
unlocked, so it writes new data to the memory.

3. The e200z4d software interrupt ISR reads the data sent to the e200z0h, not the data sent from
the e200z0h, and performs an incorrect operation.

— Semaphores do not prevent this situation from occurring.

Example 2: Coherent read done with semaphores...

• The e200z4d wants to coherently read a section of shared memory.

• The e200z4d should check that the semaphore for the shared memory is not currently set.

• The e200z4d should set the semaphore for the shared memory to prevent the e200z0h from
updating the shared memory.

• The e200z4d reads the required data, then unlock the semaphore.

22.5 Initialization information
The reset state of the semaphores module allows it to begin operation without the need for any further
initialization. All the internal state machines are cleared by any reset event, allowing the module to
immediately begin operation.

22.6 Application information
In an operational multi-core system, most interactions involving the Semaphores module involves reads
and writes to the SEMA4_GATEn registers for implementation of the hardware-enforced software gate
functions. Typical code segments for gate functions perform the following operations:

• To lock (close) a gate

— The processor performs a byte write of logical_processor_number + 1 to gate[i]

— The processor reads back gate[i] and checks for a value of logical_processor_number + 1

If the compare indicates the expected value

then the gate is locked; proceed with the protected code segment

else

lock operation failed;

Chapter 22 Semaphores

MPC5646C Microcontroller Reference Manual, Rev. 5

502 Freescale Semiconductor

repeat process beginning with byte write to gate[i] in spin-wait loop, or

proceed with another execution path and wait for failed lock interrupt notification

A simple C-language example of a gatelock function is shown in Example 22-1. This function follows the
Hennessy/Patterson example.

Example 22-1. Sample Gatelock Function

#define UNLOCK 0
#define CP0_LOCK 1
#define CP2_LOCK 2

void gateLock (n)
int n; /* gate number to lock */
{
 int i;
 int current_value;
 int locked_value;

 i = processor_number(); /* obtain logical CPU number */

 if (i == 0)
 locked_value = CP0_LOCK;
 else
 locked_value = CP1_LOCK;

 /* read the current value of the gate and wait until the state == UNLOCK */
 do {
 current_value = gate[n];
 } while (current_value != UNLOCK);

 /* the current value of the gate == UNLOCK. attempt to lock the gate for this
 processor. spin-wait in this loop until gate ownership is obtained */
 do {
 gate[n] = locked_value; /* write gate with processor_number + 1 */
 current_value = gate[n]; /* read gate to verify ownership was obtained */
 } while (current_value != locked_value);
}

• To unlock (open) a gate

— After completing the protected code segment, the locking processor performs a byte write of
zeroes to gate[i], unlocking (opening) the gate

In this example, a reference to processor_number() is used to retrieve this hardware configuration
value. Typically, the logical processor numbers are defined by a hardwired input vector to the individual
cores. The exact method for accessing the logical processor number varies by architecture. For Power
Architecture cores, there is a processor ID register (PIR) which is SPR 286 and contains this value. A
single instruction can be used to move the contents of the PIR into a general-purpose register: mfspr rx,286
where rx is the destination GPRn. Other architectures may support a specific instruction to move the
contents of the logical processor number into a general-purpose register, e.g., rdcpn rx for a read CPU
number instruction.

If the optional failed lock IRQ notification mechanisms are used, then accesses to the related registers
(SEMA4_CPnINE, SEMA4_ CPnNTF) are required. There is no required negation of the failed lock write

Chapter 22 Semaphores

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 503

notification interrupt as the request is automatically negated by the Semaphores module once the gate has
been successfully locked by the failing processor.

Finally, in the event a system state requires a software-controlled reset of a gate or IRQ notification
register(s), accesses to the secure reset control registers (SEMA4_RSTGT, SEMA4_RSTNTF) are
required. For these situations, it is recommended that the appropriate IRQ notification enable(s)
(SEMA4_CPnINE) bits be disabled before initiating the secure reset 2-write sequence to avoid any race
conditions involving spurious notification interrupt requests.

22.7 DMA requests
There are no DMA requests associated with the IPS_Semaphore block.

22.8 Interrupt requests
The semaphore interrupt requests are connected to the interrupt controller as described in Chapter 19,
Interrupt Controller (INTC).

Chapter 22 Semaphores

MPC5646C Microcontroller Reference Manual, Rev. 5

504 Freescale Semiconductor

Chapter 23 Performance Optimization

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 505

Chapter 23
Performance Optimization

23.1 Introduction
The MPC5646C contains several features that can influence the overall level of performance provided by
the chip.

Some of these features may be initialized upon negation of reset by the Boot Assist Module (BAM), by a
hardware state machine or by appropriate default register settings. Although the chip exits the reset state
into a functional state it does not necessarily have the default optimum performance settings for any given
application.

This chapter provides guidance for users to fully optimize their application to achieve the highest possible
performance from the MPC5646C. It provides a description of the areas that should be focused on when
optimizing an application for performance by describing the features and recommending settings to be
applied. It focuses on hardware configurations although certain aspects of the application software such as
compiler settings and optimizations will be discussed.

23.2 Features
The MPC5646C has the following hardware features that can be configured to impact the overall
performance of the chip:

• Branch Prediction

— Branch Target Buffer

— Branch Prediction Control

• Frequency-Modulated Phase-Locked Loop (FMPLL)

• Platform Flash Memory Controller (PFC)

— Flash access wait state and address pipelining control

— Flash instruction prefetching

— Flash data prefetching

• Crossbar switch

• System cache

— Instruction cache on e200z4d

• Memory Management Unit

Further application level features can impact the application performance:

• Hardware Single Precision Floating point

• Signal Processing Extension (SPE-APU)

• Variable Length Encoding (VLE)

• Compiler optimizations

Further factors that impact the overall application performance are the use of the intelligent peripherals:

Chapter 23 Performance Optimization

MPC5646C Microcontroller Reference Manual, Rev. 5

506 Freescale Semiconductor

• Use of DMA rather than CPU to transfer data efficiently

• Use of DMA service requests rather than CPU interrupts to avoid software polling

• Off-loading tasks from the CPU to the eDMA

• Careful allocation of cache usage for code ranges.

Different items in this list will have different performance impacts in a real system. Features like the
crossbar switch, system cache, the FMPLL and the flash access times tend to provide the most significant
performance impacts in terms of hardware settings.

The subsequent sections in this chapter describe how to configure and use these features.

23.3 Configuring hardware features

23.3.1 Branch target buffer (BTB)

23.3.1.1 Description

To resolve branch instructions and improve the accuracy of branch predictions both the e200z4d and
e200z0h cores implement a dynamic branch prediction mechanism using a branch target buffer (BTB), a
fully associative address cache of branch target addresses. Its purpose is to accelerate the execution of
software loops with some potential change of flow within the loop body. In addition, the BTB on the
e200z4d has a subroutine call stack that speeds up indirect branches.

23.3.1.2 Recommended configuration

By default, the BTB is disabled following reset on both the e200z4d and the e200z0h. It is controlled by
the Branch Unit Control and Status Register (BUCSR). The BTB’s contents should be flushed and
invalidated by writing BUCSR[BBFI] = 1, and it may be enabled by subsequently writing
BUCSR[BPEN] = 1.

Additional control is available by configuring e200z0h HID0[BPRED] or e200z4d BUCSR[BPRED] and
BUCSR[BALLOC] to control whether forward or backward branches (or both) are candidates for entry
into the BTB, and thus for branch prediction. By default the HID0[BPRED], BUCSR[BPRED] and
BUCSR[BALLOC] fields are set to 0b00, which enables forward and backward branch prediction. It is
recommended to not disable branch prediction although for extremely fine tuning of a given application
the optimum setting of HID0[BPRED], BUCSR[BPRED] and BUCSR[BALLOC] should be assessed.

.

0

B
B

F
I

0

B
A

LL
O

C

0

B
P

R
E

D

B
P

E
N

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

e200z4d SPR - 1013; Read/Write; Reset - 0x0

Figure 23-1. Branch Unit Control and Status Register (BUCSR)

Chapter 23 Performance Optimization

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 507

Further details of the BUCSR can be found in the e200z4 core reference manual.

23.3.2 Frequency-modulated PLL

23.3.2.1 Description

The frequency-modulated phase-locked loop (FMPLL) allows the user to generate high speed system
clocks from a crystal oscillator or external clock generator. Further, the FMPLL supports programmable
frequency modulation of the system clock. This module is typically configured early in the initialization
code to ensure satisfactory performance levels are achieved.

23.3.2.2 Recommended configuration

After reset the MPC5646C chip uses the Fast Internal RC Oscillator (FIRC) as its system clock
(approximately 16 MHz). Typically, the source of the system clock is changed to the FMPLL to provide
acceptable performance. Section 6.7, “Frequency-modulated phase-locked loop (FMPLL), provides
details on how the FMPLL should be initialized in an application. The maximum frequency of operation
for this chip is specified in the chip data sheet.

Table 23-1. BUCSR field descriptions

Field Description

BBFI Branch target buffer flash invalidate
When set, BBFI flash clears the valid bit of all BTB entries; clearing occurs regardless of the value of
the enable bit (BPEN).
Note: BBFI is always read as 0.

BALLOC Branch Target Buffer Allocation Control
00: Branch Target Buffer allocation for all branches is enabled.
01: Branch Target Buffer allocation is disabled for backward branches.
10: Branch Target Buffer allocation is disabled for forward branches.
11: Branch Target Buffer allocation is disabled for both branch directions.
This field controls BTB allocation for branch acceleration when BPEN = 1. Note that BTB hits are not
affected by the settings of this field. Note that for branches with AA = ‘1’, the MSB of the displacement
field is still used to indicate forward/backward, even though the branch is absolute.

BPRED Branch Prediction Control (Static)
00: Branch predicted taken on BTB miss for all branches.
01: Branch predicted taken on BTB miss only for forward branches.
10: Branch predicted taken on BTB miss only for backward branches.
11: Branch predicted not taken on BTB miss for both branch directions.
This field controls operation of static prediction mechanism on a BTB miss. Unless disabled, fetching
of the predicted target location will be performed for branch acceleration. BPRED operates
independently of BPEN, and with a BPEN setting of 0, will be used to perform static prediction of all
unresolved branches.
Note that BTB hits are not affected by the settings of this field. Note that for certain applications, setting
BPRED to a non-default value may result in improved performance.

BPEN Branch target buffer (BTB) enable
0: BTB prediction disabled. No hits are generated from the BTB and no new entries are allocated.
Entries are not automatically invalidated when BPEN is cleared; BBFI controls entry invalidation.
1: BTB prediction enabled (enables BTB to predict branches).

Chapter 23 Performance Optimization

MPC5646C Microcontroller Reference Manual, Rev. 5

508 Freescale Semiconductor

System performance cannot be linearly extrapolated with system frequency, as is often the expectation. It
is due to the insertion of additional flash wait states as system frequency increases that system performance
does not scale linearly. Take care to ensure that the correct internal and/or external flash configuration is
chosen for the selected system frequency. The specific flash access times to be applied are detailed in
Section 35.4, Platform Flash Controller.

23.3.3 Flash memory bus interface unit

23.3.3.1 Description

The Platform Flash Memory Controller (PFC) interfaces the system bus to the flash memory array
controller. The PFC contains prefetch buffers and a prefetch controller which, if enabled, speculatively
prefetches sequential lines of data from the flash array into the buffer. Prefetch buffer hits allow zero-wait
state responses.

The Platform Flash Configuration Registers (PFCRx) control access to the internal flash array. Its settings
define the number of cycles required to access the array, access times, and how the prefetch buffering
scheme operates.

Following negation of reset and execution of the BAM, the instruction and data prefetching is disabled,
and the number of cycles required to access the internal flash array is set to its maximum value of fifteen
additional wait states.

23.3.3.2 Recommended configuration

As the operating frequency of the chip is set by configuring the FMPLL (see Section 23.3.2,
Frequency-modulated PLL), the number of cycles required to access the internal array should be
configured accordingly. Note that the flash PFCRx registers cannot be altered by code executing from the
flash array. Code for configuring the flash should be executed from a separate memory array i.e copied to
and executed from system RAM.

Section 35.4, Platform Flash Controller, documents the register fields used to configure flash wait state
settings. The “Platform flash controller electrical characteristics” section of the chip data sheet contains
the specific values for the flash wait state settings for a given operating frequency. This also provides
recommendations for the prefetch buffer settings. Note that the PFCRx settings may vary between
revisions of the MPC5646C.

23.3.4 Crossbar switch

23.3.4.1 Description

The multi-port crossbar switch (XBAR) supports simultaneous connections between master ports and
slave ports. The XBAR allows for concurrent transactions to occur from any master port to any slave port.
If a slave port is simultaneously requested by more than one master port, arbitration logic selects the higher
priority master and grants it ownership of the slave port. All other masters requesting that slave port are
stalled until the higher priority master completes its transactions. By default, requesting masters are
granted access based on a fixed priority. A round-robin priority mode also is available.

Chapter 23 Performance Optimization

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 509

The main goal of the XBAR is to increase overall system performance by allowing multiple masters to
communicate concurrently with multiple slaves. In order to maximize data throughput it is essential to
keep arbitration delays to a minimum. The configuration of the crossbar can have implications for the
performance of a system and particular care should be taken when assigning master priorities in a fixed
priority application. Further, by correctly parking saves on relevant masters the initial access times to the
slaves can be minimized by negating any initial arbitration penalties.

23.3.4.2 Recommended configuration

The specific settings for a given situation are application dependent and thus should be assessed by the
user. The primary flash port is fixed to the e200z4d instruction bus master to maximise execution speed
for that core however the assignment of the second flash port will depend on which other masters are
accessing the flash the most. Best performance may be obtained by prioritising the instruction bus of the
e200z0h, the eDMA or the data bus of the e200z4d. Similarly assignment of the two system RAM ports
depend on how the cores and eDMA use the RAMs.

More details of the XBAR register configuration can be found in Section 20.3, XBAR registers.

23.3.5 Cache

23.3.5.1 Description

The MPC5646C e200z4d provides an 8 KB instruction, 2-way or 4-way set-associative, Harvard cache
design with a 32-byte line size. The cache is disabled by default after reset.

The cache improves system performance by providing low-latency instructions to the e200z4d instruction
pipelines, which decouples processor performance from system memory performance. There are several
stages to enabling the cache. Not only does the cache itself have to be invalidated then enabled, but
memory regions upon which it can operate must be configured in the MMU to permit cache access.

23.3.5.2 Recommended configuration

The exact usage of cache is application dependent but some general guidelines for using cache to improve
performance in a typical application are listed below:

• Enable instruction cache for all internal and external memories that code is being executed from.

• Consider locking critical performance routines in cache.

The process of enabling the instruction cache involves first invalidating the cache (by setting
L1CSR1[ICINV]) then when invalidation is completed (L1CSR1[ICINV, ICABT] = 0) enabling the cache
(by setting L1CSR1[ICE]).

The L1CSR1 special purpose register is detailed below. For further details of cache configuration registers
see the e200z4 core reference manual.

Chapter 23 Performance Optimization

MPC5646C Microcontroller Reference Manual, Rev. 5

510 Freescale Semiconductor

Note that configuration of the cache has to be performed in conjunction with configuration of the Memory
Management Unit. See section 23.3.6, “e200z4d Memory Management Unit (MMU).

0

IC
E

C
E

IC
E

I

0

IC
E

D
T

0

IC
U

L

IC
LO

IC
LF

C

IC
LO

A

IC
E

A

0

IC
A

B
T

IC
IN

V

IC
E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 1011; Read/Write; Reset - 0x0

Figure 23-2. L1 Cache Control and Status Register 1 (L1CSR1)

Table 23-2. L1CSR1 field descriptions

Field Description

ICECE Instruction Cache Error Checking Enable

ICEI Instruction Cache Error Injection Enable

ICEDT Instruction Cache Error Detection Type

ICUL Instruction Cache Unable to Lock

ICLO Instruction Cache Lock Overflow

ICLFC Instruction Cache Lock Bits Flash Clear

ICLOA Instruction Cache Lock Overflow Allocate

ICEA Instruction Cache Error Action

ICABT Instruction Cache Operation Aborted
Indicates a Cache Invalidate or a Cache Lock Bits Flash Clear operation was aborted prior to
completion. This bit is set by hardware on an aborted condition, and will remain set until cleared by
software writing 0 to this bit location.

ICINV Instruction Cache Invalidate
0: No cache invalidate
1: Cache invalidation operation
When written to a ‘1’, a cache invalidation operation is initiated by hardware. Once complete, this bit is
reset to ‘0’. Writing a ‘1’ while an invalidation operation is in progress will result in an undefined
operation. Writing a ‘0’ to this bit while an invalidation operation is in progress will be ignored. Cache
invalidation operations require approximately 36 cycles to complete. Invalidation occurs regardless of
the enable (ICE) value.
During cache invalidations, the parity check bits are written with a value dependent on the ICEDT
selection. ICEDT should be written with the desired value for subsequent cache operation when ICINV
is set to ‘1’ for proper operation of the cache.

ICE Instruction Cache Enable
0: Cache is disabled
1: Cache is enabled
When disabled, cache lookups are not performed for instruction accesses.
Other L1CSR0 cache control operations are still available.

Chapter 23 Performance Optimization

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 511

23.3.6 e200z4d Memory Management Unit (MMU)

23.3.6.1 Description

The e200z4d Memory Management Unit is a 32-bit Power Architecture compliant implementation which
provides functionality that includes address translation and application of access attributes to memory
ranges defined in Translation Lookaside Buffer entries. Although the MMU does not directly impact
performance, it is within the MMU that memory regions are configured to permit the use of system cache
to improve performance and Variable Length Encoding (VLE) to enhance code density. Thus it is essential
that the MMU is correctly configured to ensure optimal application performance is achieved.

23.3.6.1.1 Recommended configuration

The core uses MMU Assist Registers (MASx) which are special purpose registers to facilitate reading,
writing and searching the Translation Lookaside Buffer (TLB) entries. These MAS registers are software
managed by tlbre, tlbwe, tlbsx, tlbsync, and tlbivax instructions. See the core reference manual for full
details of the MMU and its configurations.

There are several MMU Assist Register registers (MAS0–3) that require configuring. Details of these are
provided in the e200z4 reference manual. Specifically, the MAS2 register contains the fields to control
whether a specified memory region described by the valid TLB Entry is cache inhibited or whether VLE
encoding is valid.

See the e200z4 core reference manual for further details of MMU configuration registers.

EPN 0

V
LE W I M G E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 626; Read/Write

Figure 23-3. MMU Assist Register 2 (MAS2)

Table 23-3. MAS2 field descriptions

Field Description

EPN Effective page number [0:21]

VLE VLE
0: This page is a standard BookE page
1: This page is a VLE page

W Write-through required

I Cache inhibited
0: This page is considered cacheable
1: This page is considered cache-inhibited

M Memory coherence required

G Memory coherence required

E Endianness

Chapter 23 Performance Optimization

MPC5646C Microcontroller Reference Manual, Rev. 5

512 Freescale Semiconductor

23.4 Application software

23.4.1 Compiler optimizations

The most significant opportunity for influencing the performance of a given application is by compiler and
linker optimizations. Optimizing is a trade off between code size and performance. Typically higher
performance of the application comes at the expense of larger code size. Compilers use a host of features,
such as loop unrolling, function inlining and application profile feedback to make the desired trade-offs
between enhanced performance and minimized code size.

The data in Figure 23-4 shows the effects of compiler optimization on a simple application. In this case,
the Dhrystone benchmark was run under three conditions:

• Optimized for small code size

• Optimized for high performance

• A trade-off between code size and performance

Although this is an extreme example, it highlights how significant the role of the compiler and linker is in
determining the overall performance of an application.

Figure 23-4. Influence of compiler settings on application performance and code size

NOTE
Data measured using Dhrystone version 2.1 run on a Power Architecture
based powertrain chip using a standard commercial compiler.

The compiler optimizations do not necessarily have to be applied to the entire application. Analysis of an
application can identify time critical functions that may subsequently be targeted for performance
optimization, without incurring the impact of optimizing the entire application.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Performance vs. Code Size

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Normalized Code Size

Size optimized

Trade-off

Speed optimized

Chapter 23 Performance Optimization

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 513

There are several other aspects of the compiler and linker that should be considered. In particular, the use
of Small Data Areas (SDAs, sometimes referred to as Special Data Areas) can make a significant
performance improvement. Refer to compiler documentation for usage guidelines on Small Data Areas.

23.4.2 e200z4d Signal Processing Extension

To further optimize time critical functions, the Signal Processing Extension Auxiliary Processing Unit
(SPE-APU) may be used on the e200z4d. The SPE-APU provides a set of Single Instruction Multiple Data
(SIMD) instructions. These SIMD instructions typically involve performing the same operation on
multiple data elements stored within a single 64-bit register. Through the implementation of SIMD
instructions, including vector multiply and accumulate (MAC) instructions, the SPE APU provides Digital
Signal Processing (DSP) functionality. This can be used to accelerate signal processing routines, such as
Finite Impulse Response (FIR), Infinite Impulse Response (IIR) and Discrete Fourier Transforms (DFT).
A more general benefit of the SPE instruction set is the ability to load/store 64-bits of data in single
instruction. Thus highly load/store intensive functions make good candidates for SPE optimization.

0

U
C

LE

S
P

E

0 W
E

C
E 0 E
E

P
R

F
P

M
E 0 D
E 0

IS D
S 0 R
I 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Read / Write; Reset - 0x0

Figure 23-5. Machine State Register (MSR)

Table 23-4. MSR field descriptions

Field Description

UCLE User Cache Lock Enable

SPE SPE Available
0: Execution of SPE APU vector instructions is disabled; SPE Unavailable exception taken instead, and
SPE bit is set in ESR.
1: Execution of SPE APU vector instructions is enabled.

WE Wait State (Power management) enable

CE Critical Interrupt Enable

EE External Interrupt Enable

PR Problem State

FP Floating-Point Available

ME Machine Check Enable

DE Debug Interrupt Enable

IS Instruction Address Space

DS Data Address Space

RI Recoverable Interrupt

Chapter 23 Performance Optimization

MPC5646C Microcontroller Reference Manual, Rev. 5

514 Freescale Semiconductor

23.4.3 Hardware single precision floating point

The SPE-APU also supports 32-bit IEEE®-754 single-precision floating-point formats, and supports
vector and scalar single-precision floating-point operations. Most compiler vendors include libraries that
can emulate floating point functionality. However, by specifying the correct compiler options, the single
precision floating point instructions may be used.

To enable use of hardware floating point the MSR[SPE] field must be set. See Section 23.4.2, “e200z4d
Signal Processing Extension, for register details.

23.4.4 Variable Length Encoding (VLE)

In addition to the base Power Architecture instruction set support, the e200z4d core also implements the
VLE APU, providing improved code density. This setting is permanently enabled on the e200z0h. The
VLE APU can be viewed as a supplement to the existing Power Architecture instruction set that can be
conditionally applied to a portion of, or an entire application for which improved code density is desired.

Using it is straightforward:

1. Select the appropriate compiler target and option to generate VLE code.

2. Configure the Memory Management Unit (MMU) to specify VLE attributes for the relevant MMU
pages. Refer to the register description in Section 23.3.6, “e200z4d Memory Management Unit
(MMU).

VLE-enabled cores run both Power Architecture and VLE instruction encodings on a page by page basis,
with pages defined by the MMU. The reduction is code size is typically between 25% and 30%.

23.5 Peripherals and general application guidelines
Optimizing the chip configuration and compiler setup is only one part of optimizing an entire application.
Correct use of the peripherals can also dramatically improve overall system performance. In particular, use
of the interrupt controller, the Enhanced Direct Memory Access (eDMA), the Cross Triggering Unit
(CTU) and the e200z0h can off-load significant work from the e200z4d.

For example, eDMA may be used to shift data to avoid unnecessary CPU loading. Most peripheral
modules can generate eDMA requests to trigger data transfers. An example of a typical application is to
use the eDMA to move CAN messages from one FlexCAN module to another. If pre-processing is required
before this move the 200z0h core may be a better choice. For ADC triggering and sample result handling
the CTU can be used to avoid CPU intervention.

Section 23.6, “Performance optimization checklist, provides several system level examples of how to
optimize an application.

Chapter 23 Performance Optimization

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 515

23.6 Performance optimization checklist

23.6.1 Hardware configuration

23.6.2 Software configuration

Table 23-5. Performance optimization — hardware configuration

Description Register(s) Details

Branch Target Buffer Flush with BUCSR[BBFI]
Enable with BUCSR[BPEN]

Flush and enable to improve accuracy of
branch predictions.

Branch Prediction BUCSR[BPRED]/HID0[BPRED]
BUCSR[BALLOC]

Consider fine tuning of BTB operation for
specific applications.

System Frequency FMPLL_CR
FMPLL_MR

Select desired frequency and frequency
modulation taking into account the
performance impact of additional wait states.

Flash Wait States FPCR0[APC, WW, RWSC] Refer to Flash chapter for FPCR settings for
FMPLL frequency ranges.

Flash Prefetching FPCR[DPFEN, IPFEN, PFLIM, BFEN] Enable prefetching for instructions. Prefetching
for data should be assessed for the specific
application.

Flash Prefetch
Algorithm

FPCR[BCFG] Allocate buffers to data and/or instructions.
Fine tune for specific applications.

Crossbar Switch SGPCRn and MPRn Configure ports according to most likely master
to access a slave. In single core designs assign
the e200z4d data port to the second flash port.
In multi-core designs prioritise the flash and
RAM ports to the heaviest users

Cache Invalidate Icache with L1CSR1[ICINV]
Enable Icache with L1CSR1[ICE]

Invalidate and the enable the cache for
instructions.

Memory Management
Unit

TLB_MAS2[VLE, I] Configure relevant pages for cache and VLE by
setting MMU TLB attributes.

Table 23-6. Performance optimization — software configuration

Description Registers Details

Compiler optimization — Use the features of the compiler to select the
optimum trade off between code size and
performance improvements.

Hardware Single Precision
Floating Point

Enable with MSR[SPE] Set compiler switches to specify using hardware
single precision floating point as opposed to
software emulation.

Signal Processing Extensions Enable with MSR[SPE] Take advantage of the SPE-APU to encode time
critical functions using SPE assembly code.

Variable Length Encoding Enabled with TLB_MAS2[VLE] Set compiler switches and configure the MMU to
take advantage of the VLE-APU.

Chapter 23 Performance Optimization

MPC5646C Microcontroller Reference Manual, Rev. 5

516 Freescale Semiconductor

23.6.3 Peripherals and general application guidelines
• Use eDMA rather than the core to move data where possible. Most peripherals can generate eDMA

requests to shift data.

— Use DMA to fill and empty communication chips buffers.

• Shift loading from the CPU to the e200z0h and CTU whenever possible.

— The e200z0h can handle interrupts and scheduling for comunications peripherals.

— The CTU can trigger the ADC directly with no need for CPU interruption.

• Avoid software polling and allow peripherals to trigger interrupts or request eDMA servicing.

— Use hardware instead of software vectored interrupts to reduce latency.

— Trigger eDMA requests rather than interrupting the CPU to move data/results.

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 517

Chapter 24
System Integration Unit Lite (SIUL)

24.1 Introduction
This chapter describes the System Integration Unit Lite (SIUL), which is used for the management of the
pads and their configuration. It controls the multiplexing of the alternate functions used on all pads as well
as being responsible for the management of the external interrupts to the device.

24.2 Overview
The System Integration Unit Lite (SIUL) controls the MCU pad configuration, ports, general-purpose
input and output (GPIO) signals and external interrupts with trigger event configuration. Figure 24-1
provides a block diagram of the SIUL and its interfaces to other system components.

The module provides dedicated general-purpose pads that can be configured as either inputs or outputs.

• When a pad is configured as an input, the state of the pad (logic high or low) is obtained by reading
an associated data input register.

• When a pad is configured as an output, the value driven onto the pad is determined by writing to
an associated data output register. Enabling the input buffers when a pad is configured as an output
allows the actual state of the pad to be read.

• To enable monitoring of an output pad value, the pad can be configured as both output and input
so the actual pad value can be read back and compared with the expected value.

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

518 Freescale Semiconductor

Figure 24-1. System Integration Unit Lite block diagram

IPS
BUS

Data

Pad Input
IO

Interrupt
Interrupt

Controller

IPS
Master

- Configuration
- Glitch Filter

Pad Config (IOMUXC)

Pad Cfg (PCRs)

GPIO Functionality

199

199

199

24

3

MUX PADS
199

SIUL Module

Interrupt Functionality

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 519

24.3 Features
The System Integration Unit Lite supports these distinctive features:

• GPIO

— GPIO function on up to 199 I/O pins

— Dedicated input and output registers for most GPIO pins1

• External interrupts

— 3 interrupt vectors dedicated to 24 external interrupts

— 24 programmable digital glitch filters

— Independent interrupt mask

— Edge detection

• System configuration

— Pad configuration control

— Pad Selection for multiplexed inputs registers

24.4 External signal description
Most device pads support multiple device functions. Pad configuration registers are provided to enable
selection between GPIO and other signals. These other signals, also referred to as alternate functions, are
typically peripheral functions.

GPIO pads are grouped in “ports”, with each port containing up to 16 pads. With appropriate
configuration, all pins in a port can be read or written to in parallel with a single R/W access.

Table 24-1 lists the external pins used by the SIUL.
(

1.Some device pins, e.g., analog pins, do not have both input and output functionality.

Table 24-1. SIUL signal properties

GPIO[0:198]
category

Name
I/O

direction
Function

System configuration GPIO[0:198] I/O General-purpose input/output

External interrupt PA[3], PA[6:8], PA[11:12],
PA[14], PC[2:5], PC[12],
PC[14:15], PE[2], PE[4],
PE[6:7], PE[10], PE[12],
PE[14], PF[15],
PG[1],PG[8]

Input Pins with External Interrupt Request
functionality. Please refer to the signal
description chapter of this reference manual
for details.

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

520 Freescale Semiconductor

24.4.1 Detailed signal descriptions

24.4.1.1 General-purpose I/O pins (GPIO[0:198])

The GPIO pins provide general-purpose input and output function. The GPIO pins are generally
multiplexed with other I/O pin functions. Each GPIO input and output is separately controlled by an input
(GPDIn_n) or output (GPDOn_n) register.

24.4.1.2 External interrupt request input pins (EIRQ[0:23])

The EIRQ[0:23] pins are connected to the SIUL inputs. Rising- or falling-edge events are enabled by
setting the corresponding bits in the SIUL_IREER or the SIUL_IFEER register.

24.5 Memory map and register description
This section provides a detailed description of all registers accessible in the SIUL module.

24.5.1 SIUL memory map

Table 24-2 gives an overview of the SIUL registers implemented.

Table 24-2. SIUL memory map

Base address: 0xC3F9_0000

Address offset Register Location

0x0004 MCU ID Register #1 (MIDR1) on page 522

0x0008 MCU ID Register #2 (MIDR2) on page 523

0x000C–0x0013 Reserved

0x0014 Interrupt Status Flag Register (ISR) on page 524

0x0018 Interrupt Request Enable Register (IRER) on page 524

0x001C–0x0027 Reserved

0x0028 Interrupt Rising-Edge Event Enable Register (IREER) on page 525

0x002C Interrupt Falling-Edge Event Enable Register (IFEER) on page 526

0x0030 Interrupt Filter Enable Register (IFER) on page 527

0x0034–0x003F Reserved

0x0040–0x01CC Pad Configuration Registers (PCR0–PCR198) on page 527

0x01CE–0x04FF Reserved

0x500–0x543 Pad Selection for Multiplexed Inputs Registers
(PSMI0_3–PSMI64_67)

on page 530

0x0544–0x05FF Reserved

0x0600–0x06C7 GPIO Pad Data Output Registers (GPDO0_3–GPDO196_199) on page 536

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 521

NOTE
A transfer error will be issued when trying to access completely reserved
register space.

24.5.2 Register protection

Individual registers in System Integration Unit Lite can be protected from accidental writes using the
Register Protection module (Chapter 36, Register Protection). The following registers can be protected:

• Interrupt Request Enable Register (IRER)

• Interrupt Rising-Edge Event Enable Register (IREER)

• Interrupt Falling-Edge Event Enable Register (IFEER)

• Interrupt Filter Enable Register (IFER), entire PortA, PortB[0:3] and PortC[2:15

• Interrupt Filter Enable Register (IFER)

• Pad Configuration Registers (PCR0–PCR198)

• Pad Selection for Multiplexed Inputs Registers (PSMI0_3–PSMI64_67)

0x06C8–0x07FF Reserved

0x0800–0x08C7 GPIO Pad Data Input Registers (GPDI0_3–GPDI196_199) on page 537

0x08C8–0x0BFF Reserved

0x0C00–0x0C18 Parallel GPIO Pad Data Out Registers (PGPDO0–PGPDO6) on page 537

0x0C1C–0x0C3F Reserved

0x0C40–0x0C58 Parallel GPIO Pad Data In Register (PGPDI0–PGPDI6) on page 536

0x0C5C–0x0C7F Reserved

0x0C80–0x0CB0 Masked Parallel GPIO Pad Data Out Register
(MPGPDO0–MPGPDO12)

on page 539

0x0CB4–0x0FFF Reserved

 0x1000–0x105C Interrupt Filter Maximum Counter Registers (IFMC0–IFMC23) on page 541

0x1060–0x107F Reserved

0x1080 Interrupt Filter Clock Prescaler Register (IFCPR) on page 542

0x1084–0x10FF Reserved

0x1100–0x113F Parallel Input Select Register (PISR0—PISR15) on page 542

0x1140–0x11FF Reserved

0x1200 DSPI Input Select Register (DISR) on page 551

0x1204–0x3FF Reserved

Table 24-2. SIUL memory map (continued)

Base address: 0xC3F9_0000

Address offset Register Location

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

522 Freescale Semiconductor

• Interrupt Filter Maximum Counter Registers (IFMC0–IFMC23)

• Interrupt Filter Clock Prescaler Register (IFCPR)

24.5.3 Register description

24.5.3.1 MCU ID Register #1 (MIDR1)

This register holds identification information about the device.

Offset: 0x0004 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PARTNUM[15:0]

W

Reset Reset values depend on the device and package type as shown in Table 24-3

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 PKG 0 0 MAJOR_MASK MINOR_MASK

W

Reset Reset values depend on the device and package type as shown in Table 24-3

Figure 24-2. MCU ID Register #1 (MIDR1)

Table 24-3. MIDR1 field descriptions

Field Description

PARTNUM[15:0] MCU Part Number
Device part number of the MCU.
0101_0110_0100_0100: 1.5MB
0101_0110_0100_0101: 2MB
0101_0110_0100_0110: 3MB
For the full part number this field needs to be combined with MIDR2[PARTNUM[23:16]].

PKG Package Settings
Can be read by software to determine the package type that is used for the particular device:
0b01100: 256 BGA
0b10001: 176-pin LQFP
0b10101: 208-pin LQFP

MAJOR_MASK Major Mask Revision
Counter starting at 0x0. Incremented each time when there is a resynthesis.

MINOR_MASK Minor Mask Revision
Counter starting at 0x0. Incremented each time a mask change is done.

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 523

24.5.3.2 MCU ID Register #2 (MIDR2)

Offset: 0x0008 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SF FLASH_SIZE_1 FLASH_SIZE_2 0 0 0 0 0 0 0

W

Reset 0 Reset values depend on the device and package type.

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PARTNUM[23:16] 0 0 0 EE1

1 The reset values of both EE and FR bit is always same.

0 0 0 FR1

W

Reset Reset values depend on the device and package type.

Figure 24-3. MCU ID Register #2 (MIDR2)

Table 24-4. MIDR2 field descriptions

Field Description

SF Manufacturer
0: Freescale
1: Reserved

FLASH_SIZE_1 Coarse granularity for flash memory size
4 bits used to define major Flash memory size
Total flash memory size = FLASH_SIZE_1 + FLASH_SIZE_2
0b0011: 128 KB
0b0100: 256 KB
0b0101: 512 KB
0b0110: 1 MB
0b0111: 2 MB

FLASH_SIZE_2 Fine granularity for flash memory size
Total flash memory size = FLASH_SIZE_1 + FLASH_SIZE_2
0b0000: 0 x (FLASH_SIZE_1 / 8)
0b0010: 2 x (FLASH_SIZE_1 / 8)
0b0100: 4 x (FLASH_SIZE_1 / 8)

PARTNUM[23:16] ASCII character in MCU Part Number
0x42h: Character ‘B’
0x43h: Character ‘C’
For the full part number this field needs to be combined with MIDR1[PARTNUM[15:0]].

EE Data Flash present
0: No Data Flash is present
1: Data Flash is present

FR FlexRay Present
0: No FlexRay is present
1: FlexRay is present

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

524 Freescale Semiconductor

24.5.3.3 Interrupt Status Flag Register (ISR)

This register holds the interrupt flags.

24.5.3.4 Interrupt Request Enable Register (IRER)

This register is used to enable the interrupt messaging to the interrupt controller.

Offset: 0x0014 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 EIF[23:16]

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EIF[15:0]

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-4. Interrupt Status Flag Register (ISR)

Table 24-5. ISR field descriptions

Field Description

EIF[x] External Interrupt Status Flag x
This flag can be cleared only by writing a ‘1’. Writing a ‘0’ has no effect. If enabled (IRER[x]), EIF[x]
causes an interrupt request.
0: No interrupt event has occurred on the pad
1: An interrupt event as defined by IREER[x] and IFEER[x] has occurred

Offset: 0x0018 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
EIRE[23:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
EIRE[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-5. Interrupt Request Enable Register (IRER)

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 525

24.5.3.5 Interrupt Rising-Edge Event Enable Register (IREER)

This register is used to enable rising-edge triggered events on the corresponding interrupt pads.

24.5.3.6 Interrupt Falling-Edge Event Enable Register (IFEER)

This register is used to enable falling-edge triggered events to be enabled on the corresponding interrupt
pads.

Table 24-6. IRER field descriptions

Field Description

EIRE[x] External Interrupt Request Enable x
0: Interrupt requests from the corresponding ISR.EIF[x] bit are disabled.
1: Interrupt requests from the corresponding ISR.EIF[x] bit are enabled.

Offset:0x0028 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
IREE[23:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
IREE[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-6. Interrupt Rising-Edge Event Enable Register (IREER)

Table 24-1. IREER field descriptions

Field Description

IREE[x] Enable rising-edge events to cause the ISR.EIF[x] bit to be set.
0: Rising-edge event is disabled
1: Rising-edge event is enabled

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

526 Freescale Semiconductor

NOTE
If both the IREER[IREE] and IFEER[IFEE] bits are cleared for the same
interrupt source, the interrupt status flag for the corresponding external
interrupt will never be set. If IREER[IREE] and IFEER[IFEE] bits are set
for the same source the interrupts are triggered by both rising edge events
and falling edge events.

24.5.3.7 Interrupt Filter Enable Register (IFER)

This register is used to enable a digital filter counter on the corresponding interrupt pads to filter out
glitches on the inputs.

Offset:0x002C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
IFEE[23:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
IFEE[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-7. Interrupt Falling-Edge Event Enable Register (IFEER)

Table 24-7. IFEER field descriptions

Field Description

IFEE[x] Enable falling-edge events to cause the ISR.EIF[x] bit to be set.
0: Falling-edge event is disabled
1: Falling-edge event is enabled

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 527

24.5.3.8 Pad Configuration Registers (PCR0–PCR198)

The Pad Configuration Registers allow configuration of the static electrical and functional characteristics
associated with I/O pads. Each PCR controls the characteristics of a single pad.

NOTE
16/32-bit access is supported.

In addition to the bit map above, Table 24-10 describes the PCR depending on the pad type (pad types are
defined in Chapter 4, Signal Description). The bits in shaded fields are not implemented for the particular

Offset:0x0030 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
IFE[23:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
IFE[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-8. Interrupt Filter Enable Register (IFER)

Table 24-8. IFER field descriptions

Field Description

IFE[x] Enable digital glitch filter on the interrupt pad input
0: Filter is disabled
1: Filter is enabled
See the IFMC field descriptions in Table 24-19 for details on how the filter works.

Offsets:0x0040–0x01CC (199 registers) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
SMC APC PA[2:0] OBE IBE

0 0
ODE

0 0
SRC WPE WPS

W

Reset 0 01

1 SMC and PA[1] are ‘1’ for JTAG pads

0 0 01 0 02

2 OBE is ‘1’ for TDO

03

3 IBE and WPE are ‘1’ for TCK, TMS, TDI, FAB and ABS

0 0 0 0 0 0 03 14

4 WPS is ‘0’ for input only pad with analog feature and FAB

Figure 24-9. Pad Configuration Registers (PCRx)

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

528 Freescale Semiconductor

I/O type. The PA field selecting the number of alternate functions may or may not be present depending
on the number of alternate functions actually mapped on the pad.

Table 24-9. PCR bit implementation by pad type

Pad type
PCR bit No.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S (Pad with
GPIO and
digital
alternate
function)

SM
C

APC PA[1:0] OBE IBE OD
E

WP
E

WP
S

M, F (Pad
with GPIO
and digital
alternate
function)

SM
C

APC PA[1:0] OBE IBE OD
E

SRC WP
E

WP
S

Pad with
GPIO and
more than 4
alternate
function

SM
C

APC PA[2:0] OBE IBE OD
E

SRC WP
E

WP
S

J (Pad with
GPIO and
analog
functionality
)

SM
C

APC PA[1:0] OBE IBE OD
E

SRC WP
E

WP
S

I (Pad
dedicated to
ADC)

SM
C

APC PA[1:0] OBE IBE OD
E

SRC WP
E

WP
S

Table 24-10. PCRx field descriptions

Field Description

SMC Safe Mode Control
This bit supports the overriding of the automatic deactivation of the output buffer of the associated
pad upon entering SAFE mode of the device.
0: In SAFE mode, the output buffer of the pad is disabled.
1: In SAFE mode, the output buffer remains functional.

APC Analog Pad Control
This bit enables the usage of the pad as analog input.
0: Analog input path from the pad is gated and cannot be used
1: Analog input path switch can be enabled by the ADC

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 529

24.5.3.9 Pad Selection for Multiplexed Inputs Registers (PSMI0_3–PSMI64_67)

In some cases, a peripheral input signal can be selected from more than one pin. For example, the
CAN1_RXD signal can be selected on three different pins: PC[3], PC[11] and PF[15]. Only one can be
active at a time. To select the pad to be used as input to the peripheral:

• Select the signal via the pad’s PCR register using the PA field.

• Specify the pad to be used via the appropriate PSMI field.

PA Pad Output Assignment
This field is used to select the function that is allowed to drive the output of a multiplexed pad.
000: Alternative Mode 0 — GPIO
001: Alternative Mode 1 — See the signal description chapter
010: Alternative Mode 2 — See the signal description chapter
011: Alternative Mode 3 — See the signal description chapter
100: Alternative Mode 4 — See the signal description chapter
Note: Number of bits depends on the actual number of actual alternate functions. Please refer to

data sheet.

OBE Output Buffer Enable
This bit enables the output buffer of the pad if the pad is in GPIO mode.
0: Output buffer of the pad is disabled when PA[1:0] = 00
1: Output buffer of the pad is enabled when PA[1:0] = 00

IBE Input Buffer Enable
This bit enables the input buffer of the pad.
0: Input buffer of the pad is disabled
1: Input buffer of the pad is enabled

ODE Open Drain Output Enable
This bit controls output driver configuration for the pads connected to this signal. Either open drain
or push/pull driver configurations can be selected. This feature applies to output pads only.
0: Pad configured for push/pull output
1: Pad configured for open drain

SRC Slew Rate Control
This field controls the slew rate of the associated pad when it is slew rate selectable. Its usage is
the following:
0: Pad configured as slow
1: Pad is configured as medium or fast (depending on the pad)

PC[1] (TDO pad) is medium only. By default SRC = 0, and writing ‘1’ has no effect.

WPE Weak Pull Up/Down Enable
This bit controls whether the weak pull up/down devices are enabled/disabled for the pad
connected to this signal.
0 Weak pull device disabled for the pad
1 Weak pull device enabled for the pad

WPS Weak Pull Up/Down Select
This bit controls whether weak pull up or weak pull down devices are used for the pads connected
to this signal when weak pull up/down devices are enabled.
0 Weak pull-down selected
1 Weak pull-up selected

Table 24-10. PCRx field descriptions (continued)

Field Description

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

530 Freescale Semiconductor

NOTE

This register can be addressed as either a single 32-bit field or it can be
addressed as four individual 8-bit fields.

In order to multiplex different pads to the same peripheral input, the SIUL provides a register that controls
the selection between the different sources.

Offsets: 0x500–0x540 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PADSEL0

0 0 0 0
PADSEL1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
PADSEL2

0 0 0 0
PADSEL3

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-10. Pad Selection for Multiplexed Inputs Register (PSMI0_3)

Table 24-11. PSMI field descriptions

Field Description

PADSEL0–3,
PADSEL4–7,

...
PADSEL64–67

Pad Selection Bits
Each PADSEL field selects the pad currently used for a certain input function. See Table 24-12.

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 531

Table 24-12. Peripheral input pin selection

PSMI registers PADSEL fields SIUL address offset Function / Peripheral Mapping1

PSMI0_3 PADSEL0 0x500 CAN1RX / FlexCAN 1 000: PCR[35]
001: PCR[43]
010: PCR[95]
011: PCR[157]
100: PCR[159]
101: PCR[0]

PADSEL1 0x501 CAN2RX / FlexCAN 2 000: PCR[73]
001: PCR[89]
010: PCR[165]

PADSEL2 0x502 CAN3RX / FlexCAN 3 000: PCR[36]
001: PCR[73]
010: PCR[89]
011: PCR[167]
100: PCR[173]
101: PCR[1]

PADSEL3 0x503 CAN4RX / FlexCAN 4 000: PCR[35]
001: PCR[43]
010: PCR[95]
011: PCR[157]
100: PCR[161]

PSMI4_7 PADSEL4 0x504 CAN5RX / FlexCAN 5 000: PCR[64]
001: PCR[97]
010: PCR[163]

PADSEL5 0x505 SCK_0 / DSPI 0 001: PCR[14]
011: PCR[15]

PADSEL6 0x506 CS0_0 / DSPI 0 000: PCR[14]
001: PCR[15]
010: PCR[27]

PADSEL7 0x507 SCK_1 / DSPI 1 000: PCR[34]
001: PCR[68]
010: PCR[114]
011: PCR[173]

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

532 Freescale Semiconductor

PSMI8_11 PADSEL8 0x508 SIN_1 / DSPI 1 000: PCR[36]
001: PCR[66]
010: PCR[112]
011: PCR[175]
100: PCR[10]

PADSEL9 0x509 CS0_1 / DSPI 1 000: PCR[35]
001: PCR[61]
010: PCR[69]
011: PCR[115]
100: PCR[4]
101: PCR[174]

PADSEL10 0x50A SCK_2 / DSPI 2 000: PCR[46]
001: PCR[78]
010: PCR[105]

PADSEL11 0x50B SIN_2 / DSPI 2 000: PCR[44]
001: PCR[76]

PSMI12_15 PADSEL12 0x50C CS0_2 / DSPI 2 000: PCR[47]
001: PCR[79]
010: PCR[82]
011: PCR[104]
100: PCR[140]

PADSEL13 0x50D E0UC[3] / eMIOS 0 000: PCR[3]
001: PCR[27]
010: PCR[40]

PADSEL14 0x50E E0UC[4] / eMIOS 0 000: PCR[4]
001: PCR[28]

PADSEL15 0x50F E0UC[5] / eMIOS 0 000: PCR[5]
001: PCR[29]

PSMI16_19 PADSEL16 0x510 E0UC[6] / eMIOS 0 000: PCR[6]
001: PCR[30]

PADSEL17 0x511 E0UC[7] / eMIOS 0 000: PCR[7]
001: PCR[31]
010: PCR[41]

PADSEL18 0x512 E0UC[10] / eMIOS 0 000: PCR[10]
001: PCR[80]

PADSEL19 0x513 E0UC[11] / eMIOS 0 000: PCR[11]
001: PCR[81]

Table 24-12. Peripheral input pin selection (continued)

PSMI registers PADSEL fields SIUL address offset Function / Peripheral Mapping1

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 533

PSMI20_23 PADSEL20 0x514 E0UC[12] / eMIOS 0 000: PCR[44]
001: PCR[82]

PADSEL21 0x515 E0UC[13] / eMIOS 0 000: PCR[45]
001: PCR[83]
010: PCR[0]

PADSEL22 0x516 E0UC[14] / eMIOS 0 000: PCR[46]
001: PCR[84]
010: PCR[8]

PADSEL23 0x517 E0UC[22] / eMIOS 0 000: PCR[70]
001: PCR[72]
010: PCR[85]

PSMI24_27 PADSEL24 0x518 E0UC[23] / eMIOS 0 000: PCR[71]
001: PCR[73]
010: PCR[86]

PADSEL25 0x519 E0UC[24] / eMIOS 0 000: PCR[60]
001: PCR[106]
010: PCR[75]

PADSEL26 0x51A E0UC[25] / eMIOS 0 000: PCR[61]
001: PCR[107]

PADSEL27 0x51B E0UC[26] / eMIOS 0 000: PCR[62]
001: PCR[108]

PSMI28_31 PADSEL28 0x51C E0UC[27] / eMIOS 0 000: PCR[63]
001: PCR[109]

PADSEL29 0x51D SCL / I2C 000: PCR[11]
001: PCR[19]

PADSEL30 0x51E SDA / I2C 000: PCR[10]
001: PCR[18]

PADSEL31 0x51F LIN3RX / LINFlexD_3 000: PCR[8]
001: PCR[75]
010:PCR[167]

PSMI32_35 PADSEL32 0x520 SCK_3 / DSPI 3 000: PCR[100]
001: PCR[124]

PADSEL33 0x521 SIN_3 / DSPI 3 000: PCR[101]
001: PCR[139]

PADSEL34 0x522 CS0_3 / DSPI 3 000: PCR[99]
001: PCR[125]
010: PCR[140]

PADSEL35 0x523 SCK_4 / DSPI 4 000: PCR[109]
001: PCR[126]
010: PCR[133]
011:PCR[171]

Table 24-12. Peripheral input pin selection (continued)

PSMI registers PADSEL fields SIUL address offset Function / Peripheral Mapping1

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

534 Freescale Semiconductor

PSMI36_39 PADSEL36 0x524 SIN_4 / DSPI 4
Reserved

000: PCR[106]
001: PCR[142]
010: PCR[169]

PADSEL37 0x525 CS0_4 / DSPI 4
Reserved

000: PCR[107]
001: PCR[123]
010: PCR[134]
011: PCR[143]
100: PCR[172]

PADSEL38 0x526 E0UC[0] / eMIOS 0 000: PCR[0]
001: PCR[14]

PADSEL39 0x527 E0UC[1] / eMIOS 0 000: PCR[1]
001: PCR[15]

PSMI40_43 PADSEL40 0x528 E0UC[28] / eMIOS 0 000: PCR[12]
001: PCR[128]

PADSEL41 0x529 E0UC[29] / eMIOS 0 000: PCR[13]
001: PCR[129]

PADSEL42 0x52A E0UC[30] / eMIOS 0 000: PCR[16]
001: PCR[18]
010: PCR[130]

PADSEL43 0x52B E0UC[31] / eMIOS0 000: PCR[17]
001: PCR[19]
010: PCR[131]

PSMI44_47 PADSEL44 0x52C E1UC[1] / eMIOS 1 000: PCR[111]
001: PCR[89]
010: PCR[164]

PADSEL45 0x52D E1UC[2] / eMIOS 1 000: PCR[112]
001: PCR[90]

PADSEL46 0x52E E1UC[3] / eMIOS 1 000: PCR[113]
001: PCR[91]

PADSEL47 0x52F E1UC[4] / eMIOS 1 000: PCR[114]
001: PCR[95]

PSMI48_51 PADSEL48 0x530 E1UC[5] / eMIOS 1 000: PCR[115]
001: PCR[123]

PADSEL49 0x531 E1UC[17] / eMIOS 1 000: PCR[104]
001: PCR[127]

PADSEL50 0x532 E1UC[18] / eMIOS 1 000: PCR[105]
001: PCR[148]

PADSEL51 0x533 E1UC[25] / eMIOS 1 000: PCR[92]
001: PCR[124]

Table 24-12. Peripheral input pin selection (continued)

PSMI registers PADSEL fields SIUL address offset Function / Peripheral Mapping1

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 535

PSMI52_55 PADSEL52 0x534 E1UC[26] / eMIOS 1 000: PCR[93]
001: PCR[125]

PADSEL53 0x535 E1UC[27] / eMIOS 1 000: PCR[94]
001: PCR[126]

PADSEL54 0x536 E1UC[28] / eMIOS 1 000: PCR[38]
001: PCR[132]

PADSEL55 0x537 E1UC[29] / eMIOS 1 000: PCR[39]
001: PCR[133]

PSMI56_59 PADSEL56 0x538 E1UC[30] / eMIOS
1Reserved

000: PCR[74]
001: PCR[103]
010: PCR[134]

PADSEL57 0x539 E1UC[31] / eMIOS
1Reserved

000: PCR[36]
001: PCR[106]
010: PCR[135]

PADSEL58 0x53A LIN2RX / LINFlexD_2 000: PCR[41]
001: PCR[11]
010:PCR[165]

PADSEL59 0x53B LIN4RX / LINFlexD_4
Reserved

000: PCR[6]
001: PCR[91]

PSMI60_63 PADSEL60 0x53C LIN5RX / LINFlexD_5 000: PCR[4]
001: PCR[93]

PADSEL61 0x53D LIN8RX / LINFlexD_8 000: PCR[111]
001: PCR[129]
010:PCR[163]

PADSEL62 0x53E LIN0RX / LINFlexD_0 000: PCR[19]
001: PCR[17]

PADSEL63 0x53F E1UC[0] / eMIOS 1 000: PCR[110]
001: PCR[163]

PSMI64_67 PADSEL64 0x540 CS0_5 / DSPI 5 000: PCR[134]
001: PCR[146]

PADSEL65 0x541 CS0_6 / DSPI 6 000: PCR[107]
001: PCR[134]
010:PCR[146]

PADSEL66 0x542 SIN_7 / DSPI 7 000: PCR[117]
001: PCR[175]

PADSEL67 0x543 CS0_7 / DSPI 7 000: PCR[119]
001: PCR[146]

1 See the signal description chapter of this reference manual for correspondence between PCR and
pinout

Table 24-12. Peripheral input pin selection (continued)

PSMI registers PADSEL fields SIUL address offset Function / Peripheral Mapping1

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

536 Freescale Semiconductor

24.5.3.10 GPIO Pad Data Output Registers (GPDO0_3–GPDO196_199)

These registers are used to set or clear GPIO pads. Each pad data out bit can be controlled separately with
a byte access.

24.5.3.11 GPIO Pad Data Input Registers (GPDI0_3–GPDI196_199)

These registers are used to read the GPIO pad data with a byte access.

Offsets:0x0600–0x06C4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0

P
D

O
[0

]

0 0 0 0 0 0 0

P
D

O
[1

]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0

P
D

O
[2

]

0 0 0 0 0 0 0

P
D

O
[3

]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-11. Port GPIO Pad Data Output Register 0–3 (GPDO0_3)

Table 24-13. GPDO0_3 field descriptions

Field Description

PDO[x] Pad Data Out
This bit stores the data to be driven out on the external GPIO pad controlled by this register.
0: Logic low value is driven on the corresponding GPIO pad when the pad is configured as an
output
1: Logic high value is driven on the corresponding GPIO pad when the pad is configured as an
output

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 537

24.5.3.12 Parallel GPIO Pad Data Out Registers (PGPDO0 – PGPDO6)

MPC5646C devices ports are constructed such that they contain 16 GPIO pins, for example PortA[0..15].
Parallel port registers for input (PGPDI) and output (PGPDO) are provided to allow a complete port to be
written or read in one operation, dependent on the individual pad configuration.

Writing a parallel PGPDO register directly sets the associated GPDO register bits. There is also a masked
parallel port output register allowing the user to determine which pins within a port are written.

While very convenient and fast, this approach does have implications regarding current consumption for
the device power segment containing the port GPIO pads. Toggling several GPIO pins simultaneously can
significantly increase current consumption.

CAUTION
Caution must be taken to avoid exceeding maximum current thresholds
when toggling multiple GPIO pins simultaneously. Please refer to data
sheet.

Table 24-15 shows the locations and structure of the PGPDOx registers.

Offsets:0x0800–0x08C4 Access: User read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
0 0 0 0 0 0 0

P
D

I[0
]

0 0 0 0 0 0 0

P
D

I[1
]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0 0 0 0 0

P
D

I[2
]

0 0 0 0 0 0 0

P
D

I[3
]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-12. Port GPIO Pad Data Input Register 0–3 (GPDI0_3)

Table 24-14. GPDO0_3 field descriptions

Field Description

PDI[x] Pad Data In
This bit stores the value of the external GPIO pad associated with this register.
0: Value of the data in signal for the corresponding GPIO pad is logic low
1: Value of the data in signal for the corresponding GPIO pad is logic high

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

538 Freescale Semiconductor

It is important to note the bit ordering of the ports in the parallel port registers. The most significant bit of
the parallel port register corresponds to the least significant pin in the port.

For example in Table 24-15, the PGPDO0 register contains fields for Port A and Port B.

• Bit 0 is mapped to Port A[0], bit 1 is mapped to Port A[1] and so on, through bit 15, which is
mapped to Port A[15]

• Bit 16 is mapped to Port B[0], bit 17 is mapped to Port B[1] and so on, through bit 31, which is
mapped to Port B[15].

24.5.3.13 Parallel GPIO Pad Data In Register (PGPDI0 – PGPDI6)

The SIU_PGPDI registers are similar in operation to the PGPDIO registers, described in the previous
section (Section 24.5.3.12, “Parallel GPIO Pad Data Out Registers (PGPDO0 – PGPDO6)) but they are
used to read port pins simultaneously.

NOTE
The port pins to be read need to be configured as inputs but even if a single
pin within a port has IBE set, then you can still read that pin using the
parallel port register. However, this does mean you need to be very careful.

Reads of PGPDI registers are equivalent to reading the corresponding GPDI registers but significantly
faster since as many as two ports can be read simultaneously with a single 32-bit read operation.

Table 24-16 shows the locations and structure of the PGPDIx registers. Each 32-bit PGPDIx register
contains two 16-bit fields, each field containing the values for a separate port.

Table 24-15. PGPDO0 – PGPDO6 Register Map

Offset1

1 SIU base address is 0xC3F9_0000. To calculate register address add offset to base address

Register
Field

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x0C00 PGPDO0 Port A Port B

0x0C04 PGPDO1 Port C Port D

0x0C08 PGPDO2 Port E Port F

0x0C0C PGPDO3 Port G Port H

0x0C10 PGPDO4 Port I Port J

0x0C14 PGPDO5 Port K Port L

0x0C18 PGPDO6 Port M Reserved

Table 24-16. PGPDI0 – PGPDI6 Register Map

Offset1 Register
Field

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x0C40 PGPDI0 Port A Port B

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 539

It is important to note the bit ordering of the ports in the parallel port registers. The most significant bit of
the parallel port register corresponds to the least significant pin in the port.

For example in Table 24-16, the PGPDI0 register contains fields for Port A and Port B.

• Bit 0 is mapped to Port A[0], bit 1 is mapped to Port A[1] and so on, through bit 15, which is
mapped to Port A[15]

• Bit 16 is mapped to Port B[0], bit 17 is mapped to Port B[1] and so on, through bit 31, which is
mapped to Port B[15].

24.5.3.14 Masked Parallel GPIO Pad Data Out Register (MPGPDO0–MPGPDO12)

The MPGPDOx registers are similar in operation to the PGPDOx ports described in Section 24.5.3.12,
“Parallel GPIO Pad Data Out Registers (PGPDO0 – PGPDO6), but with two significant differences:

• The MPGPDOx registers support masked port-wide changes to the data out on the pads of the
respective port. Masking effectively allows selective bitwise writes to the full 16-bit port.

• Each 32-bit MPGPDOx register is associated to only one port.

NOTE
The MPGPDOx registers may only be accessed with 32-bit writes. 8-bit or
16-bit writes will not modify any bits in the register and will cause a transfer
error response by the module. Read accesses return ‘0’.

Table 24-17 shows the locations and structure of the MPGPDOx registers. Each 32-bit MPGPDOx register
contains two 16-bit fields (MASKx and MPPDOx). The MASK field is a bitwise mask for its associated
port. The MPPDO0 field contains the data to be written to the port.

0x0C44 PGPDI1 Port C Port D

0x0C48 PGPDI2 Port E Port F

0x0C4C PGPDI3 Port G Port H

0x0C50 PGPDI4 Port I Port J

0x0C54 PGPDI5 Port K Port L

0x0C58 PGPDI6 Port M Reserved

1 SIU base address is 0xC3F9_0000. To calculate register address add offset to base address

Table 24-17. MPGPDO0 – MPGPDO12 Register Map

Offset1 Register
Field

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x0C80 MPGPDO0 MASK0 (Port A) MPPDO0 (Port A)

0x0C84 MPGPDO1 MASK1 (Port B) MPPDO1 (Port B)

Table 24-16. PGPDI0 – PGPDI6 Register Map (continued)

Offset1 Register
Field

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

540 Freescale Semiconductor

It is important to note the bit ordering of the ports in the parallel port registers. The most significant bit of
the parallel port register corresponds to the least significant pin in the port.

For example in Table 24-17, the MPGPDO0 register contains field MASK0, which is the bitwise mask for
Port A and field MPPDO0, which contains data to be written to Port A.

• MPGPDO0[0] is the mask bit for Port A[0], MPGPDO0[1] is the mask bit for Port A[1] and so on,
through MPGPDO0[15], which is the mask bit for Port A[15]

• MPGPDO0[16] is the data bit mapped to Port A[0], MPGPDO0[17] is mapped to Port A[1] and so
on, through MPGPDO0[31], which is mapped to Port A[15].

0x0C88 MPGPDO2 MASK2 (Port C) MPPDO2 (Port C)

0x0C8C MPGPDO3 MASK3 (Port D) MPPDO3 (Port D)

0x0C90 MPGPDO4 MASK4 (Port E) MPPDO4 (Port E)

0x0C94 MPGPDO5 MASK5 (Port F) MPPDO5 (Port F)

0x0C98 MPGPDO6 MASK6 (Port G) MPPDO6 (Port G)

0x0C9C MPGPDO7 MASK7 (Port H) MPPDO7 (Port H)

0x0CA0 MPGPDO8 MASK8 (Port I) MPPDO8 (Port I)

0x0CA4 MPGPDO9 MASK9 (Port J) MPPDO9 (Port J)

0x0CA8 MPGPDO10 MASK10 (Port K) MPPDO10 (Port K)

0x0CA
C

MPGPDO11 MASK11 (Port L) MPPDO11 (Port)

0x0CB0 MPGPDO12 MASK12
(Port M)

Reserved MPPDO12
(Port M)

Reserved

1 SIU base address is 0xC3F9_0000. To calculate register address add offset to base address

Table 24-18. MPGPDO0..MPGPDO12 field descriptions

Field Description

MASKx
[15:0]

Mask Field
Each bit corresponds to one data bit in the MPPDOx register at the same bit location.
0: Associated bit value in the MPPDOxfield is ignored
1: Associated bit value in the MPPDOx field is written

MPPDOx
[15:0]

Masked Parallel Pad Data Out
Write the data register that stores the value to be driven on the pad in output mode.
Accesses to this register location are coherent with accesses to the bitwise GPIO Pad Data Output
Registers (GPDO0_3–GPDO196_199).
The x and bit index define which MPPDO register bit is equivalent to which PDO register bit
according to the following equation:
MPPDO[x][y] = PDO[(x*16)+y]

Table 24-17. MPGPDO0 – MPGPDO12 Register Map (continued)

Offset1 Register
Field

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 541

24.5.3.15 Interrupt Filter Maximum Counter Registers (IFMC0–IFMC23)

These registers are used to configure the filter counter associated with each digital glitch filter.

NOTE
For the pad transition to trigger an interrupt it must be steady for at least the
filter period.

24.5.3.16 Interrupt Filter Clock Prescaler Register (IFCPR)

This register is used to configure a clock prescaler which is used to select the clock for all digital filter
counters in the SIUL.

Offsets: 0x1000–0x105C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
MAXCNTx

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-13. Interrupt Filter Maximum Counter Registers (IFMC0–IFMC23)

Table 24-19. IFMC field descriptions

Field Description

MAXCNTx Maximum Interrupt Filter Counter setting
Filter Period = T(CK)*3 (for 2 < MAXCNT < 6)
Filter Period = T(CK)*MAXCNTx (for MAXCNT = 6,7,.... 15)
For MAXCNT = 0, 1, 2 the filter behaves as ALL PASS filter.
MAXCNTx can be 0 to 15;
T(CK): Prescaled Filter Clock Period, which is IRC clock prescaled to IFCP value;
T(IRC): Basic Filter Clock Period: 62.5 ns (F = 16 MHz).

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

542 Freescale Semiconductor

24.5.3.17 Parallel Input Select Register (PISR0—PISR15)

The SIUL includes 4 groups of 16:1 multiplexers (32 multiplexers in each group) that are used to route 32
eMIOS PWM output signals to a 32-bit serialisation register in each of 4 DSPI modules:

• 32 eMIOS_0 signals serialized to DSPI_0

• 32 eMIOS_1 signals serialized to DSPI_1

• 32 eMIOS_0 signals serialized to DSPI_2

• 32 eMIOS_1 signals serialized to DSPI_3

For maximum flexibility, rather than fixing the 32 channels within an eMIOS module to a specified output,
the source channel can be chosen from one of 16 options via the 16:1 multiplexer. This is organised such
that the default channel is always the same as the output number (for example, eMIOS channel 0 for output
0) but you can also choose one of the previous 8 channel numbers or one of the next 7. The IPSx field
determines the channel selection for each of the 32 channels and is based on a signed integer value (–8 to
+7). The IPSx bitfields are contained within a set of 32-bit PISR (Parallel Input Select Registers) with 8
IPSx fields per register. This means that for each group, there are 4 PISR registers needed to contain the
full 32 IPSx bitfields:

• PISR[0..3] for eMIOS_0 to DSPI_0

• PISR[4..7] for eMIOS_1 to DSPI_1

• PISR[8..11] for eMIOS_0 to DSPI_2

• PISR[12..15] for eMIOS_1 to DSPI_3

Offset:0x1080 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
IFCP

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-14. Interrupt Filter Clock Prescaler Register (IFCPR)

Table 24-20. IFCPR field descriptions

Field Description

IFCP Interrupt Filter Clock Prescaler setting
Prescaled Filter Clock Period = T(FIRC) x (IFCP + 1)
T(FIRC) is the fast internal RC oscillator period.
IFCP can be 0 to 15.

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 543

The PISRs are shown in Figure 24-15 through Figure 24-30.
Offset: 0x1100 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
IPS0 IPS1 IPS2 IPS3

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
IPS4 IPS5 IPS6 IPS7

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-15. Parallel Input Select Register 0 (PISR0)

Offset: 0x1104 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
IPS8 IPS9 IPS10 IPS11

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
IPS12 IPS13 IPS14 IPS15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-16. Parallel Input Select Register 1 (PISR1)

Offset: 0x1108 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
IPS16 IPS17 IPS18 IPS19

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
IPS20 IPS21 IPS22 IPS23

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-17. Parallel Input Select Register 2 (PISR2)

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

544 Freescale Semiconductor

Offset: 0x110C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
IPS24 IPS25 IPS26 IPS27

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
IPS28 IPS29 IPS30 IPS31

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-18. Parallel Input Select Register 3 (PISR3)

Offset: 0x1110 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
IPS0 IPS1 IPS2 IPS3

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
IPS4 IPS5 IPS6 IPS7

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-19. Parallel Input Select Register 4 (PISR4)

Offset: 0x1114 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
IPS8 IPS9 IPS10 IPS11

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
IPS12 IPS13 IPS14 IPS15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-20. Parallel Input Select Register 5 (PISR5)

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 545

Offset: 0x1118 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
IPS16 IPS17 IPS18 IPS19

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
IPS20 IPS21 IPS22 IPS23

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-21. Parallel Input Select Register 6 (PISR6)

Offset: 0x111C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
IPS24 IPS25 IPS26 IPS27

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
IPS28 IPS29 IPS30 IPS31

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-22. Parallel Input Select Register 7 (PISR7)

Offset: 0x1120 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
IPS0 IPS1 IPS2 IPS3

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
IPS4 IPS5 IPS6 IPS7

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-23. Parallel Input Select Register 8 (PISR8)

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

546 Freescale Semiconductor

Offset: 0x1124 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
IPS8 IPS9 IPS10 IPS11

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
IPS12 IPS13 IPS14 IPS15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-24. Parallel Input Select Register 9 (PISR9)

Offset: 0x1128 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
IPS16 IPS17 IPS18 IPS19

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
IPS20 IPS21 IPS22 IPS23

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-25. Parallel Input Select Register 10 (PISR10)

Offset: 0x112C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
IPS24 IPS25 IPS26 IPS27

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
IPS28 IPS29 IPS30 IPS31

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-26. Parallel Input Select Register 11 (PISR11)

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 547

Offset: 0x1130 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
IPS0 IPS1 IPS2 IPS3

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
IPS4 IPS5 IPS6 IPS7

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-27. Parallel Input Select Register 12 (PISR12)

Offset: 0x1134 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
IPS8 IPS9 IPS10 IPS11

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
IPS12 IPS13 IPS14 IPS15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-28. Parallel Input Select Register 13 (PISR13)

Offset: 0x1138 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
IPS16 IPS17 IPS18 IPS19

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
IPS20 IPS21 IPS22 IPS23

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-29. Parallel Input Select Register 14 (PISR14)

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

548 Freescale Semiconductor

Figure 24-31 shows the multiplexing scheme for the 1st group. This is mirrored for each subsequent group.

Figure 24-31. eMIOS_0 to DSPI_0 serialization

The table below shows the available eMIOS channel inputs for each output channel and provides an easy
way of configuring the multiplexing. To use the table:

1. Select which group you are interested in (from one of the 4 PISR register set columns).

Offset: 0x1140 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
IPS24 IPS25 IPS26 IPS27

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
IPS28 IPS29 IPS30 IPS31

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-30. Parallel Input Select Register 15 (PISR15)

eMIOS 0

Ch{[24:31],[0:7]}
IP

S0

Ch{[25:31],[0:8]}

Ch{[22:31],[0:6]}

IP
S1

IP
S3

0
IP

S3
1Ch{[23:31],[0:7]}

Ch [31:0]
PWM Outputs

DSPI 0

32-bit
SDR

register

Output 0

Output 1

Output 30

Output 31

PISR[0..3]

M
em

o
ry m

ap
 an

d
 reg

ister d
escrip

tio
n

M
P

C
5646C

 M
icro

co
n

tro
ller R

eferen
ce M

an
u

al, R
ev. 5

F
reescale S

em
iconductor

549

2. Select the output you wish to configure.
Each row of the table is a corresponding output. The IPSx number is the same as the output number. The number of the PISR
register that needs to be configured can be extracted from the "PISR register set column".

3. Choose the input eMIOS channel for that output from the "Resultant eMIOS channel number column".
The IPSx multiplexer value can be obtained for that output by tracing up to the top of the column.

4. Write the IPSx register value obtained in step 3 to the PISR and IPSx bitfield defined in step (2).

5. Repeat for all outputs.

Table 24-21. eMIOS channel inputs for each output channel

PISR number
IPSx
mux
field

IPSx field value and integer equivalent

8 9 A B C D E F 0 1 2 3 4 5 6 7

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

eMIOS_
0 to

DSPI_0

eMIOS_
1 to

DSPI_1

eMIOS_
0 to

DSPI_3

eMIOS_
1 to

DSPI_4
Resultant eMIOS channel number

0 4 8 12 0 24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7

0 4 8 12 1 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7 8

0 4 8 12 2 26 27 28 29 30 31 0 1 2 3 4 5 6 7 8 9

0 4 8 12 3 27 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10

0 4 8 12 4 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11

0 4 8 12 5 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11 12

0 4 8 12 6 30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 4 8 12 7 31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 5 9 13 8 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 5 9 13 9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 5 9 13 10 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

M
P

C
5646C

 M
icro

co
n

tro
ller R

eferen
ce M

an
u

al, R
ev. 5

M
em

o
ry m

ap
 an

d
 reg

ister d
escrip

tio
n

F
reescale S

em
iconductor

550

1 5 9 13 11 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 5 9 13 12 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 5 9 13 13 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 5 9 13 14 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 5 9 13 15 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

2 6 10 14 16 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

2 6 10 14 17 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

2 6 10 14 18 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

2 6 10 14 19 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

2 6 10 14 20 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

2 6 10 14 21 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

2 6 10 14 22 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

2 6 10 14 23 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

3 7 11 15 24 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

3 7 11 15 25 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0

3 7 11 15 26 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 1

3 7 11 15 27 19 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2

3 7 11 15 28 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3

3 7 11 15 29 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4

3 7 11 15 30 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 5

3 7 11 15 31 23 24 25 26 27 28 29 30 31 0 1 2 3 4 5 6

Table 24-21. eMIOS channel inputs for each output channel (continued)

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 551

24.5.3.18 DSPI Input Select Register (DISR)

A device shall allow DSPIs 0, 1, 2 and 3 to be serial and parallel chained. The DISR registers specifies the
source of each DSPI data input, slave select, clock input, and trigger input to enable serial and parallel
chaining of the DSPI modules.

Offset: 0x1200 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SINSEL0 SSSSEL0 SCKSEL0 TRIGSEL0 SINSEL1 SSSSEL1 SCKSEL1 TRIGSEL1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
SINSEL2 SSSSEL2 SCKSEL2 TRIGSEL2 SINSEL3 SSSSEL3 SCKSEL3 TRIGSEL3

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 24-32. DSPI Input Select Register (DISR)

Table 24-22. DISR field descriptions

Field Description

SINSEL0 DSPI0 data input select. Specifies the source of DSPI0 data input.
00 DSPI0_SIN pin
01 DSPI1_SOUT
10 DSPI2_SOUT
11 DSPI3_SOUT

SSSEL0 DSPI0 slave select input select. Specifies the source of the DSPI0 slave select input.
00 DSPI0_PCS[0]/SS pin
01 DSPI1_PCS[0] (Master)
10 DSPI2_PCS[0] (Master)
11 DSPI3_PCS[0] (Master)

SCKSEL0 DSPI0 clock input select. Specifies the source of the DSPI0 clock input.
00 DSPI0 SCK pin
01 DSPI1_SCK (Master)
10 DSPI2_SCK (Master)
11 DSPI3_SCK (Master)

TRIGSEL0 DSPI0 trigger input select. Specifies the source of the DSPI_0 trigger input for master or slave
mode.
01 DSPI1_PCS[4]/MTRIG
10 DSPI2_PCS[4]/MTRIG
11 DSPI3_PCS[4]/MTRIG

SINSEL1 DSPI1 data input select. Specifies the source of DSPI1 data input.
00 DSPI1_SIN pin
01 DSPI0_SOUT
10 DSPI2_SOUT
11 DSPI3_SOUT

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

552 Freescale Semiconductor

SSSEL1 DSPI1 slave select input select. Specifies the source of the DSPI1 slave select input.
00 DSPI1_PCS1[0]/SS pin
01 DSPI0_PCS[0] (Master)
10 DSPI2_PCS[0] (Master)
11 DSPI3_PCS[0] (Master)

SCKSEL1 DSP1 clock input select. Specifies the source of the DSPI1 clock input.
00 DSPI1_SCK pin
01 DSPI0_SCK(Master)
10 DSPI2_SCK (Master)
11 DSPI3_SCK (Master)

TRIGSEL1 DSPI1 trigger input select. Specifies the source of the DSPI1 trigger
input for master or slave mode.
01 DSPI0_PCS[4]/MTRIG
10 DSPI2_PCS[4]/MTRIG
11 DSPI3_PCS[4]/MTRIG

SINSEL2 DSPI2 data input select. Specifies the source of DSPI2 data input.
00 DSPI2_SIN pin
01 DSPI0_SOUT
10 DSPI1_SOUT
11 DSPI3_SOUT

SSSEL2 DSPI2 slave select input select. Specifies the source of the DSPI2 slave select input.
00 DSPI2_PCS2[0]/SS pin
01 DSPI0_PCS[0] (Master)
10 DSPI1_PCS[0] (Master)
11 DSPI3_PCS[0] (Master)

SCKSEL2 DSPI2 clock input select. Specifies the source of the DSPI2 clock input.
00 DSPI2_SCK pin
01 DSPI0_SCK (Master)
10 DSPI1_SCK (Master)
11 DSPI3_SCK (Master)

TRIGSEL2 DSPI2 trigger input select. Specifies the source of the DSPI2 trigger
input for master or slave mode.
01 DSPI0_PCS[4]/MTRIG
10 DSPI1_PCS[4]/MTRIG
11 DSPI3_PCS[4]/MTRIG

SINSEL3 DSPI3 data input select. Specifies the source of DSPI3 data input.
00 DSPI3_SIN pin
01 DSPI0_SOUT
10 DSPI1_SOUT
11 DSPI2_SOUT

SSSEL3 DSPI3 slave select input select. Specifies the source of the DSPI3 slave select input.
00 DSPI3_PCS[0]/SS pin
01 DSPI0_PCS[0] (Master)
10 DSPI1_PCS[0] (Master)
11 DSPI2_PCS[0] (Master)

Table 24-22. DISR field descriptions (continued)

Field Description

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 553

24.6 Functional description

24.6.1 Pad control

The SIUL controls the configuration and electrical characteristic of the device pads. It provides a
consistent interface for all pads, both on a by-port and a by-bit basis. The pad configuration registers
(PCRn, see Section 24.5.3.8, “Pad Configuration Registers (PCR0–PCR198)) allow software control of
the static electrical characteristics of external pins with a single write. These are used to configure the
following pad features:

• Open drain output enable

• Slew rate control

• Pull control

• Pad assignment

• Control of analog path switches

• Safe mode behavior configuration

24.6.2 General purpose input and output pads (GPIO)

The SIUL manages up to 199 GPIO pads organized as ports that can be accessed for data reads and writes
as 32, 16 or 8-bit.1

As shown in Figure 24-33, all port accesses are identical with each read or write being performed only at
a different location to access a different port width.

SCKSEL3 DSPI3 clock input select. Specifies the source of the DSPI3 clock input.
00 DSPI3_SCK pin
01 DSPI0_SCK (Master)
10 DSPI1_SCK (Master)
11 DSPI2_SCK (Master)

TRIGSEL3 DSPI3 trigger input select. Specifies the source of the DSPI3 trigger
input for master or slave mode.
01 DSPI0_PCS[4]/MTRIG
10 DSPI1_PCS[4]/MTRIG
11 DSPI2_PCS[4]/MTRIG

1.There are exceptions. Some pads, e.g., precision analog pads, are input only.

Table 24-22. DISR field descriptions (continued)

Field Description

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

554 Freescale Semiconductor

Figure 24-33. Data Port example arrangement showing configuration for different port width accesses

The SIUL has separate data input (GPDIn_n, see Section 24.5.3.11, “GPIO Pad Data Input Registers
(GPDI0_3–GPDI196_199)) and data output (GPDOn_n, see Section 24.5.3.10, “GPIO Pad Data Output
Registers (GPDO0_3–GPDO196_199)) registers for all pads, allowing the possibility of reading back an
input or output value of a pad directly. This supports the ability to validate what is present on the pad rather
than simply confirming the value that was written to the data register by accessing the data input registers.

Data output registers allow an output pad to be driven high or low (with the option of push-pull or open
drain drive). Input registers are read-only and reflect the respective pad value. When the pad is configured
to use one of its alternate functions, the data input value reflects the respective value of the pad. If a write
operation is performed to the data output register for a pad configured as an alternate function (non-GPIO),
this write will not be reflected by the pad value until reconfigured to GPIO.

The allocation of what input function is connected to the pin is defined by the PSMI registers (PCRn, see
Section 24.5.3.9, “Pad Selection for Multiplexed Inputs Registers (PSMI0_3–PSMI64_67))

24.6.3 External interrupts

The SIUL supports 24 external interrupts, EIRQ0–EIRQ23. In the signal description chapter of this
reference manual, mapping is shown for external interrupts to pads.

The SIUL supports three interrupt vectors to the interrupt controller. Each vector interrupt has eight
external interrupts combined together with the presence of flag generating an interrupt for that vector if
enabled. All of the external interrupt pads within a single group have equal priority.

Refer to Figure 24-34 for an overview of the external interrupt implementation.

31 23

SIUL Base+ 0x0C00

15 7 0

SIUL Base+
15 7 0

SIUL Base+
15 7 0

SIUL Base+
7 0

0x0C03
SIUL Base+

0x0C02
SIUL Base+

0x0C01
SIUL Base+

0x0C00

0x0C02 0x0C00

8-bit Access

32-bit Access (2 ports)

16-bit Access (full port) 16-bit Access (full port)

(half port)

7 0
8-bit Access
(half port)

7 0
8-bit Access

7 0
8-bit Access

(half port) (half port)

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 555

Figure 24-34. External interrupt pad diagram

Each interrupt can be enabled or disabled independently. This can be performed using the IRER. A pad
defined as an external interrupt can be configured to recognize interrupts with an active rising edge, an
active falling edge or both edges being active. A setting of having both edge events disabled is reserved
and should not be configured.

The active EIRQ edge is controlled through the configuration of the registers IREER and IFEER.

Each external interrupt supports an individual flag which is held in the ISR. This register is a
clear-by-write-1 register type, preventing inadvertent overwriting of other flags in the same register.

24.7 Pin muxing
For pin muxing, please refer to the signal description chapter of this reference manual.

EIF[23:16] EIF[15:8] EIF[7:0]

IRE[23:0](1)

Pads

IREE[23:0](1)

Interrupt Edge Enable

IFEE[23:0](1)
Falling

Rising
Edge Detection

Glitch Filter

Interrupt enable

OR OR OR

IRQ_23_16 IRQ_15_08 IRQ_07_00

Interrupt
Vectors

IFE[23:0]

MAXCOUNT[x]

IRQ Glitch Filter enable

Glitch filter Counter_n

IFCP[3:0]

Glitch filter Prescaler

In
te

rr
up

t
C

on
tr

ol
le

r

Chapter 24 System Integration Unit Lite (SIUL)

MPC5646C Microcontroller Reference Manual, Rev. 5

556 Freescale Semiconductor

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 557

——— Communication modules ———

MPC5646C Microcontroller Reference Manual, Rev. 5

558 Freescale Semiconductor

THE PAGE IS INTENTIONALLY LEFT BLANK

Chapter 25 Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 559

Chapter 25
Inter-Integrated Circuit Bus Controller Module (I2C)

25.1 Introduction

25.1.1 Overview

The Inter-Integrated Circuit (I2C™ or IIC) bus is a two wire bidirectional serial bus that provides a simple
and efficient method of data exchange between devices. It minimizes the number of external connections
to devices and does not require an external address decoder.

This bus is suitable for applications requiring occasional communications over a short distance between a
number of devices. It also provides flexibility, allowing additional devices to be connected to the bus for
further expansion and system development.

The interface is designed to operate up to 100 kbps in Standard Mode and 400 Kbps in Fast Mode. The
device is capable of operating at higher baud rates, up to a maximum of module clock/20 with reduced bus
loading. Actual baud rate can be less than the programmed baud rate and is dependent on the SCL rise
time. SCL rise time is dependent on the external pullup resistor value and bus loading. The maximum
communication length and the number of devices that can be connected are limited by a maximum bus
capacitance of 400 pF.

25.1.2 Features

The I2C module has the following key features:

• Compatible with I2C Bus standard

• Multi-master operation

• Software programmable for one of 256 different serial clock frequencies

• Software selectable acknowledge bit

• Interrupt driven byte-by-byte data transfer

• Arbitration lost interrupt with automatic mode switching from master to slave

• Calling address identification interrupt

• Start and stop signal generation/detection

• Repeated start signal generation

• Acknowledge bit generation/detection

• Bus busy detection

Features currently not supported:

• No support for general call address

• Not compliant to ten-bit addressing

Chapter 25 Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5646C Microcontroller Reference Manual, Rev. 5

560 Freescale Semiconductor

25.1.3 Block diagram

The block diagram of the I2C module is shown in Figure 25-1.

Figure 25-1. I2C block diagram

25.2 External signal description
The Inter-Integrated Circuit (I2C) module has two external pins, SCL and SDA.

25.2.1 SCL

This is the bidirectional Serial Clock Line (SCL) of the module, compatible with the I2C-Bus specification.

25.2.2 SDA

This is the bidirectional Serial Data line (SDA) of the module, compatible with the I2C-Bus specification.

25.3 Memory map and register description

25.3.1 Module memory map

The memory map for the I2C module is given below in Table 25-1. The total address for each register is
the sum of the base address for the I2C module and the address offset for each register.

In/Out
Data
Shift
Register

Address
Compare

SDA

Interrupt

Clock
Control

Start
Stop
Arbitration
Control

SCL

bus_clock

I2C

Registers

Chapter 25 Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 561

NOTE
All these registers are accessible only in Supervisor mode.

All registers are accessible via 8-bit, 16-bit or 32-bit accesses. However, 16-bit accesses must be aligned
to 16-bit boundaries, and 32-bit accesses must be aligned to 32-bit boundaries. As an example, the IBDF
register for the frequency divider is accessible by a 16-bit read/write to address Base + 0x000, but
performing a 16-bit access to Base + 0x001 is illegal.

25.3.2 I2C Bus Address Register (IBAD)

This register contains the address the I2C bus will respond to when addressed as a slave; note that it is not
the address sent on the bus during the address transfer.

Table 25-1. I2C memory map

Base address: 0xFFE3_0000

Address offset Register Location

0x0 I2C Bus Address Register (IBAD) on page 561

0x1 I2C Bus Frequency Divider Register (IBFD) on page 562

0x2 I2C Bus Control Register (IBCR) on page 568

0x3 I2C Bus Status Register (IBSR) on page 569

0x4 I2C Bus Data I/O Register (IBDR) on page 570

0x5 I2C Bus Interrupt Config Register (IBIC) on page 571

Offset 0x0 Access: Read/write any time

7 6 5 4 3 2 1 0

R
ADR

0

W

Reset 0 0 0 0 0 0 0 0

Figure 25-2. I2C Bus Address Register (IBAD)

Table 25-2. IBAD field descriptions

Field Description

ADR Slave Address. Specific slave address to be used by the I2C Bus module.
Note: The default mode of I2C Bus is slave mode for an address match on the bus.

Chapter 25 Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5646C Microcontroller Reference Manual, Rev. 5

562 Freescale Semiconductor

25.3.3 I2C Bus Frequency Divider Register (IBFD)

Offset 0x1 Access: Read/write any time

7 6 5 4 3 2 1 0

R
IBC

W

Reset 0 0 0 0 0 0 0 0

Figure 25-3. I2C Bus Frequency Divider Register (IBFD)

Table 25-3. IBFD field descriptions

Field Description

IBC I-Bus Clock Rate. This field is used to prescale the clock for bit rate selection. The bit clock generator is
implemented as a prescale divider. The IBC bits are decoded to give the Tap and Prescale values as
follows:
7–6 select the prescaled shift register (see Table 25-4)
5–3 select the prescaler divider (see Table 25-5)
2–0 select the shift register tap point (see Table 25-6)

Table 25-4. I-Bus multiplier factor

IBC7–6 MUL

00 01

01 02

10 04

11 RESERVED

Table 25-5. I-Bus prescaler divider values

IBC5–3
scl2start
(clocks)

scl2stop
(clocks)

scl2tap
(clocks)

tap2tap
(clocks)

000 2 7 4 1

001 2 7 4 2

010 2 9 6 4

011 6 9 6 8

100 14 17 14 16

101 30 33 30 32

110 62 65 62 64

111 126 129 126 128

Chapter 25 Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 563

The number of clocks from the falling edge of SCL to the first tap (Tap[1]) is defined by the values shown
in the scl2tap column of Table 25-5. All subsequent tap points are separated by 2IBC5-3 as shown in the
tap2tap column in Table 25-5. The SCL Tap is used to generate the SCL period and the SDA Tap is used
to determine the delay from the falling edge of SCL to the change of state of SDA i.e. the SDA hold time.

Figure 25-4. SDA hold time

Table 25-6. I-Bus tap and prescale values

IBC2-0
SCL Tap
(clocks)

SDA Tap
(clocks)

000 5 1

001 6 1

010 7 2

011 8 2

100 9 3

101 10 3

110 12 4

111 15 4

 SCL Divider

SDA Hold

SCL

SDA

Chapter 25 Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5646C Microcontroller Reference Manual, Rev. 5

564 Freescale Semiconductor

Figure 25-5. SCL divider and SDA hold

The equation used to generate the divider values from the IBFD bits is:

SCL Divider = MUL x {2 x (scl2tap + [(SCL_Tap -1) x tap2tap] + 2)} Eqn. 25-1

The SDA hold delay is equal to the CPU clock period multiplied by the SDA Hold value shown in
Table 25-7. The equation used to generate the SDA Hold value from the IBFD bits is:

SDA Hold = MUL x {scl2tap + [(SDA_Tap - 1) x tap2tap] + 3} Eqn. 25-2

The equation for SCL Hold values to generate the start and stop conditions from the IBFD bits is:

SCL Hold(start) = MUL x [scl2start + (SCL_Tap - 1) x tap2tap] Eqn. 25-3

SCL Hold(stop) = MUL x [scl2stop + (SCL_Tap - 1) x tap2tap] Eqn. 25-4

SDA

 SCL

START condition STOP condition

SCL Hold(start) SCL Hold(stop)

Chapter 25 Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 565

Table 25-7. I2C divider and hold values

IBC7–0
(hex)

SCL divider
(clocks)

SDA hold
(clocks)

SCL hold
(start)

SCL hold
(stop)

M
U

L
 =

 1

00 20 7 6 11
01 22 7 7 12
02 24 8 8 13
03 26 8 9 14
04 28 9 10 15
05 30 9 11 16
06 34 10 13 18
07 40 10 16 21
08 28 7 10 15
09 32 7 12 17
0A 36 9 14 19
0B 40 9 16 21
0C 44 11 18 23
0D 48 11 20 25
0E 56 13 24 29
0F 68 13 30 35
10 48 9 18 25
11 56 9 22 29
12 64 13 26 33
13 72 13 30 37
14 80 17 34 41
15 88 17 38 45
16 104 21 46 53
17 128 21 58 65
18 80 9 38 41
19 96 9 46 49
1A 112 17 54 57
1B 128 17 62 65
1C 144 25 70 73
1D 160 25 78 81
1E 192 33 94 97
1F 240 33 118 121
20 160 17 78 81
21 192 17 94 97
22 224 33 110 113
23 256 33 126 129
24 288 49 142 145
25 320 49 158 161
26 384 65 190 193
27 480 65 238 241
28 320 33 158 161
29 384 33 190 193
2A 448 65 222 225
2B 512 65 254 257
2C 576 97 286 289
2D 640 97 318 321
2E 768 129 382 385
2F 960 129 478 481
30 640 65 318 321
31 768 65 382 385
32 896 129 446 449
33 1024 129 510 513
34 1152 193 574 577
35 1280 193 638 641
36 1536 257 766 769
37 1920 257 958 961
38 1280 129 638 641
39 1536 129 766 769
3A 1792 257 894 897
3B 2048 257 1022 1025
3C 2304 385 1150 1153
3D 2560 385 1278 1281
3E 3072 513 1534 1537
3F 3840 513 1918 1921

Chapter 25 Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5646C Microcontroller Reference Manual, Rev. 5

566 Freescale Semiconductor

M
U

L
 =

 2

40 40 14 12 22
41 44 14 14 24
42 48 16 16 26
43 52 16 18 28
44 56 18 20 30
45 60 18 22 32
46 68 20 26 36
47 80 20 32 42
48 56 14 20 30
49 64 14 24 34
4A 72 18 28 38
4B 80 18 32 42
4C 88 22 36 46
4D 96 22 40 50
4E 112 26 48 58
4F 136 26 60 70
50 96 18 36 50
51 112 18 44 58
52 128 26 52 66
53 144 26 60 74
54 160 34 68 82
55 176 34 76 90
56 208 42 92 106
57 256 42 116 130
58 160 18 76 82
59 192 18 92 98
5A 224 34 108 114
5B 256 34 124 130
5C 288 50 140 146
5D 320 50 156 162
5E 384 66 188 194
5F 480 66 236 242
60 320 28 156 162
61 384 28 188 194
62 448 32 220 226
63 512 32 252 258
64 576 36 284 290
65 640 36 316 322
66 768 40 380 386
67 960 40 476 482
68 640 28 316 322
69 768 28 380 386
6A 896 36 444 450
6B 1024 36 508 514
6C 1152 44 572 578
6D 1280 44 636 642
6E 1536 52 764 770
6F 1920 52 956 962
70 1280 36 636 642
71 1536 36 764 770
72 1792 52 892 898
73 2048 52 1020 1026
74 2304 68 1148 1154
75 2560 68 1276 1282
76 3072 84 1532 1538
77 3840 84 1916 1922
78 2560 36 1276 1282
79 3072 36 1532 1538
7A 3584 68 1788 1794
7B 4096 68 2044 2050
7C 4608 100 2300 2306
7D 5120 100 2556 2562
7E 6144 132 3068 3074
7F 7680 132 3836 3842

Table 25-7. I2C divider and hold values (continued)

IBC7–0
(hex)

SCL divider
(clocks)

SDA hold
(clocks)

SCL hold
(start)

SCL hold
(stop)

Chapter 25 Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 567

M
U

L
 =

 4

80 80 28 24 44
81 88 28 28 48
82 96 32 32 52
83 104 32 36 56
84 112 36 40 60
85 120 36 44 64
86 136 40 52 72
87 160 40 64 84
88 112 28 40 60
89 128 28 48 68
8A 144 36 56 76
8B 160 36 64 84
8C 176 44 72 92
8D 192 44 80 100
8E 224 52 96 116
8F 272 52 120 140
90 192 36 72 100
91 224 36 88 116
92 256 52 104 132
93 288 52 120 148
94 320 68 136 164
95 352 68 152 180
96 416 84 184 212
97 512 84 232 260
98 320 36 152 164
99 384 36 184 196
9A 448 68 216 228
9B 512 68 248 260
9C 576 100 280 292
9D 640 100 312 324
9E 768 132 376 388
9F 960 132 472 484
A0 640 68 312 324
A1 768 68 376 388
A2 896 132 440 452
A3 1024 132 504 516
A4 1152 196 568 580
A5 1280 196 632 644
A6 1536 260 760 772
A7 1920 260 952 964
A8 1280 132 632 644
A9 1536 132 760 772
AA 1792 260 888 900
AB 2048 260 1016 1028
AC 2304 388 1144 1156
AD 2560 388 1272 1284
AE 3072 516 1528 1540
AF 3840 516 1912 1924
30 2560 260 1272 1284
B1 3072 260 1528 1540
B2 3584 516 1784 1796
B3 4096 516 2040 2052
B4 4608 772 2296 2308
B5 5120 772 2552 2564
B6 6144 1028 3064 3076
B7 7680 1028 3832 3844
B8 5120 516 2552 2564
B9 6144 516 3064 3076
BA 7168 1028 3576 3588
BB 8192 1028 4088 4100
BC 9216 1540 4600 4612
BD 10240 1540 5112 5124
BE 12288 2052 6136 6148
BF 15360 2052 7672 7684

Table 25-7. I2C divider and hold values (continued)

IBC7–0
(hex)

SCL divider
(clocks)

SDA hold
(clocks)

SCL hold
(start)

SCL hold
(stop)

Chapter 25 Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5646C Microcontroller Reference Manual, Rev. 5

568 Freescale Semiconductor

25.3.4 I2C Bus Control Register (IBCR)

Offset 0x2 Access: Read/write any time

7 6 5 4 3 2 1 0

R
MDIS IBIE MSSL TXRX NOACK

0
DMAEN

0

W RSTA

Reset 1 0 0 0 0 0 0 0

Figure 25-6. I2C Bus Control Register (IBCR)

Table 25-8. IBCR field descriptions

Field Description

MDIS Module disable. This bit controls the software reset of the entire I2C Bus module.
1 The module is reset and disabled. This is the power-on reset situation. When high, the interface is

held in reset, but registers can still be accessed. Status register bits (IBSR) are not valid when
module is disabled.

0 The I2C Bus module is enabled. This bit must be cleared before any other IBCR bits have any effect
Note: If the I2C Bus module is enabled in the middle of a byte transfer, the interface behaves as follows:

slave mode ignores the current transfer on the bus and starts operating whenever a subsequent
start condition is detected. Master mode will not be aware that the bus is busy, hence if a start
cycle is initiated then the current bus cycle may become corrupt. This would ultimately result in
either the current bus master or the I2C Bus module losing arbitration, after which, bus operation
would return to normal.

IBIE I-Bus Interrupt Enable.
1 Interrupts from the I2C Bus module are enabled. An I2C Bus interrupt occurs provided the IBIF bit in

the status register is also set.
0 Interrupts from the I2C Bus module are disabled. Note that this does not clear any currently pending
interrupt condition

MSSL Master/Slave mode select. Upon reset, this bit is cleared. When this bit is changed from 0 to 1, a START
signal is generated on the bus and the master mode is selected. When this bit is changed from 1 to 0,
a STOP signal is generated and the operation mode changes from master to slave. A STOP signal
should be generated only if the IBIF flag is set. MSSL is cleared without generating a STOP signal when
the master loses arbitration.
1 Master Mode
0 Slave Mode

TXRX Transmit/Receive mode select. This bit selects the direction of master and slave transfers. When
addressed as a slave this bit should be set by software according to the SRW bit in the status register.
In master mode this bit should be set according to the type of transfer required. Therefore, for address
cycles, this bit will always be high.
1 Transmit
0 Receive

NOACK Data Acknowledge disable. This bit specifies the value driven onto SDA during data acknowledge cycles
for both master and slave receivers. The I2C module will always acknowledge address matches,
provided it is enabled, regardless of the value of NOACK. Note that values written to this bit are only
used when the I2C Bus is a receiver, not a transmitter.
1 No acknowledge signal response is sent (i.e., acknowledge bit = 1)
0 An acknowledge signal will be sent out to the bus at the 9th clock bit after receiving one byte of data

Chapter 25 Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 569

25.3.5 I2C Bus Status Register (IBSR)

RSTA Repeat Start. Writing a 1 to this bit will generate a repeated START condition on the bus, provided it is
the current bus master. This bit will always be read as a low. Attempting a repeated start at the wrong
time, if the bus is owned by another master, will result in loss of arbitration.
1 Generate repeat start cycle
0 No effect

DMAEN DMA Enable. When this bit is set, the DMA TX and RX lines will be asserted when the I2C module
requires data to be read or written to the data register. No Transfer Done interrupts will be generated
when this bit is set, however an interrupt will be generated if the loss of arbitration or addressed as slave
conditions occur. The DMA mode is only valid when the I2C module is configured as a Master and the
DMA transfer still requires CPU intervention at the start and the end of each frame of data. See the DMA
Application Information section for more details.
1 Enable the DMA TX/RX request signals
0 Disable the DMA TX/RX request signals

Offset 0x3 Access: Read-write

7 6 5 4 3 2 1 0

R TCF IAAS IBB IBAL 0 SRW IBIF RXAK

W w1c w1c

Reset 1 0 0 0 0 0 0 0

Figure 25-7. I2C Bus Status Register (IBSR)

Table 25-9. IBSR Field Descriptions

Field Description

TCF Transfer complete. While one byte of data is being transferred, this bit is cleared. It is set by the falling
edge of the 9th clock of a byte transfer. Note that this bit is only valid during or immediately following a
transfer to the I2C module or from the I2C module.
1 Transfer complete
0 Transfer in progress

IAAS Addressed as a slave. When its own specific address (I-Bus Address Register) is matched with the
calling address, this bit is set. The CPU is interrupted provided the IBIE is set. Then the CPU needs to
check the SRW bit and set its Tx/Rx mode accordingly. Writing to the I-Bus Control Register clears this
bit.
1 Addressed as a slave
0 Not addressed

IBB Bus busy. This bit indicates the status of the bus. When a START signal is detected, the IBB is set. If a
STOP signal is detected, IBB is cleared and the bus enters idle state.
1 Bus is busy
0 Bus is Idle

Table 25-8. IBCR field descriptions (continued)

Field Description

Chapter 25 Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5646C Microcontroller Reference Manual, Rev. 5

570 Freescale Semiconductor

25.3.6 I2C Bus Data I/O Register (IBDR)

In master transmit mode, when data is written to IBDR, a data transfer is initiated. The most significant bit
is sent first. In master receive mode, reading this register initiates next byte data receiving. In slave mode,
the same functions are available after an address match has occurred. Note that the IBCR[TXRX] field
must correctly reflect the desired direction of transfer in master and slave modes for the transmission to
begin. For instance, if the I2C is configured for master transmit but a master receive is desired, then reading
the IBDR will not initiate the receive.

IBAL Arbitration Lost. The arbitration lost bit (IBAL) is set by hardware when the arbitration procedure is lost.
Arbitration is lost in the following circumstances:
 • SDA is sampled low when the master drives a high during an address or data transmit cycle.
 • SDA is sampled low when the master drives a high during the acknowledge bit of a data receive cycle.
 • A start cycle is attempted when the bus is busy.
 • A repeated start cycle is requested in slave mode.
 • A stop condition is detected when the master did not request it.

SRW Slave Read/Write. When IAAS is set, this bit indicates the value of the R/W command bit of the calling
address sent from the master. This bit is only valid when the I-Bus is in slave mode, a complete address
transfer has occurred with an address match and no other transfers have been initiated. By
programming this bit, the CPU can select slave transmit/receive mode according to the command of the
master.
1 Slave transmit, master reading from slave
0 Slave receive, master writing to slave

IBIF I-Bus Interrupt Flag. The IBIF bit is set when one of the following conditions occurs:
 • Arbitration lost (IBAL bit set)
 • Byte transfer complete (TCF bit set - Check w/ design if this is the case (only TCF))
 • Addressed as slave (IAAS bit set)
 • NoAck from Slave (MS & Tx bits set)
 • I2C Bus going idle (IBB high-low transition and enabled by BIIE)
A processor interrupt request will be caused if the IBIE bit is set.

RXAK Received Acknowledge. This is the value of SDA during the acknowledge bit of a bus cycle. If the
received acknowledge bit (RXAK) is low, it indicates an acknowledge signal has been received after the
completion of 8 bits data transmission on the bus. If RXAK is high, it means no acknowledge signal is
detected at the 9th clock. This bit is valid only after transfer is complete.
1 No acknowledge received
0 Acknowledge received

Offset 0x4 Access: Read/write any time

7 6 5 4 3 2 1 0

R
DATA

W

Reset 0 0 0 0 0 0 0 0

Figure 25-8. I2C Bus Data I/O Register (IBDR)

Table 25-9. IBSR Field Descriptions (continued)

Field Description

Chapter 25 Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 571

Reading the IBDR will return the last byte received while the I2C is configured in either master receive or
slave receive modes. The IBDR does not reflect every byte that is transmitted on the I2C bus, nor can
software verify that a byte has been written to the IBDR correctly by reading it back.

In master transmit mode, the first byte of data written to IBDR following assertion of MS/SL is used for
the address transfer and should comprise the calling address (in position D7–D1) concatenated with the
required R/W bit (in position D0).

25.3.7 I2C Bus Interrupt Config Register (IBIC)

25.4 DMA Interface
A simple DMA interface is implemented so that the I2C can request data transfers with minimal support
from the CPU. DMA mode is enabled by setting bit 1 in the Control Register.

Offset 0x5 Access: Read/write any time

7 6 5 4 3 2 1 0

R BIIE1

1 This bit cannot be set in reset state, when I2C is in slave mode. It can be set to 1 only when I2C is in Master mode.
This information is missing from the spec.

0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0

Figure 25-9. I2C Bus Interrupt Config Register (IBIC)

Table 25-10. IBIC field descriptions

Field Description

BIIE Bus Idle Interrupt Enable bit. This config bit can be used to enable the generation of an interrupt once
the I2C bus becomes idle. Once this bit is set, an IBB high-low transition will set the IBIF bit. This feature
can be used to signal to the CPU the completion of a STOP on the I2C bus.
1 Bus Idle Interrupts enabled
0 Bus Idle Interrupts disabled
Note: This bit cannot be set in the reset state, when the I2C is in slave mode. It can be set only when

the I2C is in master mode.

Chapter 25 Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5646C Microcontroller Reference Manual, Rev. 5

572 Freescale Semiconductor

The DMA interface is only valid when the I2C module is configured for Master Mode.

Figure 25-11. I2C module DMA interface block diagram

At least 3 bytes of data per frame must be transferred from/to the slave when using DMA mode, although
in practice it will only be worthwhile using the DMA mode when there is a large number of data bytes to
transfer per frame.

Two internal signals, TX request and RX request, are used to signal to a DMA controller when the I2C
module requires data to be written or read from the data register.

Input
Sync

In/Out
Data
Shift
Register

Address

Compare

SDA

IRQAddress

Clock

Control

Start
Stop
Arbitration
Control

CTRL_REG FREQ_REG ADDR_REG STATUS_REG DATA_REG

ADDR_DECODE DATA_MUX

Data-bus

SCL

DMA request

Chapter 25 Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 573

25.5 Functional description

25.5.1 I-Bus protocol

The I2C Bus system uses a Serial Data line (SDA) and a Serial Clock Line (SCL) for data transfer. All
devices connected to it must have open drain or open collector outputs. A logical AND function is
exercised on both lines with external pull-up resistors. The value of these resistors is system dependent.

Normally, a standard communication is composed of four parts: START signal, slave address transmission,
data transfer and STOP signal. They are described briefly in the following sections and illustrated in
Figure 25-10.

Figure 25-10. I2C bus transmission signals

25.5.1.1 START signal

When the bus is free, i.e. no master device is engaging the bus (both SCL and SDA lines are at logical
high), a master may initiate communication by sending a START signal. As shown in Figure 25-10, a
START signal is defined as a high-to-low transition of SDA while SCL is high. This signal denotes the
beginning of a new data transfer (each data transfer may contain several bytes of data) and brings all slaves
out of their idle states.

SCL

SDA

Start
Signal

Ack
Bit

1 2 3 4 5 6 7 8

MSB LSB

1 2 3 4 5 6 7 8

MSB LSB

Stop
Signal

No

SCL

SDA

1 2 3 4 5 6 7 8

MSB LSB

1 2 5 6 7 8

MSB LSB

Repeated

3 4

9 9

AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W XXX D7 D6 D5 D4 D3 D2 D1 D0

Calling Address Read/ Data Byte

AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W

New Calling Address

9 9

XX

Ack
BitWrite

Start
Signal

Start
Signal

Ack
Bit

Calling Address Read/
Write

Stop
Signal

No
Ack
Bit

Read/
Write

Chapter 25 Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5646C Microcontroller Reference Manual, Rev. 5

574 Freescale Semiconductor

Figure 25-11. Start and stop conditions

25.5.1.2 Slave address transmission

The first byte of data transfer immediately after the START signal is the slave address transmitted by the
master. This is a seven-bit calling address followed by a R/W bit. The R/W bit tells the slave the desired
direction of data transfer.

1 = Read transfer - the slave transmits data to the master

0 = Write transfer - the master transmits data to the slave

Only the slave with a calling address that matches the one transmitted by the master will respond by
sending back an acknowledge bit. This is done by pulling the SDA low at the 9th clock (see Figure 25-10).

No two slaves in the system may have the same address. If the I2C Bus is master, it must not transmit an
address that is equal to its own slave address. The I2C Bus cannot be master and slave at the same time.
However, if arbitration is lost during an address cycle the I2C Bus will revert to slave mode and operate
correctly, even if it is being addressed by another master.

25.5.1.3 Data transfer

Once successful slave addressing is achieved, the data transfer can proceed byte-by-byte in a direction
specified by the R/W bit sent by the calling master.

All transfers that come after an address cycle are referred to as data transfers, even if they carry sub-address
information for the slave device.

Each data byte is 8 bits long. Data may be changed only while SCL is low and must be held stable while
SCL is high as shown in Figure 25-10. There is one clock pulse on SCL for each data bit, the MSB being
transferred first. Each data byte must be followed by an acknowledge bit, which is signalled from the
receiving device by pulling the SDA low at the ninth clock. Therefore, one complete data byte transfer
needs nine clock pulses.

SDA

 SCL

START condition STOP condition

Chapter 25 Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 575

If the slave receiver does not acknowledge the master, the SDA line must be left high by the slave. The
master can then generate a stop signal to abort the data transfer or a start signal (repeated start) to
commence a new calling.

If the master receiver does not acknowledge the slave transmitter after a byte transmission, it means 'end
of data' to the slave, so the slave releases the SDA line for the master to generate a STOP or START signal.

25.5.1.4 STOP signal

The master can terminate the communication by generating a STOP signal to free the bus. However, the
master may generate a START signal followed by a calling command without generating a STOP signal
first. This is called repeated START. A STOP signal is defined as a low-to-high transition of SDA while
SCL is at logical “1” (see Figure 25-10).

The master can generate a STOP even if the slave has generated an acknowledge, at which point the slave
must release the bus.

25.5.1.5 Repeated START signal

As shown in Figure 25-10, a repeated START signal is a START signal generated without first generating
a STOP signal to terminate the communication. This is used by the master to communicate with another
slave or with the same slave in different mode (transmit/receive mode) without releasing the bus.

25.5.1.6 Arbitration procedure

The Inter-IC bus is a true multi-master bus that allows more than one master to be connected on it. If two
or more masters try to control the bus at the same time, a clock synchronization procedure determines the
bus clock, for which the low period is equal to the longest clock low period and the high is equal to the
shortest one among the masters. The relative priority of the contending masters is determined by a data
arbitration procedure. A bus master loses arbitration if it transmits logic “1” while another master transmits
logic “0”. The losing masters immediately switch over to slave receive mode and stop driving the SDA
output. In this case, the transition from master to slave mode does not generate a STOP condition.
Meanwhile, a status bit is set by hardware to indicate loss of arbitration.

25.5.1.7 Clock synchronization

Since wire-AND logic is performed on the SCL line, a high-to-low transition on the SCL line affects all
the devices connected on the bus. The devices start counting their low period and once a device's clock has
gone low, it holds the SCL line low until the clock high state is reached. However, the change of low to
high in this device clock may not change the state of the SCL line if another device clock is still within its
low period. Therefore, synchronized clock SCL is held low by the device with the longest low period.
Devices with shorter low periods enter a high wait state during this time (see Figure 25-12). When all
devices concerned have counted off their low period, the synchronized clock SCL line is released and
pulled high. There is then no difference between the device clocks and the state of the SCL line and all the
devices start counting their high periods. The first device to complete its high period pulls the SCL line
low again.

Chapter 25 Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5646C Microcontroller Reference Manual, Rev. 5

576 Freescale Semiconductor

Figure 25-12. I2C bus clock synchronization

25.5.1.8 Handshaking

The clock synchronization mechanism can be used as a handshake in data transfer. Slave devices may hold
the SCL low after completion of one byte transfer (9 bits). In such cases, it halts the bus clock and forces
the master clock into wait state until the slave releases the SCL line.

25.5.1.9 Clock stretching

The clock synchronization mechanism can be used by slaves to slow down the bit rate of a transfer. After
the master has driven SCL low, the slave can drive SCL low for the required period and then release it. If
the slave SCL low period is greater than the master SCL low period then the resulting SCL bus signal low
period is stretched.

25.5.2 Interrupts

25.5.2.1 General

The I2C uses only one interrupt vector.

Table 25-12. Interrupt summary

Interrupt Offset Vector Priority Source Description

I2C
Interrupt

— — — IBAL, TCF,
IAAS, IBB bits in

IBSR register

When any of IBAL, TCF or IAAS bits is set an interrupt may
be caused based on Arbitration lost, Transfer Complete or
Address Detect conditions. If enabled by BIIE, the
deassertion of IBB can also cause an interrupt, indicating
that the bus is idle.

SCL1

SCL2

SCL

Internal Counter Reset

WAIT Start Counting High Period

Chapter 25 Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 577

25.5.2.2 Interrupt description

There are five types of internal interrupts in the I2C. The interrupt service routine can determine the
interrupt type by reading the Status Register.

I2C Interrupt can be generated on

• Arbitration Lost condition (IBAL bit set)

• Byte Transfer condition (TCF bit set and DMAEN bit not set)

• Address Detect condition (IAAS bit set)

• No Acknowledge from slave received when expected

• Bus Going Idle (IBB bit not set)

The I2C interrupt is enabled by the IBIE bit in the I2C Control Register. It must be cleared by writing ‘1’
to the IBIF bit in the interrupt service routine. The Bus Going Idle interrupt needs to be additionally
enabled by the BIIE bit in the IBIC register.

25.6 Initialization/application information

25.6.1 I2C programming examples

25.6.1.1 Initialization sequence

Reset will put the I2C Bus Control Register to its default state. Before the interface can be used to transfer
serial data, an initialization procedure must be carried out, as follows:

1. Update the Frequency Divider Register (IBFD) and select the required division ratio to obtain SCL
frequency from system clock.

2. Update the I2C Bus Address Register (IBAD) to define its slave address.

3. Clear the IBCR[MDIS] field to enable the I2C interface system.

4. Modify the bits of the I2C Bus Control Register (IBCR) to select Master/Slave mode,
Transmit/Receive mode and interrupt enable or not. Optionally also modify the bits of the I2C Bus
Interrupt Config Register (IBIC) to further refine the interrupt behavior.

25.6.1.2 Generation of START

After completion of the initialization procedure, serial data can be transmitted by selecting the 'master
transmitter' mode. If the device is connected to a multi-master bus system, the state of the I2C Bus Busy
bit (IBB) must be tested to check whether the serial bus is free.

If the bus is free (IBB=0), the start condition and the first byte (the slave address) can be sent. The data
written to the data register comprises the slave calling address and the LSB, which is set to indicate the
direction of transfer required from the slave.

The bus free time (i.e., the time between a STOP condition and the following START condition) is built
into the hardware that generates the START cycle. Depending on the relative frequencies of the system

Chapter 25 Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5646C Microcontroller Reference Manual, Rev. 5

578 Freescale Semiconductor

clock and the SCL period, it may be necessary to wait until the I2C is busy after writing the calling address
to the IBDR before proceeding with the following instructions. This is illustrated in the following example.

An example of the sequence of events which generates the START signal and transmits the first byte of
data (slave address) is shown below:

while (bit 5, IBSR ==1)// wait in loop for IBB flag to clear
bit4 and bit 5, IBCR = 1// set transmit and master mode, i.e. generate start condition
IBDR = calling_address// send the calling address to the data register
while (bit 5, IBSR ==0)// wait in loop for IBB flag to be set

25.6.1.3 Post-transfer software response

Transmission or reception of a byte will set the data transferring bit (TCF) to 1, which indicates one byte
communication is finished. The I2C Bus interrupt bit (IBIF) is set also; an interrupt will be generated if the
interrupt function is enabled during initialization by setting the IBIE bit. The IBIF (interrupt flag) can be
cleared by writing 1 (in the interrupt service routine, if interrupts are used).

The TCF bit will be cleared to indicate data transfer in progress whenever data register is written to in
transmit mode, or during reading out from data register in receive mode. The TCF bit should not be used
as a data transfer complete flag as the flag timing is dependent on a number of factors including the I2C
bus frequency. This bit may not conclusively provide an indication of a transfer complete situation. It is
recommended that transfer complete situations are detected using the IBIF flag

Software may service the I2C I/O in the main program by monitoring the IBIF bit if the interrupt function
is disabled. Note that polling should monitor the IBIF bit rather than the TCF bit since their operation is
different when arbitration is lost.

Note that when a “Transfer Complete” interrupt occurs at the end of the address cycle, the master will
always be in transmit mode, i.e. the address is transmitted. If master receive mode is required, indicated
by R/W bit sent with slave calling address, then the Tx/Rx bit at Master side should be toggled at this stage.
If Master does not receive an ACK from Slave, then transmission must be re-initiated or terminated.

In slave mode, IAAS bit will get set in IBSR if Slave address (IBAD) matches the Master calling address.
This is an indication that Master-Slave data communication can now start. During address cycles
(IAAS=1), the SRW bit in the status register is read to determine the direction of the subsequent transfer
and the Tx/Rx bit is programmed accordingly. For slave mode data cycles (IAAS=0), the SRW bit is not
valid. The Tx/Rx bit in the control register should be read to determine the direction of the current transfer.

25.6.1.4 Transmit/receive sequence

Follow this sequence in case of Master Transmit (Address/Data):

1. Clear IBSR[IBIF].

2. Write data in Data Register (IBDR).

3. IBSR[TCF] bit will get cleared when transfer is in progress.

4. IBSR[TCF] bit will get set when transfer is complete.

5. Wait for IBSR[IBIF] to get set, then read IBSR register to determine its source:

— TCF = 1 i.e. transfer is complete.

Chapter 25 Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 579

— No Acknowledge condition (RXAK = 1) is found.

— IBB = 0 i.e. Bus has transitioned from Busy to Idle state.

— If IBB = 1, ignore check of Arbitration Loss (IBAL = 1).

— Ignore Address Detect (IAAS = 1) for Master mode (valid only for Slave mode).

6. f) Check RXAK in IBSR for an acknowledge from slave.

Follow this sequence in case of Slave Receive (Address/Data):

1. Clear IBSR[IBIF].

2. IBSR[TCF] will get cleared when transfer is in progress for address transfer.

3. IBSR[TCF] will get set when transfer is complete.

4. Wait for IBSR[IBIF] to get set. Then read IBSR register to determine its source:

— Address Detect has occurred (IAAS = 1) - determination of Slave mode.

5. Clear IBIF.

6. Wait until IBSR[TCF] bit gets cleared (that is, "Transfer under Progress" condition is reached for
data transfer).

7. Wait until IBSR[TCF] bit gets cleared (proof that Transfer Completes from "Transfer under
Progress" state).

8. Wait until IBSR[IBIF] bit gets set. To find its source, check if:

— TCF = 1 i.e. reception is complete

— IBSR[IBB] = 0, that is, bus has transitioned from Busy to Idle state

— Ignore Arbitration Loss (IBAL = 1) for IBB = 1

— Ignore No Acknowledge condition (RXAK = 1) for receiver

9. Read the Data Register (IBDR) to determine data received from Master.

Sequence followed in case of Slave Transmit (Steps 1–4 of Slave Receive for Address Detect, followed by
1–6 of Master Transmit for Data Transmit).

Sequence followed in case of Master Receive (Steps 1–6 of Master Transmit for Address dispatch,
followed by 5–8 of Slave Receive for Data Receive).

25.6.1.5 Generation of STOP

A data transfer ends with a STOP signal generated by the 'master' device. A master transmitter can simply
generate a STOP signal after all the data has been transmitted. The following is an example showing how
a stop condition is generated by a master transmitter.

if (tx_count == 0) or// check to see if all data bytes have been transmitted
 (bit 0, IBSR == 1) {// or if no ACK generated
 clear bit 5, IBCR// generate stop condition
 }
else {
IBDR = data_to_transmit// write byte of data to DATA register
 tx_count --// decrement counter
 }// return from interrupt

Chapter 25 Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5646C Microcontroller Reference Manual, Rev. 5

580 Freescale Semiconductor

If a master receiver wants to terminate a data transfer, it must inform the slave transmitter by not
acknowledging the last byte of data which can be done by setting the NOACK bit before reading the 2nd
last byte of data. Before reading the last byte of data, a STOP signal must first be generated. The following
is an example showing how a STOP signal is generated by a master receiver.

rx_count --// decrease the rx counter
if (rx_count ==1)// 2nd last byte to be read ?
 bit 3, IBCR = 1// disable ACK
if (rx_count == 0)// last byte to be read ?
 bit 5, IBCR = 0// generate stop signal
else
data_received = IBDR// read RX data and store

25.6.1.6 Generation of repeated START

At the end of data transfer, if the master still wants to communicate on the bus, it can generate another
START signal followed by another slave address without first generating a STOP signal. A program
example is as shown.

bit 2, IBCR = 1// generate another start (restart)
IBDR == calling_address// transmit the calling address

25.6.1.7 Slave mode

In the slave interrupt service routine, the module addressed as slave bit (IAAS) should be tested to check
if a calling of its own address has just been received. If IAAS is set, software should set the
transmit/receive mode select bit (Tx/Rx bit of IBCR) according to the R/W command bit (SRW). Writing
to the IBCR clears IAAS automatically. Note that the only time IAAS is read as set is from the interrupt
at the end of the address cycle where an address match occurred. Interrupts resulting from subsequent data
transfers will have IAAS cleared. A data transfer may now be initiated by writing information to IBDR for
slave transmits or dummy reading from IBDR in slave receive mode. The slave will drive SCL low
in-between byte transfers SCL is released when the IBDR is accessed in the required mode.

In slave transmitter routine, the received acknowledge bit (RXAK) must be tested before transmitting the
next byte of data. Setting RXAK means an 'end of data' signal from the master receiver, after which it must
be switched from transmitter mode to receiver mode by software. A dummy read then releases the SCL
line so that the master can generate a STOP signal.

25.6.1.8 Arbitration lost

If several masters try to engage the bus simultaneously, only one master wins and the others lose
arbitration. The devices that lost arbitration are immediately switched to slave receive mode by the
hardware. Their data output to the SDA line is stopped, but SCL is still generated until the end of the byte
during which arbitration was lost. An interrupt occurs at the falling edge of the ninth clock of this transfer
with IBAL=1 and MS/SL=0. If one master attempts to start transmission, while the bus is being engaged
by another master, the hardware will inhibit the transmission, switch the MS/SL bit from 1 to 0 without
generating a STOP condition, generate an interrupt to CPU and set the IBAL to indicate that the attempt
to engage the bus is failed. When considering these cases, the slave service routine should test the IBAL
first and the software should clear the IBAL bit if it is set.

Chapter 25 Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 581

Figure 25-13. Flow-Chart of Typical I2C Interrupt Routine

Clear

Master
Mode

?

Tx/Rx
?

Last Byte
Transmitted

?

RXAK=0
?

End Of
Addr Cycle
(Master Rx)

?

Write Next
Byte To IBDR

Switch To
Rx Mode

Dummy Read
From IBDR

Generate
Stop Signal

Read Data
From IBDR
And Store

Set TXAK =1 Generate
Stop Signal

2nd Last
Byte To Be Read

?

Last
Byte To Be Read

?

Arbitration
Lost

?

Clear IBAL

IAAS=1
?

IAAS=1
?

SRW=1
?

TX/RX
?

Set TX
Mode

Write Data
To IBDR

Set RX
Mode

Dummy Read
From IBDR

ACK From
Receiver

?

Tx Next
Byte

Read Data
From IBDR
And Store

Switch To
Rx Mode

Dummy Read
From IBDR

RTI

Y N

Y

Y Y

Y

Y

Y

Y

Y

Y

N

N

N

NN

N

N

N

N

Y

TX RX

RX

TX(Write)

(Read)

N

IBIF

Address Transfer Data Transfer

Chapter 25 Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5646C Microcontroller Reference Manual, Rev. 5

582 Freescale Semiconductor

25.6.2 DMA application information

The DMA interface on the I2C is not completely autonomous and requires intervention from the CPU to
start and to terminate the frame transfer. DMA mode is valid for master-transmit and master-receive modes
only. Software must ensure that the DMA enable bit in the control register is not set when the I2C module
is configured in master mode.

The DMA controller must transfer only one byte of data per Tx/Rx request. This is because there is no
FIFO on the I2C block.

The CPU should also keep the I2C interrupt enabled during a DMA transfer to detect the arbitration lost
condition and take action to recover from this situation. The DMAEN bit in the IBCR register works as a
disable for the transfer complete interrupt. This means that during normal transfers (no errors) there always
is either an interrupt or a request to the DMA controller, depending on the setting of the DMAEN bit. All
error conditions trigger an interrupt and require CPU intervention. The address match condition does not
occur in DMA mode as the I2C should never be configured for slave operation.

The following sections detail how to set up a DMA transfer and what intervention is required from the
CPU. It is assumed that the system DMA controller is capable of generating an interrupt after a certain
number of DMA transfers have taken place.

25.6.2.1 DMA mode, master transmit

Figure 25-14 details exactly the operation for using a DMA controller to transmit n data bytes to a slave.
The first byte (the slave calling address) is always transmitted by the CPU. All subsequent data bytes (apart
from the last data byte) can be transferred by the DMA controller. The last data byte must be transferred
by the CPU.

Chapter 25 Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 583

Figure 25-14. DMA mode master transmit

25.6.2.2 DMA mode, master RX

Figure 25-15 details the exact operation for using a DMA controller to receive n data bytes from a slave.
The first byte (the slave calling address) is always transmitted by the CPU. All subsequent data bytes (apart
from the two last data bytes) can be read by the DMA controller. The last two data bytes must be
transferred by the CPU.

Config I2C for
 Master TX

CPU writes calling
address to slave

interrupt
generated

Arb Lost or
No ack?

CPU handles

condition

yes

no

 CPU sets
DMAENABLE

DMA writes 1

ipd_rx_req
generated

 DMA written

 data?
(n – 1) bytes of

no

yes

 CPU clears
DMA enable

interrupt
generated

Start
Generated

 byte of data

CPU writes last

data byte

interrupt
generated

CPU clears

MS bit in CR
 Stop
generated

Chapter 25 Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5646C Microcontroller Reference Manual, Rev. 5

584 Freescale Semiconductor

Figure 25-15. DMA mode master receive

25.6.2.3 Exiting DMA mode, system requirement considerations

As described above, the final transfers of both Tx and Rx transfers need to be managed via interrupt by the
CPU. To change from DMA to interrupt driven transfers in the I2C module, disable the DMAEN bit in the
IBCR register. The trigger to exit the DMA mode is that the programmed DMA transfer control descriptor
(TCD) has completed all its transfers to/from the I2C module.

Config I2C for
 Master TX

interrupt
generated

Arb Lost or
No ack?

CPU handles

condition

yes

no

 CPU sets TX/RX
to RX

 CPU: dummy

 CPU sets
DMAENABLE

read of DATAreg

DMA reads byte

ipd_rx_req
generated

of data

 Slave TX one
 byte of data

 DMA read

 data?
(n – 2) bytes of

no

yes

 CPU clears
DMA enable

Slave TX n – 1

data byte

interrupt
generated

CPU reads n – 1
data

 CPU sets
TXACK

Slave TX last
data byte

interrupt
generated

CPU reads last
data byte

Stop
generated

Start
Generated

CPU writes calling
address to slave

Chapter 25 Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 585

After the last DMA write (TX mode) to the I2C the module immediately starts the next I2C-bus transfer.
The same is true for RX mode. After the DMA read from the IBDR register the module initiates the next
I2C-bus transfer. This results in two possible scenarios in the DMA mode exiting scheme.

1. Fast reaction

The DMAEN bit is cleared before the next I2C-bus transfer completes. In this case, the module
raises an interrupt request to the CPU that can be serviced normally.

2. Slow reaction

The DMAEN bit is cleared after the next I2C-bus transfer has already completed. In this case, the
module does not raise an interrupt request to the CPU. Instead, the TCF bit can be read to determine
that the transfer completed and the module is ready for further transfer.

25.6.2.3.1 Fast vs. slow reaction

The reaction time TR for the system to disable DMAEN after the last DMA controller access to the I2C is
the time required for one byte transfer over the I2C. In a fast reaction the disabling has to occur before the
ninth bit of the data transfer, which is the ACK bit. So the time available is eight times the SCL period.

TR = 8 x TSCL Eqn. 25-5

In fast mode, with 400 kbit/s, TSCL is 2.5 s, so TR is 20 s.

Depending on the system and DMA controller there are different possibilities for the deassertion of
DMAEN. Three options are:

1. CPU intervention via interrupt

The DMA controller is programmed to signal an interrupt to the CPU, which is then responsible
for the deassertion of DMAEN. This scheme is supported by most systems but can result in a slow
reaction time if higher priority interrupts interfere. Therefore, the interrupt handling routine can
become complicated as it has to check which of the two scenarios happened (check TCF bit) and
act accordingly. In case of slow reaction, you can force an interrupt for the I2C in the interrupt
controller to have the further transfer handled by the normal I2C interrupt routine. The use of nested
interrupts can cause problems in this scenario, if the DMA interrupt stalls between the deassertion
and the DMAEN bit and the checking of the TCF bit.

2. DMA channel linking (if supported)

The transfer control descriptor in the DMA controller that performs the data transfer is linked to
another channel that does a write to the I2C IBCR register to disable the DMAEN bit. This is
probably the fastest system solution, but it uses two DMA channels. On the system level, no higher
priority DMA requests must occur between the two linked TCDs because those can result in slow
reaction.

3. DMA scatter/gather process (if supported)

The transfer control descriptor in the DMA controller that performs the data transfer has the
scatter-gather feature activated. This feature initiates a reload of another TCD from system RAM
after the completion of the first TCD. The new TCD has its start bit already set and immediately
starts the required write to the I2C IBCR register to disable the DMAEN bit. This TCD also has
scatter-gather activated and is programmed to reload the initial TCD upon completion, bringing the

Chapter 25 Inter-Integrated Circuit Bus Controller Module (I2C)

MPC5646C Microcontroller Reference Manual, Rev. 5

586 Freescale Semiconductor

system back into a ready-for-I2C-transfer state. The advantage over the two other solutions is that
this does not require CPU intervention or a second DMA channel. This comes at the cost of 64
bytes RAM (two TCDs), some system bus transfer overhead, and a little increase in application
code complexity. On the system level, no higher priority DMA requests must occur during the
scatter-gather process because those can result in a slow reaction.

Example latencies for a 32 MHz system with a full speed 32-bit AHB bus and an I2C connected via half
speed IPI bus:

• Accessing the I2C from the DMA controller via IPI bus typically requires four cycles (consecutive
accesses to the I2C could be faster):

4 x TIPI = 4 / 16 MHz = 250 ns Eqn. 25-6

• Reloading a new TCD (8  32-bit) via AHB to the DMA controller (scatter/gather process):

8 x TAHB = 8 / 32 MHz = 250 ns Eqn. 25-7

With the DMA scatter-gather process, the required IBCR access can be done in 0.5 s, leaving a large
margin of 19.5 s for additional system delays. The slow reaction case can be prevented in this way. The
system user must decide which usage model suits his overall requirements best.

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 587

Chapter 26
LIN Controller (LINFlexD)

26.1 Introduction
The LINFlexD (Local Interconnect Network Flexible with DMA support) controller interfaces the LIN
network and supports the LIN protocol versions 1.3, 2.0, 2.1 and J2602 in both Master and Slave modes.
LINFlexD includes a LIN mode that provides additional features (compared to standard UART) to ease
LIN implementation, improve system robustness, minimize CPU load and allow slave node
resynchronization.

Figure 26-1 shows the LINFlexD block diagram.

Figure 26-1. LINFlexD block diagram

26.2 Main features
The LINFlexD controller can operate in several modes, each of which has a distinct set of features. These
distinct features are described in the following sections.

In addition, the LINFlexD controller has several features common to all modes:

• Fractional baud rate generator

LIN PROTOCOL HANDLER

REGISTER MODEL / APPLICATION INTERFACE

Buffer
Interface

LIN Status

Baud rate

Filter Config.

Message

SLAVE

LIN Control

CONFIG
CONTROL
STATUS

MESSAGE HANDLER

MASTER
MESSAGE HANDLER

ID Filters(1)

1 Filter activation optional

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

588 Freescale Semiconductor

• 3 operating modes for power saving and configuration registers lock

— Initialization

— Normal

— Sleep

• 2 test modes

— Loop Back

— Self Test

• Maskable interrupts

26.2.1 LIN mode features
• Supports LIN protocol versions 1.3, 2.0, 2.1 and J2602

• Master mode with autonomous message handling

• Classic and enhanced checksum calculation and check

• Single 8-byte buffer for transmission/reception

• Extended frame mode for In-application Programming purposes

• Wake-up event on dominant bit detection

• True LIN field state machine

• Advanced LIN error detection

• Header, response and frame timeout

• Slave mode

— Autonomous header handling

— Autonomous transmit/receive data handling

• LIN automatic resynchronization, allowing operation with as clock source

• Identifier filters for autonomous message handling in Slave mode

26.2.2 UART mode features
• Full-duplex communication

• Selectable frame size:

— 8-bit frame

— 9-bit frame

— 16-bit frame

— 17-bit frame

• Selectable parity:

— Even

— Odd

— 0

— 1

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 589

• 4-byte buffer for reception, 4-byte buffer for transmission

• 12-bit counter for timeout management

26.3 The LIN protocol
The LIN (Local Interconnect Network) is a serial communication protocol. The topology of a LIN network
is shown in Figure 26-2. A LIN network consists of:

• One master

• Several slave

• The LIN bus

A master node contains the master task as well as a slave task, all other nodes contain a slave task only.
The master node decides when and which frame shall be transferred on the bus. The slave task provides
the data to be transported by the frame.

Figure 26-2. LIN network topology

26.3.1 Dominant and recessive logic levels

The LIN bus defines two logic levels, “dominant” and “recessive”, as follows:

• Dominant: logical low level (0)

• Recessive: logical high level (1)

26.3.2 LIN frames

A frame consists of a header provided by the master task and a response provided by the slave task, as
shown in Figure 26-3.

LIN master node LIN slave node 1 LIN slave node n

LIN

LINLIN
Rx Tx

LIN
Transceiver

LINFlexD
Controller

MCU

LIN Bus

Application

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

590 Freescale Semiconductor

Figure 26-3. LIN frame structure

26.3.3 LIN header

The header consists of:

• A break field (described in Section 26.3.3.1, Break field)

• A sync (described in Section 26.3.3.2, Sync)

• An identifier (described in Section 26.3.4.2, Identifier)

The slave task associated with the identifier provides the response.

26.3.3.1 Break field

The break field, shown in Figure 26-4, is used to signal the beginning of a new frame. It is always
generated by the master and consists of:

• At least 13 dominant bits including the start bit

• At least one recessive bit that functions as break delimiter

Figure 26-4. Break field

26.3.3.2 Sync

The sync pattern is a byte consisting of alternating dominant and recessive bits as shown in Figure 26-5.
It forms a data value of 0x55.

Header

Response

Header

Response

Master Task

Slave Task 1

Slave Task 2

Frame slot

Frame

Header

Response
space Response

Start
bit

Break
Delimiter

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 591

Figure 26-5. Sync pattern

26.3.4 Response

The response consists of:

• A data field (described in Section 26.3.4.1, Data field)

• A checksum (described in Section 26.3.4.3, Checksum)

The slave task interested in the data associated with the identifier receives the response and verifies the
checksum.

26.3.4.1 Data field

The structure of the data field transmitted on the LIN bus is shown in Figure 26-6. The LSB of the data is
sent first and the MSB last. The start bit is encoded as a dominant bit and the stop bit is encoded as a
recessive bit.

Figure 26-6. Structure of the data field

26.3.4.2 Identifier

The identifier, shown in Figure 26-7, consists of two sub-fields:

• The identifier value (in bits 0–5)

• The identifier parity (in bits 6–7)

The parity bits P0 and P1 are defined as follows:

• P0 = ID0 xor ID1 xor ID2 xor ID4

• P1 = not(ID1 xor ID3 xor ID4 xor ID5)

Figure 26-7. Identifier

26.3.4.3 Checksum

The checksum contains the inverted 8-bit sum (with carry) over one of two possible groups:

Start
bit

Stop

bit

Start
bit LSB MSB Stop

bit

Byte Field

Start
bit ID0 P1 Stop

bitID1 ID2 ID3 ID4 ID5 P0

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

592 Freescale Semiconductor

• The classic checksum sums all data bytes, and is used for communication with LIN 1.3 slaves.

• The enhanced checksum sums all data bytes and the identifier, and is used for communication with
LIN 2.0 (or later) slaves.

26.4 LINFlexD and software intervention
The increasing number of communication peripherals embedded on microcontrollers (for example, CAN,
LIN, SPI) requires more and more CPU resources for the communication management. Even a 32-bit
microcontroller is overloaded if its peripherals do not provide high level features to autonomously handle
the communication.

Even though the LIN protocol with a maximum baud rate of 20 Kbit/s is relatively slow, it still generates
a non-negligible load on the CPU if the LIN is implemented on a standard UART, as is usually the case.

To minimize the CPU load in Master mode, LINFlexD handles the LIN messages autonomously.

In Master mode, once the software has triggered the header transmission, LINFlexD does not request any
software (that is, application) intervention until the next header transmission request in transmission mode
or until the checksum reception in reception mode.

To minimize the CPU load in Slave mode, LINFlexD requires software intervention only to:

• Trigger transmission or reception or data discard depending on the identifier

• Write data into the buffer (transmission mode) or read data from the buffer (reception mode) after
checksum reception

If filter mode is activated for Slave mode, LINFlexD requires software intervention only to write data into
the buffer (transmission mode) or read data from the buffer (reception mode)

The software uses the control, status and configuration registers to:

• Configure LIN parameters (for example, baud rate or mode)

• Request transmissions

• Handle receptions

• Manage interrupts

• Configure LIN error and timeout detection

• Process diagnostic information

The message buffer stores transmitted or received LIN frames.

26.5 Summary of operating modes
The LINFlexD controller has three operating modes:

• Normal

• Initialization

• Sleep

After a hardware reset, the LINFlexD controller is in Sleep mode to reduce power consumption.

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 593

The transitions between these modes are shown in Figure 26-8. The software instructs LINFlexD to enter
Initialization mode or Sleep mode by setting LINCR1[INIT] or LINCR1[SLEEP], respectively.

Figure 26-8. LINFlexD controller operating modes

In addition to these controller-level operating modes, the LINFlexD controller also supports several
protocol-level modes:

• LIN mode:

— Master mode

— Slave mode

— Slave mode with identifier filtering

— Slave mode with automatic resynchronization

• UART mode

• Test modes:

— Loop Back mode

— Self Test mode

These modes are discussed in detail in subsequent sections.

26.6 Controller-level operating modes

26.6.1 Initialization mode

The software initialization can be done while the hardware is in Initialization mode. To enter or exit this
mode, the software sets or clears LINCR1[INIT], respectively.

In Initialization mode, all message transfers to and from the LIN bus are stopped and the LIN bus output
(LINTX) is recessive.

Entering Initialization mode does not change any of the configuration registers.

To initialize the LINFlexD controller, the software must:

SLEEP

INITIALIZATION

NORMAL

S
LE

E
P

SLEEP * IN
IT

RESET

SLEEP

LI
N

R
X

 D
O

M
I N

A
N

T

SLEEP * IN
IT

SLEEP * INIT

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

594 Freescale Semiconductor

• Select the desired mode (Master, Slave or UART)

• Set up the baud rate register

• If LIN Slave mode with filter activation is selected, initialize the identifier list

26.6.2 Normal mode

After initialization is complete, the software must clear LINCR1[INIT] to put the LINFlexD controller into
Normal mode.

26.6.3 Sleep (low-power) mode

To reduce power consumption, LINFlexD has a low-power mode called Sleep mode. In this mode, the
LINFlexD clock is stopped. Consequently, the LINFlexD will not update the status bits, but software can
still access the LINFlexD registers.

To enter this mode, the software must set LINCR1[SLEEP].

LINFlexD can be awakened (exit Sleep mode) in one of two ways:

• The software clears LINCR1[SLEEP]

• Automatic wake-up is enabled (LINCR1[AWUM] is set) and LINFlexD detects LIN bus activity
(that is, if a wakeup pulse of 150 s is detected on the LIN bus)

On LIN bus activity detection, hardware automatically performs the wake-up sequence by clearing
LINCR1[SLEEP] if LINCR1[AWUM] is set. To exit from Sleep mode if LINCR1[AWUM] is cleared, the
software must clear LINCR1[SLEEP] when a wake-up event occurs.

26.7 LIN modes

26.7.1 Master mode

In Master mode, the software uses the message buffer to handle the LIN messages.

Master mode is selected when LINCR1[MME] is set.

26.7.1.1 LIN header transmission

According to the LIN protocol, any communication on the LIN bus is triggered by the master sending a
header. The header is transmitted by the master task while the data is transmitted by the slave task of a
node.

To transmit a header with LINFlexD the application must set up the identifier, the data field length and
configure the message (direction and checksum type) in the BIDR register before requesting the header
transmission by setting LINCR2[HTRQ].

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 595

26.7.1.2 Data transmission (transceiver as publisher)

When the master node is publisher of the data corresponding to the identifier sent in the header, then the
slave task of the master has to send the data in the Response part of the LIN frame. Therefore, the software
must provide the data to LINFlexD before requesting the header transmission. The software stores the data
in the message buffer BDR. According to the data field length LINFlexD transmits the data and the
checksum. The software uses the BIDR[CCS] bit to configure the checksum type (classic or enhanced) for
each message.

The direction of the message buffer is controlled by the BIDR[DIR] bit. When the software sets this bit
the response is sent by LINFlexD (publisher). Clearing this bit configures the message buffer as subscriber.

26.7.1.3 Data reception (transceiver as subscriber)

To receive data from a slave node, the master sends a header with the corresponding identifier. LINFlexD
stores the data received from the slave in the message buffer and stores the message status in the LINSR.

26.7.1.4 Error detection and handling

LINFlexD is able to detect and handle LIN communication errors. A code stored in the LIN error status
register (LINESR) signals the errors to the software.

Table 26-1 lists the errors detected in Master mode and the LINFlexD controller’s response to these errors.

26.7.1.5 Overrun

Once the messages buffer is full (LINSR[RMB] = 1) the next valid message reception leads to an overrun
and message is lost. The hardware signals the overrun condition by setting the BOF bit in the
LINESR.Which message is lost depends on the buffer lock function control bit RBLM.

Table 26-1. Errors in Master mode

Error Description LINFlexD response to error

Bit error During transmission, the value read back
from the bus differs from the transmitted
value

 • Stops the transmission of the frame after
the corrupted bit

 • Generates an interrupt if LINIER[BEIE] is
set

 • Returns to idle state

Framing error A dominant state has been sampled on the
stop bit of the currently received character
(sync field, identifier, or data field)

If encountered during reception:
 • Discards the current frame
 • Generates an interrupt if LINIER[FEIE] is

set
 • Returns immediately to idle state

Checksum error The computed checksum does not match the
received checksum

If encountered during reception:
 • Discards the current frame
 • Generates an interrupt if LINIER[CEIE] is

set
 • Returns to idle state

Response and frame
timeout

Refer to Section 26.12.1, 8-bit timeout counter, for more details

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

596 Freescale Semiconductor

• If the buffer lock function control bit is cleared (LINCR1[RBLM] = 0) the old message in the
buffer is overwritten by the most recent message.

• If buffer lock function control bit is set (LINCR1[RBLM] = 1) the most recent message is
discarded, and the oldest message is available in the buffer.

26.7.2 Slave mode

In Slave mode the software uses the message buffer to handle the LIN messages.

Slave mode is selected when the LINCR1[MME] is cleared.

26.7.2.1 Data transmission (transceiver as publisher)

When LINFlexD receives the identifier, an RX interrupt is generated. The software must:

• Read the received ID in the BIDR register

• Fill the BDR registers

• Specify the data field length using the BIDR[DFL] field

• Trigger the data transmission by setting LINCR2[DTRQ]

One or several identifier filters can be configured for transmission by setting the DIR bits in the
corresponding IFCR registers and activated by setting one or several bits in the IFER register.

When at least one identifier filter is configured in transmission and activated, and if the received ID
matches the filter, a specific TX interrupt is generated.

Typically, the software has to copy the data from RAM locations to the BDRL and BDRM registers. To
copy the data to the right location, the software has to identify the data by means of the identifier. To avoid
this and to ease the access to the RAM locations, the LINFlexD controller provides a Filter Match Index.
This index value is the number of the filter which matched the received identifier.

The software can use the index in the IFMI register to directly access the pointer which points to the right
data array in the RAM area and copy this data to the BDRL and BDRM registers (see Figure 26-10).

Using a filter avoids the software having to configure the direction, the data field length and the checksum
type in the BDIR register. The software fills the BDRL and BDRM registers and triggers the data
transmission by setting LINCR2[DTRQ].

If LINFlexD cannot provide enough TX identifier filters to handle all identifiers the software has to
transmit data for, then a filter can be configured in mask mode (refer to Section 26.7.3, Slave mode with
identifier filtering) in order to manage several identifiers with one filter only.

26.7.2.2 Data reception (transceiver as subscriber)

When LINFlexD receives the identifier, an RX interrupt is generated. The software must:

• Read the received ID in the BIDR register

• Specify the data field length using the BIDR[DFL] field before the reception of the stop bit of the
first byte of data field

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 597

When the checksum reception is completed, an RX interrupt is generated to allow the software to read the
received data in the BDR registers.

One or several identifier filters can be configured for reception by clearing the DIR bit in the corresponding
IFCR registers and activated by clearing one or several bits in the IFER register.

When at least one identifier filter is configured in reception and activated, and if the received ID matches
the filter, an RX interrupt is generated after the checksum reception only.

Typically, the software has to copy the data from the BDRL and BDRM registers to RAM locations. To
copy the data to the right location, the software has to identify the data by means of the identifier. To avoid
this and to ease the access to the RAM locations, the LINFlexD controller provides a Filter Match Index.
This index value is the number of the filter which matched the received identifier.

The software can use the index in the IFMI register to directly access the pointer which points to the right
data array in the RAM area and copy this data from the BDRL and BDRM registers to the RAM (see
Figure 26-10).

Using a filter avoids the software reading the ID value in the BIDR register, and configuring the direction,
the data field length and the checksum type in the BIDR register.

If LINFlexD cannot provide enough RX identifier filters to handle all identifiers the software has to
receive the data for, then a filter can be configured in mask mode (refer to Section 26.7.3, Slave mode with
identifier filtering) in order to manage several identifiers with one filter only.

26.7.2.3 Data discard

When LINFlexD receives the identifier, an RX interrupt is generated. If the received identifier does not
concern the node, the software must set LINCR2[DDRQ]. LINFlexD returns to idle state.

26.7.2.4 Error detection and handling

Table 26-2 lists the errors detected in Slave mode and the LINFlexD controller’s response to these errors.

Table 26-2. Errors in Slave mode

Error Description LINFlexD response to error

Bit error During transmission, the value read back
from the bus differs from the transmitted
value

 • Stops the transmission of the frame after
the corrupted bit

 • Generates an interrupt if LINIER[BEIE] is
set

 • Returns to idle state

Framing error A dominant state has been sampled on the
stop bit of the currently received character
(sync field, identifier, or data field)

If encountered during reception:
 • Discards the current frame
 • Generates an interrupt if LINIER[FEIE] is

set
 • Returns immediately to idle state

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

598 Freescale Semiconductor

26.7.2.5 Valid header

A received header is considered as valid when it has been received correctly according to the LIN protocol.

If a valid break field and break delimiter come before the end of the current header, or at any time during
a data field, the current header or data is discarded and the state machine synchronizes on this new break.

26.7.2.6 Valid message

A received or transmitted message is considered as valid when the data has been received or transmitted
without error according to the LIN protocol.

26.7.2.7 Overrun

Once the messages buffer is full (LINSR[RMB] = 1) the next valid message reception leads to an overrun
and message is lost. The LINFlex controller signals the overrun condition by setting the BOF bit in the
LINESR (LINESR[BOF]).

Which message is lost depends on the buffer lock function control bit RBLM.

• If the buffer lock function control bit is cleared (LINCR1[RBLM] = 0) the old message in the
buffer will be overwritten by the most recent message.

• If buffer lock function control bit is set (LINCR1[RBLM] = 1) the most recent message is
discarded, and the oldest message is available in the buffer.

• If buffer is not released (LINSR[RMB] = 1) before reception of next Identifier and if RBLM is set
then ID along with the data is discarded.

26.7.3 Slave mode with identifier filtering

In the LIN protocol, the identifier of a message is not associated with the address of a node but related to
the content of the message. Consequently a transmitter broadcasts its message to all receivers. When a
slave node receives a header, it decides - depending on the identifier value - whether the software needs to

Checksum error The computed checksum does not match the
received checksum

If encountered during reception:
 • Discards the received frame
 • Generates an interrupt if LINIER[CEIE] is

set
 • Returns to idle state

Header error An error occurred during header reception
(break delimiter error, inconsistent sync field,
header timeout)

If encountered during header reception, a
break field error, an inconsistent sync field, or
a timeout:
 • Discards the header
 • Generates an interrupt if LINIER[HEIE] is

set
 • Returns to idle state

Table 26-2. Errors in Slave mode (continued)

Error Description LINFlexD response to error

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 599

receive or send a response. If the message does not target the node, it must be discarded without software
intervention.

To fulfill this requirement, the LINFlexD controller provides configurable filters in order to request
software intervention only if needed. This hardware filtering saves CPU resources which would otherwise
be needed by software for filtering.

The filtering is accomplished through the use of IFCR registers. These registers have the names IFCR0
through IFCR15. This section also uses the nomenclature IFCR2n and IFCR2n+1; in this nomenclature, n
is an integer, and the corresponding IFCR register is calculated using the formula in the subscript.

26.7.3.1 Filter submodes

Usually each of the 16 IFCRs is used to filter one dedicated identifier, but this means that the LINFlexD
controller could filter a maximum of 16 identifiers. In order to be able to handle more identifiers, the filters
can be configured to operate as masks.

Table 26-3 describes the two available filter submodes.

The bit mapping and register organization in these two submodes is shown in Figure 26-9.

Table 26-3. Filter submodes

Submode Description

Identifier list Both filter registers are used as identifier registers. All bits of the
incoming identifier must match the bits specified in the filter register.
This is the default submode for the LINFlexD controller.

Mask The identifier registers are associated with mask registers specifying
which bits of the identifier are handled as “must match” or as “don’t
care”.

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

600 Freescale Semiconductor

Figure 26-9. Filter configuration - register organization

26.7.3.2 Identifier filter submode configuration

The identifier filters are configured in the IFCR registers. To configure an identifier filter the filter must
first be activated by setting the corresponding bit in the IFER[FACT] field. The submode (identifier list or
mask) for the corresponding IFCR register is configured by the IFMR[IFM] field. For each filter, the IFCR
register is used to configure:

• The ID or mask

• The direction (TX or RX)

• The data field length

• The checksum type

If no filter is active, an RX interrupt is generated on any received identifier event.

If at least one active filter is configured as TX, all received identifiers matching this filter generate a TX
interrupt.

If at least one active filter is configured as RX, all received identifiers matching this filter generate an RX
interrupt.

If no active filter is configured as RX, all received identifiers not matching TX filter(s) generate an RX
interrupt.

Further details are provided in Table 26-4 and Figure 26-10.

IFCRxIdentifier

IDBit Mapping

Identifier filter register organization

CCSDIR

Identifier filter configuration

IFCR2nIdentifier
Identifier IFCR2n+1

IFM = 0

Identifier filter submode

IFCR2nIdentifier
Mask IFCR2n+1

IFM = 1

Identifier list submode

Mask submode

DFL

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 601

Figure 26-10. Identifier match index

26.7.4 Slave mode with automatic resynchronization

Automatic resynchronization must be enabled in Slave mode if fipg_clock_lin tolerance is greater than 1.5%.
This feature compensates a deviation up to 14%, as specified in the LIN standard.

This mode is similar to Slave mode as described in Section 26.7.2, Slave mode, with the addition of
automatic resynchronization enabled by the LINCR1[LASE] bit. In this mode LINFlexD adjusts the
fractional baud rate generator after each synch field reception.

26.7.4.1 Automatic resynchronization method

When automatic resynchronization is enabled, after each LIN break, the time duration between five falling
edges on RDI is sampled on as shown in Figure 26-11. Then the LFDIV value (and its associated

Table 26-4. Filter to interrupt vector correlation

Number of active
filters

Number of active
filters configured as

TX

Number of active
filters configured as

RX
Interrupt vector

0 0 0 • RX interrupt on all IDs

a
(a > 0)

a 0 • TX interrupt on IDs matching
the filters,

 • RX interrupt on all other IDs
if BF bit is set, no RX
interrupt if BF bit is reset

n
(n = a + b)

a
(a > 0)

b
(b > 0)

 • TX interrupt on IDs matching
the TX filters,

 • RX interrupt on IDs
matching the RX filters,

 • All other IDs discarded (no
interrupt)

b
(b > 0)

0 b • RX interrupt on IDs
matching the filters,

 • TX interrupt on all other IDs
if BF bit is set, no TX
interrupt if BF bit is reset

IFMI

MESSAGE0

MESSAGE1

MESSAGE2DATA
Pointers
Table

RAM

@

+

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

602 Freescale Semiconductor

LINIBRR and LINFBRR registers) is automatically updated at the end of the fifth falling edge. During
LIN sync field measurement, the LINFlexD state machine is stopped and no data is transferred to the data
register.

Figure 26-11. LIN sync field measurement

LFDIV is an unsigned fixed point number. The mantissa is coded on 20 bits in the LINIBRR register and
the fraction is coded on 4 bits in the LINFBRR register.

If LINCR1[LASE] is set, LFDIV is automatically updated at the end of each LIN sync field.

Three registers are used internally to manage the auto-update of the LINFlexD divider (LFDIV):

• LFDIV_NOM (nominal value written by software at LINIBRR and LINFBRR addresses)

• LFDIV_MEAS (results of the Field Synch measurement)

• LFDIV (used to generate the local baud rate)

On transition to idle, break or break delimiter state due to any error or on reception of a complete frame,
hardware reloads LFDIV with LFDIV_NOM.

26.7.4.2 Deviation error on the sync field

The deviation error is checked by comparing the current baud rate (relative to the slave oscillator) with the
received LIN sync field (relative to the master oscillator). Two checks are performed in parallel.

The first check is based on a measurement between the first falling edge and the last falling edge of the
sync field:

• If D1 > 14.84%, LHE is set.

• If D1 < 14.06%, LHE is not set.

• If 14.06% < D1 < 14.84%, LHE can be either set or reset depending on the dephasing between the
signal on LINFlexD_RX pin the fipg_clock_lin clock.

The second check is based on a measurement of time between each falling edge of the sync field:

• If D2 > 18.75%, LHE is set.

LIN Break
Break Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7

Start
Bit

Stop
Bit

Next
Start
Bit

LIN sync field

LFDIV(n) LFDIV(n+1)

TBR = Baud rate period

TBR

delim.

T = Clock period

TBR = 16.LFDIV.T

Measurement = 8.TBR

LFDIV = TBR/(16.T)

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 603

• If D2 < 15.62%, LHE is not set.

• If 15.62% < D2 < 18.75%, LHE can be either set or reset depending on the dephasing between the
signal on LINFlexD_RX pin the fipg_clock_lin clock.

Note that the LINFlexD does not need to check if the next edge occurs slower than expected. This is
covered by the check for deviation error on the full synch byte.

26.8 Test modes
The LINFlexD controller includes two test modes, Loop Back mode and Self Test mode. They can be
selected by the LBKM and SFTM bits in the LINCR1 register. These bits must be configured while
LINFlexD is in Initialization mode. After one of the two test modes has been selected, LINFlexD must be
started in Normal mode.

26.8.1 Loop Back mode

LINFlexD can be put in Loop Back mode by setting LINCR1[LBKM]. In Loop Back mode, the LINFlexD
treats its own transmitted messages as received messages. This is illustrated in Figure 26-12.

Figure 26-12. LINFlexD in Loop Back mode

This mode is provided for self-test functions. To be independent of external events, the LIN core ignores
the LINRX signal. In this mode, the LINFlexD performs an internal feedback from its Tx output to its Rx
input. The actual value of the LINRX input pin is disregarded by the LINFlexD. The transmitted messages
can be monitored on the LINTX pin.

26.8.2 Self Test mode

LINFlexD can be put in Self Test mode by setting LINCR1[LBKM] and LINCR1[SFTM]. This mode can
be used for a “Hot Self Test”, meaning the LINFlexD can be tested as in Loop Back mode but without
affecting a running LIN system connected to the LINTX and LINRX pins. In this mode, the LINRX pin is
disconnected from the LINFlexD and the LINTX pin is held recessive. This is illustrated in Figure 26-13.

LINTX LINRX

LINFlexD

Tx Rx

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

604 Freescale Semiconductor

Figure 26-13. LINFlexD in Self Test mode

26.9 UART mode
The main features of UART mode are presented in Section 26.2.2, UART mode features.

26.9.1 Data frame structure

26.9.1.1 8-bit data frame

The 8-bit UART data frame is shown in Figure 26-14. The 8th bit can be a data or a parity bit. Parity (even,
odd, 0, or 1) can be selected by the UARTCR[PC] field. An even parity is set if the modulo-2 sum of the
7 data bits is 1. An odd parity is cleared in this case.

Figure 26-14. UART mode 8-bit data frame

26.9.1.2 9-bit data frame

The 9-bit UART data frame is shown in Figure 26-15. The 9th bit is a parity bit. Parity (even, odd, 0, or 1)
can be selected by the by the UARTCR[PC] field. An even parity is set if the modulo-2 sum of the 8 data
bits is 1. An odd parity is cleared in this case. Parity 0 forces a zero logical value. Parity 1 forces a high
logical value.

LINFlexD

LINTX LINRX

Tx Rx

=1

Start
bit D0 D7

Stop
bit

Byte Field

- Data bit
- Parity bit

D1 D2 D3 D4 D5 D6

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 605

Figure 26-15. UART mode 9-bit data frame

26.9.1.3 16-bit data frame

The 16-bit UART data frame is shown in Figure 26-16. The 16th bit can be a data or a parity bit. Parity
(even, odd, 0, or 1) can be selected by the UARTCR[PC] field. Parity 0 forces a zero logical value. Parity
1 forces a high logical value.

Figure 26-16. UART mode 16-bit data frame

26.9.1.4 17-bit data frame

The 17-bit UART data frame is shown in Figure 26-17. The 17th bit is the parity bit. Parity (even, odd, 0,
or 1) can be selected by the UARTCR[PC] field. Parity 0 forces a zero logical value. Parity 1 forces a high
logical value.

Figure 26-17. UART mode 17-bit data frame

26.9.2 Buffer

The 8-byte buffer is divided into two parts — one for receiver and one for transmitter — as shown in
Table 26-5.

Start
bit D0 D7 Stop

bit

Byte Field

- Parity bit

D1 D2 D3 D4 D5 D6 D8

Start
bit D0 D15

Stop
bit

Byte Field

- Data bit
- Parity bit

D1 D2 D13 D14

Start
bit D0 D16

Stop
bit

Byte Field

- Parity bit

D1 D2 ... D13 D14 D15

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

606 Freescale Semiconductor

For 16-bit frames, the lower 8 bits will be written in BDR0 and the upper 8 bits will be written in BDR1.

26.9.3 UART transmitter

In order to start transmission in UART mode, the UARTCR[UART] and UARTCR[TXEN] bits must be
set. Transmission starts when BDR0 (least significant data byte) is programmed. The number of bytes
transmitted is equal to the value configured by the UARTCR[TDFLTFC] field (see Table 26-18).

The Transmit buffer size is as follows:

• 4 bytes when UARTCR[WL[1]] = 0

• 2 half-words when UARTCR[WL[1]] = 1

Therefore, the maximum transmission that can be triggered is 4 bytes (2 half-words). After the
programmed number of bytes has been transmitted, the UARTSR[DTFTFF] flag is set. If the
UARTCR[TXEN] field is cleared during a transmission, the current transmission is completed, but no
further transmission can be invoked. The buffer can be configured in FIFO mode (mandatory when DMA
Tx is enabled) by setting UARTCR[TFBM].

The access to the BDRL register is shown in Table 26-6.

Table 26-5. UART buffer structure

BDR UART mode

0 Tx0

1 Tx1

2 Tx2

3 Tx3

4 Rx0

5 Rx1

6 Rx2

7 Rx3

Table 26-6. BDRL access in UART mode

Access Mode1 Word length2 IPS operation result

Write Byte0 FIFO Byte OK

Write Byte1-2-3 FIFO Byte IPS transfer error

Write Half-word0-1 FIFO Byte IPS transfer error

Write Word FIFO Byte IPS transfer error

Write Byte0-1-2-3 FIFO Half-word IPS transfer error

Write Half-word0 FIFO Half-word OK

Write Half-word1 FIFO Half-word IPS transfer error

Write Word FIFO Half-word IPS transfer error

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 607

26.9.4 UART receiver

Reception of a data byte is started as soon as the software completes the following tasks in order:

1. Exits Initialization mode

2. Sets the UARTCR[RXEN] field

3. Detects the start bit

There is a dedicated data buffer for received data bytes. Its size is as follows:

• 4 bytes when UARTCR[WL[1]] = 0

• 2 half-words when UARTCR[WL[1]] = 1

After the programmed number (RDFL bits) of bytes has been received, the UARTSR[DRFRFE] field is
set. If the UARTCR[RXEN] field is cleared during a reception, the current reception is completed, but no
further reception can be invoked until UARTCR[RXEN] is set again.

The buffer can be configured in FIFO mode (required when DMA Rx is enabled) by setting
UARTCR[RFBM].

The access to the BDRM register is shown in Table 26-7.

Read Byte0-1-2-3 FIFO Byte/Half-word IPS transfer error

Read Half-word0-1 FIFO Byte/Half-word IPS transfer error

Read Word FIFO Byte/Half-word IPS transfer error

Write Byte0-1-2-3 BUFFER Byte/Half-word OK

Write Half-word0-1 BUFFER Byte/Half-word OK

Write Word BUFFER Byte/Half-word OK

Read Byte0-1-2-3 BUFFER Byte/Half-word OK

Read Half-word0-1 BUFFER Byte/Half-word OK

Read Word BUFFER Byte/Half-word OK

1 As specified by UARTCR[TFBM]
2 As specified by the WL[1] and WL[0] bits of the UARTCR register. In UART FIFO mode (UARTCR[TFBM] = 1),any

read operation causes an IPS transfer error.

Table 26-7. BDRM access in UART mode

Access Mode1 Word length2 IPS operation result

Read Byte4 FIFO Byte OK

Read Byte5-6-7 FIFO Byte IPS transfer error

Read Half-word2-3 FIFO Byte IPS transfer error

Read Word FIFO Byte IPS transfer error

Table 26-6. BDRL access in UART mode (continued)

Access Mode1 Word length2 IPS operation result

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

608 Freescale Semiconductor

Table 26-8 lists some common scenarios, controller responses, and suggestions when the LINFlexD
controller is acting as a UART receiver.

Read Byte4-5-6-7 FIFO Half-word IPS transfer error

Read Half-word2 FIFO Half-word OK

Read Half-word3 FIFO Half-word IPS transfer error

Read Word FIFO Half-word IPS transfer error

Write Byte4-5-6-7 FIFO Byte/Half-word IPS transfer error

Write Half-word2-3 FIFO Byte/Half-word IPS transfer error

Write Word FIFO Byte/Half-word IPS transfer error

Read Byte4-5-6-7 BUFFER Byte/Half-word OK

Read Half-word2-3 BUFFER Byte/Half-word OK

Read Word BUFFER Byte/Half-word OK

Write Byte4-5-6-7 BUFFER Byte/Half-word IPS transfer error

Write Half-word2-3 BUFFER Byte/Half-word IPS transfer error

Write Word BUFFER Byte/Half-word IPS transfer error

1 As specified by UARTCR[RFBM]
2 As specified by the WL[1] and WL[0] bits of the UARTCR register

Table 26-8. UART receiver scenarios

Scenario Responses and suggestions

The software does not know (in advance) how many
bytes will be received.

Do not program UARTCR[RDFLRFC] in advance. When
this field is zero (as it is after reset), reception occurs on
a byte-by-byte basis. Therefore, the state machine will
move to IDLE state after each byte is received.

UARTCR[RDFLRFC] is programmed for a certain
number of bytes received, but the actual number of bytes
received is smaller.

The reception will hang. In this case, the software must
monitor the UARTSR[TO] field, and move to IDLE state
by setting LINCR1[SLEEP].

A STOP request arrives before the reception is
completed.

The request is acknowledged only after the programmed
number of data bytes are received. In other words, the
STOP request is not serviced immediately. In this case,
the software must monitor the UARTSR[TO] field and
move the state machine to IDLE state as appropriate. The
stop request will be serviced only after this is complete.

A parity error occurs during the reception of a byte. The corresponding UARTSR[PEn] field is set. No
interrupt is generated.

Table 26-7. BDRM access in UART mode (continued)

Access Mode1 Word length2 IPS operation result

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 609

26.10 Memory map and register description
The memory maps for the LINFlexD modules on this microcontroller differ by module:

• The memory map for LINFlexD_0 is shown in Table 26-9.

• The memory map for LINFlexD_1–9 is shown in Table 26-10.

See the microcontroller memory map for the base addresses.

NOTE

In Master mode, the registers IFCR0 - IFCR15 are not present. In Master
mode, read access to IFMI register and read/write access to IFER and IFMR
registers would result in transfer error being flagged.

A framing error occurs during the reception of a byte. • UARTSR[FEF] is set.
 • If LINIER[FEIE] = 1, an interrupt is generated. This

interrupt is helpful in identifying which byte has the
framing error, since there is only one register bit for
framing errors.

A new byte has been received, but the last received frame
has not been read from the buffer (UARTSR[RMB] has
not yet been cleared by the software)

 • An overrun error will occur (UARTSR[BOF] will be set).
 • One message will be lost (depending on the setting of

LINCR1[RBLM]).
 • An interrupt is generated if LINIER[BOIE] is set.

Table 26-9. LINFlexD_0 memory map

Address offset Register description Location

0x00 LIN control register 1 (LINCR1) on page 611

0x04 LIN interrupt enable register (LINIER) on page 614

0x08 LIN status register (LINSR) on page 616

0x0C LIN error status register (LINESR) on page 619

0x10 UART mode control register (UARTCR) on page 620

0x14 UART mode status register (UARTSR) on page 623

0x18 LIN timeout control status register (LINTCSR) on page 625

0x1C LIN output compare register (LINOCR) on page 626

0x20 LIN timeout control register (LINTOCR) on page 627

0x24 LIN fractional baud rate register (LINFBRR) on page 628

0x28 LIN integer baud rate register (LINIBRR) on page 628

0x2C LIN checksum field register (LINCFR) on page 629

0x30 LIN control register 2 (LINCR2) on page 630

0x34 Buffer identifier register (BIDR) on page 631

Table 26-8. UART receiver scenarios (continued)

Scenario Responses and suggestions

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

610 Freescale Semiconductor

0x38 Buffer data register least significant (BDRL) on page 632

0x3C Buffer data register most significant (BDRM) on page 633

0x40 Identifier filter enable register (IFER) on page 634

0x44 Identifier filter match index (IFMI) on page 634

0x48 Identifier filter mode register (IFMR) on page 635

0x4C–0x88 Identifier filter control registers 0–15 (IFCR0–IFCR15) on page 636

0x8C Global control register (GCR) on page 637

0x90 UART preset timeout register (UARTPTO) on page 639

0x94 UART current timeout register (UARTCTO) on page 639

0x98 DMA Tx enable register (DMATXE) on page 640

0x9C DMA Rx enable register (DMARXE) on page 641

Table 26-10. LINFlexD_1–9 memory map

Address offset Register description Location

0x00 LIN control register 1 (LINCR1) on page 611

0x04 LIN interrupt enable register (LINIER) on page 614

0x08 LIN status register (LINSR) on page 616

0x0C LIN error status register (LINESR) on page 619

0x10 UART mode control register (UARTCR) on page 620

0x14 UART mode status register (UARTSR) on page 623

0x18 LIN timeout control status register (LINTCSR) on page 625

0x1C LIN output compare register (LINOCR) on page 626

0x20 LIN timeout control register (LINTOCR) on page 627

0x24 LIN fractional baud rate register (LINFBRR) on page 628

0x28 LIN integer baud rate register (LINIBRR) on page 628

0x2C LIN checksum field register (LINCFR) on page 629

0x30 LIN control register 2 (LINCR2) on page 630

0x34 Buffer identifier register (BIDR) on page 631

0x38 Buffer data register least significant (BDRL) on page 632

0x3C Buffer data register most significant (BDRM) on page 633

0x40 Identifier filter enable register (IFER) on page 634

0x44 Identifier filter match index (IFMI) on page 634

0x48 Identifier filter mode register (IFMR) on page 635

Table 26-9. LINFlexD_0 memory map (continued)

Address offset Register description Location

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 611

26.10.1 LIN control register 1 (LINCR1)

0x4C Global control register (GCR) on page 637

0x50 UART preset timeout register (UARTPTO) on page 639

0x54 UART current timeout register (UARTCTO) on page 639

0x58 DMA Tx enable register (DMATXE) on page 640

0x5C DMA Rx enable register (DMARXE) on page 641

Offset:0x00 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CCD
1

CFD
1

LA
S

E
1

A
W

U
M

1

MBL1 BF1 SFT
M1

LB
K

M
1

M
M

E
1

S
B

D
T

1

R
B

LM
1

S
LE

E
P

INIT
W

Reset 0 0 0 0 0 0 0 0 1 0 0 0/12 0 0 1 0

1 These fields are writable only in Initialization mode (LINCR1[INIT] = 1).
2 Resets to 0 in Slave mode and to 1 in Master mode

Figure 26-18. LIN control register 1 (LINCR1)

Table 26-11. LINCR1 field descriptions

Field Description

CCD Checksum Calculation disable
This bit is used to disable the checksum calculation (see Table 26-12).
0: Checksum calculation is done by hardware. When this bit is reset the LINCFR register is read-only.
1: Checksum calculation is disabled. When this bit is set the LINCFR register is read/write. User can
program this register to send a software calculated CRC (provided CFD is reset).
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

CFD Checksum field disable
This bit is used to disable the checksum field transmission (see Table 26-12).
0: Checksum field is sent after the required number of data bytes is sent.
1: No checksum field is sent.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

Table 26-10. LINFlexD_1–9 memory map (continued)

Address offset Register description Location

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

612 Freescale Semiconductor

LASE LIN Slave Automatic Resynchronization Enable
0: Automatic resynchronization disable
1: Automatic resynchronization enable
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

AWUM Automatic Wake-Up Mode
This bit controls the behavior of the LINFlexD hardware during Sleep mode.
0: The Sleep mode is exited on software request by clearing SLEEP bit.
1: The Sleep mode is exited automatically by hardware on RX dominant state detection. SLEEP bit is
cleared by hardware whenever LINSR[WUF] bit is set.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

MBL LIN Master Break Length
These bits indicate the Break length in Master mode (see Table 26-13).
Note: These bits can be written in Initialization mode only. They are read-only in Normal or Sleep

mode.

BF Bypass filter
0: No interrupt if ID does not match any filter
1: An RX interrupt is generated on ID not matching any filter
Note:
 • If no filter is activated, this bit is reserved and always reads 1.
 • This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

SFTM Self Test Mode
This bit controls the Self Test mode. For more details please refer to Section 26.8.2, Self Test mode.
0: Self Test mode disable
1: Self Test mode enable
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

LBKM Loop Back Mode
This bit controls the Loop Back mode. For more details please refer to Section 26.8.1, Loop Back
mode.
0: Loop Back mode disable
1: Loop Back mode enable
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode

MME Master Mode Enable
0: Slave mode enable
1: Master mode enable
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

SBDT Slave Mode Break Detection Threshold
0: 11-bit break
1: 10-bit break
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

RBLM Receive Buffer Locked Mode
0: Receive Buffer not locked on overrun. Once the Slave Receive Buffer is full the next incoming
message overwrites the previous one.
1: Receive Buffer locked against overrun. Once the Receive Buffer is full the next incoming message
is discarded.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

Table 26-11. LINCR1 field descriptions (continued)

Field Description

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 613

SLEEP Sleep Mode Request
This bit is set by software to request LINFlexD to enter Sleep mode.
This bit is cleared by software to exit Sleep mode or by hardware if AWUM bit and LINSR[WUF] bit are
set (see Table 26-14).

INIT Initialization Request
The software sets this bit to switch hardware into Initialization mode. If the SLEEP bit is reset,
LINFlexD enters Normal mode when clearing the INIT bit (see Table 26-14).

Table 26-12. Checksum bits configuration

CFD CCD LINCFR Checksum sent

1 1 Read/Write None

1 0 Read-only None

0 1 Read/Write Programmed in LINCFR by bits CF[0:7]

0 0 Read-only Hardware calculated

Table 26-13. LIN master break length selection

MBL Length

0000 10-bit

0001 11-bit

0010 12-bit

0011 13-bit

0100 14-bit

0101 15-bit

0110 16-bit

0111 17-bit

1000 18-bit

1001 19-bit

1010 20-bit

1011 21-bit

1100 22-bit

1101 23-bit

1110 36-bit

1111 50-bit

Table 26-11. LINCR1 field descriptions (continued)

Field Description

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

614 Freescale Semiconductor

26.10.2 LIN interrupt enable register (LINIER)

Table 26-14. Operating mode selection

SLEEP INIT Operating mode

1 0 Sleep (reset value)

x 1 Initialization

0 0 Normal

Offset: 0x04 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

SZIE OCIE BEIE CEIE HEIE

0 0

FEIE BOIE LSIE

W
U

IE

D
B

F
IE

D
B

E
IE

TO
IE

DRIE DTIE HRIEW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-19. LIN interrupt enable register (LINIER)

Table 26-15. LINIER field descriptions

Field Description

SZIE Stuck at Zero Interrupt Enable
0: No interrupt when SZF bit in LINESR or UARTSR is set
1: Interrupt generated when SZF bit in LINESR or UARTSR is set

OCIE Output Compare Interrupt Enable
0: No interrupt when OCF bit in LINESR or UARTSR is set
1: Interrupt generated when OCF bit in LINESR or UARTSR is set

BEIE Bit Error Interrupt Enable
0: No interrupt when LINESR[BEF] is set
1: Interrupt generated when LINESR[BEF] is set

CEIE Checksum Error Interrupt Enable
0: No interrupt on Checksum error
1: Interrupt generated when LINESR[CEF] is set

HEIE Header Error Interrupt Enable
0: No interrupt on Break Delimiter error, Synch Field error, ID field error
1: Interrupt generated on Break Delimiter error, Synch Field error, ID field error

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 615

NOTE
This register programs interrupts for both LIN and UART.

FEIE Framing Error Interrupt Enable
0: No interrupt on Framing error
1: Interrupt generated on Framing error

BOIE Buffer Overrun Interrupt Enable
0: No interrupt on Buffer overrun
1: Interrupt generated on Buffer overrun

LSIE LIN State Interrupt Enable
0: No interrupt on LIN state change
1: Interrupt generated on LIN state change
This interrupt can be used for debugging purposes. It has no status flag.

WUIE Wake-up Interrupt Enable
0: No interrupt when WUF bit in LINSR or UARTSR is set
1: Interrupt generated when WUF bit in LINSR or UARTSR is set

DBFIE Data Buffer Full Interrupt Enable
0: No interrupt when buffer data register is full
1: Interrupt generated when data buffer register is full

DBEIETOIE Data Buffer Empty Interrupt Enable / Timeout Interrupt Enable
0: No interrupt when buffer data register is empty
1: Interrupt generated when data buffer register is empty
Note: An interrupt is generated if this bit is set and one of the following is true:

LINFlexD is in LIN mode and LINSR[DBEF] is set
LINFlexD is in UART mode and UARTSR[TO] is set

DRIE Data Reception Complete Interrupt Enable
0: No interrupt when data reception is completed
1: Interrupt generated when data received flag (DRF) in LINSR or UARTSR is set1

DTIE Data Transmitted Interrupt Enable
0: No interrupt when data transmission is completed
1: Interrupt generated when data transmitted flag (DTF) is set in LINSR or UARTSR register1

HRIE Header Received Interrupt Enable
0: No interrupt when a valid LIN header has been received
1: Interrupt generated when a valid LIN header has been received, that is, HRF bit in LINSR register
is set

1 Do not enable this bit in UART FIFO mode as this bit has functional significance only in LIN mode or UART buffer
mode.

Table 26-15. LINIER field descriptions (continued)

Field Description

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

616 Freescale Semiconductor

26.10.3 LIN status register (LINSR)

Offset: 0x08 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
LINS 0 0 RMB 0

R
B

S
Y

RPS WUF

D
B

F
F

D
B

E
F

DRF DTF HRF

W w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Figure 26-20. LIN status register (LINSR)

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 617

Table 26-16. LINSR field descriptions

Field Description

LINS LIN state
LIN mode states description
0000: Sleep mode
LINFlexD is in Sleep mode to save power consumption.
0001: Initialization mode
LINFlexD is in Initialization mode.
0010: Idle
This state is entered on several events:
 • SLEEP bit and INIT in LINCR1 register have been cleared by software,
 • A falling edge has been received on RX pin and AWUM bit is set,
 • The previous frame reception or transmission has been completed or aborted.
0011: Break
In Slave mode, a falling edge followed by a dominant state has been detected. Receiving Break.
Note: In Slave mode, in case of error new LIN state can be either Idle or Break depending on last bit

state. If last bit is dominant new LIN state is Break, otherwise Idle.
In Master mode, Break transmission ongoing.
0100: Break Delimiter
In Slave mode, a valid Break has been detected. Refer to LINCR1 register for break length
configuration (10-bit or 11-bit). Waiting for a rising edge.
In Master mode, Break transmission has been completed. Break Delimiter transmission is ongoing.
0101: Synch Field
In Slave mode, a valid Break Delimiter has been detected (recessive state for at least one bit time).
Receiving Synch Field.
In Master mode, Synch Field transmission is ongoing.
0110: Identifier Field
In Slave mode, a valid Synch Field has been received. Receiving ID Field.
In Master mode, identifier transmission is ongoing.
0111: Header reception/transmission completed
In Slave mode, a valid header has been received and identifier field is available in the BIDR register.
In Master mode, header transmission is completed.
1000: Data reception/transmission
Response reception/transmission is ongoing.
1001: Checksum
Data reception/transmission completed. Checksum reception/transmission ongoing.
In UART mode, only the following states are flagged by the LIN state bits:
 • Init
 • Sleep
 • Idle
 • Data transmission/reception

RMB Release Message Buffer
0: Buffer is free
1: Buffer ready to be read by software. This bit must be cleared by software after reading data received
in the buffer.
This bit is cleared by hardware in Initialization mode.

RBSY Receiver Busy Flag
0: Receiver is Idle
1: Reception ongoing
Note: In Slave mode, after header reception, if BIDR[DIR] is reset and reception starts then this bit is

set. In this case, user cannot set LINCR2[DTRQ].

RPS LIN receive pin state
This bit reflects the current status of LINRX pin for diagnostic purposes.

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

618 Freescale Semiconductor

WUF Wake-up Flag
This bit is set by hardware and indicates to the software that LINFlexD has detected a falling edge on
the LINRX pin when
 • slave is in Sleep mode,
 • master is in Sleep mode or idle state.
This bit must be cleared by software. It is reset by hardware in Initialization mode. An interrupt is
generated if LINIER[WUIE] is set.

DBFF Data Buffer Full Flag
This bit is set by hardware and indicates the buffer is full. It is set only when receiving extended frames
(DFL > 7).
This bit must be cleared by software.
It is reset by hardware in Initialization mode.

DBEF Data Buffer Empty Flag
This bit is set by hardware and indicates the buffer is empty. It is set only when transmitting extended
frames (DFL > 7).
This bit must be cleared by software, once buffer has been filled again, in order to start transmission.
This bit is reset by hardware in Initialization mode.

DRF Data Reception Completed Flag
This bit is set by hardware and indicates the data reception is completed.
This bit must be cleared by software.
It is reset by hardware in Initialization mode.
Note: This flag is not set in case of bit error or framing error.

DTF Data Transmission Completed Flag
This bit is set by hardware and indicates the data transmission is completed.
This bit must be cleared by software.
It is reset by hardware in Initialization mode.
Note: This flag is not set in case of bit error if LINCR2[IOBE] is reset.

HRF Header Reception Flag
This bit is set by hardware and indicates a valid header reception is completed.
This bit must be cleared by software.
This bit is reset by hardware in Initialization mode and at end of completed or aborted frame.
Note: If filters are enabled, this bit is set only when identifier software filtering is required, that is to say:

 • all filters are inactive and LINCR1[BF] is set
 • no match in any filter and LINCR1[BF] is set
 • TX filter match

Table 26-16. LINSR field descriptions (continued)

Field Description

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 619

26.10.4 LIN error status register (LINESR)

Offset: 0x0C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
SZF OCF BEF CEF

S
F

E
F

B
D

E
F

ID
P

E
F

FEF BOF 0 0 0 0 0 0 NF

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-21. LIN error status register (LINESR)

Table 26-17. LINESR field descriptions

Field Description

SZF Stuck at zero Flag
This bit is set by hardware when the bus is dominant for more than a 100-bit time. It is cleared by
software.

OCF Output Compare Flag
0: No output compare event occurred
1: The content of the counter has matched the content of OC1[0:7] or OC2[0:7] in LINOCR. If this bit
is set and IOT bit in LINTCSR is set, LINFlexD moves to Idle state.
If LTOM bit in LINTCSR register is set then OCF is reset by hardware in Initialization mode. If LTOM
bit is reset, then OCF maintains its status whatever the mode is.

BEF Bit Error Flag
This bit is set by hardware and indicates to the software that LINFlexD has detected a bit error. This
error can occur during response field transmission (Slave and Master modes) or during header
transmission (in Master mode).
This bit is cleared by software.

CEF Checksum error Flag
This bit is set by hardware and indicates that the received checksum does not match the hardware
calculated checksum.
This bit is cleared by software.
Note: This bit is never set if CCD or CFD bit in LINCR1 register is set.

SFEF Synch Field Error Flag
This bit is set by hardware and indicates that a Synch Field error occurred (inconsistent Synch Field).

BDEF Break Delimiter Error Flag
This bit is set by hardware and indicates that the received Break Delimiter is too short (less than one
bit time).

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

620 Freescale Semiconductor

26.10.5 UART mode control register (UARTCR)

IDPEF Identifier Parity Error Flag
This bit is set by hardware and indicates that a Identifier Parity error occurred.
Note: Header interrupt is triggered when SFEF or BDEF or IDPEF bit is set and HEIE bit in LINIER is

set.

FEF Framing Error Flag
This bit is set by hardware and indicates to the software that LINFlexD has detected a framing error
(invalid stop bit). This error can occur during reception of any data in the response field (Master or
Slave mode) or during reception of Synch Field or Identifier Field in Slave mode.

BOF Buffer Overrun Flag
This bit is set by hardware when a new data byte is received and the buffer full flag is not cleared. If
RBLM in LINCR1 is set then the new byte received is discarded. If RBLM is reset then the new byte
overwrites the buffer. It can be cleared by software.

NF Noise Flag
This bit is set by hardware when noise is detected on a received character. This bit is cleared by
software.

Offset: 0x10 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
TDFLTFC1 RDFLRFC1

R
F

B
M

T
F

B
M

2

W
L[

1]
2

P
C

12

R
X

E
N

T
X

E
N

P
C

02

P
C

E
2

W
L[

0]
2

U
A

R
T

2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 These fields are read/write in UART buffer mode and read-only in other modes.
2 These fields are writable only in Initialization mode (LINCR1[INIT] = 1).

Figure 26-22. UART mode control register (UARTCR)

Table 26-17. LINESR field descriptions (continued)

Field Description

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 621

Table 26-18. UARTCR field descriptions

Field Description

TDFLTFC Transmitter data field length / Tx FIFO counter
This field has one of two functions depending on the mode of operation as follows:
 • When LINFlexD is in UART buffer mode (TFBM = 0), TDFLTFC defines the number of bytes to be

transmitted. The field is read/write in this configuration. The first bit is reserved and not
implemented.
The permissible values are as follows (with X representing the unimplemented first bit):
0bX00: 1 byte
0bX01: 2 bytes
0bX10: 3 bytes
0bX11: 4 bytes
When the UART data length is configured as half-word (WL = 0b10 or 0b11), the only valid values
for TDFLTFC are 0b001 and 0b011.

 • When LINFlexD is in UART FIFO mode (TFBM = 1), TDFLTFC contains the number of entries
(bytes) of the Tx FIFO. The field is read-only in this configuration.
The permissible values are as follows:
0b000: Empty
0b001: 1 byte
0b010: 2 bytes
0b011: 3 bytes
0b100: 4 bytes
All other values are reserved.

This field is meaningful and can be programmed only when the UART bit is set.

RDFLRFC Receiver data field length / Rx FIFO counter
This field has one of two functions depending on the mode of operation as follows:
 • When LINFlexD is in UART buffer mode (RFBM = 0), RDFLRFC defines the number of bytes to be

received. The field is read/write in this configuration. The first bit is reserved and not implemented.
The permissible values are as follows (with X representing the unimplemented first bit):
0bX00: 1 byte
0bX01: 2 bytes
0bX10: 3 bytes
0bX11: 4 bytes
When the UART data length is configured as half-word (WL = 0b10 or 0b11), the only valid values
for RDFLRFC are 0b001 and 0b011.

 • When LINFlexD is in UART FIFO mode (RFBM = 1), RDFLRFC contains the number of entries
(bytes) of the Rx FIFO. The field is read-only in this configuration.
The permissible values are as follows:
0b000: Empty
0b001: 1 byte
0b010: 2 bytes
0b011: 3 bytes
0b100: 4 bytes
All other values are reserved.

This field is meaningful and can be programmed only when the UART bit is set.

RFBM Rx FIFO/buffer mode
0 Rx buffer mode enabled
1 Rx FIFO mode enabled (mandatory in DMA Rx mode)

This field can be programmed in initialization mode only when the UART bit is set.

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

622 Freescale Semiconductor

TFBM Tx FIFO/buffer mode
0 Tx buffer mode enabled
1 Tx FIFO mode enabled (mandatory in DMA Tx mode)

This field can be programmed in initialization mode only when the UART bit is set.

RXEN Receiver Enable
0: Receiver disabled
1: Receiver enabled

This field can be programmed only when the UART bit is set.

TXEN Transmitter Enable
0: Transmitter disabled
1: Transmitter enabled

This field can be programmed only when the UART bit is set.
Note: Transmission starts when this bit is set and when writing DATA0 in the BDRL register.

PC[1:0] Parity control
00 Parity sent is even
01 Parity sent is odd
10 A logical 0 is always transmitted/checked as parity bit
11 A logical 1 is always transmitted/checked as parity bit

This field can be programmed in initialization mode only when the UART bit is set.

PCE Parity Control Enable
0: Parity transmit/check disabled
1: Parity transmit/check enabled

This field can be programmed in Initialization mode only when the UART bit is set.

WL[1:0] Word length in UART mode
00 7 bits data + parity
01 8 bits data when PCE = 0 or 8 bits data + parity when PCE = 1
10 15 bits data + parity
11 16 bits data when PCE = 0 or 16 bits data + parity when PCE = 1

This field can be programmed in Initialization mode only when the UART bit is set.

UART UART mode enable
0: LIN mode
1: UART mode

This field can be programmed in Initialization mode only.

Table 26-18. UARTCR field descriptions (continued)

Field Description

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 623

26.10.6 UART mode status register (UARTSR)

Offset: 0x14 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
SZF OCF PE3 PE2 PE1 PE0 RMB FEF BOF RPS WUF 0 TO

D
R

F
R

F
E

D
T

F
T

F
F

NF

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-23. UART mode status register (UARTSR)

Table 26-19. UARTSR field descriptions

Field Description

SZF Stuck at zero Flag
This bit is set by hardware when the bus is dominant for more than a 100-bit time. It is cleared by
software.

OCF OCF Output Compare Flag
0: No output compare event occurred
1: The content of the counter has matched the content of OC1[0:7] or OC2[0:7] in LINOCR.
An interrupt is generated if the OCIE bit in LINIER register is set.

PE3 Parity Error Flag Rx3
This bit indicates if there is a parity error in the corresponding received byte (Rx3). No interrupt is
generated if this error occurs.
0: No parity error
1: Parity error

PE2 Parity Error Flag Rx2
This bit indicates if there is a parity error in the corresponding received byte (Rx2). No interrupt is
generated if this error occurs.
0: No parity error
1: Parity error

PE1 Parity Error Flag Rx1
This bit indicates if there is a parity error in the corresponding received byte (Rx1). No interrupt is
generated if this error occurs.
0: No parity error
1: Parity error

PE0 Parity Error Flag Rx0
This bit indicates if there is a parity error in the corresponding received byte (Rx0). No interrupt is
generated if this error occurs.
0: No parity error
1: Parity error

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

624 Freescale Semiconductor

RMB Release Message Buffer
0: Buffer is free
1: Buffer ready to be read by software. This bit must be cleared by software after reading data received
in the buffer.
This bit is cleared by hardware in Initialization mode.

FEF Framing Error Flag
This bit is set by hardware and indicates to the software that LINFlexD has detected a framing error
(invalid stop bit).

BOF FIFO/buffer overrun flag
This bit is set by hardware when a new data byte is received and the RMB bit is not cleared in UART
buffer mode. In UART FIFO mode, this bit is set when there is a new byte and the Rx FIFO is full. In
UART FIFO mode, once Rx FIFO is full, the new received message is discarded regardless of the
value of LINCR1[RBLM].
If LINCR1[RBLM] = 1, the new byte received is discarded.
If LINCR1[RBLM] = 0, the new byte overwrites buffer.
This field can be cleared by writing a 1 to it. An interrupt is generated if LINIER[BOIE] is set.

RPS LIN Receive Pin State
This bit reflects the current status of LINRX pin for diagnostic purposes.

WUF Wake-up Flag
This bit is set by hardware and indicates to the software that LINFlexD has detected a falling edge on
the LINRX pin in Sleep mode.
This bit must be cleared by software. It is reset by hardware in Initialization mode.
An interrupt i generated if WUIE bit in LINIER is set.

TO Timeout
The LINFlexD controller sets this field when a UART timeout occurs — that is, when the value of
UARTCTO becomes equal to the preset value of the timeout (UARTPTO register setting). This field
should be cleared by software. The GCR[SR] field should be used to reset the receiver FSM to idle
state in case of UART timeout for UART reception depending on the application both in buffer and
FIFO mode.
An interrupt is generated when LINIER[DBEIETOIE] is set on the Error interrupt line in UART mode.

DRFRFE Data reception completed flag / Rx FIFO empty flag
The LINFlexD controller sets this field as follows:
 • In UART buffer mode (RFBM = 0), it indicates that the number of bytes programmed in RDFL has

been received. This field should be cleared by software. An interrupt is generated if LINIER[DRIE]
is set. This field is set in case of framing error, parity error, or overrun. This field reflects the same
value as in LINESR when in Initialization mode and UART bit is set.

 • In UART FIFO mode (RFBM = 1), it indicates that the Rx FIFO is empty. This field is a read-only
field used internally by the DMA Rx interface.

DTFTFF Data transmission completed flag / Tx FIFO full flag
The LINFlexD controller sets this field as follows:
 • In UART buffer mode (TFBM = 0), it indicates that the data transmission is completed. This field

should be cleared by software. An interrupt is generated if LINIER[DTIE] is set. This field reflects
the same value as in LINESR when in Initialization mode and UART bit is set.

 • In UART FIFO mode (TFBM = 1), it indicates that the Tx FIFO is full. This field is a read-only field
used internally by the DMA Tx interface.

NF Noise Flag
This bit is set by hardware when noise is detected on a received character. This bit is cleared by
software.

Table 26-19. UARTSR field descriptions (continued)

Field Description

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 625

26.10.7 LIN timeout control status register (LINTCSR)

Offset: 0x18 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0

LT
O

M
1

IOT1

TO
C

E CNT

W

Reset 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1 These fields are writable only in Initialization mode (LINCR1[INIT] = 1).

Figure 26-24. LIN timeout control status register (LINTCSR)

Table 26-20. LINTCSR field descriptions

Name Description

LTOM LIN timeout mode
0: LIN timeout mode (header, response and frame timeout detection)
1: Output compare mode
This bit can be set/cleared in Initialization mode only.

IOT Idle on Timeout
0: LIN state machine does not reset to Idle on timeout
1: LIN state machine resets to Idle on timeout event
This feature is applicable only when MODE bit in LINTCSR is cleared.

TOCE Timeout counter enable
0: Timeout counter disable. OCF bit in LINESR or UARTSR is not set on an output compare event.
1: Timeout counter enable. OCF bit is set if an output compare event occurs.
TOCE bit is configurable by software in Initialization mode. If LIN state is not Init and if timer is in LIN
timeout mode, then hardware takes control of TOCE bit ans software cannot modify it.

CNT Counter Value
These bits indicate the LIN Timeout counter value.

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

626 Freescale Semiconductor

26.10.8 LIN output compare register (LINOCR)

Offset: 0x1C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
OC21 OC11

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 If LINTCSR[LTOM] = 0, these fields are read-only.(These fields are writable only in Output Compare
mode)

Figure 26-25. LIN output compare register (LINOCR)

Table 26-21. LINOCR field descriptions

Field Description

OC2 Output compare 2 value
These bits contain the value to be compared to the value of LINTCSR[CNT].

OC1 Output compare 1 value
These bits contain the value to be compared to the value of LINTCSR[CNT].

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 627

26.10.9 LIN timeout control register (LINTOCR)

Offset: 0x20 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
RTO

0
HTO3

W

Reset 0 0 0 0 1 1 1 0 0 0 0/11 0/12 1 1 0 0

1 Resets to 1 in Slave mode and to 0 in Master mode
2 Resets to 0 in Slave mode and to 1 in Master mode
3 HTO field can only be written in slave mode, LINCR1[MME] = 0.

Figure 26-26. LIN timeout control register (LINTOCR)

Table 26-22. LINTOCR field descriptions

Field Description

RTO Response timeout value
This register contains the response timeout duration (in bit time) for 1 byte.
The reset value is 0xE = 14, corresponding to TResponse_Maximum = 1.4 x TResponse_Nominal

HTO Header timeout value
This register contains the header timeout duration (in bit time). This value does not include the first 11
dominant bits of the Break. The reset value depends on which mode LINFlexD is in.
HTO can be written only for Slave mode.

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

628 Freescale Semiconductor

26.10.10 LIN fractional baud rate register (LINFBRR)

26.10.11 LIN integer baud rate register (LINIBRR)

Offset: 0x24 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
DIV_F1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 This field is writable only in Initialization mode, LINCR1[INIT] = 1.

Figure 26-27. LIN timeout control register (LINTOCR)

Table 26-23. LINFBRR field descriptions

Field Description

DIV_F Fraction bits of LFDIV
The 4 fraction bits define the value of the fraction of the LINFlexD divider (LFDIV).
Fraction (LFDIV) = Decimal value of DIV_F / 16.

This register can be written in Initialization mode only, LINCR1[INIT] = 1.

Offset: 0x28 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
DIV_M1

W

Reset 0

1 This field is writable only in Initialization mode (LINCR1[INIT] = 1).

Figure 26-28. LIN integer baud rate register (LINIBRR)

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 629

26.10.12 LIN checksum field register (LINCFR)

Table 26-24. LINIBRR field descriptions

Field Description

DIV_M LFDIV mantissa
These bits define the LINFlexD divider (LFDIV) mantissa value (see Table 26-25).
This register can be written in Initialization mode only.

Table 26-25. Integer baud rate selection

DIV_M Mantissa

0x0 LIN clock disabled

0x1 1

... ...

0xFFFFE 1048574

0xFFFFF 1048575

Offset: 0x2C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
CF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-29. LIN checksum field register (LINCFR)

Table 26-26. LINCFR field descriptions

Field Description

CF Checksum bits
When LINCR1[CCD] is cleared, these bits are read-only. When LINCR1[CCD] is set, these bits are
read/write. See Table 26-12.

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

630 Freescale Semiconductor

26.10.13 LIN control register 2 (LINCR2)

Offset: 0x30 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0

IO
B

E
1

IO
P

E
1

W
U

R
Q

3

D
D

R
Q

3

D
T

R
Q

3

A
B

R
Q

3

H
T

R
Q

3 0 0 0 0 0 0 0 0

W

Reset 0 1 0/12 0 0 0 0 0 0 0 0 0 0 0 0 0

1 These fields are writable only in Initialization mode (LINCR1[INIT] = 1.
2 Resets to 1 in Slave mode and to 0 in Master mode.
3 These fields are cleared by hardware.

Figure 26-30. LIN control register 2 (LINCR2)

Table 26-27. LINCR2 field descriptions

Field Description

IOBE Idle on Bit Error
0: Bit error does not reset LIN state machine
1: Bit error reset LIN state machine
This bit can be set/cleared in Initialization mode only (LINCR1[INIT]) = 1.

IOPE Idle on Identifier Parity Error
0: Identifier Parity error does not reset LIN state machine.
1: Identifier Parity error reset LIN state machine.
This bit can be set/cleared in Initialization mode only (LINCR1[INIT]) = 1.

WURQ Wake-up Generation Request
Setting this bit generates a wake-up pulse. It is reset by hardware when the wake-up character has
been transmitted. The character sent is copied from DATA0 in BDRL buffer. Note that this bit cannot
be set in Sleep mode. Software has to exit Sleep mode before requesting a wake-up. Bit error is not
checked when transmitting the wake-up request.

DDRQ Data Discard Request
Set by software to stop data reception if the frame does not concern the node. This bit is reset by
hardware once LINFlexD has moved to idle state. In Slave mode, this bit can be set only when HRF
bit in LINSR is set and identifier did not match any filter.

DTRQ Data Transmission Request
Set by software in Slave mode to request the transmission of the LIN Data field stored in the Buffer
data register. This bit can be set only when HRF bit in LINSR is set.
Cleared by hardware when the request has been completed or aborted or on an error condition.
In Master mode, this bit is set by hardware when DIR bit in BIDR is set and header transmission is
completed.

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 631

26.10.14 Buffer identifier register (BIDR)

This register contains the fields that identify a transaction and provide other information related to it.

All the fields in this register must be updated when an ID filter (enabled) in slave mode (Tx or Rx) matches
the ID received.

ABRQ Abort Request
Set by software to abort the current transmission.
Cleared by hardware when the transmission has been aborted. LINFlexD aborts the transmission at
the end of the current bit.
This bit can also abort a wake-up request.
It can also be used in UART mode.

HTRQ Header Transmission Request
Set by software to request the transmission of the LIN header.
Cleared by hardware when the request has been completed or aborted.
This bit has no effect in UART mode.

Offset: 0x34 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DFL DIR CCS

0 0
ID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-31. Buffer identifier register (BIDR)

Table 26-28. BIDR field descriptions

Field Description

DFL Data Field Length
These bits define the number of data bytes in the response part of the frame.
DFL = Number of data bytes - 1.
Normally, LIN uses only DFL[0:2] to manage frames with a maximum of 8 bytes of data. Identifier filters
are compatible with DFL[0:2] and DFL[0:5]. DFL[3:5] are provided to manage extended frames.

DIR Direction
This bit controls the direction of the data field.
0: LINFlexD receives the data and copy them in the BDR registers.
1: LINFlexD transmits the data from the BDR registers.

Table 26-27. LINCR2 field descriptions (continued)

Field Description

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

632 Freescale Semiconductor

26.10.15 Buffer data register least significant (BDRL)

CCS Classic Checksum
This bit controls the type of checksum applied on the current message.
0: Enhanced Checksum covering Identifier and Data fields. This is compatible with LIN specification
2.0 and higher.
1: Classic Checksum covering Data fields only. This is compatible with LIN specification 1.3 and below.

ID Identifier
Identifier part of the identifier field without the identifier parity.

Offset: 0x38 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DATA3 DATA2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DATA1 DATA0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-32. Buffer data register least significant (BDRL)

Table 26-29. BDRL field descriptions

Field Description

DATA3 Data Byte 3
Data byte 3 of the data field

DATA2 Data Byte 2
Data byte 2 of the data field

DATA1 Data Byte 1
Data byte 1 of the data field

DATA0 Data Byte 0
Data byte 0 of the data field

Table 26-28. BIDR field descriptions (continued)

Field Description

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 633

26.10.16 Buffer data register most significant (BDRM)

Offset: 0x3C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DATA7 DATA6

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DATA5 DATA4

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-33. Buffer data register most significant (BDRM)

Table 26-30. BDRM field descriptions

Field Description

DATA7 Data Byte 7
Data byte 7 of the data field

DATA6 Data Byte 6
Data byte 6 of the data field

DATA5 Data Byte 5
Data byte 5 of the data field

DATA4 Data Byte 4
Data byte 4 of the data field

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

634 Freescale Semiconductor

26.10.17 Identifier filter enable register (IFER)

26.10.18 Identifier filter match index (IFMI)

Offset: 0x40 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
FACT1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 This field is writable only in Initialization mode (LINCR1[INIT] = 1).

Figure 26-34. Identifier filter enable register (IFER)

Table 26-31. IFER field descriptions

Field Description

FACT Filter activation
The software sets the bit FACT[x] to activate the filters x in identifier list mode.
In identifier mask mode bits FACT(2n + 1) have no effect on the corresponding filters as they act as
masks for the Identifiers 2n.
0 Filter x is deactivated
1 Filter x is activated

Offset: 0x44 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 IFMI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-35. Identifier filter match index (IFMI)

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 635

26.10.19 Identifier filter mode register (IFMR)

Table 26-32. IFMI field descriptions

Field Description

IFMI Filter match index
This register contains the index corresponding to the received ID. It can be used to directly write or
read the data in RAM (refer to Section 26.7.2, Slave mode, for more details).
When no filter matches, IFMI = 0. When Filter n is matching, IFMI = n + 1.

Offset:0x48 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
IFM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-36. Identifier filter mode register (IFMR)

Table 26-33. IFMR field descriptions

Field Description

IFM Filter mode
0 Filters 2n and 2n + 1 are in identifier list mode.
1 Filters 2n and 2n + 1 are in mask mode (filter 2n + 1 is the mask for the filter 2n).
(See Table 26-34.)

Table 26-34. IFMR[IFM] configuration

Bit Value Result

IFM[0] 0 Filters 0 and 1 are in identifier list mode.

1 Filters 0 and 1 are in mask mode (filter 1 is the mask for the filter 0).

IFM[1] 0 Filters 2 and 3 are in identifier list mode.

1 Filters 2 and 3 are in mask mode (filter 3 is the mask for the filter 2).

IFM[2] 0 Filters 4 and 5 are in identifier list mode.

1 Filters 4 and 5 are in mask mode (filter 5 is the mask for the filter 4).

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

636 Freescale Semiconductor

26.10.20 Identifier filter control registers (IFCR0–IFCR15)

The function of these registers is different depending on which mode the LINFlexD controller is in, as
described in Table 26-35.

NOTE
These registers are available on LINFlexD_0 only.

IFM[3] 0 Filters 6 and 7 are in identifier list mode.

1 Filters 6 and 7 are in mask mode (filter 7 is the mask for the filter 6).

IFM[4] 0 Filters 8 and 9 are in identifier list mode.

1 Filters 8 and 9 are in mask mode (filter 9 is the mask for the filter 8).

IFM[5] 0 Filters 10 and 11 are in identifier list mode.

1 Filters 10 and 11 are in mask mode (filter 11 is the mask for the filter 10).

IFM[6] 0 Filters 12 and 13 are in identifier list mode.

1 Filters 12 and 13 are in mask mode (filter 13 is the mask for the filter 12).

IFM[7] 0 Filters 14 and 15 are in identifier list mode.

1 Filters 14 and 15 are in mask mode (filter 15 is the mask for the filter 14).

Table 26-35. IFCR functionality based on mode

Mode IFCR functionality

Identifier list Each IFCR register acts as a filter.

Identifier mask If a = (number of filters) / 2, and n = 0 to (a - 1),
then IFCR[2n] acts as a filter and IFCR[2n+1] acts as the mask for IFCR[2n].

Table 26-34. IFMR[IFM] configuration (continued)

Bit Value Result

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 637

26.10.21 Global control register (GCR)

This register can be programmed only in Initialization mode. The configuration specified in this register
applies in both LIN and UART modes.

Offsets: 0x4C–0x88 (16 registers) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DFL1

D
IR

1

C
C

S
1 0 0

ID1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 These fields are writable only in Initialization mode (LINCR1[INIT] = 1).

Figure 26-37. Identifier filter control registers (IFCR0–IFCR15)

Table 26-36. IFCR field descriptions

Field Description

DFL Data Field Length
This field defines the number of data bytes in the response part of the frame.

DIR Direction
This bit controls the direction of the data field.
0: LINFlexD receives the data and copy them in the BDRL and BDRM registers.
1: LINFlexD transmits the data from the BDRL and BDRM registers.

CCS Classic Checksum
This bit controls the type of checksum applied on the current message.
0: Enhanced Checksum covering Identifier and Data fields. This is compatible with LIN specification
2.0 and higher.
1: Classic Checksum covering Data fields only. This is compatible with LIN specification 1.3 and below.

ID Identifier
Identifier part of the identifier field without the identifier parity.

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

638 Freescale Semiconductor

Offset: 0x8C (for LINFlexD_0 only), 0x4C (for LINFlexD_1–9) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0

T
D

F
B

M
1

R
D

F
B

M
1

T
D

LI
S

1

R
D

LI
S

1

S
TO

P
1 0

W SR1

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 This field is writable only in Initialization mode (LINCR1[INIT] = 1).

Figure 26-38. Global control register (GCR)

Table 26-37. GCR field descriptions

Field Description

TDFBM Transmit data first bit MSB
This field controls the first bit of transmitted data (payload only) as MSB/LSB in both UART and LIN
modes.
0 The first bit of transmitted data is LSB – that is, the first bit transmitted is mapped on the LSB bit

(BDR(0), BDR(8), BDR(16), BDR(24)).
1 The first bit of transmitted data is MSB – that is, the first bit transmitted is mapped on the MSB bit

(BDR(7), BDR(15), BDR(23), BDR(31)).

RDFBM Received data first bit MSB
This field controls the first bit of received data (payload only) as MSB/LSB in both UART and LIN
modes.
0 The first bit of received data is LSB – that is, the first bit received is mapped on the LSB bit (BDR(0),

BDR(8), BDR(16), BDR(24)).
1 The first bit of received data is MSB – that is, the first bit received is mapped on the MSB bit

(BDR(7), BDR(15), BDR(23), BDR(31)).

TDLIS Transmit data level inversion selection
This field controls the data inversion of transmitted data (payload only) in both UART and LIN modes.
0 Transmitted data is not inverted.
1 Transmitted data is inverted.

RDLIS Received data level inversion selection
This field controls the data inversion of received data (payload only) in both UART and LIN modes.
0 Received data is not inverted.
1 Received data is inverted.

STOP Stop bit configuration
This field controls the number of stop bits in transmitted data in both UART and LIN modes. The stop
bit is configured for all the fields (delimiter, sync, ID, checksum, and payload).
0 One stop bit
1 Two stop bits

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 639

26.10.22 UART preset timeout register (UARTPTO)

This register contains the preset timeout value in UART mode, and is used to monitor the IDLE state of
the reception line. The timeout detection uses this register and the UARTCTO register described in
Section 26.10.23, UART current timeout register (UARTCTO).

26.10.23 UART current timeout register (UARTCTO)

This register contains the current timeout value in UART mode, and is used in conjunction with the
UARTPTO register (see Section 26.10.22, UART preset timeout register (UARTPTO)) to monitor the
IDLE state of the reception line. UART timeout works in both CPU and DMA modes.

The timeout counter:

• Starts at zero and counts upward

• Is clocked with the baud rate clock prescaled by a hard-wired scaling factor of 16

• Is automatically enabled when UARTCR[RXEN] = 1

SR Soft reset
If the software writes a “1” to this field, the LINFlexD controller executes a soft reset in which the FSMs,
FIFO pointers, counters, timers, status registers, and error registers are reset but the configuration
registers are unaffected.
This field should be cleared by software to perform further operations (the field is not cleared by
hardware). This field always reads “0”.

Offset: 0x90 (for LINFlexD_0 only), 0x50 (for LINFlexD_1–9) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
PTO

W

Reset 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

Figure 26-39. UART preset timeout register (UARTPTO)

Table 26-38. UARTPTO field descriptions

Field Description

PTO Preset value of the timeout counter
Do not set PTO = 0 (otherwise, UARTSR[TO] would immediately be set).

Table 26-37. GCR field descriptions (continued)

Field Description

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

640 Freescale Semiconductor

26.10.24 DMA Tx enable register (DMATXE)

This register enables the DMA Tx interface.

Offset: 0x94 (for LINFlexD_0 only), 0x54 (for LINFlexD_1–9) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 CTO

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-40. UART current timeout register (UARTCTO)

Table 26-39. UARTCTO field descriptions

Field Description

CTO Current value of the timeout counter
This field is reset whenever one of the following occurs:

 • A new value is written to the UARTPTO register
 • The value of this field matches the value of UARTPTO[PTO]
 • A hard or soft reset occurs
 • New incoming data is received

When CTO matches the value of UARTPTO[PTO], UARTSR[TO] is set.

Offset: 0x98 (for LINFlexD_0 only), 0x58 (for LINFlexD_1–9) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D
T

E
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-41. DMA Tx enable register (DMATXE)

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 641

26.10.25 DMA Rx enable register (DMARXE)

This register enables the DMA Rx interface.

26.11 DMA interface
The LINFlexD DMA interface offers a parametric and programmable solution with the following features:

• LIN Master node, TX mode: single DMA channel

• LIN Master node, RX mode: single DMA channel

• LIN Slave node, TX mode: 1 to N DMA channels where N = max number of ID filters

• LIN Slave node, RX mode: 1 to N DMA channels where N = max number of ID filters

• UART node, TX mode: single DMA channel

• UART node, RX mode: single DMA channel + timeout

Table 26-40. DMATXE field descriptions

Field Description

DTEn DMA Tx channel n enable
0 DMA Tx channel n disabled
1 DMA Tx channel n enabled
Note: When DMATXE = 0x0, the DMA Tx interface FSM is forced (soft reset) into the IDLE state.

Offset: 0x9C (for LINFlexD_0 only), 0x5C (for LINFlexD_1–9) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D
R

E
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-42. DMA Rx enable register (DMARXE)

Table 26-41. DMARXE field descriptions

Field Description

DREn DMA Rx channel n enable
0 DMA Rx channel n disabled
1 DMA Rx channel n enabled

Note: When DMARXE = 0x0, the DMA Rx interface FSM is forced (soft reset) into the IDLE state.

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

642 Freescale Semiconductor

The LINFlexD controller interacts with an enhanced direct memory access (eDMA) controller; see the
description of that controller for details on its operation and the transfer control descriptors (TCDs)
referenced in this section.

26.11.1 Master node, TX mode

On a master node in TX mode, the DMA interface requires a single TX channel. Each TCD controls a
single frame, except for the extended frames (multiple TCDs). The memory map associated with the TCD
chain (RAM area and LINFlexD registers) is shown in Figure 26-43.

Figure 26-43. TCD chain memory map (master node, TX mode)

The TCD chain of the DMA Tx channel on a master node supports:

• Master to Slave: transmission of the entire frame (header + data)

• Slave to Master: transmission of the header. The data reception is controlled by the Rx channel on
the master node.

• Slave to Slave: transmission of the header.

The register settings for the LINCR2 and BIDR registers for each class of LIN frame are shown in
Table 26-42.

LINCR2 (4 bytes)

BIDR (4 bytes)

BDRL + BDRM

DMA transfer

(4/8 bytes)

LINCR2 (4 bytes)

BIDR (4 bytes)

LINCR2 (4 bytes)

BIDR (4 bytes)

BDRL + BDRM
(8 bytes)

BDRL + BDRM
(4/8 bytes)

RAM area

TCD (n+2)

TCD (n+3)

Linked chain

LINCR2 (4 bytes)

BIDR (4 bytes)

BDRL + BDRM
(4/8 bytes)

LINCR2 (4 bytes)

BIDR (4 bytes)

LINCR2 (4 bytes)

BIDR (4 bytes)

BDRL + BDRM
(8 bytes)

BDRL + BDRM
(4/8 bytes)

LINFlex2 registers

Frame (n+1)
Slave –> Master

or
Slave –> Slave

Extended
Frame (n+2)

Master –> Slave

Extended
Frame (n+3)

Master –> Slave

Frame (n)
Master –> Slave

1 DMA TX channel (TCD single and/or linked chain)

TCD (n+1)

TCD (n)

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 643

The concept FSM to control the DMA TX interface is shown in Figure 26-44. The DMA TX FSM will
move to IDLE state immediately at next clock edge if DMATXE[0] = 0.

Table 26-42. Register settings (master node, TX mode)

LIN frame LINCR2 BIDR

Master to Slave DDRQ=1
DTRQ=0
HTRQ=0

DFL = payload size
ID = address
CCS = checksum
DIR = 1 (TX)

Slave to Master DDRQ=0
DTRQ=0
HTRQ=0

DFL = payload size
ID = address
CCS = checksum
DIR = 0 (RX)

Slave to Slave DDRQ=1
DTRQ=0
HTRQ=0

DFL = payload size
ID = address
CCS = checksum
DIR = 0 (RX)

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

644 Freescale Semiconductor

Figure 26-44. FSM to control the DMA TX interface (master node)

The TCD settings (word transfer) are shown in Table 26-43. All other TCD fields are equal to 0. TCD
settings based on half-word or byte transfers are allowed.

Enables DMA TX
channel request

(DMAERQH, DMAERQL)

!DTF &
!DRF & (LIN idle |

DBEF) & DMA_TEN &
!Token_DMA_RX

?

True

DMA TX transfer (Req/Ack
minor/major loop) from

RAM area to LINFlex registers

DMA TX
transfer is completed

?

True

DBEF
?

False

Set HTRQ to transmit the
LIN frame (header + [data])

!DIR & !DDRQ
?

False (TX mode)

True (RX mode)

Clear DBEF to transmit the LIN
frame (data for extended frame)

True

False

False

False

False

DTF
?

DBEF
?

Set Token_DMA_RX to enable
the DMA RX interface

Clear DTF

True (end of frame)

True
(extended frame,
size > 8 bytes)

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 645

26.11.2 Master node, RX mode

On a master node in RX mode, the DMA interface requires a single RX channel. Each TCD controls a
single frame, except for the extended frames (multiple TCDs). The memory map associated to the TCD
chain (RAM area and LINFlexD registers) is shown in Figure 26-45.

Figure 26-45. TCD chain memory map (master node, RX mode)

The TCD chain of the DMA Rx channel on a master node supports Slave-to-Master reception of the data
field.

Table 26-43. TCD settings (master node, TX mode)

TCD field Value Description

CITER[14:0] 1 Single iteration for the “major” loop

BITER[14:0] 1 Single iteration for the “major” loop

NBYTES[31:0] [4 + 4] + 0/4/8 = N Data buffer is stuffed with dummy bytes if the length is
not word aligned.
LINCR2 + BIDR + BDRL + BDRM

SADDR[31:0] RAM address

SOFF[15:0] 4 Word increment

SSIZE[2:0] 2 Word transfer

SLAST[31:0] –N

DADDR[31:0] LINCR2 address

DOFF[15:0] 4 Word increment

DSIZE[2:0] 2 Word transfer

DLAST_SGA[31:0] –N No scatter/gather processing

INT_MAJ 0/1 Interrupt disabled/enabled

D_REQ 1 Only on the last TCD of the chain.

START 0 No software request

BIDR (4 bytes)

BDRL + BDRM
(4/8 bytes)

DMA transfer

RAM area

TCD (n+2)

Linked chain

BIDR (4 bytes)

BDRL + BDRM
(8 bytes)

BDRL + BDRM
(4/8 bytes)

LINFlex2 registers

Extended
Frame (n+1)

Frame (n)
Slave –> Master

1 DMA RX channel (TCD single and/or linked chain)

TCD (n+1)

TCD (n)

Extended
Frame (n+2)

BIDR (4 bytes)

BDRL + BDRM
(4/8 bytes)

BIDR (4 bytes)

BDRL + BDRM
(8 bytes)

BDRL + BDRM
(4/8 bytes)

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

646 Freescale Semiconductor

The BIDR register is optionally copied into the RAM area. This BIDR field (part of FIFO data) contains
the ID of each message to allow the CPU to figure out which ID was received by the LINFlexD DMA if
only the “one DMA channel” setup is used.

The concept FSM to control the DMA RX interface is shown in Figure 26-46. The DMA RX FSM will
move to IDLE state immediately at next clock edge if DMARXE[0]=0.

Figure 26-46. FSM to control the DMA RX interface (master node)

The TCD settings (word transfer) are shown in Table 26-44. All other TCD fields are equal to 0. TCD
settings based on half-word or byte transfer are allowed.

Enables DMA RX
channel request

(DMAERQH, DMAERQL)

(DRF |
(DBFF & RMB))

& Token_DMA_RX &
DMA_REN

?

True

DMA RX transfer (Req/Ack
minor/major loop) from

LINFlex registers to RAM area

DMA RX
transfer done

?

True

False False

False

False

DRF
?

DBFF & RMB
?

Clear Token_DMA_RX

True True
(extended frame,

Clear DRF

Clear DBFF, RMB
(for extended frame)

size > 8 bytes)

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 647

26.11.3 Slave node, TX mode

On a slave node in TX mode, the DMA interface requires a DMA TX channel for each ID filter
programmed in TX mode. In case a single DMA TX channel is available, a single ID field filter must be
programmed in TX mode. Each TCD controls a single frame, except for the extended frames (multiple
TCDs). The memory map associated to the TCD chain (RAM area and LINFlexD registers) is shown in
Figure 26-47.

Figure 26-47. TCD chain memory map (slave node, TX mode)

Table 26-44. TCD settings (master node, RX mode)

TCD field Value Description

CITER[14:0] 1 Single iteration for the “major” loop

BITER[14:0] 1 Single iteration for the “major” loop

NBYTES[31:0] [4] + 4/8 = N Data buffer is stuffed with dummy bytes if the length is not
word aligned.

BIDR + BDRL + BDRM

SADDR[31:0] BIDR address

SOFF[15:0] 4 Word increment

SSIZE[2:0] 2 Word transfer

SLAST[31:0] –N

DADDR[31:0] RAM address

DOFF[15:0] 4 Word increment

DSIZE[2:0] 2 Word transfer

DLAST_SGA[31:0] –N No scatter/gather processing

INT_MAJ 0/1 Interrupt disabled/enabled

D_REQ 1 Only on the last TCD of the chain.

START 0 No software request

DMA transfer

RAM area

TCD (n+2)

Linked chain

LINFlex2 registers

Extended
Frame (n+1)

Frame (n)
Slave –> Master

1 DMA TX channel/filter (TCD single and/or linked chain)

TCD (n+1)

TCD (n)

Extended
Frame (n+2)

BDRL + BDRM
(4/8 bytes)

BDRL + BDRM
(8 bytes)

BDRL + BDRM
(4/8 bytes)

Slave –> Slave

BDRL + BDRM
(4/8 bytes)

BDRL + BDRM
(8 bytes)

BDRL + BDRM
(4/8 bytes)

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

648 Freescale Semiconductor

The TCD chain of the DMA Tx channel on a slave node supports:

• Slave to Master: transmission of the data field

• Slave to Slave: transmission of the data field

The register settings of the LINCR2, IFER, IFMR, and IFCR registers are shown in Table 26-45.

The concept FSM to control the DMA Tx interface is shown in Figure 26-48. DMA TX FSM will move
to idle state if DMATXE[x] = 0, where x = IFMI – 1.

Table 26-45. Register settings (slave node, TX mode)

LIN frame LINCR2 IFER IFMR IFCR

Slave to Master
or Slave to Slave

DDRQ = 0
DTRQ = 0
HTRQ = 0

To enable an ID filter
(Tx mode) for each
DMA TX channel

- Identifier list mode
- Identifier mask mode

DFL = payload size
ID = address
CCS = checksum
DIR = 1(TX)

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 649

Figure 26-48. FSM to control the DMA TX interface (slave node)

The TCD settings (word transfer) are shown in Table 26-46. All other TCD fields are equal to 0. TCD
settings based on half-word or byte transfer are allowed.

Enables DMA TX
channel/filter request

(DMAERQH, DMAERQL)

!DTF &
!DRF & (DBEF |

HRF) & (IFMI != 0) &
DMA_TEN

?

True

DMA TX transfer (Req/Ack) from
RAM area to LINFlex registers

(channel/filter mapping)

DMA TX
transfer done

?

True

DBEF
?

False

Set DTRQ to transmit the
LIN frame (data)

Clear DBEF to transmit the LIN
frame (data for extended frame)

True

False False

False

False

DTF
?

DBEF
?

Clear DTF

True True
(extended frame,
size > 8 bytes)

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

650 Freescale Semiconductor

26.11.4 Slave node, RX mode

On a slave node in RX mode, the DMA interface requires a DMA RX channel for each ID filter
programmed in RX mode. In case a single DMA RX channel is available, a single ID field filter must be
programmed in RX mode. Each TCD controls a single frame, except for the extended frames (multiple
TCDs). The memory map associated to the TCD chain (RAM area and LINFlexD registers) is shown in
Figure 26-49.

Figure 26-49. TCD chain memory map (slave node, RX mode)

Table 26-46. TCD settings (slave node, TX mode)

TCD field Value Description

CITER[14:0] 1 Single iteration for the “major” loop

BITER[14:0] 1 Single iteration for the “major” loop

NBYTES[31:0] 4/8 = N Data buffer is stuffed with dummy bytes if the length is not
word aligned.
BDRL + BDRM

SADDR[31:0] RAM address

SOFF[15:0] 4 Word increment

SSIZE[2:0] 2 Word transfer

SLAST[31:0] –N

DADDR[31:0] BDRL address

DOFF[15:0] 4 Word increment

DSIZE[2:0] 2 Word transfer

DLAST_SGA[31:0] –N No scatter/gather processing

INT_MAJ 0/1 Interrupt disabled/enabled

D_REQ 1 Only on the last TCD of the chain.

START 0 No software request

BIDR (4 bytes)

BDRL + BDRM
(4/8 bytes)

DMA transfer

RAM area

TCD (n+2)

Linked chain

BIDR (4 bytes)

BDRL + BDRM
(8 bytes)

BDRL + BDRM
(4/8 bytes)

LINFlex2 registers

Extended
Frame (n+1)

Frame (n)
Master –> Slave

1 DMA RX channel/filter (TCD single and/or linked chain)

TCD (n+1)

TCD (n)

Extended
Frame (n+2)

BIDR (4 bytes)

BDRL + BDRM
(4/8 bytes)

BIDR (4 bytes)

BDRL + BDRM
(8 bytes)

BDRL + BDRM
(4/8 bytes)

Slave –> Slave

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 651

The TCD chain of the DMA RX channel on a slave node supports:

• Master to Slave: reception of the data field.

• Slave to Slave: reception of the data field.

The register setting of the LINCR2, IFER, IFMR, and IFCR registers are given in Table 26-47.

The concept FSM to control the DMA Rx interface is shown in Figure 26-50. DMA RX FSM will move
to idle state if DMARXE[x] = 0 where x = IFMI - 1.

Table 26-47. Register settings (slave node, RX mode)

LIN frame LINCR2 IFER IFMR IFCR

Master to Slave
or Slave to Slave

DDRQ = 0
DTRQ = 0
HTRQ = 0

To enable an ID filter
(Rx mode) for each
DMA RX channel

- Identifier list mode
- Identifier mask mode

DFL = payload size
ID = address
CCS = checksum
DIR = 0 (RX)

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

652 Freescale Semiconductor

Figure 26-50. FSM to control the DMA RX interface (slave node)

The TCD settings (word transfer) are shown in Table 26-48. All other TCD fields = 0. TCD settings based
on half-word or byte transfer are allowed.

Table 26-48. TCD settings (slave node, RX mode)

TCD Field Value Description

CITER[14:0] 1 Single iteration for the “major” loop

BITER[14:0] 1 Single iteration for the “major” loop

NBYTES[31:0] [4] + 4/8 = N Data buffer is stuffed with dummy bytes if the length
is not word aligned.
BIDR + BDRL + BDRM

SADDR[31:0] BDRL address

Enables DMA RX
channel/filter request

(DMAERQH, DMAERQL)

!DTF &
(DRF | (DBFF &

RMB)) & (IFMI != 0) &
DMA_REN

?

True

DMA RX transfer (Req/Ack) from
LINFlex registers to RAM area

(channel/filter mapping)

DMA RX
transfer done

?

True

False False

False

False

DRF
?

DBFF & RMB
?

True True
(extended frame,

Clear DRF
Clear DBFF, RMB

(for extended frame)

size > 8 bytes)

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 653

26.11.5 UART node, TX mode

In UART TX mode, the DMA interface requires a DMA TX channel. A single TCD can control the
transmission of an entire Tx buffer. The memory map associated with the TCD chain (RAM area and
LINFlexD registers) is shown in Figure 26-51.

Figure 26-51. TCD chain memory map (UART node, TX mode)

The UART TX buffer must be configured in FIFO mode in order to:

• Allow the transfer of large data buffer by a single TCD

• Adsorb the latency, following a DMA request (due to the DMA arbitration), to move data from the
RAM to the FIFO

• Use low priority DMA channels

• Support the UART baud rate (2 Mb/s) without underrun events

The Tx FIFO size is:

SOFF[15:0] 4 Word increment

SSIZE[2:0] 2 Word transfer

SLAST[31:0] –N

DADDR[31:0] RAM address

DOFF[15:0] 4 Word increment

DSIZE[2:0] 2 Word transfer

DLAST_SGA[31:0] –N No scatter/gather processing

INT_MAJ 0/1 Interrupt disabled/enabled

D_REQ 1 Only on the last TCD of the chain.

START 0 No software request

Table 26-48. TCD settings (slave node, RX mode) (continued)

TCD Field Value Description

BDRL
(M half-words)

BDRL
(2 half-words FIFO mode)

BDRL
(M half-words)

BDRL
(2 half-words FIFO mode)

BDRL
(M bytes)

BDRL
(M bytes)

DMA transfer (8/16-bits data format)

RAM area LINFlex2 registers

1 DMA TX channel (TCD single and/or linked chain)

TCD (n+1)

TCD (n)

Buffer (n+1)

BDRL
(4 bytes FIFO mode)

BDRL
(4 bytes FIFO mode)

Buffer (n)

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

654 Freescale Semiconductor

• 4 bytes in 8-bit data format

• 2 half-words in 16-bit data format

A DMA request is triggered by FIFO not full (TX) status signals.

The concept FSM to control the DMA TX interface is shown in Figure 26-52. DMA TX FSM will move
to idle state if DMATXE[0] = 0.

Figure 26-52. FSM to control the DMA TX interface (UART node)

The TCD settings (typical case) are shown in Table 26-49. All other TCD fields = 0. The minor loop
transfers a single byte/half-word as soon a free entry is available in the Tx FIFO.

!TFF & DMA_TEN
?

True

False

False

!TFF
?

UART TX buffer (FIFO mode)
Set TXEN

Enables DMA TX
channel request

(DMAERQH, DMAERQL)

DMA TX transfer (Req/Ack) from
RAM area to UART TX FIFO

DMA TX
(major loop) done

?

True

False

DMA TX
(minor loop) done

?

True

False

True

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 655

26.11.6 UART node, RX mode

In UART RX mode, the DMA interface requires a DMA RX channel. A single TCD can control the
reception of an entire Rx buffer. The memory map associated with the TCD chain (RAM area and
LINFlexD registers) is shown in Figure 26-53.

Figure 26-53. TCD chain memory map (UART node, RX mode)

Table 26-49. TCD settings (UART node, TX mode)

TCD Field
Value

Description
8-bit data 16-bit data

CITER[14:0] M Multiple iterations for the “major” loop

BITER[14:0] M Multiple iterations for the “major” loop

NBYTES[31:0] 1 2 Minor loop transfer = 1 or 2 bytes

SADDR[31:0] RAM address

SOFF[15:0] 1 2 Byte/Half-word increment

SSIZE[2:0] 0 1 Byte/Half-word transfer

SLAST[31:0] -M -M * 2

DADDR[31:0] BDRL address DADDR = BDRL + 0x3 for byte transfer
DADDR = BDRL + 0x2 for half-word
transfer

DOFF[15:0] 0 No increment (FIFO)

DSIZE[2:0] 0 1 Byte/Half-word transfer

DLAST_SGA[31:0] 0 No scatter/gather processing

INT_MAJ 0/1 Interrupt disabled/enabled

D_REQ 1 Only on the last TCD of the chain.

START 0 No software request

Buffer (n+1)

Buffer (n)

DMA transfer (8/16-bits data format)

RAM areaLINFlex2 registers

1 DMA RX channel (TCD single and/or linked chain)

BDRM
(4 bytes FIFO mode)

BDRM
(2 half-words FIFO mode)

BDRM
(4 bytes FIFO mode)

BDRM
(2 half-words FIFO mode)

TCD (n+1)

TCD (n)

BDRM
(M bytes)

BDRM
(M half-words)

BDRM
(M bytes)

BDRM
(M half-words)

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

656 Freescale Semiconductor

The UART RX buffer must be configured in FIFO mode in order to:

• Allow the transfer of large data buffer by a single TCD

• Adsorb the latency, following a DMA request (due to the DMA arbitration), to move data from the
FIFO to the RAM

• Use low priority DMA channels

• Support high UART baud rate (at least 2 Mb/s) without overrun events

The Rx FIFO size is:

• 4 bytes in 8-bit data format

• 2 half-words in 16-bit data format

This is sufficient because just one byte allows a reaction time of about 3.8 s (at 2 Mbit/s), corresponding
to about 450 clock cycles at 120 MHz, before the transmission is affected. A DMA request is triggered by
FIFO not empty (RX) status signals.

The concept FSM to control the DMA Rx interface is shown in Figure 26-54. DMA Rx FSM will move
to idle state if DMARXE[0] = 0.

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 657

Figure 26-54. FSM to control the DMA RX interface (UART node)

The TCD settings (typical case) are shown in Table 26-50. All other TCD fields = 0. The minor loop
transfers a single byte/half-word as soon an entry is available in the Rx FIFO. A new software reset bit is

!RFE & DMA_REN
?

True

False

!RFE
?

UART RX buffer (FIFO mode)
TIMEOUT config

Enables DMA RX
channel request

(DMAERQH, DMAERQL)

DMA RX transfer (Req/Ack) from
UART RX FIFO to RAM area

DMA RX
(major loop) done

?

True

False

DMA RX
(minor loop) done

?

True

False

True

Set RXEN

TIMEOUT restart

False

False
TIMEOUT

?

True

Set TIMEOUT flag

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

658 Freescale Semiconductor

required that allows the LINFlexD FSMs to be reset in case this timeout state is reached or in any other
case. Timeout counter can be re-written by software at any time to extend timeout period.

26.11.7 Use cases and limitations
• In LIN slave mode, the DMA capability can be used only if the ID filtering mode is activated. The

number of ID filters enabled must be equal to the number of DMA channels enabled. The
correspondence between channel # and ID filter is based on IFMI (identifier filter match index).

• In LIN master mode both the DMA channels (TX and RX) must be enabled in case the DMA
capability is required.

• In UART mode the DMA capability can be used only if the UART Tx/Rx buffers are configured
as FIFOs.

• DMA and CPU operating modes are mutually exclusive for the data/frame transfer on a UART or
LIN node. Once a DMA transfer is finished the CPU can handle subsequent accesses.

• Error management must be always executed via CPU enabling the related error interrupt sources.
The DMA capability does not provide support for the error management. Error management means
checking status bits, handling IRQs and potentially canceling DMA transfers.

• The DMA programming model must be coherent with the TCD setting defined in this document.

Table 26-50. TCD settings (UART node, RX mode)

TCD Field
Value

Description
8 bits data 16 bits data

CITER[14:0] M Multiple iterations for the “major” loop

BITER[14:0] M Multiple iterations for the “major” loop

NBYTES[31:0] 1 2 Minor loop transfer = 1 or 2 bytes

SADDR[31:0] BDRM address SADDR = BDRM + 0x3 for byte transfer
SADDR = BDRM + 0x2 for half-word
transfer

SOFF[15:0] 0 No increment (FIFO)

SSIZE[2:0] 0 1 Byte/Half-word transfer

SLAST[31:0] 0

DADDR[31:0] RAM address

DOFF[15:0] 1 2 Byte/Half-word increment

DSIZE[2:0] 0 1 Byte/Half-word transfer

DLAST_SGA[31:0] -M -M * 2 No scatter/gather processing

INT_MAJ 0/1 Interrupt disabled/enabled

D_REQ 1 Only on the last TCD of the chain.

START 0 No software request

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 659

26.12 Functional description

26.12.1 8-bit timeout counter

26.12.1.1 LIN timeout mode

Resetting the LTOM bit in the LINTCSR enables the LIN timeout mode. The LINOCR becomes read-only,
and OC1 and OC2 output compare values in the LINOCR are automatically updated by hardware.

This configuration detects header timeout, response timeout, and frame timeout.

Depending on the LIN mode (selected by the MME bit in LINCR1), the 8-bit timeout counter will behave
differently.

LIN timeout mode must not be enabled during LIN extended frames transmission or reception (that is, if
the data field length in the BIDR is configured with a value higher than 8 data bytes).

26.12.1.1.1 LIN Master mode

Field RTO in the LINTOCR can be used to tune response timeout and frame timeout values. Header
timeout value is fixed to HTO = 28-bit time.

Field OC1 checks THeader and TResponse and field OC2 checks TFrame (refer to Figure 26-55).

When LINFlexD moves from Break delimiter state to Synch Field state (refer to Section 26.10.3, LIN
status register (LINSR)):

• OC1 is updated with the value of OCHeader (OCHeader = CNT + 28),

• OC2 is updated with the value of OCFrame (OCFrame = CNT + 28 + RTO × 9 (frame timeout value
for an 8-byte frame),

• the TOCE bit is set.

On the start bit of the first response data byte (and if no error occurred during the header reception), OC1
is updated with the value of OCResponse (OCResponse = CNT + RTO × 9 (response timeout value for an
8-byte frame)).

On the first response byte is received, OC1 and OC2 are automatically updated to check TResponse and
TFrame according to RTO (tolerance) and DFL.

On the checksum reception or in case of error in the header or response, the TOCE bit is reset.

If there is no response, frame timeout value does not take into account the DFL value, and an 8-byte
response (DFL = 7) is always assumed.

26.12.1.1.2 LIN Slave mode

Field RTO in the LINTOCR can be used to tune response timeout and frame timeout values. Header
timeout value is fixed to HTO.

OC1 checks THeader and TResponse and OC2 checks TFrame (refer to Figure 26-55).

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

660 Freescale Semiconductor

When LINFlexD moves from Break state to Break Delimiter state (refer to Section 26.10.3, LIN status
register (LINSR)):

• OC1 is updated with the value of OCHeader (OCHeader = CNT + HTO),

• OC2 is updated with the value of OCFrame (OCFrame = CNT + HTO + RTO × 9 (frame timeout
value for an 8-byte frame)),

• The TOCE bit is set.

On the start bit of the first response data byte (and if no error occurred during the header reception), OC1
is updated with the value of OCResponse (OCResponse = CNT + RTO × 9 (response timeout value for an
8-byte frame)).

Once the first response byte is received, OC1 and OC2 are automatically updated to check TResponse and
TFrame according to RTO (tolerance) and DFL.

On the checksum reception or in case of error in the header or data field, the TOCE bit is reset.

Figure 26-55. Header and response timeout

26.12.1.2 Output compare mode

Setting the LTOM bit in the LINTCSR enables the output compare mode. This mode allows the user to
fully customize the use of the counter.

OC1 and OC2 output compare values can be updated in the LINTOCR by software.

26.12.2 Interrupts

Table 26-51. LINFlexD interrupt control

Interrupt event Event flag bit Enable control bit Interrupt vector

Header Received interrupt HRF HRIE RXI 1

Data Transmitted interrupt DTF DTIE TXI

Data Received interrupt DRF DRIE RXI

OCFrame

OCHeader OCResponse

Header Response

Break

Frame

OC1

OC2

Response
space

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 661

Data Buffer Empty interrupt DBEF DBEIE TXI

Data Buffer Full interrupt DBFF DBFIE RXI

Wake-up interrupt WUPF WUPIE RXI

LIN State interrupt 2 LSF LSIE RXI

Buffer Overrun interrupt BOF BOIE ERR

Framing Error interrupt FEF FEIE ERR

Header Error interrupt HEF HEIE ERR

Checksum Error interrupt CEF CEIE ERR

Bit Error interrupt BEF BEIE ERR

Output Compare interrupt OCF OCIE ERR

Stuck at Zero interrupt SZF SZIE ERR

1 In Slave mode, if at least one filter is configured as TX and enabled, header received interrupt vector
is RXI or TXI depending on the value of identifier received.

2 For debug and validation purposes.

Table 26-51. LINFlexD interrupt control (continued)

Interrupt event Event flag bit Enable control bit Interrupt vector

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

662 Freescale Semiconductor

Figure 26-56. Interrupt diagram

26.12.3 Fractional baud rate generation

The baud rates for the receiver and transmitter are both set to the same value as programmed in the
Mantissa (LINIBRR) and Fraction (LINFBRR) registers.

LFDIV is an unsigned fixed point number. The 20-bit mantissa is coded in the LINIBRR register and the
fraction is coded in the LINFBRR register.

The following examples show how to derive LFDIV from LINIBRR and LINFBRR register values:

LSIE
States

WUIE
WUF

DBFF

DRF

HRIE

Tx

DTIE
DTF

HRIE
HRF

Rx
DBFIE

DRIE

BOIE
BOF

FEIE
FEF

CEF

BEIE
BEF

CEIE

HRF

HEIE
SFEF,SDEF,IDPEF

OCIE
OCF

SZIE
SZF

Error

DBEIE
DBEF

TOIE
TO

Tx/Rx baud =
fipg_clock_lin

(16 * LFDIV)

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 663

Example 26-1.

If LINIBRR = 27d and LINFBRR = 12d, then

Mantissa (LFDIV) = 27d

Fraction (LFDIV) = 12/16 = 0.75d

Therefore LFDIV = 27.75d

Example 26-2.

To program LFDIV = 25.62d,

LINFBRR = 16 * 0.62 = 9.92, nearest real number 10d = Ah

LINIBRR = mantissa(25.620d) = 25d = 19h

NOTE
The Baud Counters are updated with the new value of the Baud Registers
after a write to LINIBRR. Hence the Baud Register value must not be
changed during a transaction. The LINFBRR (containing the Fraction bits)
must be programmed before LINIBRR.

NOTE
LFDIV must be greater than or equal to 1.5d, for example, LINIBRR = 1
and LINFBRR = 8. Therefore, the maximum possible baud rate is
fperiph_set_1_clk / 24.

Table 26-52. Error calculation for programmed baud rates

Baud
rate

fperiph_set1_clk = 64 MHz fperiph_set1_clk = 16 MHz

Actual

Value programmed in
the baud rate register

% Error =
(Calculated
- Desired)
Baud rate
/ Desired
baud rate

Actual

Value programmed in
the baud rate register

% Error =
(Calculated
- Desired)
Baud rate
/ Desired
baud rate

LINIBRR LINFBRR LINIBRR LINFBRR

2400 2399.97 1666 11 -0.001 2399.88 416 11 -0.005

9600 9599.52 416 11 -0.005 9598.08 104 3 -0.02

10417 10416.7 384 0 -0.003 10416.7 96 0 0

19200 19201.9 208 5 0.01 19207.7 52 1 0.04

57600 57605.8 69 7 0.01 57554 17 6 -0.08

115200 115108 34 12 -0.08 115108 8 11 -0.08

230400 230216 17 6 -0.08 231884 4 5 0.644

460800 460432 8 11 -0.08 457143 2 3 -0.794

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

664 Freescale Semiconductor

26.13 Programming considerations
This section describes the various configurations in which the LINFlexD can be used.

26.13.1 Master node

Figure 26-57. Programming consideration: master node, transmitter

Figure 26-58. Programming consideration: master node, receiver

921600 927536 4 5 0.644 941176 1 1 2.124

Table 26-52. Error calculation for programmed baud rates (continued)

Baud
rate

fperiph_set1_clk = 64 MHz fperiph_set1_clk = 16 MHz

Actual

Value programmed in
the baud rate register

% Error =
(Calculated
- Desired)
Baud rate
/ Desired
baud rate

Actual

Value programmed in
the baud rate register

% Error =
(Calculated
- Desired)
Baud rate
/ Desired
baud rate

LINIBRR LINFBRR LINIBRR LINFBRR

Header Data TX Checksum TX

Configure ID

DFL, Data buffer

Set HTRQ
TXI Interrupt

DTF set

DIR = 1

Header Data RX Checksum RX

Configure ID, DFL

Set HTRQ RXI Interrupt

DRF set

DIR = 0
and

DDRQ = 0

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 665

Figure 26-59. Programming consideration: master node, transmitter, bit error

Figure 26-60. Programming consideration: master node, receiver, checksum error

26.13.2 Slave node

Figure 26-61. Programming consideration: slave node, transmitter, no filters

Header Data TX

Configure ID

DFL, Data buffer

Set HTRQ

DIR = 1

BEF set

ERRI Interrupt

LINCR2[IOBE] = 1

Header Data TX Checksum TX

Configure ID

DFL, Data buffer

Set HTRQ
TX Interrupt

DTF set

DIR = 1

BEF set

ERR Interrupt

LINCR2[IOBE] = 0

Header Data RX Checksum RX

Configure ID, DFL

Set HTRQ ERR Interrupt
CEF set

DIR = 0
and
DDRQ = 0

Header Data TX Checksum TX

TX Interrupt
DTF setHRF set

RX Interrupt

Set DTRQ

Configure CCS, DIR, DFL,

Data Buffers

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

666 Freescale Semiconductor

Figure 26-62. Programming consideration: slave node, receiver, no filters

Figure 26-63. Programming consideration: slave node, transmitter, no filters, bit error

Figure 26-64. Programming consideration: slave node, receiver, no filters, checksum error

Figure 26-65. Programming consideration: slave node, at least one TX filter, BF is reset, ID matches filter

Header Data RX Checksum RX

RX Interrupt

DRF setConfigure CCS, DIR, DFLHRF set
RX Interrupt

DDRQ = 0

Header

DDRQ = 1HRF set
RX Interrupt

Header Data TX

ERR Interrupt
BEF setHRF set

RX Interrupt
Set DTRQ

Configure DIR, DFL,
Data Buffers

LINCR2[IOBE] = 1

Header Data RX Checksum RX

ERR Interrupt

CEF set

DDRQ = 0

Configure DIR, DFLHRF set
RX Interrupt

Header Data TX Checksum TX

TX Interrupt

DTF set

Set DTRQ

Write Data BuffersHRF set
TX Interrupt

(ID matched)

Note: This configuration can be used in case the slave never receives data (for
example, as with a sensor).

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 667

Figure 26-66. Programming consideration: slave node, at least one RX filter, BF is reset, ID matches filter

Figure 26-67. Programming consideration: slave node, RX only, TX only, RX and TX filters, ID not matching
filter, BF is reset

Figure 26-68. Programming consideration: slave node, TX filter, BF is set

Header Data RX Checksum RX

RXI Interrupt

DRF set
IFMI = ID matched+1

Header

ID not matching any filter

Header Data TX Checksum TX

TX Interrupt

DTF set

Set DTRQ

Write Data BuffersHRF set
TX Interrupt

(ID has matched)

Header Data RX Checksum RX

RX Interrupt

DRF set

DDRQ = 0

Configure CCS, DIR, DFLHRF set
RX Interrupt

(ID not matched)

Note: This configuration is used when:
a) All TX IDs are managed by filters
b) The number of other filters is not enough to manage all reception IDs

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

668 Freescale Semiconductor

Figure 26-69. Programming consideration: slave node, RX filter, BF is set

Header Data RX Checksum RX

RX Interrupt

DRF set
IFMI = ID matched

Header Data RX Checksum RX

RX Interrupt

DRF setHRF set
RX Interrupt

(ID not matched)

Configure CCS, DIR, DFL
(ID is RX)

DDRQ = 0

Header Data TX Checksum TX

TX Interrupt
DTF setHRF set

RX Interrupt

Set DTRQ

Configure CCS, DIR, DFL,

Data Buffers

(ID is TX)

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 669

Figure 26-70. Programming consideration: slave node, TX filter, RX filter, BF is set

26.13.3 Extended frames

Figure 26-71. Programming consideration: extended frames

Header Data TX Checksum TX

TX Interrupt

DTF set

Set DTRQ

Write Data BuffersHRF set
TX Interrupt

(IFMI = ID matched+1)

Header Data RX Checksum RX

RXI Interrupt

DRF set
IFMI = ID matched+1

Header Data RX/TX Checksum RX/TX

RX/TX Interrupt

DRF/DTF set

DDRQ = 0

Configure CCS, DIR, DFLHRF set
RX Interrupt

(ID not matched)

Note: This configuration is used when:
a) The number of filters is not enough
b) Filters are used for most frequently-used IDs to reduce CPU usage

Header 8 bytes TX 8 bytes TX Checksum TX

TX Interrupt

DTF setConfigure DIR, DFL,HRF set
RX Interrupt

(ID not matched)

DBEF
set

Refill Buffer
Reset DBEFCCS

DTRQ =1

Header 8 bytes RX 8 bytes RX Checksum RX

RX Interrupt

DRF setConfigure DIR, DFL,HRF set
RX Interrupt

(ID not matched)

RMB,
DBFF

Read Buffer
Reset RMB

 set
DDRQ = 0
CCS

Chapter 26 LIN Controller (LINFlexD)

MPC5646C Microcontroller Reference Manual, Rev. 5

670 Freescale Semiconductor

26.13.4 Timeout

Figure 26-72. Programming consideration: response timeout1

1 Please note that in case of back to back header transmission, LINTCSR[IOT} should be set. If this is not the case, LIN state
machine will remain in response state waiting for the response infinitely and the next header will not be recognized.
Corresponding error flag in LINESR will be set.

Figure 26-73. Programming consideration: frame timeout

Figure 26-74. Programming consideration: header timeout

26.13.5 UART mode

Figure 26-75. Programming consideration: UART mode

Header RX/TX Data RX

OC1

Tresponse_max

OCF is set

ERR Interrupt

Header RX/TX Data RX/TX

OC2

Tframe_max

OCF is set

ERR Interrupt

Header RX

OC1

Theader_max

OCF is set

ERR Interrupt

Break

Data RX/TX

DTF/DRF is set

TX/RX Interrupt
Set TXen/RXen
Write Buffer for Tx

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 671

Chapter 27
FlexCAN

27.1 Information specific to this device
This section presents device-specific parameterization and customization information not specifically
referenced in the remainder of this chapter.

27.1.1 Device-specific features

The device has six Controller Area Network (FlexCAN) blocks.

• Each block supports 64 Message Buffers (MB).

• DMA support is not provided.

• It is possible to operate the bxcan FlexCAN bit timing logic with either system clock or 4–40 MHz
fast external crystal oscillator clock (FXOSC).

• In the case of safe mode entry, the pad associated with CANTX can optionally be put into a
high-impedance state (not recessive state)

• Modes of operation:

— 4 functional modes: Normal (User and Supervisor), Freeze, Listen-Only and Loop-Back

— 1 low-power mode (Disable mode)

• 1056 bytes (64 MBs) of RAM used for MB storage

• 256 bytes (64 MBs) of RAM used for individual Rx Mask Registers

• Hardware cancellation on Tx message buffers

• Module Configuration Register (MCR): Bits 5, 9, 12 and 13 are ‘Reserved’

• Error and Status Register (ESR): Bit 31 is ‘Reserved’

27.2 Introduction
The FlexCAN module is a communication controller implementing the CAN protocol according to the
CAN 2.0B protocol specification [Ref. 1]. A general block diagram is shown in Figure 27-1, which
describes the main sub-blocks implemented in the FlexCAN module, including two embedded memories,
one for storing Message Buffers (MB) and another one for storing Rx Individual Mask Registers. Support
for up to 64 Message Buffers is provided. The functions of the sub-modules are described in subsequent
sections.

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

672 Freescale Semiconductor

Figure 27-1. FlexCAN block diagram

27.2.1 Overview

The CAN protocol was primarily, but not only, designed to be used as a vehicle serial data bus, meeting
the specific requirements of this field: real-time processing, reliable operation in the EMI environment of
a vehicle, cost-effectiveness and required bandwidth. The FlexCAN module is a full implementation of the
CAN protocol specification, Version 2.0 B [Ref. 1], which supports both standard and extended message
frames. A flexible number of Message Buffers (16, 32 or 64) is also supported. The Message Buffers are
stored in an embedded RAM dedicated to the FlexCAN module.

The CAN Protocol Interface (CPI) sub-module manages the serial communication on the CAN bus,
requesting RAM access for receiving and transmitting message frames, validating received messages and
performing error handling. The Message Buffer Management (MBM) sub-module handles Message
Buffer selection for reception and transmission, taking care of arbitration and ID matching algorithms. The
Bus Interface Unit (BIU) sub-module controls the access to and from the internal interface bus, in order to

288/544/1056-

Bus Interface Unit

max MB #

(0–31)

IP Bus Interface

CAN Message

CAN Tx

CAN Rx

MB1

MB0

MB30

MB31

Clocks, Address & Data buses,
Interrupt and Test Signals

Buffer
Management

Protocol
Interface

byte RAM

Message
Buffer

Storage

64/128/256-

RXIMR1

RXIMR0

RXIMR62
RXIMR63

byte RAM

ID Mask
Storage

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 673

establish connection to the CPU and to other blocks. Clocks, address and data buses, interrupt outputs and
test signals are accessed through the Bus Interface Unit.

27.2.2 FlexCAN module features

The FlexCAN module includes these distinctive features:

• Full Implementation of the CAN protocol specification, Version 2.0B

— Standard data and remote frames

— Extended data and remote frames

— Zero to eight bytes data length

— Programmable bit rate up to 1 Mbit/s

— Content-related addressing

• Flexible Message Buffers (up to 64) of zero to eight bytes data length

• Each MB configurable as Rx or Tx, all supporting standard and extended messages

• Individual Rx Mask Registers per Message Buffer

• Includes either 1056 bytes (64 MBs), 544 bytes (32 MBs) or 288 bytes (16 MBs) of RAM used for
MB storage

• Includes either 256 bytes (64 MBs), 128 bytes (32 MBs) or 64 bytes (16 MBs) of RAM used for
individual Rx Mask Registers

• Full featured Rx FIFO with storage capacity for 6 frames and internal pointer handling

• Powerful Rx FIFO ID filtering, capable of matching incoming IDs against either 8 extended, 16
standard or 32 partial (8 bits) IDs, with individual masking capability

• Selectable backwards compatibility with previous FlexCAN version

• Programmable clock source to the CAN Protocol Interface, either bus clock or crystal oscillator

• Unused MB and Rx Mask Register space can be used as general purpose RAM space

• Listen only mode capability

• Programmable loop-back mode supporting self-test operation

• Programmable transmission priority scheme: lowest ID, lowest buffer number or highest priority

• Time Stamp based on 16-bit free-running timer

• Global network time, synchronized by a specific message

• Maskable interrupts

• Independent of the transmission medium (an external transceiver is assumed)

• Short latency time due to an arbitration scheme for high-priority messages

27.2.3 Modes of operation

The FlexCAN module has four functional modes: Normal mode (User and Supervisor), Freeze mode,
Listen-Only mode and Loop-Back mode. There is also a low-power mode (Disable mode).

• Normal mode (User or Supervisor):

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

674 Freescale Semiconductor

In Normal Mode, the module operates receiving and/or transmitting message frames, errors are
handled normally and all the CAN Protocol functions are enabled. User and Supervisor Modes
differ in the access to some restricted control registers.

• Freeze mode:

It is enabled when the FRZ bit in the MCR Register is asserted. If enabled, Freeze Mode is entered
when the HALT bit in MCR is set or when Debug Mode is requested at MCU level. In this mode,
no transmission or reception of frames is done and synchronicity to the CAN bus is lost. See
Section 27.5.9.1, Freeze mode, for more information.

• Listen-Only mode:

The module enters this mode when the LOM bit in the Control Register is asserted. In this mode,
transmission is disabled, all error counters are frozen and the module operates in a CAN Error
Passive mode [Ref. 1]. Only messages acknowledged by another CAN station will be received. If
FlexCAN detects a message that has not been acknowledged, it will flag a BIT0 error (without
changing the REC), as if it was trying to acknowledge the message.

• Loop-Back mode:

The module enters this mode when the LPB bit in the Control Register is asserted. In this mode,
FlexCAN performs an internal loop back that can be used for self test operation. The bit stream
output of the transmitter is internally fed back to the receiver input. The Rx CAN input pin is
ignored and the Tx CAN output goes to the recessive state (logic ‘1’). FlexCAN behaves as it
normally does when transmitting and treats its own transmitted message as a message received
from a remote node. In this mode, FlexCAN ignores the bit sent during the ACK slot in the CAN
frame acknowledge field to ensure proper reception of its own message. Both transmit and receive
interrupts are generated.

• Module Disable mode:

This low power mode is entered when the MCR[MDIS] bit is asserted by the CPU. When disabled,
the module requests to disable the clocks to the CAN Protocol Interface and Message Buffer
Management sub-modules. Exit from this mode is done by negating the MDIS bit in the MCR
Register. See Section 27.5.9.2, Module Disable mode, for more information.

27.3 External signal description

27.3.1 Overview

The FlexCAN module has two I/O signals connected to the external MCU pins. These signals are
summarized in Table 27-1 and described in more detail in the next subsections.

Table 27-1. FlexCAN Signals

Signal Name1

1 The actual MCU pins may have different names.

Direction Description

CAN Rx Input CAN Receive Pin

CAN Tx Output CAN Transmit Pin

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 675

27.3.2 Signal descriptions

27.3.2.1 CAN Rx

This pin is the receive pin from the CAN bus transceiver. Dominant state is represented by logic level ‘0’.
Recessive state is represented by logic level ‘1’.

27.3.2.2 CAN Tx

This pin is the transmit pin to the CAN bus transceiver. Dominant state is represented by logic level ‘0’.
Recessive state is represented by logic level ‘1’.

27.4 Memory map/register definition
This section describes the registers and data structures in the FlexCAN module. The base address of the
module depends on the particular memory map of the MCU. The addresses presented here are relative to
the base address.

The address space occupied by FlexCAN has 96 bytes for registers starting at the module base address,
followed by MB storage space in embedded RAM starting at address 0x0060, and an extra ID Mask
storage space in a separate embedded RAM starting at address 0x0880.

27.4.1 FlexCAN memory mapping

The complete memory map for a FlexCAN module with 64 MBs capability is shown in Table 27-2.

All registers except for the MCR can be configured to have either supervisor or unrestricted access by
programming the MCR[SUPV] bit.

The IFLAG2 and IMASK2 registers are considered reserved space when FlexCAN is configured with 16
or 32 MBs. The Rx Global Mask (RXGMASK), Rx Buffer 14 Mask (RX14MASK) and the Rx Buffer 15
Mask (RX15MASK) registers are provided for backwards compatibility, and are not used when the BCC
bit in MCR is asserted.

The address ranges 0x0060–0x047F and 0x0880–0x097F are occupied by two separate embedded
memories. These two ranges are completely occupied by RAM (1056 and 256 bytes, respectively) only
when FlexCAN is configured with 64 MBs. When it is configured with 16 MBs, the memory sizes are 288
and 64 bytes, so the address ranges 0x0180–0x047F and 0x08C0–0x097F are considered reserved space.
When it is configured with 32 MBs, the memory sizes are 544 and 128 bytes, so the address ranges
0x0280–0x047F and 0x0900–0x097F are considered reserved space. Furthermore, if the BCC bit in MCR
is negated, then the whole Rx Individual Mask Registers address range (0x0880–0x097F) is considered
reserved space.

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

676 Freescale Semiconductor

The FlexCAN module stores CAN messages for transmission and reception using a Message Buffer
structure. Each individual MB is formed by 16 bytes mapped on memory as described in Table 27-3.
Table 27-3 shows a Standard/Extended Message Buffer (MB0) memory map, using 16 bytes total
(0x80–0x8F space).

Table 27-2. FlexCAN memory map

Base addresses:
0xFFFC_0000 (FlexCAN_0)
0xFFFC_4000 (FlexCAN_1)
0xFFFC_8000 (FlexCAN_2)
0xFFFC_C000 (FlexCAN_3)
0xFFFD_0000 (FlexCAN_4)
0xFFFD_4000 (FlexCAN_5)

Address offset Register Location

0x0000 Module Configuration (MCR) on page 681

0x0004 Control Register (CTRL) on page 685

0x0008 Free Running Timer (TIMER) on page 688

0x000C Reserved

0x0010 Rx Global Mask (RXGMASK) on page 689

0x0014 Rx Buffer 14 Mask (RX14MASK) on page 691

0x0018 Rx Buffer 15 Mask (RX15MASK) on page 691

0x001C Error Counter Register (ECR) on page 692

0x0020 Error and Status Register (ESR) on page 693

0x0024 Interrupt Masks 2 (IMASK2) on page 696

0x0028 Interrupt Masks 1 (IMASK1) on page 697

0x002C Interrupt Flags 2 (IFLAG2) on page 697

0x0030 Interrupt Flags 1 (IFLAG1) on page 698

0x0034–0x007F Reserved

0x0080–0x017F Message Buffers MB0–MB15 —

0x0180–0x027F Message Buffers MB16–MB31 —

0x0280–0x047F Message Buffers MB32–MB63 —

0x0480-087F Reserved

0x0880-0x08BC Rx Individual Mask Registers RXIMR0-RXIMR15 on page 699

0x08C0-0x08FC Rx Individual Mask Registers RXIMR16-RXIMR31 on page 699

0x0900-0x097C Rx Individual Mask Registers RXIMR32-RXIMR63 on page 699

Table 27-3. Message Buffer MB0 memory mapping

Address Offset MB Field

0x80 Control and Status (C/S)

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 677

27.4.2 Message Buffer Structure

The Message Buffer structure used by the FlexCAN module is represented in Figure 27-2. Both Extended
and Standard Frames (29-bit Identifier and 11-bit Identifier, respectively) used in the CAN specification
(Version 2.0 Part B) are represented.

0x84 Identifier Field

0x88–0x8F Data Field 0 – Data Field 7 (1 byte each)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x0 CODE
S

R
R

ID
E

R
T

R

LENGTH TIME STAMP

0x4 PRIO ID (Standard/Extended) ID (Extended)

0x8 Data Byte 0 Data Byte 1 Data Byte 2 Data Byte 3

0xC Data Byte 4 Data Byte 5 Data Byte 6 Data Byte 7

= Unimplemented or Reserved

Figure 27-2. Message Buffer Structure

Table 27-4. Message Buffer Structure field description

Field Description

CODE Message Buffer Code
This 4-bit field can be accessed (read or write) by the CPU and by the FlexCAN module itself, as part
of the message buffer matching and arbitration process. The encoding is shown in Table 27-5 and
Table 27-6. See Section 27.5, Functional description, for additional information.

SRR Substitute Remote Request
Fixed recessive bit, used only in extended format. It must be set to ‘1’ by the user for transmission
(Tx Buffers) and will be stored with the value received on the CAN bus for Rx receiving buffers. It can
be received as either recessive or dominant. If FlexCAN receives this bit as dominant, then it is
interpreted as arbitration loss.
1 = Recessive value is compulsory for transmission in Extended Format frames
0 = Dominant is not a valid value for transmission in Extended Format frames

IDE ID Extended Bit
This bit identifies whether the frame format is standard or extended.
1 = Frame format is extended
0 = Frame format is standard

RTR Remote Transmission Request
This bit is used for requesting transmissions of a data frame. If FlexCAN transmits this bit as ‘1’
(recessive) and receives it as ‘0’ (dominant), it is interpreted as arbitration loss. If this bit is
transmitted as ‘0’ (dominant), then if it is received as ‘1’ (recessive), the FlexCAN module treats it as
bit error. If the value received matches the value transmitted, it is considered as a successful bit
transmission.
1 = Indicates the current MB has a Remote Frame to be transmitted
0 = Indicates the current MB has a Data Frame to be transmitted
Note: Do not configure the last Message Buffer to be RTR frame

Table 27-3. Message Buffer MB0 memory mapping

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

678 Freescale Semiconductor

LENGTH Length of Data in Bytes
This 4-bit field is the length (in bytes) of the Rx or Tx data, which is located in offset 0x8 through 0xF
of the MB space (see Figure 27-2). In reception, this field is written by the FlexCAN module, copied
from the DLC (Data Length Code) field of the received frame. In transmission, this field is written by
the CPU and corresponds to the DLC field value of the frame to be transmitted. When RTR=1, the
Frame to be transmitted is a Remote Frame and does not include the data field, regardless of the
Length field.

TIME STAMP Free-Running Counter Time Stamp
This 16-bit field is a copy of the Free-Running Timer, captured for Tx and Rx frames at the time when
the beginning of the Identifier field appears on the CAN bus.

PRIO Local priority
This 3-bit field is only used when LPRIO_EN bit is set in MCR and it only makes sense for Tx buffers.
These bits are not transmitted. They are appended to the regular ID to define the transmission
priority. See Section 27.5.4, Arbitration process.

ID Frame Identifier
In Standard Frame format, only the 11 most significant bits (3 to 13) are used for frame identification
in both receive and transmit cases. The 18 least significant bits are ignored. In Extended Frame
format, all bits are used for frame identification in both receive and transmit cases.

DATA Data Field
Up to eight bytes can be used for a data frame. For Rx frames, the data is stored as it is received
from the CAN bus. For Tx frames, the CPU prepares the data field to be transmitted within the frame.

Table 27-5. Message Buffer Code for Rx buffers

Rx Code
BEFORE

Rx New Frame
Description

Rx Code
AFTER

Rx New Frame
Comment

0000 INACTIVE: MB is not active. — MB does not participate in the matching
process.

0100 EMPTY: MB is active and
empty.

0010 MB participates in the matching process. When
a frame is received successfully, the code is
automatically updated to FULL.

0010 FULL: MB is full. 0010 The act of reading the C/S word followed by
unlocking the MB does not make the code
return to EMPTY. It remains FULL. If a new
frame is written to the MB after the C/S word
was read and the MB was unlocked, the code
still remains FULL.

0110 If the MB is FULL and a new frame is
overwritten to this MB before the CPU had time
to read it, the code is automatically updated to
OVERRUN.

Table 27-4. Message Buffer Structure field description (continued)

Field Description

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 679

27.4.3 Rx FIFO structure

When the FEN bit is set in the MCR, the memory area from 0x80 to 0xFC (which is normally occupied by
MBs 0 to 7) is used by the reception FIFO engine. Figure 27-3 shows the Rx FIFO data structure. The

0110 OVERRUN: a frame was
overwritten into a full buffer.

0010 If the code indicates OVERRUN but the CPU
reads the C/S word and then unlocks the MB,
when a new frame is written to the MB the code
returns to FULL.

0110 If the code already indicates OVERRUN, and
yet another new frame must be written, the MB
will be overwritten again, and the code will
remain OVERRUN.

0XY11 BUSY: Flexcan is updating the
contents of the MB. The CPU
must not access the MB.

0010 An EMPTY buffer was written with a new frame
(XY was 01).

0110 A FULL/OVERRUN buffer was overwritten (XY
was 11).

1 Note that for Tx MBs (see Table 27-6), the BUSY bit should be ignored upon read,

Table 27-6. Message Buffer Code for Tx buffers

RTR
Initial Tx

code

Code after
successful

transmission
Description

X 1000 — INACTIVE: MB does not participate in the arbitration process.

0 1100 1000 Transmit data frame unconditionally once. After transmission, the
MB automatically returns to the INACTIVE state.

1 1100 0100 Transmit remote frame unconditionally once. After transmission,
the MB automatically becomes an Rx MB with the same ID.

0 1010 1010 Transmit a data frame whenever a remote request frame with the
same ID is received. This MB participates simultaneously in both
the matching and arbitration processes. The matching process
compares the ID of the incoming remote request frame with the ID
of the MB. If a match occurs this MB is allowed to participate in the
current arbitration process and the Code field is automatically
updated to ‘1110’ to allow the MB to participate in future arbitration
runs. When the frame is eventually transmitted successfully, the
Code automatically returns to ‘1010’ to restart the process again.

0 1110 1010 This is an intermediate code that is automatically written to the MB
by the MBM as a result of match to a remote request frame. The
data frame will be transmitted unconditionally once and then the
code will automatically return to ‘1010’. The CPU can also write
this code with the same effect.

Table 27-5. Message Buffer Code for Rx buffers

Rx Code
BEFORE

Rx New Frame
Description

Rx Code
AFTER

Rx New Frame
Comment

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

680 Freescale Semiconductor

region 0x80-0x8C contains an MB structure which is the port through which the CPU reads data from the
FIFO (the oldest frame received and not read yet). The region 0x90–0xDC is reserved for internal use of
the FIFO engine. The region 0xE0-0xFC contains an 8-entry ID table that specifies filtering criteria for
accepting frames into the FIFO. Figure 27-4 shows the three different formats that the elements of the ID
table can assume, depending on the IDAM field of the MCR. Note that all elements of the table must have
the same format. See Section 27.5.7, Rx FIFO, for more information.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x80

S
R

R

ID
E

R
T

R

LENGTH TIME STAMP

0x84 ID (Standard/Extended) ID (Extended)

0x88 Data Byte 0 Data Byte 1 Data Byte 2 Data Byte 3

0x8C Data Byte 4 Data Byte 5 Data Byte 6 Data Byte 7

0x90

Reservedto

0xDC

0xE0 ID Table 0

0xE4 ID Table 1

0xE8 ID Table 2

0xEC ID Table 3

0xF0 ID Table 4

0xF4 ID Table 5

0xF8 ID Table 6

0xFC ID Table 7

= Unimplemented or Reserved

Figure 27-3. Rx FIFO structure

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A

R
E

M

E
X

T RXIDA
(Standard = 2–12, Extended = 2–30)

B

R
E

M

E
X

T RXIDB_0
(Standard = 2–12, Extended = 2–15) R

E
M

E
X

T RXIDB_1
(Standard = 18–28, Extended = 18–31)

C
RXIDC_0

(Std/Ext = 0–7)
RXIDC_1

(Std/Ext = 8–15)
RXIDC_2

(Std/Ext = 16–23)
RXIDC_3

(Std/Ext = 24–31)

= Unimplemented or Reserved

Figure 27-4. ID Table 0–7

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 681

27.4.4 Register descriptions

The FlexCAN registers are described in this section in ascending address order.

27.4.4.1 Module Configuration Register (MCR)

This register defines global system configurations, such as the module operation mode (e.g. low-power)
and maximum message buffer configuration. This register can be accessed at any time, however some
fields must be changed only during Freeze Mode. Find more information in the fields descriptions ahead.

Table 27-7. Rx FIFO Structure field description

Field Description

REM Remote Frame
This bit specifies if Remote Frames are accepted into the FIFO if they match the target ID.
1 = Remote Frames can be accepted and data frames are rejected
0 = Remote Frames are rejected and data frames can be accepted

EXT Extended Frame
Specifies whether extended or standard frames are accepted into the FIFO if they match the target ID.
1 = Extended frames can be accepted and standard frames are rejected
0 = Extended frames are rejected and standard frames can be accepted

RXIDA Rx Frame Identifier (Format A)
Specifies an ID to be used as acceptance criteria for the FIFO. In the standard frame format, only the
11 most significant bits (3 to 13) are used for frame identification. In the extended frame format, all bits
are used.

RXIDB_0,
RXIDB_1

Rx Frame Identifier (Format B)
Specifies an ID to be used as acceptance criteria for the FIFO. In the standard frame format, the 11
most significant bits (a full standard ID) (3 to 13) are used for frame identification. In the extended frame
format, all 14 bits of the field are compared to the 14 most significant bits of the received ID.

RXIDC_0,
RXIDC_1,
RXIDC_2,
RXIDC_3

Rx Frame Identifier (Format C)
Specifies an ID to be used as acceptance criteria for the FIFO. In both standard and extended frame
formats, all 8 bits of the field are compared to the 8 most significant bits of the received ID.

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

682 Freescale Semiconductor

Offset: 0x0000 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

M
D

IS
FRZ FEN HALT

N
O

T
_R

D
Y

0

S
O

F
T

_R
S

T

F
R

Z
_A

C
K

S
U

P
V 0

W
R

N
_E

N

LP
M

_A
C

K

0 0

S
R

X
_D

IS

B
C

C

W

RESET: 1 1 0 1 1 0 0

N
ot

e1

1 Different on various platforms, but it is always the opposite of the MDIS reset value.

1 0 0

N
ot

e2

2 Different on various platforms, but it is always the same as the MDIS reset value.

0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0

LP
R

IO
_E

N

03

3 This bit must always be written 0

0 0

IDAM

0 0

MAXMBW

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Figure 27-5. Module Configuration Register (MCR)

Table 27-8. MCR field descriptions

Field Description

MDIS Module Disable
This bit controls whether FlexCAN is enabled or not. When disabled, FlexCAN shuts down the
clocks to the CAN Protocol Interface and Message Buffer Management sub-modules. This is the
only bit in MCR not affected by soft reset. See Section 27.5.9.2, Module Disable mode, for more
information.
1 = Disable the FlexCAN module
0 = Enable the FlexCAN module

FRZ Freeze Enable
The FRZ bit specifies the FlexCAN behavior when the HALT bit in the MCR Register is set or when
Debug Mode is requested at MCU level. When FRZ is asserted, FlexCAN is enabled to enter Freeze
Mode. Negation of this bit field causes FlexCAN to exit from Freeze Mode.
1 = Enabled to enter Freeze Mode
0 = Not enabled to enter Freeze Mode

FEN FIFO Enable
This bit controls whether the FIFO feature is enabled or not. When FEN is set, MBs 0 to 7 cannot
be used for normal reception and transmission because the corresponding memory region
(0x80-0xFF) is used by the FIFO engine. See Section 27.4.3, Rx FIFO structure, and
Section 27.5.7, Rx FIFO, for more information. This bit must be written in Freeze mode only.
1 = FIFO enabled
0 = FIFO not enabled

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 683

HALT Halt FlexCAN
Assertion of this bit puts the FlexCAN module into Freeze Mode. The CPU should clear it after
initializing the Message Buffers and Control Register. No reception or transmission is performed by
FlexCAN before this bit is cleared. While in Freeze Mode, the CPU has write access to the Error
Counter Register, that is otherwise read-only. Freeze Mode can not be entered while FlexCAN is in
any of the low power modes. See Section 27.5.9.1, Freeze mode, for more information.
1 = Enters Freeze Mode if the FRZ bit is asserted.
0 = No Freeze Mode request.

NOT_RDY FlexCAN Not Ready
This read-only bit indicates that FlexCAN is in Disable Mode or Freeze Mode. It is negated once
FlexCAN has exited these modes.
1 = FlexCAN module is in Disable Mode or Freeze Mode
0 = FlexCAN module is in Normal Mode, Listen-Only Mode or Loop-Back Mode

SOFT_RST Soft Reset
When this bit is asserted, FlexCAN resets its internal state machines and some of the memory
mapped registers. The following registers are reset: MCR (except the MDIS bit), TIMER, ECR, ESR,
IMASK1, IMASK2, IFLAG1, IFLAG2. Configuration registers that control the interface to the CAN
bus are not affected by soft reset. The following registers are unaffected:
CTRL
RXIMR0–RXIMR63
RXGMASK, RX14MASK, RX15MASK
all Message Buffers
The SOFT_RST bit can be asserted directly by the CPU when it writes to the MCR Register, but it
is also asserted when global soft reset is requested at MCU level. Since soft reset is synchronous
and has to follow a request/acknowledge procedure across clock domains, it may take some time
to fully propagate its effect. The SOFT_RST bit remains asserted while reset is pending, and is
automatically negated when reset completes. Therefore, software can poll this bit to know when the
soft reset has completed.
Soft reset cannot be applied while clocks are shut down in any of the low power modes. The module
should be first removed from low power mode, and then soft reset can be applied.
1 = Resets the registers marked as “affected by soft reset” in Table 27-2
0 = No reset request

FRZ_ACK Freeze Mode Acknowledge
This read-only bit indicates that FlexCAN is in Freeze Mode and its prescaler is stopped. The Freeze
Mode request cannot be granted until current transmission or reception processes have finished.
Therefore the software can poll the FRZ_ACK bit to know when FlexCAN has actually entered
Freeze Mode. If Freeze Mode request is negated, then this bit is negated once the FlexCAN
prescaler is running again. If Freeze Mode is requested while FlexCAN is in any of the low power
modes, then the FRZ_ACK bit will only be set when the low power mode is exited. See
Section 27.5.9.1, Freeze mode, for more information.
1 = FlexCAN in Freeze Mode, prescaler stopped
0 = FlexCAN not in Freeze Mode, prescaler running

SUPV Supervisor Mode
This bit configures some of the FlexCAN registers to be either in Supervisor or Unrestricted memory
space. The registers affected by this bit are marked as S/U in the Access Type column of Table 27-2.
Reset value of this bit is ‘1’, so the affected registers start with Supervisor access restrictions. This
bit should be written in Freeze mode only.
1 = Affected registers are in Supervisor memory space. Any access without supervisor permission
behaves as though the access was done to an unimplemented register location
0 = Affected registers are in Unrestricted memory space

Table 27-8. MCR field descriptions (continued)

Field Description

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

684 Freescale Semiconductor

WRN_EN Warning Interrupt Enable
When asserted, this bit enables the generation of the TWRN_INT and RWRN_INT flags in the Error
and Status Register. If WRN_EN is negated, the TWRN_INT and RWRN_INT flags will always be
zero, independent of the values of the error counters, and no warning interrupt will ever be
generated. This bit must be written in Freeze mode only.
1 = TWRN_INT and RWRN_INT bits are set when the respective error counter transition from <96
to  96.
0 = TWRN_INT and RWRN_INT bits are zero, independent of the values in the error counters.

LPM_ACK Low Power Mode Acknowledge
This read-only bit indicates that FlexCAN is in Disable Mode. This mode cannot be entered until all
current transmission or reception processes have finished, so the CPU can poll the LPM_ACK bit
to know when FlexCAN has actually entered low power mode. See Section 27.5.9.2, Module
Disable mode, for more information.
1 = FlexCAN is in Disable Mode
0 = FlexCAN not in any low-power mode

SRX_DIS Self Reception Disable
This bit defines whether FlexCAN is allowed to receive frames transmitted by itself. If this bit is
asserted, frames transmitted by the module will not be stored in any MB, regardless if the MB is
programmed with an ID that matches the transmitted frame, and no interrupt flag or interrupt signal
will be generated due to the frame reception. This bit must be written in Freeze mode only.
1 = Self reception disabled
0 = Self reception enabled

BCC Backwards Compatibility Configuration
This bit is provided to support backwards compatibility with previous FlexCAN versions.
FlexCAN on this device supports individual Rx ID masking using RXIMR0–RXIMR63; setting this
bit enables individual Rx ID masking.
When this bit is cleared FlexCAN uses a backwards compatible masking scheme with RXGMASK,
RX14MASK and RX15MASK and the reception queue feature is disabled. Upon receiving a
message, if the first MB with a matching ID that is found is still occupied by a previous unread
message, FlexCAN will not look for another matching MB. It will override this MB with the new
message and set the CODE field to ‘0110’ (overrun).
Upon reset this bit is cleared allowing legacy software to work without modification. This bit must be
written in Freeze mode only.
0 = Individual Rx masking and queue feature are disabled.
1 = Individual Rx masking and queue feature are enabled.

LPRIO_EN Local Priority Enable
This bit is provided for backwards compatibility reasons. It controls whether the local priority feature
is enabled or not. It is used to extend the ID used during the arbitration process. With this extended
ID concept, the arbitration process is done based on the full 32-bit word, but the actual transmitted
ID still has 11-bit for standard frames and 29-bit for extended frames. This bit must be written in
Freeze mode only.
1 = Local Priority enabled
0 = Local Priority disabled

Table 27-8. MCR field descriptions (continued)

Field Description

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 685

NOTE
After resetting PWDN bit, wait for the power up time suggested by ADC
power up parameter in the DS (tADC_PU) before any conversion is initiated

27.4.4.2 Control Register (CTRL)

This register is defined for specific FlexCAN control features related to the CAN bus, such as bit-rate,
programmable sampling point within an Rx bit, Loop Back Mode, Listen Only Mode, Bus Off recovery
behavior and interrupt enabling (Bus-Off, Error, Warning). It also determines the Division Factor for the
clock prescaler. Most of the fields in this register should only be changed while the module is in Disable
Mode or in Freeze Mode. Exceptions are the BOFF_MSK, ERR_MSK, TWRN_MSK, RWRN_MSK and
BOFF_REC bits, that can be accessed at any time.

IDAM ID Acceptance Mode
This 2-bit field identifies the format of the elements of the Rx FIFO filter table, as shown in
Table 27-9. Note that all elements of the table are configured at the same time by this field (they are
all the same format). See Section 27.4.3, Rx FIFO structure. This bit must be written in Freeze
mode only.

MAXMB Maximum Number of Message Buffers
This 6-bit field defines the maximum number of message buffers that will take part in the matching
and arbitration processes. The reset value (0x0F) is equivalent to 16 MB configuration. This field
must be changed only while the module is in Freeze Mode.
Maximum MBs in use = MAXMB + 1.

Note: MAXMB must be programmed with a value smaller or equal to the number of available
Message Buffers, otherwise FlexCAN can transmit and receive wrong messages.

Table 27-9. IDAM coding

IDAM Format Explanation

0b00 A One full ID (standard or extended) per filter element.

0b01 B Two full standard IDs or two partial 14-bit extended IDs per filter element.

0b10 C Four partial 8-bit IDs (standard or extended) per filter element.

0b11 D All frames rejected.

Table 27-8. MCR field descriptions (continued)

Field Description

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

686 Freescale Semiconductor

Offset: 0x0004 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PRESDIV RJW PSEG1 PSEG2

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

B
O

F
F

_M
S

K

E
R

R
_

M
S

K

C
LK

_S
R

C

LPB
T

W
R

N
_M

S
K

R
W

R
N

_M
S

K 0 0

SMP

B
O

F
F

_R
E

C

T
S

Y
N

LBUF LOM PROPSEGW

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-6. Control Register (CTRL)

Table 27-10. CTRL field descriptions

Field Description

PRESDIV Prescaler Division Factor
This 8-bit field defines the ratio between the CPI clock frequency and the Serial Clock (Sclock)
frequency. The Sclock period defines the time quantum of the CAN protocol. For the reset value, the
Sclock frequency is equal to the CPI clock frequency. The Maximum value of this register is 0xFF, that
gives a minimum Sclock frequency equal to the CPI clock frequency divided by 256. For more
information refer to Section 27.5.8.4, Protocol timing. This bit must be written in Freeze mode only.
Sclock frequency = CPI clock frequency / (PRESDIV + 1)

RJW Resync Jump Width
This 2-bit field defines the maximum number of time quanta1 that a bit time can be changed by one
re-synchronization. The valid programmable values are 0–3. This bit must be written in Freeze mode
only.
Resync Jump Width = RJW + 1.

PSEG1 Phase Segment 1
This 3-bit field defines the length of Phase Buffer Segment 1 in the bit time. The valid programmable
values are 0–7. This bit must be written in Freeze mode only.
Phase Buffer Segment 1 = (PSEG1 + 1) x Time-Quanta.

PSEG2 Phase Segment 2
This 3-bit field defines the length of Phase Buffer Segment 2 in the bit time. The valid programmable
values are 1–7. This bit must be written in Freeze mode only.
Phase Buffer Segment 2 = (PSEG2 + 1) x Time-Quanta.

BOFF_MSK Bus Off Mask
This bit provides a mask for the Bus Off Interrupt.
1 = Bus Off interrupt enabled
0 = Bus Off interrupt disabled

ERR_MSK Error Mask
This bit provides a mask for the Error Interrupt.
1 = Error interrupt enabled
0 = Error interrupt disabled

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 687

CLK_SRC CAN Engine Clock Source
This bit selects the clock source to the CAN Protocol Interface (CPI) to be either the peripheral clock
(driven by the PLL) or the crystal oscillator clock. The selected clock is the one fed to the prescaler to
generate the Serial Clock (Sclock). In order to guarantee reliable operation, this bit must only be
changed while the module is in Disable Mode. See Section 27.5.8.4, Protocol timing, for more
information.
1 = The CAN engine clock source is the bus clock
0 = The CAN engine clock source is the oscillator clock
Note: In order to guarantee reliable operation, the selected CAN Protocol Interface (CPI) clock should

not be faster than the peripheral clock.

TWRN_MSK Tx Warning Interrupt Mask
This bit provides a mask for the Tx Warning Interrupt associated with the TWRN_INT flag in the Error
and Status Register. This bit has no effect if the WRN_EN bit in MCR is negated and it is read as zero
when WRN_EN is negated.
1 = Tx Warning Interrupt enabled
0 = Tx Warning Interrupt disabled

RWRN_MSK Rx Warning Interrupt Mask
This bit provides a mask for the Rx Warning Interrupt associated with the RWRN_INT flag in the Error
and Status Register. This bit has no effect if the WRN_EN bit in MCR is negated and it is read as zero
when WRN_EN is negated.
1 = Rx Warning Interrupt enabled
0 = Rx Warning Interrupt disabled

LPB Loop Back
This bit configures FlexCAN to operate in Loop-Back Mode. In this mode, FlexCAN performs an
internal loop back that can be used for self test operation. The bit stream output of the transmitter is
fed back internally to the receiver input. The Rx CAN input pin is ignored and the Tx CAN output goes
to the recessive state (logic ‘1’). FlexCAN behaves as it normally does when transmitting, and treats
its own transmitted message as a message received from a remote node. In this mode, FlexCAN
ignores the bit sent during the ACK slot in the CAN frame acknowledge field, generating an internal
acknowledge bit to ensure proper reception of its own message. Both transmit and receive interrupts
are generated. This bit must be written in Freeze mode only.
1 = Loop Back enabled
0 = Loop Back disabled

SMP Sampling Mode
This bit defines the sampling mode of CAN bits at the Rx input. This bit must be written in Freeze
mode only.
1 = Three samples are used to determine the value of the received bit: the regular one (sample point)
and 2 preceding samples, a majority rule is used
0 = Just one sample is used to determine the bit value

Table 27-10. CTRL field descriptions (continued)

Field Description

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

688 Freescale Semiconductor

27.4.4.3 Free Running Timer (TIMER)

This register represents a 16-bit free running counter that can be read and written by the CPU.

The timer is clocked by the FlexCAN bit-clock (which defines the baud rate on the CAN bus). During a
message transmission/reception, it increments by one for each bit that is received or transmitted. When
there is no message on the bus, it counts using the previously programmed baud rate. During Freeze Mode,
the timer is not incremented.

BOFF_REC Bus Off Recovery Mode
This bit defines how FlexCAN recovers from Bus Off state. If this bit is negated, automatic recovering
from Bus Off state occurs according to the CAN Specification 2.0B. If the bit is asserted, automatic
recovering from Bus Off is disabled and the module remains in Bus Off state until the bit is negated
by the user. If the negation occurs before 128 sequences of 11 recessive bits are detected on the CAN
bus, then Bus Off recovery happens as if the BOFF_REC bit had never been asserted. If the negation
occurs after 128 sequences of 11 recessive bits occurred, then FlexCAN will re-synchronize to the
bus by waiting for 11 recessive bits before joining the bus. After negation, the BOFF_REC bit can be
re-asserted again during Bus Off, but it will only be effective the next time the module enters Bus Off.
If BOFF_REC was negated when the module entered Bus Off, asserting it during Bus Off will not be
effective for the current Bus Off recovery.
1 = Automatic recovering from Bus Off state disabled
0 = Automatic recovering from Bus Off state enabled, according to CAN Spec 2.0 part B

TSYN Timer Sync Mode
This bit enables a mechanism that resets the free-running timer each time a message is received in
Message Buffer 0. This feature provides means to synchronize multiple FlexCAN stations with a
special “SYNC” message (i.e., global network time). If the FEN bit in MCR is set (FIFO enabled), MB8
is used for timer synchronization instead of MB0. This bit must be written in Freeze mode only.
1 = Timer Sync feature enabled
0 = Timer Sync feature disabled

LBUF Lowest Buffer Transmitted First
This bit defines the ordering mechanism for Message Buffer transmission. When asserted, the
LPRIO_EN bit does not affect the priority arbitration. This bit must be written in Freeze mode only.
1 = Lowest number buffer is transmitted first
0 = Buffer with highest priority is transmitted first

LOM Listen-Only Mode
This bit configures FlexCAN to operate in Listen Only Mode. In this mode, transmission is disabled,
all error counters are frozen and the module operates in a CAN Error Passive mode [Ref. 1]. Only
messages acknowledged by another CAN station will be received. If FlexCAN detects a message that
has not been acknowledged, it will flag a BIT0 error (without changing the REC), as if it was trying to
acknowledge the message. This bit must be written in Freeze mode only.
1 = FlexCAN module operates in Listen Only Mode
0 = Listen Only Mode is deactivated

PROPSEG Propagation Segment
This 3-bit field defines the length of the Propagation Segment in the bit time. The valid programmable
values are 0–7. This bit must be written in Freeze mode only.
Propagation Segment Time = (PROPSEG + 1) * Time-Quanta.
Time-Quantum = one Sclock period.

1 One time quantum is equal to the Sclock period.

Table 27-10. CTRL field descriptions (continued)

Field Description

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 689

The timer value is captured at the beginning of the identifier field of any frame on the CAN bus. This
captured value is written into the Time Stamp entry in a message buffer after a successful reception or
transmission of a message.

Writing to the timer is an indirect operation. The data is first written to an auxiliary register and then an
internal request/acknowledge procedure across clock domains is executed. All this is transparent to the
user, except for the fact that the data will take some time to be actually written to the register. If desired,
software can poll the register to discover when the data was actually written.

27.4.4.4 Rx Global Mask (RXGMASK)

This register is provided for legacy support and for MCUs that do not have the individual masking per
Message Buffer feature. Setting the BCC bit in MCR causes the RXGMASK Register to have no effect on
the module operation.

RXGMASK is used as acceptance mask for all Rx MBs, excluding MBs 14–15, which have individual
mask registers. When the FEN bit in MCR is set (FIFO enabled), the RXGMASK also applies to all
elements of the ID filter table, except elements 6–7, which have individual masks.

See Section 27.5.7, Rx FIFO, for important details on usage of RXGMASK on filtering process for Rx
FIFO.

The contents of this register must be programmed while the module is in Freeze Mode, and must not be
modified when the module is transmitting or receiving frames.

During CAN messages reception by FlexCAN, the RXGMASK (Rx Global Mask) is used as acceptance
mask for most of the Rx Message Buffers (MB). When the FIFO Enable bit in the FlexCAN Module
Configuration Register (CANx_MCR[FEN], bit 2) is set, the RXGMASK also applies to most of the

Offset: 0x0008 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
TIMER

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-7. Free Running Timer (TIMER)

Table 27-11. TIMER field descriptions

Field Description

TIMER Free-running timer counter. The timer starts from 0x0000 after reset, counts linearly to 0xFFFF, and
wraps around.

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

690 Freescale Semiconductor

elements of the ID filter table. However, there is a misalignment between the position of the ID field in the
Rx MB and in RXIDA, RXIDB and RXIDC fields of the ID Tables. In fact RXIDA filter in the ID Tables
is shifted one bit to the left from Rx MBs ID position as shown below:

• Rx MB ID = bits 3–31 of ID word corresponding to message ID bits 0–28

• RXIDA = bits 2–30 of ID Table corresponding to message ID bits 0–28

The mask bits one-to-one correspondence occurs with the filters bits, not with the incoming message ID
bits. This leads the RXGMASK to affect Rx MB and Rx FIFO filtering in different ways.

For example, if the user intends to mask out the bit 24 of the ID filter of Message Buffers then the
RXGMASK will be configured as 0xffff_ffef. As result, bit 24 of the ID field of the incoming message
will be ignored during filtering process for Message Buffers. This very same configuration of RXGMASK
would lead bit 24 of RXIDA to be "don`t care" and thus bit 25 of the ID field of the incoming message
would be ignored during filtering process for Rx FIFO.

Similarly, both RXIDB and RXIDC filters have multiple misalignments with regards to position of ID field
in Rx MBs, which can lead to erroneous masking during filtering process for either Rx FIFO or MBs.

RX14MASK (Rx 14 Mask) and RX15MASK (Rx 15 Mask) have the same structure as the RXGMASK.
This includes the misalignment problem between the position of the ID field in the Rx MBs and in RXIDA,
RXIDB and RXIDC fields of the ID Tables.

Therefore it is recommended that one of the following actions be taken to avoid problems:

• Do not enable the RxFIFO. If CANx_MCR[FEN]=0 then the Rx FIFO is disabled and thus the
masks RXGMASK, RX14MASK and RX15MASK do not affect it.

• Enable Rx Individual Mask Registers. If the Backwards Compatibility Configuration bit in the
FlexCAN Module Configuration Register (CANx_MCR[BCC], bit 15) is set then the Rx
Individual Mask Registers (RXIMR0–63) are enabled and thus the masks RXGMASK,
RX14MASK and RX15MASK are not used.

• Do not use masks RXGMASK, RX14MASK and RX15MASK (i.e., let them in reset value which
is 0xffff_ffff) when CANx_MCR[FEN]=1 and CANx_MCR[BCC]=0. In this case, filtering
processes for both Rx MBs and Rx FIFO are not affected by those masks.

• Do not configure any MB as Rx (i.e., let all MBs as either Tx or inactive) when
CANx_MCR[FEN]=1 and CANx_MCR[BCC]=0. In this case, the masks RXGMASK,
RX14MASK and RX15MASK can be used to affect ID Tables without affecting filtering process
for Rx MBs.

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 691

27.4.4.5 Rx 14 Mask (RX14MASK)

This register is provided for legacy support and for MCUs that do not have the individual masking per
Message Buffer feature. Setting the BCC bit in MCR causes the RX14MASK Register to have no effect
on the module operation.

RX14MASK is used as acceptance mask for the Identifier in Message Buffer 14. When the FEN bit in
MCR is set (FIFO enabled), the RXG14MASK also applies to element 6 of the ID filter table. This register
has the same structure as the Rx Global Mask Register.

See Section 27.5.7, Rx FIFO, for important details on usage of RX14MASK on filtering process for Rx
FIFO.

The contents of this register must be programmed while the module is in Freeze Mode, and must not be
modified when the module is transmitting or receiving frames.

• Address Offset: 0x14

• Reset Value: 0xFFFF_FFFF

27.4.4.6 Rx 15 Mask (RX15MASK)

This register is provided for legacy support and for MCUs that do not have the individual masking per
Message Buffer feature. Setting the BCC bit in MCR causes the RX15MASK Register to have no effect
on the module operation.

Offset: 0x0010 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MI31 MI30 MI29 MI28 MI27 MI26 MI25 MI24 MI23 MI22 MI21 MI20 MI19 MI18 MI17 MI16

W

RESET: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MI15 MI14 MI13 MI12 MI11 MI10 MI9 MI8 MI7 MI6 MI5 MI4 MI3 MI2 MI1 MI0

W

RESET: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 27-8. Rx Global Mask Register (RXGMASK)

Table 27-12. RXGMASK field descriptions

Field Description

MIn Mask Bits
For normal Rx MBs, the mask bits affect the ID filter programmed on the MB. For the Rx FIFO,
the mask bits affect all bits programmed in the filter table (ID, IDE, RTR).
1 = The corresponding bit in the filter is checked against the one received
0 = The corresponding bit in the filter is “don’t care”

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

692 Freescale Semiconductor

When the BCC bit is negated, RX15MASK is used as acceptance mask for the Identifier in Message Buffer
15. When the FEN bit in MCR is set (FIFO enabled), the RXG15MASK also applies to element 7 of the
ID filter table. This register has the same structure as the Rx Global Mask Register.

Refer to Section 27.5.7, Rx FIFO, for important details on usage of RX15MASK on filtering process for
Rx FIFO.

The contents of this register must be programmed while the module is in Freeze Mode, and must not be
modified when the module is transmitting or receiving frames.

• Address Offset: 0x18

• Reset Value: 0xFFFF_FFFF

27.4.4.7 Error Counter Register (ECR)

This register has two 8-bit fields reflecting the value of two FlexCAN error counters: Transmit Error
Counter (TX_ERR_COUNTER field) and Receive Error Counter (RX_ERR_COUNTER field). The rules
for increasing and decreasing these counters are described in the CAN protocol and are completely
implemented in the FlexCAN module. Both counters are read only except in Freeze Mode, where they can
be written by the CPU.

Writing to the Error Counter Register while in Freeze Mode is an indirect operation. The data is first
written to an auxiliary register and then an internal request/acknowledge procedure across clock domains
is executed. All this is transparent to the user, except for the fact that the data will take some time to be
actually written to the register. If desired, software can poll the register to discover when the data was
actually written.

FlexCAN responds to any bus state as described in the protocol, e.g., transmit ‘Error Active’ or ‘Error
Passive’ flag, delay its transmission start time (‘Error Passive’) and avoid any influence on the bus when
in ‘Bus Off’ state. The following are the basic rules for FlexCAN bus state transitions.

• If the value of TX_ERR_COUNTER or RX_ERR_COUNTER increases to be greater than or
equal to 128, the FLT_CONF field in the Error and Status Register is updated to reflect ‘Error
Passive’ state.

• If the FlexCAN state is ‘Error Passive’, and either TX_ERR_COUNTER or RX_ERR_COUNTER
decrements to a value less than or equal to 127 while the other already satisfies this condition, the
FLT_CONF field in the Error and Status Register is updated to reflect ‘Error Active’ state.

• If the value of TX_ERR_COUNTER increases to be greater than 255, the FLT_CONF field in the
Error and Status Register is updated to reflect ‘Bus Off’ state, and an interrupt may be issued. The
value of TX_ERR_COUNTER is then reset to zero.

• If FlexCAN is in ‘Bus Off’ state, then Tx_Err_Counter is cascaded together with another internal
counter to count the 128th occurrences of 11 consecutive recessive bits on the bus. Hence,
TX_ERR_COUNTER is reset to zero and counts in a manner where the internal counter counts 11
such bits and then wraps around while incrementing the TX_ERR_COUNTER. When
TX_ERR_COUNTER reaches the value of 128, the FLT_CONF field in the Error and Status
Register is updated to be ‘Error Active’ and both error counters are reset to zero. At any instance
of dominant bit following a stream of less than 11 consecutive recessive bits, the internal counter
resets itself to zero without affecting the TX_ERR_COUNTER value.

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 693

• If during system start-up, only one node is operating, then its TX_ERR_COUNTER increases in
each message it is trying to transmit, as a result of acknowledge errors (indicated by the ACK_ERR
bit in the Error and Status Register). After the transition to ‘Error Passive’ state, the
TX_ERR_COUNTER does not increment anymore by acknowledge errors. Therefore the device
never goes to the ‘Bus Off’ state.

• If the RX_ERR_COUNTER increases to a value greater than 127, it is not incremented further,
even if more errors are detected while being a receiver. At the next successful message reception,
the counter is set to a value between 119 and 127 to resume to ‘Error Active’ state.

27.4.4.8 Error and Status Register (ESR)

This register reflects various error conditions, some general status of the device and it is the source of four
interrupts to the CPU. The reported error conditions (bits 16–21) are those that occurred since the last time
the CPU read this register. The CPU read action clears bits 16–23. Bits 22–28 are status bits.

Most bits in this register are read only, except TWRN_INT, RWRN_INT, BOFF_INT, and ERR_INT, that
are interrupt flags that can be cleared by writing ‘1’ to them (writing ‘0’ has no effect). See
Section 27.5.10, Interrupts, for more details.

Offset: 0x001C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
RX_ERR_COUNTER TX_ERR_COUNTER

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-9. Error Counter Register (ECR)

Table 27-13. ECR field descriptions

Field Description

RX_ERROR_
COUNTER

Receive Error Counter. See the text of this section for a detailed description of this field and
how it interacts with TX_ERROR_COUNTER.

TX_ERROR_
COUNTER

Transmit Error Counter. See the text of this section for a detailed description of this field and
how it interacts with RX_ERROR_COUNTER.

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

694 Freescale Semiconductor

Offset: 0x0020 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T
W

R
N

_I
N

T

R
W

R
N

_I
N

T

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

B
IT

1_
 E

R
R

B
IT

0_
 E

R
R

A
C

K
_

E
R

R

C
R

C
_E

R
R

F
R

M
_E

R
R

S
T

F
_E

R
R

T
X

_W
R

N

R
X

_W
R

N

IDLE

T
X

R
X

FLT_CONF 0

B
O

F
F

_I
N

T

E
R

R
_

IN
T

0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-10. Error and Status Register (ESR)

Table 27-14. ESR field descriptions

Field Description

TWRN_INT TWRN_INT — Tx Warning Interrupt Flag
If the WRN_EN bit in MCR is asserted, the TWRN_INT bit is set when the TX_WRN flag transition
from ‘0’ to ‘1’, meaning that the Tx error counter reached 96. If the corresponding mask bit in the
Control Register (TWRN_MSK) is set, an interrupt is generated to the CPU. This bit is cleared by
writing it to ‘1’. Writing ‘0’ has no effect.
1 = The Tx error counter transition from < 96 to  96
0 = No such occurrence

RWRN_INT RWRN_INT — Rx Warning Interrupt Flag
If the WRN_EN bit in MCR is asserted, the RWRN_INT bit is set when the RX_WRN flag transition
from ‘0’ to ‘1’, meaning that the Rx error counters reached 96. If the corresponding mask bit in the
Control Register (RWRN_MSK) is set, an interrupt is generated to the CPU. This bit is cleared by
writing it to ‘1’. Writing ‘0’ has no effect.
1 = The Rx error counter transition from < 96 to  96
0 = No such occurrence

BIT1_ERR BIT1_ERR — Bit1 Error
This bit indicates when an inconsistency occurs between the transmitted and the received bit in a
message.
1 = At least one bit sent as recessive is received as dominant
0 = No such occurrence

Note: This bit is not set by a transmitter in case of arbitration field or ACK slot, or in case of a node
sending a passive error flag that detects dominant bits.

BIT0_ERR BIT0_ERR — Bit0 Error
This bit indicates when an inconsistency occurs between the transmitted and the received bit in a
message.
1 = At least one bit sent as dominant is received as recessive
0 = No such occurrence

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 695

ACK_ERR ACK_ERR — Acknowledge Error
This bit indicates that an Acknowledge Error has been detected by the transmitter node, i.e., a
dominant bit has not been detected during the ACK SLOT.
1 = An ACK error occurred since last read of this register
0 = No such occurrence

CRC_ERR CRC_ERR — Cyclic Redundancy Check Error
This bit indicates that a CRC Error has been detected by the receiver node, i.e., the calculated CRC
is different from the received.
1 = A CRC error occurred since last read of this register.
0 = No such occurrence

FRM_ERR FRM_ERR — Form Error
This bit indicates that a Form Error has been detected by the receiver node, i.e., a fixed-form bit field
contains at least one illegal bit.
1 = A Form Error occurred since last read of this register
0 = No such occurrence

STF_ERR STF_ERR — Stuffing Error
This bit indicates that a Stuffing Error has been detected.
1 = A Stuffing Error occurred since last read of this register.
0 = No such occurrence.

TX_WRN TX Error Warning
This bit indicates when repetitive errors are occurring during message transmission.
1 = TX_Err_Counter  96
0 = No such occurrence

RX_WRN Rx Error Counter
This bit indicates when repetitive errors are occurring during message reception.
1 = Rx_Err_Counter 96
0 = No such occurrence

IDLE CAN bus IDLE state
This bit indicates when CAN bus is in IDLE state.
1 = CAN bus is now IDLE
0 = No such occurrence

TXRX Current FlexCAN status (transmitting/receiving)
This bit indicates if FlexCAN is transmitting or receiving a message when the CAN bus is not in IDLE
state. This bit has no meaning when IDLE is asserted.
1 = FlexCAN is transmitting a message (IDLE=0)
0 = FlexCAN is receiving a message (IDLE=0)

FLT_CONF Fault Confinement State
This 2-bit field indicates the Confinement State of the FlexCAN module, as shown in Table 27-15. If
the LOM bit in the Control Register is asserted, the FLT_CONF field will indicate “Error Passive”.
Since the Control Register is not affected by soft reset, the FLT_CONF field will not be affected by
soft reset if the LOM bit is asserted.

BOFF_INT ‘Bus Off’ Interrupt
This bit is set when FlexCAN enters ‘Bus Off’ state. If the corresponding mask bit in the Control
Register (BOFF_MSK) is set, an interrupt is generated to the CPU. This bit is cleared by writing it to
‘1’. Writing ‘0’ has no effect.
1 = FlexCAN module entered ‘Bus Off’ state
0 = No such occurrence

Table 27-14. ESR field descriptions (continued)

Field Description

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

696 Freescale Semiconductor

27.4.4.9 Interrupt Masks 2 Register (IMASK2)

This register allows any number of a range of 32 Message Buffer Interrupts to be enabled or disabled. It
contains one interrupt mask bit per buffer, enabling the CPU to determine which buffer generates an
interrupt after a successful transmission or reception (i.e., when the corresponding IFLAG2 bit is set).

ERR_INT Error Interrupt
This bit indicates that at least one of the Error Bits (bits 16-21) is set. If the corresponding mask bit
in the Control Register (ERR_MSK) is set, an interrupt is generated to the CPU. This bit is cleared
by writing it to ‘1’.Writing ‘0’ has no effect.
1 = Indicates setting of any Error Bit in the Error and Status Register
0 = No such occurrence

Table 27-15. Fault confinement state

Value Meaning

00 Error Active

01 Error Passive

1X Bus Off

Offset: 0x0024 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BUF
63M

BUF
62M

BUF
61M

BUF
60M

BUF
59M

BUF
58M

BUF
57M

BUF
56M

BUF
55M

BUF
54M

BUF
53M

BUF
52M

BUF
51M

BUF
50M

BUF
49M

BUF
48MW

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BUF
47M

BUF
46M

BUF
45M

BUF
44M

BUF
43M

BUF
42M

BUF
41M

BUF
40M

BUF
39M

BUF
38M

BUF
37M

BUF
36M

BUF
35M

BUF
34M

BUF
33M

BUF
32MW

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-11. Interrupt Masks 2 Register (IMASK2)

Table 27-16. MASK2 field descriptions

Field Description

BUFnM Buffer MBn Mask
Each bit enables or disables the respective FlexCAN Message Buffer (MB32 to MB63)
Interrupt.
1 = The corresponding buffer Interrupt is enabled
0 = The corresponding buffer Interrupt is disabled

Note: Setting or clearing a bit in the IMASK2 Register can assert or negate an interrupt
request, if the corresponding IFLAG2 bit is set.

Table 27-14. ESR field descriptions (continued)

Field Description

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 697

27.4.4.10 Interrupt Masks 1 Register (IMASK1)

This register allows to enable or disable any number of a range of 32 Message Buffer Interrupts. It contains
one interrupt mask bit per buffer, enabling the CPU to determine which buffer generates an interrupt after
a successful transmission or reception (i.e., when the corresponding IFLAG1 bit is set).

27.4.4.11 Interrupt Flags 2 Register (IFLAG2)

This register defines the flags for 32 Message Buffer interrupts. It contains one interrupt flag bit per buffer.
Each successful transmission or reception sets the corresponding IFLAG2 bit. If the corresponding
IMASK2 bit is set, an interrupt will be generated. The interrupt flag must be cleared by writing it to ‘1’.
Writing ‘0’ has no effect.

Offset: 0x0028 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BUF
31M

BUF
30M

BUF
29M

BUF
28M

BUF
27M

BUF
26M

BUF
25M

BUF
24M

BUF
23M

BUF
22M

BUF
21M

BUF
20M

BUF
19M

BUF
18M

BUF
17M

BUF
16MW

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BUF
15M

BUF
14M

BUF
13M

BUF
12M

BUF
11M

BUF
10M

BUF
9M

BUF
8M

BUF
7M

BUF
6M

BUF
5M

BUF
4M

BUF
3M

BUF
2M

BUF
1M

BUF
0MW

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-12. Interrupt Masks 1 Register (IMASK1)

Table 27-17. IMASK1 field descriptions

Field Description

BUFnM Buffer MBn Mask
Each bit enables or disables the respective FlexCAN Message Buffer (MB0 to MB31)
Interrupt.
1 = The corresponding buffer Interrupt is enabled
0 = The corresponding buffer Interrupt is disabled

Note: Setting or clearing a bit in the IMASK1 Register can assert or negate an interrupt
request, if the corresponding IFLAG1 bit is set.

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

698 Freescale Semiconductor

27.4.4.12 Interrupt Flags 1 Register (IFLAG1)

This register defines the flags for 32 Message Buffer interrupts and FIFO interrupts. It contains one
interrupt flag bit per buffer. Each successful transmission or reception sets the corresponding IFLAG1 bit.
If the corresponding IMASK1 bit is set, an interrupt will be generated. The Interrupt flag must be cleared
by writing it to ‘1’. Writing ‘0’ has no effect.

When the MCR[FEN] bit is set (FIFO enabled), the function of the 8 least significant interrupt flags
(BUF7I - BUF0I) is changed to support the FIFO operation. BUF7I, BUF6I and BUF5I indicate operating
conditions of the FIFO, while BUF4I to BUF0I are not used.

Offset: 0x002C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BUF
63I

BUF
62I

BUF
61I

BUF
60I

BUF
59I

BUF
58I

BUF
57I

BUF
56I

BUF
55I

BUF
54I

BUF
53I

BUF
52I

BUF
51I

BUF
50I

BUF
49I

BUF
48IW

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BUF
47I

BUF
46I

BUF
45I

BUF
44I

BUF
43I

BUF
42I

BUF
41I

BUF
40I

BUF
39I

BUF
38I

BUF
37I

BUF
36I

BUF
35I

BUF
34I

BUF
33I

BUF
32IW

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-13. Interrupt Flags 2 Register (IFLAG2)

Table 27-18. IFLAG2 field descriptions

Field Description

BUFnI Buffer MBn Interrupt
Each bit flags the respective FlexCAN Message Buffer (MB32 to MB63) interrupt.
1 = The corresponding buffer has successfully completed transmission or reception
0 = No such occurrence

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 699

27.4.4.13 Rx Individual Mask Registers (RXIMR0–RXIMR63)

These registers are used as acceptance masks for ID filtering in Rx MBs and the FIFO. If the FIFO is not
enabled, one mask register is provided for each available Message Buffer, providing ID masking capability
on a per Message Buffer basis. When the FIFO is enabled (FEN bit in MCR is set), the first 8 Mask

Offset: 0x002C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BUF
31I

BUF
30I

BUF
29I

BUF
28I

BUF
27I

BUF
26I

BUF
25I

BUF
24I

BUF
23I

BUF
22I

BUF
21I

BUF
20I

BUF
19I

BUF
18I

BUF
17I

BUF
16IW

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BUF
15I

BUF
14I

BUF
13I

BUF
12I

BUF
11I

BUF
10I

BUF
9I

BUF
8I

BUF
7I

BUF
6I

BUF
5I

BUF
4I

BUF
3I

BUF
2I

BUF
1I

BUF
0IW

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-14. Interrupt Flags 1 Register (IFLAG1)

Table 27-19. IFLAG1 field descriptions

Field Description

BUF31I–BUF8I Buffer MBn Interrupt
Each bit flags the respective FlexCAN Message Buffer (MB8 to MB31) interrupt.
1 = The corresponding MB has successfully completed transmission or reception
0 = No such occurrence

BUF7I Buffer MB7 Interrupt or “FIFO Overflow”
If the FIFO is not enabled, this bit flags the interrupt for MB7. If the FIFO is enabled, this
flag indicates an overflow condition in the FIFO (frame lost because FIFO is full).
1 = MB7 completed transmission/reception or FIFO overflow
0 = No such occurrence

BUF6I Buffer MB6 Interrupt or “FIFO Warning”
If the FIFO is not enabled, this bit flags the interrupt for MB6. If the FIFO is enabled, this
flag indicates that 5 out of 6 buffers of the FIFO are already occupied (FIFO almost full).
1 = MB6 completed transmission/reception or FIFO almost full
0 = No such occurrence

BUF5I Buffer MB5 Interrupt or “Frames available in FIFO”
If the FIFO is not enabled, this bit flags the interrupt for MB5. If the FIFO is enabled, this
flag indicates that at least one frame is available to be read from the FIFO.
1 = MB5 completed transmission/reception or frames available in the FIFO
0 = No such occurrence

BUF4I–BUF0I Buffer MBi Interrupt or “reserved”
If the FIFO is not enabled, these bits flag the interrupts for MB0 to MB4. If the FIFO is
enabled, these flags are not used and must be considered as reserved locations.
1 = Corresponding MB completed transmission/reception
0 = No such occurrence

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

700 Freescale Semiconductor

Registers apply to the eight elements of the FIFO filter table (on a one-to-one correspondence), while the
rest of the registers apply to the regular MBs, starting from MB8.

The Individual Rx Mask Registers are implemented in RAM, so they are not affected by reset and must be
explicitly initialized prior to any reception. Furthermore, they can only be accessed by the CPU while the
module is in Freeze mode. Out of Freeze mode, write accesses are blocked and read accesses will return
“all zeros”. Furthermore, if the BCC bit in the MCR Register is negated, any read or write operation to
these registers results in access error.

27.5 Functional description

27.5.1 Overview

The FlexCAN module is a CAN protocol engine with a very flexible mailbox system for transmitting and
receiving CAN frames. The mailbox system is composed by a set of up to 64 Message Buffers (MB) that
store configuration and control data, time stamp, message ID and data (see Section 27.4.2, Message Buffer
Structure). The memory corresponding to the first 8 MBs can be configured to support a FIFO reception
scheme with a powerful ID filtering mechanism, capable of checking incoming frames against a table of
IDs (up to 8 extended IDs or 16 standard IDs or 32 8-bit ID slices), each one with its own individual mask
register. Simultaneous reception through FIFO and mailbox is supported. For mailbox reception, a
matching algorithm makes it possible to store received frames only into MBs that have the same ID
programmed on its ID field. A masking scheme makes it possible to match the ID programmed on the MB
with a range of IDs on received CAN frames. For transmission, an arbitration algorithm decides the
prioritization of MBs to be transmitted based on the message ID (optionally augmented by 3 local priority
bits) or the MB ordering.

Offsets: 0x0880–0x097F (64 registers0 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MI31 MI30 MI29 MI28 MI27 MI26 MI25 MI24 MI23 MI22 MI21 MI20 MI19 MI18 MI17 MI16

W

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MI15 MI14 MI13 MI12 MI11 MI10 MI9 MI8 MI7 MI6 MI5 MI4 MI3 MI2 MI1 MI0

W

Figure 27-15. Rx Individual Mask Registers (RXIMR0–RXIMR63)

Table 27-20. RXIMR0–RXIMR63 field descriptions

Field Description

MIn Mask Bits
For normal Rx MBs, the mask bits affect the ID filter programmed on the MB. For the Rx FIFO,
the mask bits affect all bits programmed in the filter table (ID, IDE, RTR).
1 = The corresponding bit in the filter is checked against the one received
0 = The corresponding bit in the filter is “don’t care”

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 701

Before proceeding with the functional description, an important concept must be explained. A Message
Buffer is said to be “active” at a given time if it can participate in the matching and arbitration algorithms
that are happening at that time. An Rx MB with a ‘0000’ code is inactive (refer to Table 27-5). Similarly,
a Tx MB with a ‘1000’ or ‘1001’ code is also inactive (refer to Table 27-6). An MB not programmed with
‘0000’, ‘1000’ or ‘1001’ will be temporarily deactivated (will not participate in the current arbitration or
matching run) when the CPU writes to the C/S field of that MB (see Section 27.5.6.1, Message Buffer
Deactivation).

27.5.2 Local Priority Transmission

The term local priority refers to the priority of transmit messages of the host node. This allows increased
control over the priority mechanism for transmitting messages. Figure 27-2 shows the placement of PRIO
in the ID part of the message buffer.

An additional 3-bit field (PRIO) in the long-word ID part of the message buffer structure has been added
for local priority determination. They are prefixed to the regular ID to define the transmission priority.
These bits are not transmitted and are intended only for Tx buffers.

Perform the following to use the local priority feature:

1. Set the LPRIO_EN bit in the CANx_MCR.

2. Write the additional PRIO bits in the ID long-word of Tx message buffers when configuring the
Tx buffers.

With this extended ID concept, the arbitration process is based on the full 32-bit word. However, the actual
transmitted ID continues to have 11 bits for standard frames and 29 bits for extended frames.

27.5.3 Transmit process

In order to transmit a CAN frame, the CPU must prepare a Message Buffer for transmission by executing
the following procedure:

1. If the MB is active (transmission pending), write ‘1000’ to the Code field to inactivate the MB but
then the pending frame may be transmitted without notification (see Section 1.5.6.2, “Message
Buffer Deactivation)

2. Write the ID word.

3. Write the data bytes.

4. Write the Length, Control and Code fields of the Control and Status word to activate the MB.

Once the MB is activated in the fourth step, it will participate into the arbitration process and eventually
be transmitted according to its priority. At the end of the successful transmission, the value of the Free
Running Timer is written into the Time Stamp field, the Code field in the Control and Status word is
updated, a status flag is set in the Interrupt Flag Register and an interrupt is generated if allowed by the
corresponding Interrupt Mask Register bit. The new Code field after transmission depends on the code that
was used to activate the MB in step four (see Table 27-5 and Table 27-6 in Section 27.4.2, Message Buffer
Structure).

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

702 Freescale Semiconductor

27.5.4 Arbitration process

The arbitration process is an algorithm executed by the MBM that scans the whole MB memory looking
for the highest priority message to be transmitted. All MBs programmed as transmit buffers will be
scanned to find the lowest ID1 or the lowest MB number or the highest priority, depending on the LBUF
and LPRIO_EN bits on the Control Register. The arbitration process is triggered in the following events:

• During the CRC field of the CAN frame

• During the error delimiter field of the CAN frame

• During Intermission, if the winner MB defined in a previous arbitration was deactivated, or if there
was no MB to transmit, but the CPU wrote to the C/S word of any MB after the previous arbitration
finished

• When MBM is in Idle or Bus Off state and the CPU writes to the C/S word of any MB

• Upon leaving Freeze Mode

When LBUF is asserted, the LPRIO_EN bit has no effect and the lowest number buffer is transmitted first.
When LBUF and LPRIO_EN are both negated, the MB with the lowest ID is transmitted first but. If LBUF
is negated and LPRIO_EN is asserted, the PRIO bits augment the ID used during the arbitration process.
With this extended ID concept, arbitration is done based on the full 32-bit ID and the PRIO bits define
which MB should be transmitted first, therefore MBs with PRIO = 000 have higher priority. If two or more
MBs have the same priority, the regular ID will determine the priority of transmission. If two or more MBs
have the same priority (3 extra bits) and the same regular ID, the lowest MB will be transmitted first.

Once the highest priority MB is selected, it is transferred to a temporary storage space called Serial
Message Buffer (SMB), which has the same structure as a normal MB but is not user accessible. This
operation is called “move-out”. The write access is released in the following events:

• After the MB is transmitted

• FlexCAN enters in HALT or BUS OFF

• FlexCAN loses the bus arbitration or there is an error during the transmission

At the first opportunity window on the CAN bus, the message on the SMB is transmitted according to the
CAN protocol rules. FlexCAN transmits up to eight data bytes, even if the DLC (Data Length Code) value
is bigger.

27.5.5 Receive process

To be able to receive CAN frames into the mailbox MBs, the CPU must prepare one or more Message
Buffers for reception by executing the following steps:

1. If the MB has a pending transmission, write ‘1000’ to the Code field to inactivate the MB, but then
the pending frame may be transmitted without notification (see Section 27.5.6.1, Message Buffer
Deactivation). If the MB already programmed as a receiver, just write ‘0000’ to the Code field of
the Control and Status word to keep the MB inactive.

2. Write the ID word

1. Actually, if LBUF is negated, the arbitration considers not only the ID, but also the RTR and IDE bits placed inside the ID at the
same positions they are transmitted in the CAN frame.

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 703

3. Write ‘0100’ to the Code field of the Control and Status word to activate the MB

Once the MB is activated in the third step, it will be able to receive frames that match the programmed ID.
At the end of a successful reception, the MB is updated by the MBM as follows:

• The value of the Free Running Timer is written into the Time Stamp field

• The received ID, Data (8 bytes at most) and Length fields are stored

• The Code field in the Control and Status word is updated (see Table 27-5 and Table 27-6 in
Section 27.4.2, Message Buffer Structure)

• A status flag is set in the Interrupt Flag Register and an interrupt is generated if allowed by the
corresponding Interrupt Mask Register bit

Upon receiving the MB interrupt, the CPU should service the received frame using the following
procedure:

1. Read the Control and Status word (mandatory – activates an internal lock for this buffer)

2. Read the ID field (optional – needed only if a mask was used)

3. Read the Data field

4. Read the Free Running Timer (optional – releases the internal lock)

Upon reading the Control and Status word, if the BUSY bit is set in the Code field, then the CPU should
defer the access to the MB until this bit is negated. Reading the Free Running Timer is not mandatory. If
not executed the MB remains locked, unless the CPU reads the C/S word of another MB. Note that only a
single MB is locked at a time. The only mandatory CPU read operation is the one on the Control and Status
word to assure data coherency (see Section 27.5.6, Data coherence).

The CPU should synchronize to frame reception by the status flag bit for the specific MB in one of the
IFLAG Registers and not by the Code field of that MB. Polling the Code field does not work because once
a frame was received and the CPU services the MB (by reading the C/S word followed by unlocking the
MB), the Code field will not return to EMPTY. It will remain FULL, as explained in Table 27-5. If the CPU
tries to workaround this behavior by writing to the C/S word to force an EMPTY code after reading the
MB, the MB is actually deactivated from any currently ongoing matching process. As a result, a newly
received frame matching the ID of that MB may be lost. In summary: never do polling by reading directly
the C/S word of the MBs. Instead, read the IFLAG registers.

Note that the received ID field is always stored in the matching MB, thus the contents of the ID field in an
MB may change if the match was due to masking. Note also that FlexCAN does receive frames transmitted
by itself if there exists an Rx matching MB, provided the SRX_DIS bit in the MCR is not asserted. If
SRX_DIS is asserted, FlexCAN will not store frames transmitted by itself in any MB, even if it contains
a matching MB, and no interrupt flag or interrupt signal will be generated due to the frame reception.

To be able to receive CAN frames through the FIFO, the CPU must enable and configure the FIFO during
Freeze Mode (see Section 27.5.7, Rx FIFO). Upon receiving the frames available interrupt from FIFO, the
CPU should service the received frame using the following procedure:

1. Read the Control and Status word (optional – needed only if a mask was used for IDE and RTR
bits)

2. Read the ID field (optional – needed only if a mask was used)

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

704 Freescale Semiconductor

3. Read the Data field

4. Clear the frames available interrupt (mandatory – release the buffer and allow the CPU to read the
next FIFO entry)

27.5.6 Data coherence

In order to maintain data coherency and FlexCAN proper operation, the CPU must obey the rules described
in Section 27.5.3, Transmit process and Section 27.5.5, Receive process. Any form of CPU accessing an
MB structure within FlexCAN other than those specified may cause FlexCAN to behave in an
unpredictable way.

27.5.6.1 Message Buffer Deactivation

Deactivation is mechanism provided to maintain data coherence when the CPU writes to the Control and
Status word of active MBs out of Freeze Mode. Any CPU write access to the Control and Status word of
an MB causes that MB to be excluded from the transmit or receive processes during the current matching
or arbitration round. The deactivation is temporary, affecting only for the current match/arbitration round.

The purpose of deactivation is data coherency. The match/arbitration process scans the MBs to decide
which MB to transmit or receive. If the CPU updates the MB in the middle of a match or arbitration
process, the data of that MB may no longer be coherent, therefore deactivation of that MB is done.

Even with the coherence mechanism described above, writing to the Control and Status word of active
MBs when not in Freeze Mode may produce undesirable results. Examples are:

• Matching and arbitration are one-pass processes. If MBs are deactivated after they are scanned, no
re-evaluation is done to determine a new match/winner. If an Rx MB with a matching ID is
deactivated during the matching process after it was scanned, then this MB is marked as invalid to
receive the frame, and FlexCAN will keep looking for another matching MB within the ones it has
not scanned yet. If it can not find one, then the message will be lost. Suppose, for example, that two
MBs have a matching ID to a received frame, and the user deactivated the first matching MB after
FlexCAN has scanned the second. The received frame will be lost even if the second matching MB
was “free to receive”.

• If a Tx MB containing the lowest ID is deactivated after FlexCAN has scanned it, then FlexCAN
will look for another winner within the MBs that it has not scanned yet. Therefore, it may transmit
an MB with ID that may not be the lowest at the time because a lower ID might be present in one
of the MBs that it had already scanned before the deactivation.

• There is a point in time until which the deactivation of a Tx MB causes it not to be transmitted (end
of move-out). After this point, it is transmitted but no interrupt is issued and the Code field is not
updated.

27.5.6.2 Message Buffer Lock Mechanism

Besides MB deactivation, FlexCAN has another data coherence mechanism for the receive process. When
the CPU reads the Control and Status word of an “active not empty” Rx MB, FlexCAN assumes that the
CPU wants to read the whole MB in an atomic operation, and thus it sets an internal lock flag for that MB.
The lock is released when the CPU reads the Free Running Timer (global unlock operation), or when it

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 705

reads the Control and Status word of another MB. The MB locking is done to prevent a new frame to be
written into the MB while the CPU is reading it.

NOTE
The locking mechanism only applies to Rx MBs which have a code different
than INACTIVE (‘0000’) or EMPTY1 (‘0100’). Also, Tx MBs can not be
locked.

Suppose, for example, that the FIFO is disabled and the second and the fifth MBs of the array are
programmed with the same ID, and FlexCAN has already received and stored messages into these two
MBs. Suppose now that the CPU decides to read MB number 5 and at the same time another message with
the same ID is arriving. When the CPU reads the Control and Status word of MB number 5, this MB is
locked. The new message arrives and the matching algorithm finds out that there are no “free to receive”
MBs, so it decides to override MB number 5. However, this MB is locked, so the new message can not be
written there. It will remain in the SMB waiting for the MB to be unlocked, and only then will be written
to the MB. If the MB is not unlocked in time and yet another new message with the same ID arrives, then
the new message overwrites the one on the SMB and there will be no indication of lost messages either in
the Code field of the MB or in the Error and Status Register.

While the message is being moved-in from the SMB to the MB, the BUSY bit on the Code field is asserted.
If the CPU reads the Control and Status word and finds out that the BUSY bit is set, it should defer
accessing the MB until the BUSY bit is negated.

NOTE
If the BUSY bit is asserted or if the MB is empty, then reading the Control
and Status word does not lock the MB.

Deactivation takes precedence over locking. If the CPU deactivates a locked Rx MB, then its lock status
is negated and the MB is marked as invalid for the current matching round. Any pending message on the
SMB will not be transferred anymore to the MB.

27.5.7 Rx FIFO

The receive-only FIFO is enabled by asserting the FEN bit in the MCR. The reset value of this bit is zero
to maintain software backwards compatibility with previous versions of the module that did not have the
FIFO feature. When the FIFO is enabled, the memory region normally occupied by the first 8 MBs
(0x80-0xFF) is now reserved for use of the FIFO engine (see Section 27.4.3, Rx FIFO structure).
Management of read and write pointers is done internally by the FIFO engine. The CPU can read the
received frames sequentially, in the order they were received, by repeatedly accessing a Message Buffer
structure at the beginning of the memory.

The FIFO can store up to 6 frames pending service by the CPU. An interrupt is sent to the CPU when new
frames are available in the FIFO. Upon receiving the interrupt, the CPU must read the frame (accessing an
MB in the 0x80 address) and then clear the interrupt. The act of clearing the interrupt triggers the FIFO
engine to replace the MB in 0x80 with the next frame in the queue, and then issue another interrupt to the
CPU. If the FIFO is full and more frames continue to be received, an OVERFLOW interrupt is issued to

1. In previous FlexCAN versions, reading the C/S word locked the MB even if it was EMPTY. This behavior will be honored when
the BCC bit is negated.

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

706 Freescale Semiconductor

the CPU and subsequent frames are not accepted until the CPU creates space in the FIFO by reading one
or more frames. A warning interrupt is also generated when five frames are accumulated in the FIFO.

A powerful filtering scheme is provided to accept only frames intended for the target application, thus
reducing the interrupt servicing work load. The filtering criteria is specified by programming a table of
eight 32-bit registers that can be configured to one of the following formats (see also Section 27.4.3, Rx
FIFO structure):

• Format A: 8 extended or standard IDs (including IDE and RTR)

• Format B: 16 standard IDs or 16 extended 14-bit ID slices (including IDE and RTR)

• Format C: 32 standard or extended 8-bit ID slices

NOTE
A chosen format is applied to all eight registers of the filter table. It is not
possible to mix formats within the table.

The eight elements of the filter table are individually affected by the first eight Individual Mask Registers
(RXIMR0 - RXIMR7), allowing very powerful filtering criteria to be defined. The rest of the RXIMR,
starting from RXIM8, continue to affect the regular MBs, starting from MB8. If the BCC bit is negated (or
if the RXIMR are not available for the particular MCU), then the FIFO filter table is affected by the legacy
mask registers as follows: element 6 is affected by RX14MASK, element 7 is affected by RX15MASK
and the other elements (0 to 5) are affected by RXGMASK.

27.5.8 CAN Protocol Related Features

27.5.8.1 Remote Frames

Remote frame is a special kind of frame. The user can program a MB to be a Request Remote Frame by
writing the MB as Transmit with the RTR bit set to ‘1’. After the Remote Request frame is transmitted
successfully, the MB becomes a Receive Message Buffer, with the same ID as before.

When a Remote Request frame is received by FlexCAN, its ID is compared to the IDs of the transmit
message buffers with the Code field ‘1010’. If there is a matching ID, then this MB frame will be
transmitted. Note that if the matching MB has the RTR bit set, then FlexCAN will transmit a Remote
Frame as a response.

A received Remote Request Frame is not stored in a receive buffer. It is only used to trigger a transmission
of a frame in response. The mask registers are not used in remote frame matching, and all ID bits (except
RTR) of the incoming received frame should match.

In the case that a Remote Request Frame was received and matched an MB, this message buffer
immediately enters the internal arbitration process, but is considered as normal Tx MB, with no higher
priority. The data length of this frame is independent of the DLC field in the remote frame that initiated its
transmission.

If the Rx FIFO is enabled (bit FEN set in MCR), FlexCAN will not generate an automatic response for
Remote Request Frames that match the FIFO filtering criteria. If the remote frame matches one of the
target IDs, it will be stored in the FIFO and presented to the CPU. Note that for filtering formats A and B,

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 707

it is possible to select whether remote frames are accepted or not. For format C, remote frames are always
accepted (if they match the ID).

27.5.8.2 Overload Frames

FlexCAN does transmit overload frames due to detection of following conditions on CAN bus:

• Detection of a dominant bit in the first/second bit of Intermission

• Detection of a dominant bit at the 7th bit (last) of End of Frame field (Rx frames)

• Detection of a dominant bit at the 8th bit (last) of Error Frame Delimiter or Overload Frame
Delimiter

27.5.8.3 Time Stamp

The value of the Free Running Timer is sampled at the beginning of the Identifier field on the CAN bus,
and is stored at the end of “move-in” in the TIME STAMP field, providing network behavior with respect
to time.

Note that the Free Running Timer can be reset upon a specific frame reception, enabling network time
synchronization. Refer to TSYN description in Section 27.4.4.2, Control Register (CTRL).

27.5.8.4 Protocol timing

Figure 27-16 shows the structure of the clock generation circuitry that feeds the CAN Protocol Interface
(CPI) sub-module. The clock source bit (CLK_SRC) in the CTRL Register defines whether the internal
clock is connected to the output of a crystal oscillator (Oscillator Clock) or to the Peripheral Clock
(generally from a PLL). In order to guarantee reliable operation, the clock source should be selected while
the module is in Disable Mode (bit MDIS set in the Module Configuration Register).

Figure 27-16. CAN Engine Clocking Scheme

The crystal oscillator clock should be selected whenever a tight tolerance (up to 0.1%) is required in the
CAN bus timing. The crystal oscillator clock has better jitter performance than PLL generated clocks.

The FlexCAN module supports a variety of means to setup bit timing parameters that are required by the
CAN protocol. The Control Register has various fields used to control bit timing parameters: PRESDIV,
PROPSEG, PSEG1, PSEG2 and RJW. See Section 27.4.4.2, Control Register (CTRL).

Peripheral Clock (PLL)

Oscillator Clock (Xtal)
CLK_SRC

Prescaler
(1 .. 256)

SclockCPI Clock

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

708 Freescale Semiconductor

The PRESDIV field controls a prescaler that generates the Serial Clock (Sclock), whose period defines the
‘time quantum’ used to compose the CAN waveform. A time quantum is the atomic unit of time handled
by the CAN engine.

A bit time is subdivided into three segments1 (reference Figure 27-17 and Table 27-21):

• SYNC_SEG: This segment has a fixed length of one time quantum. Signal edges are expected to
happen within this section

• Time Segment 1: This segment includes the Propagation Segment and the Phase Segment 1 of the
CAN standard. It can be programmed by setting the PROPSEG and the PSEG1 fields of the CTRL
Register so that their sum (plus 2) is in the range of 4 to 16 time quanta

• Time Segment 2: This segment represents the Phase Segment 2 of the CAN standard. It can be
programmed by setting the PSEG2 field of the CTRL Register (plus 1) to be 2 to 8 time quanta long

Figure 27-17. Segments within the Bit Time

1. For further explanation of the underlying concepts please refer to ISO/DIS 11519–1, Section 10.3. Reference also the
Bosch CAN 2.0A/B protocol specification dated September 1991 for bit timing.

Table 27-21. Time Segment Syntax

Syntax Description

SYNC_SEG System expects transitions to occur on the bus during this period.

fTq

fCANCLK

Prescaler ValueÞ 
--=

Bit Rate
fTq

number of Time QuantaÞ Þ Þ 
---=Þ

SYNC_SEG Time Segment 1 Time Segment 2

1 4 ... 16 2 ... 8

8 ... 25 Time Quanta
= 1 Bit Time

NRZ Signal

Sample Point
(single or triple sampling)

 (PROP_SEG + PSEG1 + 2) (PSEG2 + 1)

Transmit Point

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 709

Table 27-22 gives an overview of the CAN compliant segment settings and the related parameter values.

NOTE
Other combinations of Time Segment 1 and Time Segment 2 can be valid.
It is the user’s responsibility to ensure the bit time settings are in compliance
with the CAN standard. For bit time calculations, use an IPT (Information
Processing Time) of 2, which is the value implemented in the FlexCAN
module.

27.5.8.5 Arbitration and Matching Timing

During normal transmission or reception of frames, the arbitration, matching, move-in and move-out
processes are executed during certain time windows inside the CAN frame, as shown in Figure 27-18.

Figure 27-18. Arbitration, Match and Move Time Windows

When doing matching and arbitration, FlexCAN needs to scan the whole Message Buffer memory during
the available time slot. In order to have sufficient time to do that, the following requirements must be
observed:

• A valid CAN bit timing must be programmed, as indicated in Table 27-22

Transmit Point A node in transmit mode transfers a new value to the CAN bus at this point.

Sample Point A node samples the bus at this point. If the three samples per bit option is
selected, then this point marks the position of the third sample.

Table 27-22. Bosch CAN 2.0B standard compliant bit time segment settings

Time Segment 1 Time Segment 2
 Re-synchronization

Jump Width

5–10 2 1–2

4–11 3 1–3

5–12 4 1–4

6–13 5 1–4

7–14 6 1–4

8–15 7 1–4

9–16 8 1–4

Table 27-21. Time Segment Syntax (continued)

Syntax Description

CRC (15) EOF (7) Interm

Start Move

Matching/Arbitration Window (24 bits)
Move

(bit 6)

Window

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

710 Freescale Semiconductor

• The peripheral clock frequency can not be smaller than the oscillator clock frequency, i.e., the PLL
can not be programmed to divide down the oscillator clock

• There must be a minimum ratio between the peripheral clock frequency and the CAN bit rate, as
specified in Table 27-23

A direct consequence of the first requirement is that the minimum number of time quanta per CAN bit must
be 8, so the oscillator clock frequency should be at least 8 times the CAN bit rate. The minimum frequency
ratio specified in Table 27-23 can be achieved by choosing a high enough peripheral clock frequency when
compared to the oscillator clock frequency, or by adjusting one or more of the bit timing parameters
(PRESDIV, PROPSEG, PSEG1, PSEG2). As an example, taking the case of 64 MBs, if the oscillator and
peripheral clock frequencies are equal and the CAN bit timing is programmed to have 8 time quanta per
bit, then the prescaler factor (PRESDIV + 1) should be at least 2. For prescaler factor equal to one and
CAN bit timing with 8 time quanta per bit, the ratio between peripheral and oscillator clock frequencies
should be at least 2.

27.5.9 Modes of operation details

27.5.9.1 Freeze mode

This mode is entered by asserting the HALT bit in the MCR Register or when the MCU is put into Debug
Mode. In both cases it is also necessary that the FRZ bit is asserted in the MCR Register and the module
is not in a low-power mode (Disable mode). When Freeze Mode is requested during transmission or
reception, FlexCAN does the following:

• Waits to be in either Intermission, Passive Error, Bus Off or Idle state

• Waits for all internal activities like arbitration, matching, move-in and move-out to finish

• Ignores the Rx input pin and drives the Tx pin as recessive

• Stops the prescaler, thus halting all CAN protocol activities

• Grants write access to the Error Counters Register, which is read-only in other modes

• Sets the NOT_RDY and FRZ_ACK bits in MCR

After requesting Freeze Mode, the user must wait for the FRZ_ACK bit to be asserted in MCR before
executing any other action, otherwise FlexCAN may operate in an unpredictable way. In Freeze mode, all
memory mapped registers are accessible.

Exiting Freeze Mode is done in one of the following ways:

• CPU negates the FRZ bit in the MCR Register

• The MCU is removed from Debug Mode and/or the HALT bit is negated

Table 27-23. Minimum Ratio Between Peripheral Clock Frequency and CAN Bit Rate

Number of Message Buffers Minimum Ratio

16 8

32 8

64 16

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 711

Once out of Freeze Mode, FlexCAN tries to resynchronize to the CAN bus by waiting for 11 consecutive
recessive bits.

27.5.9.2 Module Disable mode

This low power mode is entered when the MCR[MDIS] bit is asserted. If the module is disabled during
Freeze Mode, it requests to disable the clocks to the CAN Protocol Interface (CPI) and Message Buffer
Management (MBM) sub-modules, sets the LPM_ACK bit and negates the FRZ_ACK bit. If the module
is disabled during transmission or reception, FlexCAN does the following:

• Waits to be in either Idle or Bus Off state, or else waits for the third bit of Intermission and then
checks it to be recessive

• Waits for all internal activities like arbitration, matching, move-in and move-out to finish

• Ignores its Rx input pin and drives its Tx pin as recessive

• Shuts down the clocks to the CPI and MBM sub-modules

• Sets the NOT_RDY and LPM_ACK bits in MCR

The Bus Interface Unit continues to operate, enabling the CPU to access memory mapped registers, except
the Free Running Timer, the Error Counter Register and the Message Buffers, which cannot be accessed
when the module is in Disable Mode. Exiting from this mode is done by negating the MDIS bit, which will
resume the clocks and negate the LPM_ACK bit.

27.5.10 Interrupts

The module can generate up to 69 interrupt sources (64 interrupts due to message buffers and 5 interrupts
due to Ored interrupts from MBs, Bus Off, Error, Tx Warning, Rx Warning). The number of actual sources
depends on the configured number of Message Buffers.

Each one of the message buffers can be an interrupt source, if its corresponding IMASK bit is set. There
is no distinction between Tx and Rx interrupts for a particular buffer, under the assumption that the buffer
is initialized for either transmission or reception. Each of the buffers has assigned a flag bit in the IFLAG
Registers. The bit is set when the corresponding buffer completes a successful transmission/reception and
is cleared when the CPU writes it to ‘1’ (unless another interrupt is generated at the same time).

NOTE
It must be guaranteed that the CPU only clears the bit causing the current
interrupt. For this reason, bit manipulation instructions (BSET) must not be
used to clear interrupt flags. These instructions may cause accidental
clearing of interrupt flags which are set after entering the current interrupt
service routine.

If the Rx FIFO is enabled (bit FEN on MCR set), the interrupts corresponding to MBs 0 to 7 have a
different behavior. Bit 7 of the IFLAG1 becomes the “FIFO Overflow” flag; bit 6 becomes the FIFO
Warning flag, bit 5 becomes the “Frames Available in FIFO flag” and bits 4-0 are unused. See
Section 27.4.4.12, Interrupt Flags 1 Register (IFLAG1) for more information.

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

712 Freescale Semiconductor

A combined interrupt for all MBs is also generated by an Or of all the interrupt sources from MBs. This
interrupt gets generated when any of the MBs generates an interrupt. In this case the CPU must read the
IFLAG Registers to determine which MB caused the interrupt.

The other 4 interrupt sources (Bus Off, Error, Tx Warning, Rx Warning) generate interrupts like the MB
ones, and can be read from the Error and Status Register. The Bus Off, Error, Tx Warning and Rx Warning
interrupt mask bits are located in the Control Register.

27.5.11 Bus interface

The CPU access to FlexCAN registers are subject to the following rules:

• Read and write access to supervisor registers in User Mode results in access error.

• Read and write access to unimplemented or reserved address space also results in access error. Any
access to unimplemented MB or Rx Individual Mask Register locations results in access error. Any
access to the Rx Individual Mask Register space when the BCC bit in MCR is negated results in
access error.

• If MAXMB is programmed with a value smaller than the available number of MBs, then the
unused memory space can be used as general purpose RAM space. Note that the Rx Individual
Mask Registers can only be accessed in Freeze Mode, and this is still true for unused space within
this memory. Note also that reserved words within RAM cannot be used. As an example, suppose
FlexCAN is configured with 64 MBs and MAXMB is programmed with zero. The maximum
number of MBs in this case becomes one. The MB memory starts at 0x0060, but the space from
0x0060 to 0x007F is reserved (for SMB usage), and the space from 0x0080 to 0x008F is used by
the one MB. This leaves us with the available space from 0x0090 to 0x047F. The available memory
in the Mask Registers space would be from 0x0884 to 0x097F.

NOTE
Unused MB space must not be used as general purpose RAM while
FlexCAN is transmitting and receiving CAN frames.

27.6 Initialization/application information
This section provide instructions for initializing the FlexCAN module.

27.6.1 FlexCAN initialization sequence

The FlexCAN module may be reset in three ways:

• MCU level hard reset, which resets all memory mapped registers asynchronously

• MCU level soft reset, which resets some of the memory mapped registers synchronously (refer to
Table 27-2 to see what registers are affected by soft reset)

• SOFT_RST bit in MCR, which has the same effect as the MCU level soft reset

Soft reset is synchronous and has to follow an internal request/acknowledge procedure across clock
domains. Therefore, it may take some time to fully propagate its effects. The SOFT_RST bit remains
asserted while soft reset is pending, so software can poll this bit to know when the reset has completed.

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 713

Also, soft reset can not be applied while clocks are shut down in any of the low power modes. The low
power mode should be exited and the clocks resumed before applying soft reset.

The clock source (CLK_SRC bit) should be selected while the module is in Disable Mode. After the clock
source is selected and the module is enabled (MDIS bit negated), FlexCAN automatically goes to Freeze
Mode. In Freeze Mode, FlexCAN is un-synchronized to the CAN bus, the HALT and FRZ bits in MCR
Register are set, the internal state machines are disabled and the FRZ_ACK and NOT_RDY bits in the
MCR Register are set. The Tx pin is in recessive state and FlexCAN does not initiate any transmission or
reception of CAN frames. Note that the Message Buffers and the Rx Individual Mask Registers are not
affected by reset, so they are not automatically initialized.

For any configuration change/initialization it is required that FlexCAN is put into Freeze Mode (see
Section 27.5.9.1, Freeze mode). The following is a generic initialization sequence applicable to the
FlexCAN module:

• Initialize the Module Configuration Register

— Enable the individual filtering per MB and reception queue features by setting the BCC bit

— Enable the warning interrupts by setting the WRN_EN bit

— If required, disable frame self reception by setting the SRX_DIS bit

— Enable the FIFO by setting the FEN bit

— Enable the local priority feature by setting the LPRIO_EN bit

• Initialize the Control Register

— Determine the bit timing parameters: PROPSEG, PSEG1, PSEG2, RJW

— Determine the bit rate by programming the PRESDIV field

— Determine the internal arbitration mode (LBUF bit)

• Initialize the Message Buffers

— The Control and Status word of all Message Buffers must be initialized

— If FIFO was enabled, the 8-entry ID table must be initialized

— Other entries in each Message Buffer should be initialized as required

• Initialize the Rx Individual Mask Registers

• Set required interrupt mask bits in the IMASK Registers (for all MB interrupts), in CTRL Register
(for Bus Off and Error interrupts)

• Negate the HALT bit in MCR

Starting with the last event, FlexCAN attempts to synchronize to the CAN bus.

27.6.2 FlexCAN Addressing and RAM size configurations

There are three RAM configurations that can be implemented within the FlexCAN module. The possible
configurations are:

• For 16 MBs: 288 bytes for MB memory and 64 bytes for Individual Mask Registers

• For 32 MBs: 544 bytes for MB memory and 128 bytes for Individual Mask Registers

• For 64 MBs: 1056 bytes for MB memory and 256 bytes for Individual Mask Registers

Chapter 27 FlexCAN

MPC5646C Microcontroller Reference Manual, Rev. 5

714 Freescale Semiconductor

In each configuration the user can program the maximum number of MBs that will take part in the
matching and arbitration processes using the MAXMB field in the MCR Register. For 16 MB
configuration, MAXMB can be any number between 0–15. For 32 MB configuration, MAXMB can be
any number between 0–31. For 64 MB configuration, MAXMB can be any number between 0–63.

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 717

Chapter 28
Deserial Serial Peripheral Interface (DSPI)

28.1 Introduction
This chapter describes the deserial serial peripheral interface (DSPI), which provides a synchronous serial
bus for communication between the MCU and an external peripheral device.

MPC5646C implements eight DSPI modules. The “x” appended to signal names signifies the module to
which the signal applies. Thus, CS0_x specifies that the CS0 signal applies to DSPI module 0, 1, and so on.

Figure 28-1 shows a block diagram of the Deserial Serial Peripheral Interface (DSPI) block.

Figure 28-1. DSPI block diagram

SOUT
SIN

Shift Register

SPI

SoC Internal
Parallel Inputs

Priority
Logic

CSI

16
16

CMD Data

DMA and Interrupt Control

Data

TX
 F

IF
O

R
X

 F
IF

O

DSI
3232

32

eDMA INTC Slave Bus Interface Clock/Reset

DSPI_PUSHR DSPI_POPR

SD
R

AS
D

R
D

D
R

Frame data
selection logic

16

16

16

SPI and DSI baud rate,
delay, and transfer

control

SCK_x

CS0_x

CS1:4_x

CS5_x

4

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

718 Freescale Semiconductor

28.1.1 Features

The DSPI supports these SPI features:

• Full-duplex, three-wire synchronous transfers

• Master and slave modes

— Data streaming operation in the slave mode with continuous slave selection

• Buffered transmit operation using the TX FIFO with 4 entries

• Buffered receive operation using the RX FIFO with 4 entries

• TX and RX FIFOs can be disabled individually for low-latency updates to SPI queues

• Visibility into TX and RX FIFOs for ease of debugging

• Programmable transfer attributes on a per-frame basis:

– Parameterized number of transfer attribute registers

— Serial clock with programmable polarity and phase

— Various programmable delays

— Programmable serial frame size of 4 to 32 bits, expandable by software control

— Continuously held chip select capability

— Parity control

• Upto six Peripheral Chip Selects, expandable with external demultiplexer

• Deglitching support for Peripheral Chip Select with external demultiplexer

• DMA support for adding entries to TX FIFO and removing entries from RX FIFO:

— TX FIFO is not full (TFFF)

— RX FIFO is not empty (RFDF)

• 7 Interrupt conditions:

— End of queue reached (EOQF)

— TX FIFO is not full (TFFF)

— Transfer of current frame complete (TCF)

— Attempt to transmit with an empty Transmit FIFO (TFUF)

— RX FIFO is not empty (RFDF)

— Frame received while Receive FIFO is full (RFOF)

— SPI Mode Parity Error (SPEF)

• Modified SPI transfer formats for communication with slower peripheral devices

• Power-saving architectural features

— Support for stop mode

The DSPI also supports pin reduction through serialization and deserialization if enabled for the module.

• 2 Interrupt conditions:

— Deserialized data matches pre-programmed pattern (DDIF)

— DSI Mode Parity Error (DPEF)

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 719

• Two sources of serialized data:

— DSPI memory-mapped register

— Parallel Input signals

— Programmable selection of source data on bit basis

• Transfer initiation conditions:

— Continuous

— Edge sensitive hardware trigger

— Change in data

• Support for serial chaining of 2 DSPI modules inside the SoC

— Support DSPI serial chaining between DSPI 0 and DSPI 1

— Support DSPI serial chaining between DSPI 2 and DSPI 3

• Pin serialization with interleaved SPI frames for control and diagnostics

• Support for the downstream Micro Second Channel with Timed Serial Bus (TSB) configuration

28.1.2 DSPI configurations

The DSPI module can operate in three configurations: SPI, DSI and CSI.

28.1.2.1 SPI configuration

The SPI Configuration allows the DSPI to send and receive serial data. This configuration allows the DSPI
to operate as a basic SPI block with internal FIFOs supporting external queues operation. Transmit data
and received data reside in separate FIFOs. The host CPU or a DMA controller read the received data from
the receive FIFO and write transmit data to the transmit FIFO.

For queued operations the SPI queues can reside in system RAM, external to the DSPI. Data transfers
between the queues and the DSPI FIFOs are accomplished by a DMA controller or host CPU. Figure 28-2
shows a system example with DMA, DSPI and external queues in system RAM.

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

720 Freescale Semiconductor

Figure 28-2. DSPI with Queues and DMA

28.1.2.2 DSI configuration

In the DSI Configuration, the DSPI serializes up to 32 Parallel Input signals or register bits. The data is
transferred using a SPI-like protocol.

TSB mode, detailed on Section 28.4.9, “Timed Serial Bus (TSB)”, provides the Micro Second downstream
Channel support (MSC), serializing from 4 to 32 Parallel Input signals or register bits.

28.1.2.3 CSI configuration

The CSI configuration is a combination of the SPI and DSI configurations. In this configuration the DSPI
interleaves DSI data frames with SPI data frames. Interleaving is done on the frame boundaries. In this
configuration, transmission of SPI data has higher priority than DSI data. TSB mode is also operational in
CSI configuration.

28.1.3 Modes of operation

The DSPI supports the following modes of operation that can be divided into two categories;

• Module-specific modes:

— Master mode

— Slave mode

— Module disable mode

• SoC-specific modes:

— External stop mode

— Debug mode

System RAM

DSPI

DMA Controller

TX Queue

RX FIFOTX FIFO

Shift Register

Data
Data

Addr/Ctrl

RX Queue

Data Data

Addr/Ctrl

Done

Req

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 721

The DSPI enters module-specific modes when the host writes a DSPI register. The SoC-specific modes
are controlled by signals, external to the DSPI. The SoC-specific modes are modes that the entire SoC may
enter in parallel to the DSPI block-specific modes.

28.1.3.1 Master Mode

Master mode allows the DSPI to initiate and control serial communication. In this mode, the SCK signal
and the CSn signals are controlled by the DSPI and configured as outputs.

28.1.3.2 Slave Mode

The slave mode allows the DSPI to communicate with SPI/DSI bus masters. In this mode, the DSPI
responds to externally controlled serial transfers. The SCK signal and the CS0_x signal are configured as
inputs and driven by a SPI bus master.

28.1.3.3 Module Disable Mode

The module disable mode can be used for SoC power management. The clock to the non-memory mapped
logic in the DSPI can be stopped while in the module disable mode.

28.1.3.4 External Stop Mode

The external stop mode is used for SoC power management. The DSPI supports the Peripheral Bus stop
mode mechanism. When a request is made to enter external stop mode, the DSPI block acknowledges the
request and completes the transfer in progress. When the DSPI reaches the frame boundary, it signals that
the system clock to the DSPI module may be shut off.

28.1.3.5 Debug Mode

The debug mode is used for system development and debugging. The DSPI_MCR[FRZ] bit controls DSPI
behavior in the debug mode. If the bit is set, the DSPI stops all serial transfers, when the SoC in the debug
mode. If the bit is cleared the SoC debug mode has no effect on the DSPI.

28.2 External signal description

28.2.1 Overview

Table 28-1 lists off-chip DSPI signals.

Table 28-1. Signal properties

Name I/O Type
Function

Master Mode Slave Mode

CS0_x Output / Input Peripheral Chip Select 0 Slave Select

CS1:3_x Output Peripheral Chip Select 1 - 3 Unused

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

722 Freescale Semiconductor

28.2.2 Detailed signal description

28.2.2.1 Peripheral Chip Select / Slave Select (CS0_x)

In master mode, the CS0_x signal is a peripheral chip select output that selects the slave device to which
the current transmission is intended.

In slave mode, the CS0_x signal is a slave select input signal that allows an SPI master to select the DSPI
as the target for transmission. CS0_x must be configured as input and pulled high. If the internal pullup is
being used then the appropriate bits in the relevant SIU_PCR must be set (SIU_PCR [WPE = 1],
[WPS = 1]).

Set the IBE and OBE bits in the SIU_PCR for all CS0_x pins when the DSPI chip select or slave select
primary function is selected for that pin. When the pin is used for DSPI master mode as a chip select output,
set the OBE bit. When the pin is used in DSPI slave mode as a slave select input, set the IBE bit.

28.2.2.2 Peripheral Chip Selects 1–3 (CS1:3_x)

CS1:3_x are peripheral chip select output signals in master mode. In slave mode these signals are not used.

28.2.2.3 Peripheral Chip Select 4 (CS4_x)

CS4_x is a peripheral chip select output signal in master mode.

CS4_x Output Peripheral Chip Select 4 Master Trigger

CS5_x Output Peripheral Chip Select 5 /
Peripheral Chip Select Strobe

Unused

SIN_x Input Serial Data In Serial Data In

SOUT_x Output Serial Data Out Serial Data Out

SCK_x Output / Input Serial Clock (output) Serial Clock (input)

Table 28-2. DSPI configuration

Feature DSPI 0 DSPI 1 DSPI 2 DSPI 3 DSPI 4 DSPI 5 DSPI 6 DSPI 7

No of CS supported 6 5 4 2 2 3 4 4

TX Fifo depth 4 4 4 4 4 4 4 4

RX Fifo depth 4 4 4 4 4 4 4 4

CTAR value 6 6 6 6 6 6 6 6

Table 28-1. Signal properties

Name I/O Type
Function

Master Mode Slave Mode

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 723

28.2.2.4 Peripheral Chip Select 5 / Peripheral Chip Select Strobe
(CS5_x)

CS5_x is a peripheral chip select output signal. When the DSPI is in master mode and PCSSE bit in the
DSPIx_MCR is cleared, the CS5_x signal is used to select the slave device that receives the current
transfer.

CS5_x is a strobe signal used by external logic for deglitching of the CS signals. When the DSPI is in
master mode and the PCSSE bit in the DSPIx_MCR is set, the CS5_x signal indicates the timing to decode
CS0:4_x signals, which prevents glitches from occurring.

CS5_x is not used in slave mode.

28.2.2.5 Serial Input (SIN)

SIN is a serial data input signal.

28.2.2.6 Serial Output (SOUT)

SOUT is a serial data output signal.

28.2.2.7 Serial Clock (SCK)

SCK is a serial communication clock signal. In master mode, the DSPI generates the SCK. In slave mode,
SCK is an input from an external bus master.

28.3 Memory map and register definition

28.3.1 Memory map

Register accesses to memory addresses that are reserved or undefined result in a transfer error. Write
access to the DSPI_POPR register also result in a transfer error.

Table 28-3 shows the DSPI memory map.

Table 28-3. DSPI memory map

Base addresses:
0xFFF9_0000 (DSPI_0)
0xFFF9_4000 (DSPI_1)
0xFFF9_8000 (DSPI_2)
0xFFF9_C000 (DSPI_3)
0xFFFA_0000 (DSPI_4)
0xFFFA_4000 (DSPI_5)
0xFFFA_8000 (DSPI_6)
0xFFFA_C000 (DSPI_7)

Address offset Register Location

0x0000 DSPI module configuration register (DSPI_MCR) on page 725

0x0004 Reserved

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

724 Freescale Semiconductor

0x0008 DSPI transfer count register (DSPI_TCR) on page 728

0x000C DSPI clock and transfer attributes register 0 (DSPI_CTAR0) on page 729

0x0010 DSPI clock and transfer attributes register 1 (DSPI_CTAR1) on page 729

0x0014 DSPI clock and transfer attributes register 2 (DSPI_CTAR2) on page 729

0x0018 DSPI clock and transfer attributes register 3 (DSPI_CTAR3) on page 729

0x001C DSPI clock and transfer attributes register 4 (DSPI_CTAR4) on page 729

0x0020 DSPI clock and transfer attributes register 5 (DSPI_CTAR5) on page 729

0x0024 – 0x0028 Reserved

0x002C DSPI status register (DSPI_SR) on page 735

0x0030 DSPI DMA / Interrupt Request Select and Enable Register (DSPIx_RSER) on page 736

0x0034 DSPI push TX FIFO register (DSPI_PUSHR) on page 738

0x0038 DSPI pop RX FIFO register (DSPI_POPR) on page 740

0x003C DSPI transmit FIFO register 0 (DSPI_TXFR0) on page 741

0x0040 DSPI transmit FIFO register 1 (DSPI_TXFR1) on page 741

0x0044 DSPI transmit FIFO register 2 (DSPI_TXFR2) on page 741

0x0048 DSPI transmit FIFO register 3 (DSPI_TXFR3) on page 741

0x004C DSPI transmit FIFO register 4 (DSPI_TXFR4) on page 741

0x0050 DSPI transmit FIFO register 5 (DSPI_TXFR5) on page 741

0x0054 – 0x0078 Reserved

0x007C DSPI receive FIFO register 0 (DSPI_RXFR0) on page 742

0x0080 DSPI receive FIFO register 1 (DSPI_RXFR1) on page 742

0x0084 DSPI receive FIFO register 2 (DSPI_RXFR2) on page 742

0x0088 DSPI receive FIFO register 3 (DSPI_RXFR3) on page 742

0x008C – 0x00B8 Reserved

0x00BC DSPI DSI Configuration Register (DSPI_DSICR) on page 742

0x00C0 DSPI DSI Serialization Data Register (DSPI_SDR) on page 744

0x00C4 DSPI DSI Alternate Serialization Data Register (DSPI_ASDR) on page 745

Table 28-3. DSPI memory map

Base addresses:
0xFFF9_0000 (DSPI_0)
0xFFF9_4000 (DSPI_1)
0xFFF9_8000 (DSPI_2)
0xFFF9_C000 (DSPI_3)
0xFFFA_0000 (DSPI_4)
0xFFFA_4000 (DSPI_5)
0xFFFA_8000 (DSPI_6)
0xFFFA_C000 (DSPI_7)

Address offset Register Location

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 725

28.3.2 Register descriptions

28.3.2.1 DSPI Module Configuration Register (DSPI_MCR)

The DSPI_MCR contains bits, which configure various attributes associated with DSPI operation. The
HALT and MDIS bits can be changed at any time, but only take effect on the next frame boundary. Only
the HALT and MDIS bits in the DSPI_MCR are allowed to be changed, while the DSPI is in the Running
state.

0x00C8 DSPI DSI Transmit Comparison Register (DSPI_COMPR) on page 746

0x00CC DSPI DSI Deserialization Data Register (DSPI_DDR) on page 746

0x00D0 DSPI DSI TSB Configuration Register 1 (DSPI_DSICR1) on page 746

0x00D4 DSPI DSI Serialization Source Select Register (DSPI_SSR) on page 746

0x00D8 – 0x00E4 Reserved

0x00E8 DSPI DSI Deserialized Data Interrupt Mask Register (DSPI_DIMR) on page 749

0x00EC DSPI DSI Deserialized Data Polarity Interrupt Register (DSPI_DPIR) on page 749

Table 28-3. DSPI memory map

Base addresses:
0xFFF9_0000 (DSPI_0)
0xFFF9_4000 (DSPI_1)
0xFFF9_8000 (DSPI_2)
0xFFF9_C000 (DSPI_3)
0xFFFA_0000 (DSPI_4)
0xFFFA_4000 (DSPI_5)
0xFFFA_8000 (DSPI_6)
0xFFFA_C000 (DSPI_7)

Address offset Register Location

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

726 Freescale Semiconductor

Offset: 0x0000 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

MSTR

C
O

N
T

_S
C

K
E

DCONF FRZ

M
T

F
E

P
C

S
S

E

R
O

O
E

0 0

P
C

S
IS

5

P
C

S
IS

4

P
C

S
IS

3

P
C

S
IS

2

P
C

S
IS

1

P
C

S
IS

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0

M
D

IS

D
IS

_T
X

F

D
IS

_R
X

F

0 0

SMPL_PT

0 0 0 0 0 0

P
E

S

H
A

LTW

C
LR

_T
X

F

C
LR

_R
X

F

Reset 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 28-3. DSPI Module Configuration Register (DSPI_MCR)

Table 28-4. DSPI_MCR Field Descriptions

Field Description

MSTR Master/Slave Mode Select. The MSTR bit configures the DSPI for either master mode or slave
mode.
0 DSPI is in slave mode
1 DSPI is in master mode

CONT_SCKE
1

Continuous SCK Enable. The CONT_SCKE bit enables the Serial Communication Clock (SCK) to
run continuously. See Section 28.4.7, “Continuous Serial Communications Clock,” for details.
0 Continuous SCK disabled
1 Continuous SCK enabled

DCONF DSPI Configuration. The DCONF field selects between the three different configurations of the
DSPI:

00 SPI
01 DSI
10 CSI
11 Reserved

FRZ Freeze. The FRZ bit enables the DSPI transfers to be stopped on the next frame boundary when the
SoC enters Debug mode.
0 Do not stop serial transfers
1 Stop serial transfers

MTFE Modified Timing Format Enable. The MTFE bit enables a modified transfer format to be used. See
Section 28.4.6.4, “Modified SPI/DSI Transfer Format (MTFE = 1, CPHA = 1),” for more information.
0 Modified SPI transfer format disabled
1 Modified SPI transfer format enabled

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 727

PCSSE Peripheral chip select strobe enable
Enables the CS5_x to operate as a CS strobe output signal.
Refer to Section 28.2.2.4, “Peripheral Chip Select 5 / Peripheral Chip Select Strobe (CS5_x), for
more information.
0 CS5_x is used as the Peripheral chip select 5 signal
1 CS5_x as an active-low CS strobe signal

ROOE Receive FIFO Overflow Overwrite Enable. The ROOE bit enables in RX FIFO overflow condition to
ignore the incoming serial data or to overwrite existing data. If the RX FIFO is full and new data is
received, the data from the transfer, generated the overflow, is ignored or shifted in to the shift
register. See Section 28.4.11.6, “Receive FIFO Overflow Interrupt Request,” for more information.
0 Incoming data is ignored
1 Incoming data is shifted in to the shift register

PCSISx Peripheral chip select inactive state
Determines the inactive state of the CS0_x signal. CS0_x must be configured as inactive high for
slave mode operation.
0 The inactive state of CS0_x is low
1 The inactive state of CS0_x is high

MDIS Module Disable. The MDIS bit allows the clock to be stopped to the non-memory mapped logic in
the DSPI effectively putting the DSPI in a software controlled power-saving state. See
Section 28.4.12, “Power Saving Features,” for more information.
0 Enable DSPI clocks.
1 Allow external logic to disable DSPI clocks.

DIS_TXF Disable Transmit FIFO. When the TX FIFO is disabled, the transmit part of the DSPI operates as a
simplified double-buffered SPI. See Section 28.4.2.3, “FIFO Disable Operation,” for details.
0 TX FIFO is enabled
1 TX FIFO is disabled

DIS_RXF Disable Receive FIFO. When the RX FIFO is disabled, the receive part of the DSPI operates as a
simplified double-buffered SPI. See Section 28.4.2.3, “FIFO Disable Operation,” for details.
0 RX FIFO is enabled
1 RX FIFO is disabled

CLR_TXF Clear TX FIFO. CLR_TXF is used to flush the TX FIFO. Writing a ‘1’ to CLR_TXF clears the TX FIFO
Counter. The CLR_TXF bit is always read as zero.
0 Do not clear the TX FIFO Counter
1 Clear the TX FIFO Counter

CLR_RXF Clear RX FIFO. CLR_RXF is used to flush the RX FIFO. Writing a ‘1’ to CLR_RXF clears the RX
Counter. The CLR_RXF bit is always read as zero.
0 Do not clear the RX FIFO Counter
1 Clear the RX FIFO Counter

SMPL_PT Sample Point. SMPL_PT field controls when the DSPI master samples SIN in Modified Transfer
Format. Figure 28-32 shows where the master can sample the SIN pin.
00 DSPI samples SIN at driving SCK edge.
01 DSPI samples SIN one system clock after driving SCK edge
10 DSPI samples SIN two system clocks after driving SCK edge
11 Reserved

Table 28-4. DSPI_MCR Field Descriptions (continued)

Field Description

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

728 Freescale Semiconductor

28.3.2.2 DSPI Transfer Count Register (DSPI_TCR)

The DSPI_TCR contains a counter, that indicates the number of SPI transfers made. The transfer counter
is intended to assist in queue management. Do not write the DSPI_TCR, when the DSPI is in the Running
state.

PES Parity Error Stop. PES bit controls SPI operation when a parity error detected in received SPI frame.
0 SPI frames transmission continue.
1 SPI frames transmission stop.

HALT Halt. The HALT bit starts and stops DSPI transfers. See Section 28.4.1, “Start and Stop of DSPI
Transfers,” for details on the operation of this bit.
0 Start transfers
1 Stop transfers

1 If the FIFO is enabled with continuous SCK mode, before setting the CONT_SCKE bit, the TX-FIFO should be
cleared and only DSPI_CTAR0 register should be used for transfer attributes. Otherwise a change in SCK
frequency occurs.

Offset: 0x8 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
TCNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-4. DSPI Transfer Count Register (DSPI_TCR)

Table 28-5. DSPI_TCR Field Descriptions

Field Description

TCNT SPI Transfer Counter. The TCNT field counts the number of SPI transfers the DSPI makes. The
TCNT field increments every time the last bit of a SPI frame is transmitted. A value written to TCNT
presets the counter to that value. TCNT is reset to zero at the beginning of the frame when the
CTCNT field is set in the executing SPI command. The Transfer Counter ‘wraps around’ i.e.
incrementing the counter past 65535 resets the counter to zero.

Table 28-4. DSPI_MCR Field Descriptions (continued)

Field Description

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 729

28.3.2.3 DSPI Clock and Transfer Attributes Registers 0–5
(DSPI_CTAR0–DSPI_CTAR5)

The DSPI_CTAR registers are used to define different transfer attributes. Do not write to the DSPI_CTAR
registers, while the DSPI is in the Running state.

In master mode, the DSPI_CTAR0 - DSPI_CTAR5 registers define combinations of transfer attributes
such as frame size, clock phase and polarity, data bit ordering, baud rate, and various delays. In slave mode,
a subset of the bitfields in the DSPI_CTAR0 and DSPI_CTAR1 registers are used to set the slave transfer
attributes.

When the DSPI is configured as a SPI master, the CTAS field in the command portion of the TX FIFO
entry selects which of the DSPI_CTAR register is used. When the DSPI is configured as a SPI bus slave,
the DSPI_CTAR0 register is used.

When the DSPI is configured as a DSI master, the DSICTAS field in the DSPI DSI Configuration Register
(DSPI_DSICR), selects which of the DSPI_CTAR register is used. When the DSPI is configured as a DSI
bus slave, the DSPI_CTAR1 register is used.

In CSI Configuration, the transfer attributes are selected based on whether the current frame is SPI data or
DSI data. SPI transfers in CSI Configuration follow the protocol described for SPI Configuration, and DSI
transfers in CSI Configuration follow the protocol described for DSI Configuration. CSI Configuration is
only valid in conjunction with master mode. See Section 28.4.4, “Combined Serial Interface (CSI)
Configuration,” for more details.

TSB mode sets some limitations on transfer attributes:

• Clock phase is forced to be CPHA = 1 and the CPHA bit setting has no effect.

• PCS lines are driven at the driving edge of the SCK clock together with SOUT, so PCS assertion
and negation delays control is unavailable and PCSSCK, PASC, CSSCK and ASC fields have no
effect.

• Delay after transfer can be set from 1 to 64 serial clocks with help of PDT and DT fields.

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

730 Freescale Semiconductor

Offset: 0x000C (DSPIx_CTAR0)
Offset: 0x0010 (DSPIx_CTAR1)
Offset: 0x0014 (DSPIx_CTAR2)
Offset: 0x0018 (DSPIx_CTAR3)
Offset: 0x001C (DSPIx_CTAR4)
Offset: 0x0020 (DSPIx_CTAR5)

Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DBR FMSZ CPOL CPHA LSBFE PCSSCK PASC PDT PBR

W

Reset 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CSSCK ASC DT BR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-5. DSPI Clock and Transfer Attributes Register 0–5 (DSPI_CTAR0–DSPI_CTAR5) in the master
mode

Offset: 0x000C (DSPIx_CTAR0)
Offset: 0x0010 (DSPIx_CTAR1)

Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
FMSZ CPOL CPHA PE PP Not used

W

Reset 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
Not used

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-6. DSPI Clock and Transfer Attributes Register 0, 1 (DSPI_CTAR0, DSPI_CTAR1) in the slave mode

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 731

Table 28-6. DSPI_CTARn Field Descriptions in master mode

Field Descriptions

DBR Double Baud Rate. The DBR bit doubles the effective baud rate of the Serial Communications Clock
(SCK). This field is only used in master mode. It effectively halves the Baud Rate division ratio
supporting faster frequencies and odd division ratios for the Serial Communications Clock (SCK).
When the DBR bit is set, the duty cycle of the Serial Communications Clock (SCK) depends on the
value in the Baud Rate Prescaler and the Clock Phase bit as listed in Table 28-7. See the BR field
description for details on how to compute the baud rate.
If the overall baud rate is divide by two or divide by three of the system clock then neither the
Continuous SCK Enable or the Modified Timing Format Enable bits should be set.
0 The baud rate is computed normally with a 50/50 duty cycle
1 The baud rate is doubled with the duty cycle depending on the Baud Rate Prescaler

FMSZ Frame Size. The number of bits transferred per frame is equal FMSZ field value plus 1. Minimum valid
FMSZ field value is 3.
When operating in TSB mode, detailed in Section 28.4.9, “Timed Serial Bus (TSB),” the FMSZ field
value plus 1 is equal the data frame bit number, where control of the PCS assertion switches from
the DSPI_DSICR to the DSPI_DSICR1 register.

CPOL Clock Polarity. The CPOL bit selects the inactive state of the Serial Communications Clock (SCK).
This bit is used in both master and slave mode. For successful communication between serial
devices, the devices must have identical clock polarities. When the Continuous Selection Format is
selected, switching between clock polarities without stopping the DSPI can cause errors in the
transfer due to the peripheral device interpreting the switch of clock polarity as a valid clock edge.
0 The inactive state value of SCK is low
1 The inactive state value of SCK is high

CPHA Clock Phase. The CPHA bit selects which edge of SCK causes data to change and which edge
causes data to be captured. This bit is used in both master and slave mode. For successful
communication between serial devices, the devices must have identical clock phase settings. In
Continuous SCK mode or TSB mode the bit value is ignored and the transfers are done as CPHA
bit is set to 1.

0 Data is captured on the leading edge of SCK and changed on the following edge
1 Data is changed on the leading edge of SCK and captured on the following edge

LSBFE LSB First. The LSBFE bit selects if the LSB or MSB of the frame is transferred first.
0 Data is transferred MSB first
1 Data is transferred LSB first

PCSSCK PCS to SCK Delay Prescaler. The PCSSCK field selects the prescaler value for the delay between
assertion of PCS and the first edge of the SCK. See the CSSCK field description how to compute the
PCS to SCK Delay. In the TSB mode the PCSSCK field has no effect.
00 PCS to SCK Prescaler value is 1
01 PCS to SCK Prescaler value is 3
10 PCS to SCK Prescaler value is 5
11 PCS to SCK Prescaler value is 7

PASC After SCK Delay Prescaler. The PASC field selects the prescaler value for the delay between the last
edge of SCK and the negation of PCS. See the ASC field description how to compute the After SCK
Delay. In the TSB mode the PASC field has no effect.
00 After SCK Delay Prescaler value is 1
01 After SCK Delay Prescaler value is 3
10 After SCK Delay Prescaler value is 5
11 After SCK Delay Prescaler value is 7

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

732 Freescale Semiconductor

PDT Delay after Transfer Prescaler. The PDT field selects the prescaler value for the delay between the
negation of the CSx signal at the end of a frame and the assertion of PCS at the beginning of the next
frame. The PDT field is only used in master mode. In the TSB mode the PDT field defines two MSB
bits of the Delay after Transfer. See the DT field description for details on how to compute the Delay
after Transfer.
00 Delay after Transfer Prescaler value is 1
01 Delay after Transfer Prescaler value is 3
10 Delay after Transfer Prescaler value is 5
11 Delay after Transfer Prescaler value is 7

PBR Baud Rate Prescaler. The PBR field selects the prescaler value for the baud rate. This field is only
used in master mode. The Baud Rate is the frequency of the Serial Communications Clock (SCK).
The system clock is divided by the prescaler value before the baud rate selection takes place. See
the BR field description for details on how to compute the baud rate.
00 Baud Rate Prescaler value is 2
01 Baud Rate Prescaler value is 3
10 Baud Rate Prescaler value is 5
11 Baud Rate Prescaler value is 7

CSSCK CS to SCK Delay Scaler. The CSSCK field selects the scaler value for the CS to SCK delay. This field
is only used in master mode. The CS to SCK Delay is the delay between the assertion of PCS and
the first edge of the SCK. Table 28-8 list the scaler values.The CS to SCK Delay is a multiple of the
system clock period and it is computed according to the following equation:

Eqn. 28-1

See Section 28.4.5.2, “CS to SCK delay (tCSC),” for more details. In the TSB mode the field has no
effect.

ASC After SCK Delay Scaler. The ASC field selects the scaler value for the After SCK Delay. This field is
only used in master mode. The After SCK Delay is the delay between the last edge of SCK and the
negation of PCS. Table 28-8 list the scaler values.The After SCK Delay is a multiple of the system
clock period, and it is computed according to the following equation:

Eqn. 28-2

See Section 28.4.5.3, “After SCK Delay (tASC),” for more details. In the TSB mode the field has no
effect.

Table 28-6. DSPI_CTARn Field Descriptions in master mode

Field Descriptions

tCSC
1

fSYS
----------- PCSSCK CSSCK=

tASC
1

fSYS
----------- PASC ASC=

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 733

DT Delay after Transfer Scaler. The DT field selects the Delay after Transfer Scaler. This field is only used
in master mode. The Delay after Transfer is the time between the negation of the CSx signal at the
end of a frame and the assertion of PCS at the beginning of the next frame. Table 28-8 lists the scaler
values.
In the Continuous Serial Communications Clock operation the DT value is fixed to one SCK clock
period, The Delay after Transfer is a multiple of the system clock period and it is computed according
to the following equation:

Eqn. 28-3

In the TSB mode the Delay after Transfer is equal to a number formed by concatenation of PDT and
DT fields plus 1 of the SCK clock periods.
See Section 28.4.5.4, “Delay after Transfer (tDT),” for more details.

BR Baud Rate Scaler. The BR field selects the scaler value for the baud rate. This field is only used in
master mode. The prescaled system clock is divided by the Baud Rate Scaler to generate the
frequency of the SCK. Table 28-9 lists the Baud Rate Scaler values.The baud rate is computed
according to the following equation:

Eqn. 28-4

See Section 28.4.5.1, “Baud Rate Generator,” for more details.

Table 28-7. DSPI SCK Duty Cycle

DBR CPHA PBR SCK Duty Cycle

0 any any 50/50

1 0 00 50/50

1 0 01 33/66

1 0 10 40/60

1 0 11 43/57

1 1 00 50/50

1 1 01 66/33

1 1 10 60/40

1 1 11 57/43

Table 28-8. Delay Scaler Encoding

Field value Scaler Value Field value Scaler Value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

Table 28-6. DSPI_CTARn Field Descriptions in master mode

Field Descriptions

tDT
1

fSYS
----------- PDT DT=

SCK baud rate
fSYS

PBR
------------ 1 DBR+

BR
----------------------=

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

734 Freescale Semiconductor

0100 32 1100 8192

0101 64 1101 16384

0110 128 1110 32768

0111 256 1111 65536

Table 28-9. DSPI Baud Rate Scaler

BR Baud Rate Scaler Value BR Baud Rate Scaler Value

0000 2 1000 256

0001 4 1001 512

0010 6 1010 1024

0011 8 1011 2048

0100 16 1100 4096

0101 32 1101 8192

0110 64 1110 16384

0111 128 1111 32768

Table 28-10. DSPI_CTAR0, DSPI_CTAR1 Field Descriptions in slave mode

Field Descriptions

FMSZ Frame Size. The number of bits transferred per frame is equal FMSZ field value plus 1. Minimum valid
FMSZ field value is 3.

CPOL Clock Polarity. The CPOL bit selects the inactive state of the Serial Communications Clock (SCK).
0 The inactive state value of SCK is low
1 The inactive state value of SCK is high

CPHA Clock Phase. The CPHA bit selects which edge of SCK causes data to change and which edge
causes data to be captured.

0 Data is captured on the leading edge of SCK and changed on the following edge
1 Data is changed on the leading edge of SCK and captured on the following edge

PE Parity Enable. PE bit enables parity bit transmission and reception for the frame
0 No parity bit included/checked.
1 Parity bit is transmitted instead of last data bit in frame, parity checked for received frame.

PP Parity Polarity. PP bit controls polarity of the parity bit transmitted and checked
0 Even Parity: number of “1” bits in the transmitted frame is even. The DSPI_SR[SPEF] bit is set if

in the received frame number of “1” bits is odd.
1 Odd Parity: number of “1” bits in the transmitted frame is odd. The DSPI_SR[SPEF] bit is set if in

the received frame number of “1” bits is even.

Table 28-8. Delay Scaler Encoding (continued) (continued)

Field value Scaler Value Field value Scaler Value

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 735

28.3.2.4 DSPI Status Register (DSPI_SR)

The DSPI_SR contains status and flag bits. The bits reflect the status of the DSPI and indicate the
occurrence of events that can generate interrupt or DMA requests. Software can clear flag bits in the
DSPI_SR by writing a ‘1’ to it. Writing a ‘0’ to a flag bit has no effect. This register may not be writable
in module disable mode due to the use of power saving mechanisms.

Offset: 0x002C Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R TCF TXRXS 0 EOQF TFUF 0 TFFF 0 0 DPEF SPEF DDIF RFOF 0 RFDF 0

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TXCTR TXNXTPTR RXCTR POPNXTPTR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-7. DSPI Status Register (DSPI_SR)

Table 28-11. DSPI_SR Field Descriptions

Field Description

TCF Transfer Complete Flag. The TCF bit indicates that all bits in a frame have been shifted out. The TCF
bit remains set until cleared by writing 1 to it.
0 Transfer not complete
1 Transfer complete

TXRXS TX & RX Status. The TXRXS bit reflects the run status of the DSPI. See Section 28.4.1, “Start and
Stop of DSPI Transfers,” what causes this bit to be set or cleared.
0 TX and RX operations are disabled (DSPI is in STOPPED state)
1 TX and RX operations are enabled (DSPI is in RUNNING state)

EOQF End of Queue Flag. The EOQF bit indicates that the last entry in a queue has been transmitted when
the DSPI in the master mode. The EOQF bit is set when TX FIFO entry has the EOQ bit set in the
command halfword and the end of the transfer is reached. The EOQF bit remains set until cleared by
writing 1 to it. When the EOQF bit is set, the TXRXS bit is automatically cleared.
0 EOQ is not set in the executed command
1 EOQ bit is set in the executed SPI command

TFUF Transmit FIFO Underflow Flag. The TFUF bit indicates that an underflow condition in the TX FIFO
has occurred. The transmit underflow condition is detected only for DSPI blocks operating in slave
mode and SPI configuration. The TFUF bit is set when the TX FIFO of a DSPI operating in SPI slave
mode is empty, and a transfer is initiated by an external SPI master. The TFUF bit remains set until
cleared by writing 1 to it.
0 TX FIFO underflow has not occurred
1 TX FIFO underflow has occurred

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

736 Freescale Semiconductor

28.3.2.5 DSPI DMA/Interrupt Request Select and Enable Register (DSPI_RSER)

The DSPI_RSER register controls DMA and interrupt requests. Do not write to the DSPI_RSER while the
DSPI is in the Running state.

TFFF Transmit FIFO Fill Flag. The TFFF bit provides a method for the DSPI to request more entries to be
added to the TX FIFO. The TFFF bit is set while the TX FIFO is not full. The TFFF bit can be cleared
by writing 1 to it or by acknowledgement from the DMA controller to the TX FIFO full request.
0 TX FIFO is full
1 TX FIFO is not full

DPEF DSI Parity Error Flag. The DPEF flag indicates that a DSI frame with parity error had been received.
The bit remains set until cleared by writing 1 to it.
0 Parity Error has not occurred
1 Parity Error has occurred

SPEF SPI Parity Error Flag. The SPEF flag indicates that a SPI frame with parity error had been received.
The bit remains set until cleared by writing 1 to it.
0 Parity Error has not occurred
1 Parity Error has occurred

DDIF DSI data received with active bits. The DDIF flag indicates that DSI frame had been received with
bits, selected by DSPI_DIMR with active polarity, defined by DSPI_DPIR register. The bit remains set
until cleared by writing 1 to it.
0 No DSI data with active bits was received
1 DSI data with active bits was received

RFOF Receive FIFO Overflow Flag. The RFOF bit indicates that an overflow condition in the RX FIFO has
occurred. The bit is set when the RX FIFO and shift register are full and a transfer is initiated. The bit
remains set until cleared by writing 1 to it.
0 RX FIFO overflow has not occurred
1 RX FIFO overflow has occurred

RFDF Receive FIFO Drain Flag. The RFDF bit provides a method for the DSPI to request that entries be
removed from the RX FIFO. The bit is set while the RX FIFO is not empty. The RFDF bit can be
cleared by writing 1 to it or by acknowledgement from the DMA controller when the RX FIFO is empty.
0 RX FIFO is empty
1 RX FIFO is not empty

TXCTR TX FIFO Counter. The TXCTR field indicates the number of valid entries in the TX FIFO. The TXCTR
is incremented every time the DSPI _PUSHR is written. The TXCTR is decremented every time a
SPI command is executed and the SPI data is transferred to the shift register.

TXNXTPTR Transmit Next Pointer. The TXNXTPTR field indicates which TX FIFO Entry is transmitted during the
next transfer. The TXNXTPTR field is updated every time SPI data is transferred from the TX FIFO
to the shift register. See Section 28.4.11.4, “Transmit FIFO Underflow Interrupt Request,” for more
details.

RXCTR RX FIFO Counter. The RXCTR field indicates the number of entries in the RX FIFO. The RXCTR is
decremented every time the DSPI _POPR is read. The RXCTR is incremented every time data is
transferred from the shift register to the RX FIFO.

POPNXTPT
R

Pop Next Pointer. The POPNXTPTR field contains a pointer to the RX FIFO entry that will be returned
when the DSPI_POPR is read. The POPNXTPTR is updated when the DSPI_POPR is read. See
Section 28.4.2.5, “Receive First In First Out (RX FIFO) Buffering Mechanism,” for more details.

Table 28-11. DSPI_SR Field Descriptions (continued)

Field Description

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 737

Offset: 0x0030 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
T

C
F

R
E 0 0

E
O

Q
F

R
E

T
F

U
F

R
E 0

T
F

F
F

R
E

T
F

F
F

D
IR

S 0

D
P

E
F

R
E

S
P

E
F

R
E

D
D

IF
R

E

R
F

O
F

R
E 0

R
F

D
F

R
E

R
F

D
F

D
IR

S

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-8. DSPI DMA/Interrupt Request Select and Enable Register (DSPI_RSER)

Table 28-12. DSPI_RSER Field Descriptions

Field Description

TCFRE Transmission Complete Request Enable. The TCFRE bit enables TCF flag in the DSPI_SR to
generate an interrupt request.
0 TCF interrupt requests are disabled
1 TCF interrupt requests are enabled

EOQFRE DSPI Finished Request Enable. The EOQFRE bit enables the EOQF flag in the DSPI_SR to generate
an interrupt request.
0 EOQF interrupt requests are disabled
1 EOQF interrupt requests are enabled

TFUFRE Transmit FIFO Underflow Request Enable. The TFUFRE bit enables the TFUF flag in the DSPI_SR
to generate an interrupt request.
0 TFUF interrupt requests are disabled
1 TFUF interrupt requests are enabled

TFFFRE Transmit FIFO Fill Request Enable. The TFFFRE bit enables the TFFF flag in the DSPI_SR to
generate a request. The TFFFDIRS bit selects between generating an interrupt request or a DMA
requests.
0 TFFF interrupt requests or DMA requests are disabled
1 TFFF interrupt requests or DMA requests are enabled

TFFFDIRS Transmit FIFO Fill DMA or Interrupt Request Select. The TFFFDIRS bit selects between generating
a DMA request or an interrupt request. When the TFFF flag bit in the DSPI_SR is set, and the
DSPI_RSER[TFFFRE] bit is set, this bit selects between generating an interrupt request or a DMA
request.
0 Interrupt request is generated
1 DMA request is generated

DPEFRE DSI Parity Error Request Enable. The DPEFRE bit enables DPEF flag in the DSPI_SR to generate
an interrupt requests.
0 DPEF interrupt requests are disabled
1 DPEF interrupt requests are enabled

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

738 Freescale Semiconductor

28.3.2.6 DSPI PUSH TX FIFO Register (DSPI_PUSHR)

The DSPI_PUSHR register provides means to write to the TX FIFO. Data written to this register is
transferred to the TX FIFO. See Section 28.4.2.4, “Transmit First In First Out (TX FIFO) Buffering
Mechanism” for more information. Eight or sixteen bit write accesses to the DSPI_PUSHR transfers all
32 register bits to the TX FIFO.The register structure is different in master and slave modes. In master
mode the register provides 16-bit command and 16-bit data to the TX FIFO. In slave mode all 32 register
bits can be used as data, supporting up to 32-bit SPI frame operation.

SPEFRE SPI Parity Error Request Enable. The SPEFRE bit enables SPEF flag in the DSPI_SR to generate
an interrupt requests.
0 SPEF interrupt requests are disabled
1 SPEF interrupt requests are enabled

DDIFRE DSI data received with active bits Request Enable. The DDIFRE bit enables the DDIF flag in the
DSPI_SR to generate an interrupt requests.
0 DDIF interrupt requests are disabled
1 DDIF interrupt requests are enabled

RFOFRE Receive FIFO Overflow Request Enable. The RFOFRE bit enables the RFOF flag in the DSPI_SR to
generate an interrupt requests.
0 RFOF interrupt requests are disabled
1 RFOF interrupt requests are enabled

RFDFRE Receive FIFO Drain Request Enable. The RFDFRE bit enables the RFDF flag in the DSPI_SR to
generate a request. The RFDFDIRS bit selects between generating an interrupt request or a DMA
request.
0 RFDF interrupt requests or DMA requests are disabled
1 RFDF interrupt requests or DMA requests are enabled

RFDFDIRS Receive FIFO Drain DMA or Interrupt Request Select. The RFDFDIRS bit selects between
generating a DMA request or an interrupt request. When the RFDF flag bit in the DSPI_SR is set,
and the DSPI_RSER[RFDFRE] bit register is set, the RFDFDIRS bit selects between generating an
interrupt request or a DMA request.
0 Interrupt request will be generated
1 DMA request will be generated

Table 28-12. DSPI_RSER Field Descriptions (continued)

Field Description

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 739

Offset: 0x0034 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CON
T

CTAS EOQ
CTCN

T
PE PP

0 0 PCS5
1

1 Please refer to the Table 28-2.

PCS4
1

PCS3
1

PCS2
1

PCS1
1

PCS0
1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
TXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-9. DSPI PUSH TX FIFO Register (DSPI_PUSHR) in master mode

Table 28-13. DSPI_PUSHR Field Descriptions in master mode

Field Descriptions

CONT Continuous Peripheral Chip Select Enable. The CONT bit selects a Continuous Selection Format.
The bit is used in SPI master mode. The bit enables the selected CSx signals to remain asserted
between transfers. See Section 28.4.6.5, “Continuous Selection Format,” for more information.
0 Return Peripheral Chip Select signals to their inactive state between transfers
1 Keep Peripheral Chip Select signals asserted between transfers

CTAS Clock and Transfer Attributes Select. The CTAS field selects number of the DSPI_CTAR register be
used to set the transfer attributes for the associated SPI frame. The field is only used in SPI master
mode. In SPI slave mode DSPI_CTAR0 is used. The number of DSPI_CTAR registers is
implementation specific and the CTAS should be set to select only implemented one.

EOQ End Of Queue. The EOQ bit provides a means for host software to signal to the DSPI that the current
SPI transfer is the last in a queue. At the end of the transfer the EOQF bit in the DSPI_SR is set.
0 The SPI data is not the last data to transfer
1 The SPI data is the last data to transfer

CTCNT Clear Transfer Counter. The CTCNT bit clears the DSPI_TCR[TCNT] field. The TCNT field is cleared
before transmission of the current SPI frame begins.
0 Do not clear DSPI_TCR[TCNT]
1 Clear DSPI_TCR[TCNT]

PE Parity Enable. PE bit enables parity bit transmission and parity reception check for the SPI frame
0 No parity bit included/checked.
1 Parity bit is transmitted instead of last data bit in frame, parity checked for received frame.

PP Parity Polarity. PP bit controls polarity of the parity bit transmitted and checked
0 Even Parity: number of “1” bits in the transmitted frame is even. The DSPI_SR[SPEF] bit is set if

in the received frame number of “1” bits is odd.
1 Odd Parity: number of “1” bits in the transmitted frame is odd. The DSPI_SR[SPEF] bit is set if in

the received frame number of “1” bits is even.

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

740 Freescale Semiconductor

28.3.2.7 DSPI POP RX FIFO Register (DSPI_POPR)

The DSPI_POPR provides means to read the RX FIFO. See Section 28.4.2.5, “Receive First In First Out
(RX FIFO) Buffering Mechanism” for a description of the RX FIFO operations. Eight or sixteen bit read
accesses to the DSPI_POPR have the same effect on the RX FIFO as 32-bit read access.

PCSx Peripheral chip select 0 0–5.
Selects which CSx signals are asserted for the transfer.
0 Negate the CSx signal
1 Assert the CSx signal

TXDATA Transmit Data. The TXDATA field holds SPI data to be transferred according to the associated SPI
command.

Offset: 0x00x34 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
TXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
TXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-10. DSPI PUSH TX FIFO Register (DSPI_PUSHR) in slave mode

Table 28-14. DSPI_PUSHR Field Descriptions in slave mode

Field Descriptions

TXDATA Transmit Data. The TXDATA field holds SPI data to be transferred.

Table 28-13. DSPI_PUSHR Field Descriptions in master mode (continued)

Field Descriptions

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 741

28.3.2.8 DSPI Transmit FIFO Registers 0–3 (DSPI_TXFR0–DSPI_TXFR3)

The DSPI_TXFR0 - DSPI_TXFR3 registers provide visibility into the TX FIFO for debugging purposes.
Each register is an entry in the TX FIFO. The registers are read-only and cannot be modified. Reading the
DSPI_TXFRx registers does not alter the state of the TX FIFO. If a four entry TX FIFO is implemented,
DSPI_TXFR0 - DSPI_TXFR3 are accessible.

Offset: 0x0038 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R RXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-11. DSPI POP RX FIFO Register (DSPI_POPR)

Table 28-15. DSPI_POPR Field Descriptions

Field Description

RXDATA Received Data. The RXDATA field contains the SPI data from the RX FIFO entry pointed to by the
Pop Next Data Pointer.

Offset: 0x003C (DSPIx_TXFR0)
Offset: 0x0040 (DSPIx_TXFR1)
Offset: 0x0044 (DSPIx_TXFR2)
Offset: 0x0048 (DSPIx_TXFR3)

Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R TXCMD/TXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-12. DSPI Transmit FIFO Register 0–3 (DSPI_TXFR0–DSPI_TXFR3)

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

742 Freescale Semiconductor

28.3.2.9 DSPI Receive FIFO Registers 0–3 (DSPI_RXFR0–DSPI_RXFR3)

The DSPI_RXFR0 - DSPI_RXFR3 registers provide visibility into the RX FIFO for debugging purposes.
Each register is an entry in the RX FIFO. The DSPI_RXFR registers are read-only. Reading the
DSPI_RXFRx registers does not alter the state of the RX FIFO. If a four entry RX FIFO is implemented,
DSPI_RXFR0 - DSPI_RXFR3 exist, for example.

28.3.2.10 DSPI DSI Configuration Register (DSPI_DSICR)

The DSI Configuration Register selects various attributes associated with DSI and CSI Configurations. Do
not write to the DSPI_DSICR, while the DSPI is in the Running state.

Table 28-16. DSPI_TXFRn Field Descriptions

Field Description

TXCMD/
TXDATA[0:15]

Transmit Command or Transmit Data. In master mode the TXCMD field contains the command that
sets the transfer attributes for the SPI data. See Section 28.3.2.6, “DSPI PUSH TX FIFO Register
(DSPI_PUSHR),” for details on the command field. In slave mode the TXDATA contains 16 MSB bits
of the SPI data to be shifted out

TXDATA[16:31] Transmit Data. The TXDATA field contains the SPI data to be shifted out.

Offset: 0x007C (DSPIx_RXFR0)
Offset: 0x0080 (DSPIx_RXFR1)
Offset: 0x0084 (DSPIx_RXFR2)
Offset: 0x0088 (DSPIx_RXFR3

Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R RXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-13. DSPI Receive FIFO Registers 0–3 (DSPI_RXFR0–DSPI_RXFR3)

Table 28-17. DSPI_RXFRn Field Descriptions

Field Description

RXDATA Receive Data. The RXDATA field contains the received SPI data.

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 743

Offset: 0x00BC Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MTOE

F
M

S
Z

4

MTOCNT
0 0 0

TSBC TXSS TPOL TRRE CID
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DCONT DSICTAS DMS PES PE PP

0 0

D
P

C
S

51

D
P

C
S

41

D
P

C
S

31

D
P

C
S

21

D
P

C
S

11

D
P

C
S

01

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-14. DSPI DSI Configuration Register (DSPI_DSICR)

Table 28-18. DSPI_DSICR Field Descriptions

Field Description

MTOE Multiple Transfer Operation Enable. The MTOE bit enables multiple DSPIs to be connected in a
parallel or serial configuration. See Section 28.4.3.6, “Multiple Transfer Operation (MTO),” for more
information.
0 Multiple Transfer Operation disabled
1 Multiple Transfer Operation enabled
The MTOE and TSB bits should not be set simultaneously.

FMSZ4 MSB of the Frame Size in master mode. if the bit is set, 16 is added to the frame size, defined by
DSPI_CTARn[FMSZ] field. DSPI_CTARn register is selected by the DSICTAS field.

MTOCNT Multiple Transfer Operation Count. The MTOCNT field selects number of bits to be shifted out during
a transfer in Multiple Transfer Operation. The field sets the number of SCK cycles that the bus master
will generate to complete the transfer. The number of SCK cycles used will be one more than the
value in the MTOCNT field. The number of SCK cycles defined by MTOCNT must be equal to or
greater than the frame size. When TSBC is set, MTOCNT field has no effect.

TSBC Timed Serial Bus Configuration. The TSBC bit enables the Timed Serial Bus Configuration. This
configuration allows 32-bit data to be used. It also allows tDT to be programmable. See
Section 28.4.9, “Timed Serial Bus (TSB)” for detailed information.
0 Timed Serial Bus Configuration disabled
1 Timed Serial Bus Configuration enabled
If this bit is clear the DSPI_DSICR1 register value has no effect.

TXSS Transmit Data Source Select. The TXSS bit selects the source of data to be serialized. The source
can be either data from host Software written to the DSPI DSI Alternate Serialization Data Register
(DSPI_ASDR), or Parallel Input pin states latched into the DSPI DSI Serialization Data Register
(DSPI_SDR).
0 Source of serialized data is the DSPI_SDR
1 Source of serialized data is the DSPI_ASDR

TPOL Trigger Polarity. The TPOL bit selects the active edge of the hardware trigger input signal (HT).
initiating DSI frames transfer. See Section 28.4.3.4, “DSI Deserialization,” for more information.
0 Falling edge will initiate a transfer
1 Rising edge will initiate a transfer

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

744 Freescale Semiconductor

28.3.2.11 DSPI DSI Serialization Data Register (DSPI_SDR)

The DSPI_SDR contains the states of the Parallel Input signals. The states of the Parallel Input signals are
latched into the DSPI_SDR on the rising edge of every system clock. The DSPI_SDR is read-only. When
the TXSS bit in the DSPI_DSICR is cleared, the data in the DSPI_SDR is used as the source of the DSI
frames.

TRRE Trigger Reception Enable. The TRRE bit enables the DSPI to initiate DSI frames transfer with
external trigger signal. See Section 28.4.3.4, “DSI Deserialization,” for more information.
0 Trigger signal reception disabled
1 Trigger signal reception enabled

CID Change In Data Transfer Enable. The CID bit enables a change in serialization data to initiate DSI
frames transfer. in DSI and CSI configurations. When the CID bit is set, DSI frames are initiated when
the current DSI data differs from the previous DSI data shifted out. Refer to Section 28.4.3.4, “DSI
Deserialization,” for more information.

DCONT DSI Continuous Peripheral Chip Select Enable. The DCONT bit enables the CSx signals to remain
asserted between transfers. The DCONT bit only affects the CSx signals in DSI master mode. See
Section 28.4.6.5, “Continuous Selection Format,” for details. When TSBC bit is set, DCONT bit has
no effect.
0 Return Peripheral Chip Select signals to their inactive state after transfer is complete
1 Keep Peripheral Chip Select signals asserted after transfer is complete

DSICTAS DSI Clock and Transfer Attributes Select. The DSICTAS field selects which of the DSPI_CTAR
register is used to provide transfer attributes for DSI frames. The DSICTAS field is used in DSI master
mode. In DSI slave mode, the DSPI_CTAR1 is always selected.

DMS Data Match Stop. DMS bit if set stops DSI frames transmissions if DDIF flag is set in the DSPI_SR
register.
0 DDIF flag does not have effect on DSI frames transmissions.
1 DDIF flag stops DSI frame transmissions.

PES Parity Error Stop. PES bit if set stops DSI operation if the parity error had happened in received DSI
frame.
0 parity error does not stop DSI frame transmissions.
1 parity error stops all DSI frame transmissions.

PE Parity Enable. PE bit enables parity bit transmission and parity reception check for the DSI frames
0 No parity bit included/checked.
1 Parity bit is transmitted instead of last data bit in frame, parity checked for received frame.

PP Parity Polarity. PP bit controls polarity of the parity bit transmitted and checked
0 Even Parity: number of “1” bits in the transmitted frame is even. The DSPI_SR[DPEF] bit is set if

in the received frame number of “1” bits is odd.
1 Odd Parity: number of “1” bits in the transmitted frame is odd. The DSPI_SR[DPEF] bit is set if in

the received frame number of “1” bits is even.

DPCSx DSI Peripheral Chip Select 0–5. The DPCS bits select which of the CSx signals to assert during a
DSI master mode transfer.
0 Negate CSx
1 Assert CSx

Table 28-18. DSPI_DSICR Field Descriptions (continued)

Field Description

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 745

28.3.2.12 DSPI DSI Alternate Serialization Data Register (DSPI_ASDR)

The DSPI_ASDR provides means for host software to write the data to be serialized. When the TXSS bit
in the DSPI_DSICR is set, the data in the DSPI_ASDR is the source of the DSI frames. Writes to the
DSPI_ASDR take effect on the next frame boundary.

Offset: 0x00C0 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SER_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SER_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-15. DSPI DSI Serialization Data Register (DSPI_SDR)

Table 28-19. DSPI_SDR Field Descriptions

Field Description

SER_DATA Serialized Data. The SER_DATA field contains the signal states of the Parallel Input signals.

Offset: 0x00C4 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
ASER_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
ASER_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-16. DSPI DSI Alternate Serialization Data Register (DSPI_ASDR)

Table 28-20. DSPI_ASDR Field Descriptions

Field Descriptions

ASER_DATA Alternate Serialized Data. The ASER_DATA field holds the alternate data to be serialized.

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

746 Freescale Semiconductor

28.3.2.13 DSPI DSI Transmit Comparison Register (DSPI_COMPR)

The DSPI_COMPR holds a copy of the last transmitted DSI data. The DSPI_COMPR is read-only. DSI
data is transferred to this register as it is loaded into the TX Shift Register.

28.3.2.14 DSPI DSI Deserialization Data Register (DSPI_DDR)

The DSPI_DDR register holds the signal states for the Parallel Output signals. The DSPI_DDR is
read-only and host software can read data from incoming DSI frames.

Offset: 0x00C8 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
COMP_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
COMP_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-17. DSPI DSI Transmit Comparison Register (DSPI_COMPR)

Table 28-21. DSPI_COMPR Field Descriptions

Field Description

COMP_DATA Compare Data. The COMP_DATA field holds the last serialized DSI data.

Offset: 0x00CC Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R DESER_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DESER_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-18. DSPI Deserialization Data Register (DSPI_DDR)

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 747

28.3.2.15 DSPI DSI Configuration Register 1 (DSPI_DSICR1)

The DSI Configuration Register 1 selects various attributes associated with TSB Configuration. The user
must not write to the DSPI_DSICR1 while the DSPI is in the Running state. If TSBC bit is cleared the
register value is ignored.

Table 28-22. DSPI_DDR Field Descriptions

Field Descriptions

DESER_DATA Deserialized Data. The DESER_DATA field holds deserialized data which is presented as signal
states to the Parallel Output signals.

Offset: 0x00D0 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0
TSBCNT

0 0 0 0 0 0

D
S

E
1

D
S

E
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0

D
P

C
S

1_
51

D
P

C
S

1_
41

D
P

C
S

1_
31

D
P

C
S

1_
21

D
P

C
S

1_
11

D
P

C
S

1_
01

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-19. DSPI DSI Configuration Register 1 (DSPI_DSICR1)

Table 28-23. DSPI_DSICR1 Field Descriptions

Field Description

TSBCNT Timed Serial Bus Operation Count. When TSBC is set, TSBCNT defines the length of the data frame.
TSBCNT field valid value is from 3 to 31.
The TSBCNT field selects number of data bits to be shifted out during a transfer in TSB mode. The
number of data bits in the data frame is one more than the value in the TSBCNT field.

DSE1 Data Select Enable1. When TBSC bit is set, the DSE1 bit controls insertion of the zero bit (Data
Select) in the middle of the data frame. The insertion bit position is defined by FMSZ field of
DSPI_CTARn register, selected by the DSPI_DSICR[DSICTAS] field. The TSBCNT field value must
be greater than the FMSZ field value plus one for proper operation of the DSE1 bit.
1 Zero bit is inserted at the middle of the data frame. Total number of bits in the data frame is
increased by 1.
0 No Zero bit inserted in the middle of the data frame.

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

748 Freescale Semiconductor

28.3.2.16 DSPI DSI Serialization Source Select Register (DSPI_SSR)

DSPI DSI Serialization Source Select Register provides means to create combined frame for transmission,
containing bits from DSPI_ASDR register and from DSPI_SDR register. Each bit in the DSPI_SSR
register selects corresponding bit to be serialized. When DSPI_DSICR[TXSS] is set, the DSPI_SSR
register value has no effect.

DSE0 Data Select Enable0. The DSE0 bit controls insertion of the zero bit (Data Select) in the beginning of
the DSI frame.
1 Zero bit is inserted at the beginning of the data frame. Total number of bits in the data frame is

increased by 1.
0 No Zero bit inserted in the beginning of the frame

DPCS1_x DSI Peripheral Chip Select 0–5. These bits define the PCSs to assert for the second part of the DSI
frame when operating in TSB configuration with dual receiver. The DPCS1 bits select which of the
CSx signals to assert during the second part of the DSI frame. The DPCS1 bits only control the
assertions of the CSx signals in TSB mode.
0 Negate the CSx signal
1 Assert the CSx signal

Offset: 0x00D4 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
SS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-20. DSPI DSI Serialization Source Select Register (DSPI_SSR)

Table 28-24. DSPI_SSR Field Descriptions

Field Description

SS Source Select. The SS bits select serialization source for DSI frame. Each SS bit selects data for
corresponded bit in the transmitted frame.
0 the bit in transmitted frame is taken from Parallel Input pin;
1 the bit in transmitted frame is taken from DSPI_ASDR register

Table 28-23. DSPI_DSICR1 Field Descriptions (continued)

Field Description

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 749

28.3.2.17 DSPI DSI Deserialized Data Interrupt Mask Register (DSPI_DIMR)

The DSPI DSI Deserialized Data Interrupt Mask Register selects bits in the received DSI frame to
be checked to generate the DDI interrupt.

28.3.2.18 DSPI DSI Deserialized Data Polarity Interrupt Register (DSPI_DPIR)

The DSPI DSI Deserialized Data Polarity Interrupt Register defines what data bits value in the
received DSI frame generates the DDI interrupt.

Offset: 0x00E8 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MASK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MASK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-21. DSPI DSI Deserialized Data Interrupt Mask Register (DSPI_DIMR)

Table 28-25. DSPI_DIMR Field Descriptions

Field Description

MASK MASK. The MASK bits define which bits in received deserialization data should be checked to
produce the Deserialized Data Interrupt (DDI).
0 the bit in received DSI frame does not produce DDI interrupt.
1 the bit in received DSI frame can produce DDI interrupt if the data bit matches to configured

polarity.

Offset: 0x00EC Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DP

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DP

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-22. DSPI DSI Deserialized Data Polarity Interrupt Register (DSPI_DPIR)

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

750 Freescale Semiconductor

28.4 Functional Description
The Deserial Serial Peripheral Interface (DSPI) block supports full-duplex, synchronous serial
communications between MCUs and peripheral devices. The DSPI can also be used to reduce the number
of pins required for I/O by serializing up to 32 Parallel Input/Output signals. All communications are done
with SPI-like protocol.

The DSPI has three configurations:

• SPI Configuration in which the DSPI operates as a basic SPI or a queued SPI.

• DSI Configuration in which the DSPI serializes Parallel Input/Output signals or bits from memory
mapped register.

• CSI Configuration in which the DSPI combines the functionality of the SPI and DSI
configurations.

The DCONF field in the DSPI Module Configuration Register (DSPI_MCR) determines the DSPI
Configuration. See Table 28-4 for the DSPI configuration values.

The DSPI_CTAR0 - DSPI_CTAR5 registers hold clock and transfer attributes. The SPI configuration
allows to select which CTAR to use on a frame by frame basis by setting a field in the SPI command. The
DSI configuration statically selects which CTAR to use. In CSI Configuration priority logic determines if
SPI data or DSI data is transferred and dictates what CTAR register is used for the data transfer. See
Section 28.3.2.3, “DSPI Clock and Transfer Attributes Registers 0–5 (DSPI_CTAR0–DSPI_CTAR5),” for
information on the fields of the DSPI_CTAR registers.

Typical master to slave connections are shown in the Figure 28-23. When a data transfer operation is
performed, data is serially shifted a predetermined number of bit positions. Because the modules are
linked, data is exchanged between the master and the slave. The data that was in the master shift register

Table 28-26. DSPI_DPIR Field Descriptions

Field Description

DP Data Polarity. The DP bits define what value of the received deserialization data sets the
DSPI_SR[DDIF] bit.
0 if received bit is 0 the DSPI_SR[DDIF] bit is set.
1 if received bit is 1 the DSPI_SR[DDIF] bit is set.

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 751

is now in the shift register of the slave, and vice versa. At the end of a transfer, the TCF bit in the DSPI_SR
is set to indicate a completed transfer.

Figure 28-23. SPI and DSI Serial Protocol Overview

Generally more than one slave device can be connected to the DSPI master. Eight Peripheral Chip Select
(CSx) signals of the DSPI masters can be used to select which of the slaves to communicate with.

The three DSPI configurations share transfer protocol and timing properties which are described
independently of the configuration in Section 28.4.6, “Transfer Formats”. The transfer rate and delay
settings are described in Section 28.4.5, “DSPI Baud Rate and Clock Delay Generation.”

28.4.1 Start and Stop of DSPI Transfers

The DSPI has two operating states: STOPPED and RUNNING. The states are independent of DSPI
configuration. The default state of the DSPI is STOPPED. In the STOPPED state no serial transfers are
initiated in master mode and no transfers are responded to in slave mode. The STOPPED state is also a
safe state for writing the various configuration registers of the DSPI without causing undetermined results.
In the RUNNING state serial transfers take place.

The TXRXS bit in the DSPI_SR indicates in what state the DSPI is. The bit is set if the module in
RUNNING state.

The DSPI is started (DSPI transitions to RUNNING) when all of the following conditions are true:

• DSPI_SR[EOQF] bit is clear

• SoC is not in the debug mode is or the DSPI_MCR[FRZ] bit is clear

• DSPI_MCR[HALT] bit is clear

The DSPI stops (transitions from RUNNING to STOPPED) after the current frame when any one of the
following conditions exist:

• DSPI_SR[EOQF] bit is set

• SoC in the debug mode and the DSPI_MCR[FRZ] bit is set

• DSPI_MCR[HALT] bit is set

State transitions from RUNNING to STOPPED occur on the next frame boundary if a transfer is in
progress, or immediately if no transfers are in progress.

Shift Register

Baud Rate
Generator

Shift Register

SIN

SINSOUT
SOUT

SCK SCK

SSCSx

DSPI Master DSPI Slave

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

752 Freescale Semiconductor

28.4.2 Serial Peripheral Interface (SPI) Configuration

The SPI Configuration transfers data serially using a shift register and a selection of programmable
transfer attributes. The DSPI is in SPI Configuration when the DCONF field in the DSPI_MCR is 0b00.
The SPI frames can be from four to sixteen bits long. Host CPU or a DMA controller transfer the SPI data
from the external to DSPI RAM queues to a transmit First-In First-Out (TX FIFO) buffer. The received
data is stored in entries in the Receive FIFO (RX FIFO) buffer. Host CPU or the DMA controller transfer
the received data from the RX FIFO to memory external to the DSPI. The FIFO buffers operation is
described in Section 28.4.2.4, “Transmit First In First Out (TX FIFO) Buffering Mechanism,” and
Section 28.4.2.5, “Receive First In First Out (RX FIFO) Buffering Mechanism.” The interrupt and DMA
request conditions are described in Section 28.4.11, “Interrupts/DMA Requests.”

The SPI Configuration supports two block-specific modes - master mode and slave mode. The FIFO
operations are similar for both modes. The main difference is that in master mode the DSPI initiates and
controls the transfer according to the fields in the SPI command field of the TX FIFO entry. In slave mode
the DSPI only responds to transfers initiated by a bus master external to the DSPI and the SPI command
field space is used for 16 most significant bit of the transmit data.

28.4.2.1 Master Mode

In SPI master mode the DSPI initiates the serial transfers by controlling the Serial Communications Clock
(SCK) and the Peripheral Chip Select (CSx) signals. The SPI command field in the executing TX FIFO
entry determines which CTAR registers will be used to set the transfer attributes and which CSx signal to
assert. The command field also contains various bits that help with queue management and transfer
protocol. See Section 28.3.2.6, “DSPI PUSH TX FIFO Register (DSPI_PUSHR)” for details on the SPI
command fields. The data field in the executing TX FIFO entry is loaded into the shift register and shifted
out on the Serial Out (SOUT) pin. In SPI master mode, each SPI frame to be transmitted has a command
associated with it allowing for transfer attribute control on a frame by frame basis.

28.4.2.2 Slave Mode

In SPI slave mode the DSPI responds to transfers initiated by a SPI bus master. The DSPI does not initiate
transfers. Certain transfer attributes such as clock polarity, clock phase and frame size must be set for
successful communication with a SPI master. The SPI slave mode transfer attributes are set in the
DSPI_CTAR0. The data is shifted out with MSB first.

28.4.2.3 FIFO Disable Operation

The FIFO disable mechanisms allow SPI transfers without using the TX FIFO or RX FIFO. The DSPI
operates as a double-buffered simplified SPI when the FIFOs are disabled. The FIFOs are disabled
separately; setting the DSPI_MCR[DIS_TXF] bit disables the TX FIFO, and setting the
DSPI_MCR[DIS_RXF] bit disables the RX FIFO.

The FIFO Disable mechanisms are transparent to the user and to host software; Transmit data and
commands are written to the DSPI_PUSHR and received data is read from the DSPI_POPR.When the TX
FIFO is disabled the TFFF, TFUF and TXCTR fields in DSPI_SR behave as if there is a one-entry FIFO
but the contents of the DSPI_TXFR registers and TXNXTPTR are undefined. Likewise, when the RX

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 753

FIFO is disabled, the RFDF, RFOF and RXCTR fields in the DSPI_SR behave as if there is a one-entry
FIFO, but the contents of the DSPI_RXFR registers and POPNXTPTR are undefined.

28.4.2.4 Transmit First In First Out (TX FIFO) Buffering Mechanism

The TX FIFO functions as a buffer of SPI data and SPI commands for transmission. The TX FIFO holds
from one to sixteen words, each consisting of a command field and a data field. The number of entries in
the TX FIFO is SoC specific.SPI commands and data are added to the TX FIFO by writing to the DSPI
PUSH TX FIFO Register (DSPI_PUSHR). TX FIFO entries can only be removed from the TX FIFO by
being shifted out or by flushing the TX FIFO.

The TX FIFO Counter field (TXCTR) in the DSPI Status Register (DSPI_SR) indicates the number of
valid entries in the TX FIFO. The TXCTR is updated every time the DSPI _PUSHR is written or SPI data
is transferred into the shift register from the TX FIFO.

The TXNXTPTR field indicates which TX FIFO Entry will be transmitted during the next transfer. The
TXNXTPTR contains the positive offset from DSPI_TXFR0 in number of 32-bit registers. For example,
TXNXTPTR equal to two means that the DSPI_TXFR2 contains the SPI data and command for the next
transfer. The TXNXTPTR field is incremented every time SPI data is transferred from the TX FIFO to the
shift register. The maximum value of the field is equal to DSPI_HCR[TXFR] and it rolls over after
reaching the maximum.

28.4.2.4.1 Filling the TX FIFO

Host software or other intelligent blocks can add (push) entries to the TX FIFO by writing to the
DSPI_PUSHR. When the TX FIFO is not full, the TX FIFO Fill Flag (TFFF) in the DSPI_SR is set. The
TFFF bit is cleared when TX FIFO is full and the DMA controller indicates that a write to DSPI_PUSHR
is complete. Writing a ‘1’ to the TFFF bit also clears it. The TFFF can generate a DMA request or an
interrupt request. See Section 28.4.11.2, “Transmit FIFO Fill Interrupt or DMA Request,” for details.

The DSPI ignores attempts to push data to a full TX FIFO, the state of the TX FIFO does not change and
no error condition is indicated.

28.4.2.4.2 Draining the TX FIFO

The TX FIFO entries are removed (drained) by shifting SPI data out through the shift register. Entries are
transferred from the TX FIFO to the shift register and shifted out as long as there are valid entries in the
TX FIFO. Every time an entry is transferred from the TX FIFO to the shift register, the TX FIFO Counter
decrements by one. At the end of a transfer, the TCF bit in the DSPI_SR is set to indicate the completion
of a transfer. The TX FIFO is flushed by writing a ‘1’ to the CLR_TXF bit in DSPI_MCR.

If an external bus master initiates a transfer with a DSPI slave while the slave’s DSPI TX FIFO is empty,
the Transmit FIFO Underflow Flag (TFUF) in the slave’s DSPI_SR is set. See Section 28.4.11.4,
“Transmit FIFO Underflow Interrupt Request,” for details.

28.4.2.5 Receive First In First Out (RX FIFO) Buffering Mechanism

The RX FIFO functions as a buffer for data received on the SIN pin. The RX FIFO holds from one to
sixteen received SPI data frames. The number of entries in the RX FIFO is SoC specific.SPI data is added

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

754 Freescale Semiconductor

to the RX FIFO at the completion of a transfer when the received data in the shift register is transferred
into the RX FIFO. SPI data are removed (popped) from the RX FIFO by reading the DSPI POP RX FIFO
Register (DSPI_POPR). RX FIFO entries can only be removed from the RX FIFO by reading the
DSPI_POPR or by flushing the RX FIFO.

The RX FIFO Counter field (RXCTR) in the DSPI Status Register (DSPI_SR) indicates the number of
valid entries in the RX FIFO. The RXCTR is updated every time the DSPI _POPR is read or SPI data is
copied from the shift register to the RX FIFO.

The POPNXTPTR field in the DSPI_SR points to the RX FIFO entry that is returned when the
DSPI_POPR is read. The POPNXTPTR contains the positive offset from DSPI_RXFR0 in number of
32-bit registers. For example, POPNXTPTR equal to two means that the DSPI_RXFR2 contains the
received SPI data that will be returned when DSPI_POPR is read. The POPNXTPTR field is incremented
every time the DSPI_POPR is read. The maximum value of the field is equal to DSPI_HCR[RXFR] and
it rolls over after reaching the maximum.

28.4.2.5.1 Filling the RX FIFO

The RX FIFO is filled with the received SPI data from the shift register. While the RX FIFO is not full,
SPI frames from the shift register are transferred to the RX FIFO. Every time a SPI frame is transferred to
the RX FIFO the RX FIFO Counter is incremented by one.

If the RX FIFO and shift register are full and a transfer is initiated, the RFOF bit in the DSPI_SR is set
indicating an overflow condition. Depending on the state of the ROOE bit in the DSPI_MCR, the data from
the transfer that generated the overflow is either ignored or shifted in to the shift register. If the ROOE bit
is set, the incoming data is shifted in to the shift register. If the ROOE bit is cleared, the incoming data is
ignored.

28.4.2.5.2 Draining the RX FIFO

Host CPU or a DMA can remove (pop) entries from the RX FIFO by reading the DSPI POP RX FIFO
Register (DSPI_POPR). A read of the DSPI_POPR decrements the RX FIFO Counter by one. Attempts to
pop data from an empty RX FIFO are ignored and the RX FIFO Counter remains unchanged. The data,
read from the empty RX FIFO, is undetermined.

When the RX FIFO is not empty, the RX FIFO Drain Flag (RFDF) in the DSPI_SR is set. The RFDF bit
is cleared when the RX_FIFO is empty and the DMA controller indicates that a read from DSPI_POPR is
complete or by writing a ‘1’ to it.

28.4.3 Deserial Serial Interface (DSI) Configuration

The DSI Configuration supports pin count reduction by serializing Parallel Input signals or register bits
and shifting them out in a SPI-like protocol. The timing and transfer protocol is described in
Section 28.4.6, “Transfer Formats.” The various features of the DSI Configuration are set in DSPI DSI
Configuration Register (DSPI_DSICR).

The DSI frames can be from four to 32 bits. With Multiple Transfer Operation (MTO) the DSPI supports
serial chaining of DSPI blocks within an SoC to create DSI frames up to 64 bits, consisting of concatenated
bits from multiple DSPIs. The DSPI also supports parallel chaining allowing several DSPIs and off-chip

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 755

SPI devices to share the same Serial Communications Clock (SCK) and Peripheral Chip Select (CSx)
signals. See Section 28.4.3.6, “Multiple Transfer Operation (MTO),” for details on the serial and parallel
chaining support.

28.4.3.1 DSI Master Mode

In DSI master mode the DSPI initiates and controls the DSI transfers. The DSI master has four different
conditions that can initiate a transfer:

• Continuous

• Change in data

• Trigger signal

• Trigger signal combined with a change in data

The four transfer initiation conditions are described in Section 28.4.3.4, “DSI Deserialization.” Transfer
attributes are set during initialization. The DSICTAS field in the DSPI_DSICR determines which of the
DSPI_CTAR registers will control the transfer attributes.

28.4.3.2 Slave Mode

In DSI slave mode the DSPI responds to transfers initiated by a SPI or DSI bus master. In this mode the
DSPI does not initiate DSI transfers. Certain transfer attributes such as clock polarity and phase must be
set for successful communication with a DSI master. The DSI slave mode Transfer attributes are set in the
DSPI_CTAR1. The data is shifted out with MSB first.

If the CID bit in the DSPI_DSICR is set and the data in the DSPI_COMPR differs from the selected source
of the serialized data, the slave DSPI will assert the MTRIG signal. If the slave’s HT signal is asserted and
the TRRE is set, the slave DSPI asserts MTRIG. These features are included to support chaining of several
DSPI. Details about the MTRIG signal is found in Section 28.4.3.6, “Multiple Transfer Operation
(MTO).”

28.4.3.3 DSI Serialization

In the DSI Configuration from four to sixteen bits can be serialized using two different sources. The TXSS
bit in the DSPI_DSICR selects between the DSPI DSI Serialization Data Register (DSPI_SDR) and the
DSPI DSI Alternate Serialization Data Register (DSPI_ASDR) as the source of the serialized data. The
DSPI_SDR holds the latest Parallel Input signal values which is sampled at every rising edge of the system
clock. The DSPI_ASDR register is written by host software and used as an alternate source of serialized
data.

DSPI_SSR register provides additional way to create the frame for transmission. Each bit from this register
is OR’d with the TXSS bit and controls individual transmitted bit source. This way, the transmitted frame
can have any combination of the DSPI_SDR and DSPI_ASDR bits. This feature allows control SPI based
devices, requiring control and data fields in the frame. Control field may come from DSPI_ASDR register,
set by the SoC CPU, while data field can be generated by SoC peripheral modules, like PWM timers.

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

756 Freescale Semiconductor

A copy of the last 32-bit DSI frame shifted out of the Shift Register is stored in the DSPI DSI Transmit
Comparison Register (DSPI_COMPR). This register provides added visibility for debugging and it serves
as a reference for transfer initiation control. Figure 28-24 shows the DSI Serialization logic.

Figure 28-24. DSI Serialization Diagram

28.4.3.4 DSI Deserialization

When all bits in a DSI frame have been shifted in, the frame is copied to the DSPI DSI Deserialization
Data Register (DSPI_DDR). The DSPI_DDR is memory mapped to allow host software to read the
deserialized data directly.

The received data is bit-wise compared to the value of the DSI Deserialized Data Polarity Interrupt
Register, bit-wise AND’ed with DSI Deserialized Interrupt Mask Register and the results OR’ed to
produce DDIF flag in the DSPI_SR register. Which, in turn, can cause DDI interrupt request if the
DSPI_RSER[DDIFRE] bit is set and/or stop DSI frame transmissions if the DMS bit of the DSPI_DSICR
register is set.

Figure 28-25 shows the DSI Deserialization logic.

DSI Config.

SOUT

Shift Register

HT

0 1

Clock
Logic SCK

TXSS

0
1

Register

Control
Logic

 DSI Transmit
Comparison Register

CSx

DS
I S

er
ial

iza
tio

n
Da

ta
 R

eg
ist

er

32

32

32

Parallel
Inputs 32

32
 x

16
 to

 1
Mu

xe
s

DSPI Parallel Inputs
Select Registers 0-3

DSPI Alternate
Serialization Data Register

Slave Bus Interface

DSI Serialization
Source Register

32

N

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 757

Figure 28-25. DSI Deserialization Diagram

28.4.3.5 DSI Transfer Initiation Control

Data transfers for a master DSPI in DSI configuration are initiated by a condition. The transfer initiation
conditions are selected by the TRRE and CID bits in the DSPI_DSICR. Table 28-27 lists the four transfer
initiation conditions.

28.4.3.5.1 Continuous Control

For Continuous Control a new DSI frame shifts out when the previous transfer cycle has completed and
the Delay after Transfer (tDT) has elapsed.

28.4.3.5.2 Change In Data Control

For Change in Data Control a transfer is initiated when the data to be serialized has changed since the
transfer of the last DSI frame. A copy of the previously transferred DSI data is stored in the
DSPI_COMPR. When the data, selected for the transfer from the DSPI_SDR and DSPI_ASDR registers
is different from the data in the DSPI_COMPR a new DSI frame is transmitted. The MTRIG output signal
is asserted every time a change in data is detected.

Table 28-27. DSI Data Transfer Initiation Control

DSPI_DSICR Bits
Transfer Initiation Control

TRRE CID

0 0 Continuous

0 1 Change in Data

1 0 Triggered

1 1 Triggered or Change in Data

SIN

Shift Register

0 1 N-1

Control
Logic

DSI Deserialization
Data Register

32

Slave Bus Interface

32

DSI Deserialized Data
Polarity Interrupt Register

DSI Deserialized Data
Interrupt Mask Register

DDIF

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

758 Freescale Semiconductor

28.4.3.5.3 Triggered Control

For Triggered Control initiation of a transfer is controlled by the Hardware Trigger signal (HT). The TPOL
bit in the DSPI_DSICR selects the active edge of HT. For HT to have any affect, the TRRE bit in the
DSPI_DSICR must be set.

28.4.3.5.4 Triggered or Change In Data Control

For Triggered or Change in Data Control initiation of a transfer is controlled by the HT signal or by the
detection of a change in data to be serialized.

28.4.3.6 Multiple Transfer Operation (MTO)

In DSI Configuration the MTO feature allows for multiple DSPIs within an SoC to be chained together in
a parallel or serial configuration. The parallel chaining allows multiple DSPIs internal to an SoC and
multiple SPI devices external to an SoC to share SCK and CSx signals thereby saving the SoC pins. The
serial chaining allows bits from multiple DSPIs to be concatenated into a single DSI frame. MTO is
enabled by setting the MTOE bit in the DSPI_DSICR.

In parallel and serial chaining there is one bus master and multiple bus slaves. The bus master initiates and
controls the transfers, but the DSPI slaves generate trigger signals for the bus DSPI master when an
internal condition in the slave warrants a transfer. The DSPI slaves also propagate triggers from other
slaves to the master. When a DSPI slave detects a trigger signal on its HT input, the slave generates a
trigger signal on the MTRIG output.

Serial and parallel chaining require multiplexing of signals external to the DSPI.

NOTE
TSB operation is not available in MTO mode. TSBC and MTOE bits of
DSPI_DSICR register should not be set simultaneously.

28.4.3.6.1 Parallel Chaining

Parallel chaining allows multiple DSPIs internal to an SoC and multiple SPI/DSI devices external to an
SoC to share common SCK and CSx signals thereby saving pins. Two pins are saved per pair of DSPI/SPI.
Figure 28-26 shows an example of how the blocks can be connected in an SoC.

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 759

Figure 28-26. Example of Parallel Chaining of DSPIs

In parallel chaining, the SOUT and SIN of the three DSPIs connect to separate external SPI devices. All
internal and external SPI blocks share CSx and SCK signals. DSPI0 controls and initiates all transfers, but
the DSPI slaves each have a trigger output signal MTRIG that indicates to DSPI0 that a trigger condition
has occurred in the DSPI slaves. When the slave DSPI has a change in data to be serialized, it asserts the
MTRIG signal that propagates to DSPI0 which initiates the transfer.

28.4.3.6.2 Serial Chaining

The serial chaining allows transfers of DSI frames of up to a total of 64 bits, using transfers of smaller DSI
frames concatenated together by multiple DSPIs. Figure 28-27 shows an example of how the blocks can
be connected in an SoC.

Figure 28-27. Example of Serial Chaining of DSPIs

SOUT SOUTSINSIN

CSx SSSCK SCK

DSPI Master DSPI Slave

SS SCK
SINSOUT

SoC

SIN
SCKSS

SOUT

MTRIGHT

SPI Slave Device SPI Slave Device

SOUTSIN

SS SCK

DSPI Slave

SIN
SCKSS

SOUT

MTRIG

SPI Slave Device

HT

SOUT SOUTSINSIN

CSx SSSCK SCK

DSPI0 Master DSPI1 Slave

SS SCK
SINSOUT

SPI Slave Device

SoC

MTRIGHT

DSPI Slave

HT

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

760 Freescale Semiconductor

In a serial chain, one DSPI block operates as a master, the other DSPI blocks operate as slaves. The data
output (SOUT) of the master is connected to the data input (SIN) of the slave. The SOUT of a slave is
connected to the SIN of subsequent slaves until the last block in the chain, where the SOUT is connected
to an external pin, which connects to the input of an external SPI device. The slave DSPI and external SPI
device use the master peripheral chip select (CSx) and clock (SCK).

The Trigger input of the master allows a slave DSPI to trigger a transfer when the data change occurs in
the slave DSPI and the slave DSPI is operating in Change in Data mode. The Trigger input of the master
is connected to MTRIG output of the slave.

The concatenated frames can be 8 to 64 bits long.

28.4.4 Combined Serial Interface (CSI) Configuration

The CSI Configuration of the DSPI is used to support SPI and DSI functions on a frame by frame basis.
CSI Configuration allows interleaving of DSI data frames from the Parallel Input signals with SPI
commands and data from the TX FIFO. The data returned from the bus slave is either used to drive the
Parallel Output signals or it is stored in the RX FIFO. The CSI Configuration allows serialized data and
configuration or diagnostic data to be transferred to a slave device using only one serial link. The DSPI is
in CSI Configuration when the DCONF field in the DSPI_MCR is 0b10.

In CSI Configuration, the DSPI transfers DSI data based on DSI Deserialization. When there are SPI
commands in the TX FIFO, the SPI data has priority over the DSI frames. When the TX FIFO is empty,
DSI transfer resumes.

Two peripheral chip select signals indicate whether DSI data or SPI data is transmitted. The user must
configure the DSPI so that the two CTAR registers associated with DSI data and SPI data assert different
peripheral chip select signals denoted in the figure as PCSx and PCSy. The CSI Configuration is only
supported in master mode.

Data returned from the external slave while a DSI frame is transferred is placed on the Parallel Output
signals. Data returned from the external slave while a SPI frame is transferred is moved to the RX FIFO.
The TX FIFO and RX FIFO are fully functional in CSI mode.

28.4.4.1 CSI Serialization

Serialization in the CSI configuration is similar to serialization in DSI Configuration. The transfer
attributes for SPI frames are determined by the DSPI_CTAR register selected by the CTAS field in the SPI
command halfword. The transfer attributes for the DSI frames are determined by the DSPI_CTAR register
selected by the DSICTAS field in the DSPI_DSICR.

The Parallel Inputs signal states are latched into the DSPI DSI Serialization Data Register (DSPI_SDR)
on the rising edge of every system clock and serialized based on the transfer initiation control settings in
the DSPI_DSICR. When SPI frames are written to the TX FIFO they have priority over DSI data from the
DSPI_SDR and are transferred at the next frame boundary. A copy of the most recently transferred DSI
frame is stored in the DSPI_COMPR. The Transfer Priority Logic selects the source of the serialized data
and asserts the appropriate CSx signal.

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 761

28.4.5 DSPI Baud Rate and Clock Delay Generation

The SCK frequency and the delay values for serial transfer are generated by dividing the system clock
frequency by a prescaler and a scaler with the option for doubling the baud rate. Figure 28-28 shows
conceptually how the SCK signal is generated.

Figure 28-28. Communications Clock Prescalers and Scalers

28.4.5.1 Baud Rate Generator

The Baud Rate is the frequency of the Serial Communication Clock (SCK). The system clock is divided
by a prescaler (PBR) and scaler (BR) to produce SCK with the possibility of halving the scaler division.
The DBR, PBR and BR fields in the DSPI_CTAR registers select the frequency of SCK by the formula in
the BR field description. Table 28-28 shows an example of how to compute the baud rate.

28.4.5.2 CS to SCK delay (tCSC)

The CS_x to SCK delay is the length of time from assertion of the CS_x signal to the first SCK edge. Refer
to Figure 28-30 for an illustration of the CS_x to SCK delay. The PCSSCK and CSSCK fields in the
DSPIx_CTARn registers select the CS_x to SCK delay, and the relationship is expressed by the following
formula:

Table 28-29 shows an example of the computed CS to SCK delay.

28.4.5.3 After SCK Delay (tASC)

The After SCK Delay is the length of time between the last edge of SCK and the negation of PCS. See
Figure 28-30 and Figure 28-31 for illustrations of the After SCK delay. The PASC and ASC fields in the

Table 28-28. Baud Rate Computation Example

fsys PBR Prescaler BR Scaler DBR Baud Rate

100 MHz 0b00 2 0b0000 2 0 25 Mb/s

20 MHz 0b00 2 0b0000 2 1 10 Mb/s

Table 28-29. CS to SCK delay computation example

PCSSCK Prescaler value CSSCK Scaler value fSYS CS to SCK delay

0b01 3 0b0100 32 100 MHz 0.96 µs

SCKSystem Clock
Prescaler

1
Scaler

1+DBR

tCSC =
fSYS

CSSCK PCSSCK1 

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

762 Freescale Semiconductor

DSPI_CTARx registers select the After SCK Delay by the formula in the ASC field description.
Table 28-30 shows an example of how to compute the After SCK delay.

PCASC and ASC fields have no effect in TSB configuration.

28.4.5.4 Delay after Transfer (tDT)

The Delay after Transfer is the minimum time between negation of the signal for a frame and the assertion
of the CSx signal for the next frame. See Figure 28-30 for an illustration of the Delay after Transfer. The
PDT and DT fields in the DSPI_CTARx registers select the Delay after Transfer by the formula in the DT
field description. Table 28-31 shows an example of how to compute the Delay after Transfer.

When in non-continuous clock mode the tDT delay is configured according Equation 28-3. When in
continuous clock mode and TSB is not enabled the delay is fixed at 1 SCK period.

In TSB mode the Delay after Transfer is equal to a number formed by concatenation of PDT and DT fields
plus 1 of the SCK clock periods. See detailed information on Section 28.4.9, “Timed Serial Bus (TSB)”.

28.4.5.5 Peripheral Chip Select Strobe Enable (CS5_x)

The CS5_x signal provides a delay to allow the CSx signals to settle after a transition occurs thereby
avoiding glitches. When the DSPI is in master mode and PCSSE bit is set in the DSPI_MCR, CS5_x
provides a signal for an external demultiplexer to decode the CS4_x and signals into as many as 32
glitch-free CSx signals. Figure 28-29 shows the timing of the CS5_x signal relative to CSx signals.

Figure 28-29. Peripheral Chip Select Strobe Timing

The delay between the assertion of the CSx signals and the assertion of CS5_x is selected by the PCSSCK
field in the DSPI_CTAR based on the following formula:

Eqn. 28-5

Table 28-30. After SCK Delay Computation Example

fsys PASC Prescaler ASC Scaler After SCK Delay

100 MHz 0b01 3 0b0100 32 0.96 s

Table 28-31. Delay after Transfer Computation Example

fsys PDT Prescaler DT Scaler Delay after Transfer

100 MHz 0b01 3 0b1110 32768 0.98 ms

tPCSSCK

CSx

tPASC

CS5_x

tPCSSCK
1

fSYS
---------- PCSSCK=

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 763

At the end of the transfer the delay between CS5_x negation and PCS negation is selected by the PASC
field in the DSPI_CTAR based on the following formula:

Eqn. 28-6

Table 28-32 shows an example of how to compute the tpcssck delay.

Table 28-33 shows an example of how to compute the tpasc delay.

The CS5_x signal is not supported when Continuous Serial Communication SCK or TSB mode are
enabled.

28.4.6 Transfer Formats

The SPI serial communication is controlled by the Serial Communications Clock (SCK) signal and the
CSx signals. The SCK signal provided by the master device synchronizes shifting and sampling of the data
on the SIN and SOUT pins. The CSx signals serve as enable signals for the slave devices.

When the DSPI is the bus master, the CPOL and CPHA bits in the DSPI Clock and Transfer Attributes
Registers (DSPI_CTARx) select the polarity and phase of the serial clock, SCK. The polarity bit selects
the idle state of the SCK. The clock phase bit selects if the data on SOUT is valid before or on the first
SCK edge.

When the DSPI is the bus slave, CPOL and CPHA bits in the DSPI_CTAR0 (SPI) or DSPI_CTAR1 (DSI)
select the polarity and phase of the serial clock. Even though the bus slave does not control the SCK signal,
clock polarity, clock phase and number of bits to transfer must be identical for the master and the slave
devices to ensure proper transmission.

The DSPI supports four different transfer formats:

• Classic SPI with CPHA=0

• Classic SPI with CPHA=1

• Modified Transfer format with CPHA = 0

• Modified Transfer format with CPHA = 1

A modified transfer format is supported to allow for high-speed communication with peripherals that
require longer setup times. The DSPI can sample the incoming data later than halfway through the cycle
to give the peripheral more setup time. The MTFE bit in the DSPI_MCR selects between Classic SPI
Format and Modified Transfer Format.

Table 28-32. Peripheral Chip Select Strobe Assert Computation Example

fsys PCSSCK Prescaler Delay before Transfer

100 MHz 0b11 7 70.0 ns

Table 28-33. Peripheral Chip Select Strobe Negate Computation Example

fsys PASC Prescaler Delay after Transfer

100 MHz 0b11 7 70.0 ns

tPASC
1

fSYS
---------- PASC=

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

764 Freescale Semiconductor

In the SPI and DSI Configurations, the DSPI provides the option of keeping the CSx signals asserted
between frames. See Section 28.4.6.5, “Continuous Selection Format,” for details.

28.4.6.1 Classic SPI Transfer Format (CPHA = 0)

The transfer format shown in Figure 28-30 is used to communicate with peripheral SPI slave devices
where the first data bit is available on the first clock edge. In this format, the master and slave sample their
SIN pins on the odd-numbered SCK edges and change the data on their SOUT pins on the even-numbered
SCK edges.

Figure 28-30. DSPI Transfer Timing Diagram (MTFE=0, CPHA=0, FMSZ=8)

The master initiates the transfer by placing its first data bit on the SOUT pin and asserting the appropriate
peripheral chip select signals to the slave device. The slave responds by placing its first data bit on its
SOUT pin. After the tCSC delay elapses, the master outputs the first edge of SCK. The master and slave
devices use this edge to sample the first input data bit on their serial data input signals. At the second edge
of the SCK the master and slave devices place their second data bit on their serial data output signals. For
the rest of the frame the master and the slave sample their SIN pins on the odd-numbered clock edges and
changes the data on their SOUT pins on the even-numbered clock edges. After the last clock edge occurs
a delay of tASC is inserted before the master negates the CSx signals. A delay of tDT is inserted before a new
frame transfer can be initiated by the master.

tCSC

SCK

Master and Slave

CSx/SS

SCK

MSB first (LSBFE = 0):
 LSB first (LSBFE = 1):

MSB
LSB

LSB
MSB

Bit 5
Bit 2

Bit 6
Bit 1

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

Master SOUT/

Master SIN/

tDT tCSC

tCSC = CS to SCK delay

tDT = Delay after Transfer (Minimum CS idle time)

(CPOL = 0)

(CPOL = 1)

tASC

Slave SIN

Slave SOUT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sample

tASC = After SCK delay

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 765

28.4.6.2 Classic SPI Transfer Format (CPHA = 1)

This transfer format shown in Figure 28-31 is used to communicate with peripheral SPI slave devices that
require the first SCK edge before the first data bit becomes available on the slave SOUT pin. In this format
the master and slave devices change the data on their SOUT pins on the odd-numbered SCK edges and
sample the data on their SIN pins on the even-numbered SCK edges

Figure 28-31. DSPI Transfer Timing Diagram (MTFE=0, CPHA=1, FMSZ=8)

The master initiates the transfer by asserting the CSx signal to the slave. After the tCSC delay has elapsed,
the master generates the first SCK edge and at the same time places valid data on the master SOUT pin.
The slave responds to the first SCK edge by placing its first data bit on its slave SOUT pin.

At the second edge of the SCK the master and slave sample their SIN pins. For the rest of the frame the
master and the slave change the data on their SOUT pins on the odd-numbered clock edges and sample
their SIN pins on the even-numbered clock edges. After the last clock edge occurs a delay of tASC is inserted
before the master negates the CSx signal. A delay of tDT is inserted before a new frame transfer can be
initiated by the master.

28.4.6.3 Modified SPI/DSI Transfer Format (MTFE = 1, CPHA = 0)

In this Modified Transfer Format both the master and the slave sample later in the SCK period than in
Classic SPI mode to allow tolerate more delays in device pads and board traces. These delays become a
more significant fraction of the SCK period as the SCK period decreases with increasing baud rates.

tCSC tDT

SCK

SCK

MSB first (LSBFE = 0):
 LSB first (LSBFE = 1):

MSB
LSB

LSB
MSB

Bit 5
Bit 2

Bit 6
Bit 1

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

tCSC = CS to SCK delay

tDT = Delay after Transfer (minimum CS negation time)

(CPOL = 0)

(CPOL = 1)

tASC

Master SOUT/

Master SIN/

Slave SIN

Slave SOUT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CSx/SS

Master and Slave
Sample

tASC = After SCK delay

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

766 Freescale Semiconductor

The master and the slave place data on the SOUT pins at the assertion of the CSx signal. After the CS to
SCK delay has elapsed the first SCK edge is generated. The slave samples the master SOUT signal on
every odd numbered SCK edge. The DSPI in the slave mode when the MTFE bit is set also places new
data on the slave SOUT on every odd numbered clock edge. Regular external slave, configured with
CPHA=0 format drives its SOUT output at every even numbered SCK clock edge.

The DSPI master places its second data bit on the SOUT line one system clock after odd numbered SCK
edge if the system frequency to SCK frequency ratio is higher than three. If this ratio is below four the
master changes SOUT at odd numbered SCK edge. The point where the master samples the SIN is selected
by the DSPI_MCR[SMPL_PT] field. The Table 28-4 lists the number of system clock cycles between the
active edge of SCK and the master Sample point. The master sample point can be delayed by one or two
system clock cycles. The SMPL_PT field should be set to 0 if the system to SCK frequency ratio is less
than 4.

Following timing diagrams illustrate the DSPI operation with MTFE=1. Timing delays shown are:

• Tcsc - CS to SCK assertion delay

• Tacs - After SCK delay

• Tsu_ms - master SIN setup time

• Thd_ms - master SIN hold time

• Tvd_sl - slave data output valid time, time between slave data output SCK driving edge and data
becomes valid.

• Tsu_sl - data setup time on slave data input

• Thd_sl - data hold time on slave data input

• Tsys - system clock period.

Figure 28-32 shows the modified transfer format for CPHA = 0 and Fsys/Fsck = 4. Only the condition
where CPOL = 0 is illustrated. Solid triangles show the data sampling clock edges. The two possible slave
behavior are shown.

• Signal, marked “SOUT of Ext Slave”, presents regular SPI slave serial output.

• Signal, marked “SOUT of DSPI Slave”, presents DSPI in the slave mode with MTFE bit set.

Other MTFE = 1 diagrams show DSPI SIN input as being driven by a regular external SPI slave,
configured according DSPI master CPHA programming.

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 767

Figure 28-32. DSPI Modified Transfer Format (MTFE=1, CPHA=0, fsck = fsys/4)

Figure 28-33. DSPI Modified Transfer Format (MTFE=1, CPHA=0, fsck = fsys/2)

 D0 D1 D2 Dn

D0 D1 D2 Dn

 D0 D1 D2 Dn

Slave samples SOUT

SMPL_PT=2
SMPL_PT=1

DSPI samples SIN, SMPL_PT=0

Tvd_sl

Tsys

Tcsc

Tvd_sl

Tasc

Thd_sl
Tsu_sl

Thd_ms
Tsu_ms

1 32 4 5 6 2n+22n+1

sys clk

CS

SOUT of Ext Slave

SCK

SOUT

SOUT of DSPI Slave

D0 D1 D2 Dn

 D0 D1 D2 Dn

Slave samples SOUT

DSPI samples SIN

Tcsc

Tvd_sl

Tasc

Thd_sl
Tsu_sl

Tsu_ms
Thd_ms

sys clk

CS

SIN

SCK

SOUT

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

768 Freescale Semiconductor

Figure 28-34. DSPI Modified Transfer Format (MTFE=1, CPHA=0, fsck = fsys/3)

28.4.6.4 Modified SPI/DSI Transfer Format (MTFE = 1, CPHA = 1)

Figure 28-35 shows the Modified Transfer Format for CPHA = 1. Only the condition, where CPOL = 0 is
shown. At the start of a transfer the DSPI asserts the CSx signal to the slave device. After the CS to SCK
delay has elapsed the master and the slave put data on their SOUT pins at the first edge of SCK. The slave
samples the master SOUT signal on the even numbered edges of SCK. The master samples the slave
SOUT signal on the odd numbered SCK edges starting with the third SCK edge. The slave samples the
last bit on the last edge of the SCK. The master samples the last slave SOUT bit one half SCK cycle after
the last edge of SCK. No clock edge will be visible on the master SCK pin during the sampling of the last
bit. The SCK to CS delay must be greater or equal to half of the SCK period.

D0 D1 D2 Dn

D0 D1 D2 Dn

Slave samples SOUT

DSPI samples SIN

Tcsc

Tvd_sl

Tasc

Thd_slTsu_sl

Thd_ms
Tsu_ms

sys clk

CSx

SIN

SCK

SOUT

D0 D1 D2 Dn

 D0 D1 D2 Dn

Slave samples SOUT

DSPI samples SIN

Tcsc

Tvd_sl

Tasc

Thd_sl
Tsu_sl

Thd_ms
Tsu_ms

sys clk

CSx

SIN

SCK

SOUT

1 2 3 4 5 6 7 8 2n+1 2n+2

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 769

Figure 28-35. DSPI Modified Transfer Format (MTFE=1, CPHA=1, fsck = fsys/2)

Figure 28-36. DSPI Modified Transfer Format (MTFE=1, CPHA=1, fsck = fsys/3)

Figure 28-37. DSPI Modified Transfer Format (MTFE=1, CPHA=1, fsck = fsys/4)

28.4.6.5 Continuous Selection Format

Some peripherals must be deselected between every transfer. Other peripherals must remain selected
between several sequential serial transfers. The Continuous Selection Format provides the flexibility to
handle both cases. The Continuous Selection Format is enabled for the SPI Configuration by setting the
CONT bit in the SPI command. Continuous Selection is enabled for the DSI Configuration by setting the
DCONT bit in the DSPI_DSICR. The behavior of the CSx signals in the two configurations is identical so
only SPI Configuration will be described.

D0 D1 D2 Dn

 D0 D1 D2 Dn

Slave samples SOUT

DSPI samples SIN

Tcsc

Tvd_sl

Tasc

Thd_slTsu_sl

Thd_ms
Tsu_ms

sys clk

CSx

SIN

SCK

SOUT

D0 D1 D2 Dn

 D0 D1 D2 Dn

Slave samples SOUT

DSPI samples SIN

Tcsc

Tvd_sl

Tasc

Thd_sl
Tsu_sl

Thd_ms
Tsu_ms

sys clk

CSx

SIN

SCK

SOUT

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

770 Freescale Semiconductor

When the CONT bit = 0, the DSPI drives the asserted Chip Select signals to their idle states in between
frames. The idle states of the Chip Select signals are selected by the PCSISn bits in the DSPI_MCR.
Figure 28-38 shows the timing diagram for two four-bit transfers with CPHA = 1 and CONT = 0.

Figure 28-38. Example of Non-Continuous Format (CPHA=1, CONT=0)

When the CONT bit = 1, the PCS signal remains asserted for the duration of the two transfers. The Delay
between Transfers (tDT) is not inserted between the transfers. Figure 28-39 shows the timing diagram for
two four-bit transfers with CPHA = 1 and CONT = 1.

Figure 28-39. Example of Continuous Transfer (CPHA=1, CONT=1)

When using DSPI with continuous selection follow these rules:

• all transmit commands must have the same PCSn bits programming

tCSC tDT tCSC

SCK

CSx

SCK

Master SOUT

Master SIN

tCSC = CS to SCK delay

tDT = Delay after Transfer (minimum CS negation time)

(CPOL = 0)

(CPOL = 1)

tASC

tASC = After SCK delay

tCSC tCSC

SCK

CS

SCK

Master SOUT

Master SIN

tCSC = CS to SCK delay

(CPOL = 0)

(CPOL = 1)

tASC

(CPOL = 0)SCK

tASC = After SCK delay

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 771

• the DSPI_CTARs, selected by transmit commands, must be programmed with the same transfer
attributes. Only FMSZ field can be programmed differently in these DSPI_CTARs.

NOTE
User must fill the TXFIFO with the number of entries that will be
concatenated together under one PCS assertion for both master and slave
before the TXFIFO becomes empty. For example; while transmitting in
master mode, ensure that the last entry in the TXFIFO, after which TXFIFO
becomes empty, has CONT = 0 in the command frame.

When operating in slave mode, ensure that when the last-entry in the
TXFIFO is completely transmitted (i.e. the corresponding TCF flag is
asserted and TXFIFO is empty) the slave is deselected for any further serial
communication; otherwise, an underflow error occurs.

28.4.7 Continuous Serial Communications Clock

The DSPI provides the option of generating a continuous SCK signal for slave peripherals that require a
continuous clock.

Continuous SCK is enabled by setting the CONT_SCKE bit in the DSPI_MCR. Continuous SCK is valid
in all configurations.

Continuous SCK is only supported for CPHA=1. Clearing CPHA is ignored if the CONT_SCKE bit is set.
Continuous SCK is supported for Modified Transfer Format.

Clock and transfer attributes for the Continuous SCK mode are set according to the following rules:

• The TX FIFO must be cleared before initiating any SPI configuration transfer.

• When the DSPI is in SPI configuration, CTAR0 is used initially. At the start of each SPI frame
transfer, the CTAR specified by the CTAS for the frame should be CTAR0.

• When the DSPI is in DSI configuration, always use the CTAR specified by the DSICTAS field.

• In all configurations, the currently selected CTAR remains in use until the start of a frame with a
different CTAR specified, or the continuous SCK mode is terminated.

It is recommended to keep the baud rate the same while using the Continuous SCK. Switching clock
polarity between frames while using Continuous SCK can cause errors in the transfer. Continuous SCK
operation is not guaranteed if the DSPI is put into the External Stop mode or Module Disable mode.

Enabling Continuous SCK disables the CS to SCK delay and the Delay after Transfer (tDT) is fixed to one

SCK cycle. When TSB configuration is enabled the tDT is programmable from 1 to 65 SCK cycles.
Figure 28-40 shows timing diagram for Continuous SCK format with Continuous Selection disabled.

NOTE
When in Continuous SCK mode, for the SPI transfer CTAR0 should always
be used, and the TX-FIFO must be clear using the MCR.CLR_TXF field
before initiating transfer.

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

772 Freescale Semiconductor

Figure 28-40. Continuous SCK Timing Diagram (CONT=0)

If the CONT bit in the TX FIFO entry is set or the DCONT in the DSPI_DSICR is set, CSx remains
asserted between the transfers. Under certain conditions, SCK can continue with CSx asserted, but with no
data being shifted out of SOUT (SOUT pulled high). This can cause the slave to receive incorrect data.
Those conditions include:

• Continuous SCK with CONT bit set, but no data in the transmit FIFO.

• Continuous SCK with CONT bit set and entering STOPPED state (refer to Section 28.4.1, “Start
and Stop of DSPI Transfers”).

• Continuous SCK with CONT bit set and entering Stop mode or Module Disable mode.

Figure 28-41 shows timing diagram for Continuous SCK format with Continuous Selection enabled.

Figure 28-41. Continuous SCK Timing Diagram (CONT=1)

28.4.8 Slave Mode Operation Constraints

Slave mode logic shift register is buffered. This allows data streaming operation, when the DSPI is
permanently selected and data is shifted in with a constant rate.

tDT

SCK

CS

SCK

Master SOUT

Master SIN

(CPOL = 0)

(CPOL = 1)

SCK

CS

SCK

Master SOUT

Master SIN

(CPOL = 0)

(CPOL = 1)

transfer 1 transfer 2

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 773

The transmit data is transferred at second SCK clock edge of the each frame to the shift register if the SS
signal is asserted and any time when transmit data is ready and SS signal is negated.

Received data is transferred to the receive buffer at last SCK edge of each frame, defined by frame size
programmed to the CTAR0/1 register. Then the data from the buffer is transferred to the RXFIFO or DDR
register.

If the SS negates before that last SCK edge, the data from shift register is lost.

This buffering scheme allows to operate slave clock with higher frequency than the system frequency. The
clocks relationship is defined by Equation 28-7. FrameSize is the value of the CTAR0/1[FMSZ] field plus
one.

Eqn. 28-7

In slave mode, the DSPI performance is limited by synchronization and propagation through
combinational logic to the serial data output. Performance limitations for various slave configurations are
summarized in Table 28-34.

These limitations must be taken into account at a system level with the SPI transfer timing set to allow for
worst case performance of the SPI slave (including I/O and board level propagation delays). To ensure
correct operation, the master SPI device must be configured so that tCSC are greater the requirements
shown in the Table 28-34 and the SCK clock frequency should comply to the Equation 28-7.

28.4.9 Timed Serial Bus (TSB)

The DSPI can be programmed in Timed Serial Bus configuration by setting the TSBC bit in the
DSPI_DSICR register. See Section 28.3.2.10, “DSPI DSI Configuration Register (DSPI_DSICR)” for
details.

TSB configuration provides the Micro Second Channel (MSC) downstream channel support.

The MSC upstream channel is not supported by the DSPI, but can be supported by any available Serial
Communication Controller (SCI or UART) in the SoC.

CPHA System Constraint1

1 Timing parameter definitions are:
TSYS = system clock period
tCSC = delay from PCS asserted to first serial
clock edge
tsl_vd = SOUT data valid time in slave mode
tms_su = SPI master data setup time

0 tCSC > 2 x TSYS + tsl_vd + tms_su

1 tCSC > 2 x TSYS

Table 28-34. DSPI Slave Mode System Constraints

fSCK fSYS FrameSize 3

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

774 Freescale Semiconductor

To work in TSB mode the DSPI must be in master mode and in DSI (DCONF = 0b01) or CSI (DCONF =
0b10) configuration. Both Continuous and Non Continuous Serial Communication Clock (controlled by
the DSPI_MCR[CONT_SCKE] bit) are supported in the TSB mode.

Figure 28-42 shows the signals used in the TSB interface.

In the TSB configuration the DSPI is able to send from 4 to 34 bits MSC data frames (4 to 32 serialized
data bits and up to 2 Data Selection zero bits). The serialized data bits source can be either:

• the DSPI DSI Alternate Serialization Data Register (DSPI_ASDR), written by the host software,

• Parallel Input pin states latched into the DSPI DSI Serialization Data Register (DSPI_SDR).

DSPI_DSICR TXSS bit or DSPI_SSR register bits define the source of the data.

The Least Significant Bits of the DSPI_ASDR or DSPI_SDR registers are selected to be serialized if the
data frame is set to less than 32 bits.

Figure 28-42. DSPI usage in the TSB Configuration

The CSx signals are driven together with SOUT. The tCSC and tASC delays are not available. Delay after
Transfer (DT) is set in SCK clock periods as a binary number formed by concatenation of the
DSPI_CTARn PDT and DT fields plus one, allowing to set DT from 1 to 64 serial clock periods. DT field
provides least significant bits and PDT field provides most significant bits of the Delay after Transfer.

SCK
SOUT
CS1

CS2

Slave1

Slave2

DIN
CLK

CS

CLK
DIN
CS

DSPI

downstream channel

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 775

Figure 28-43. TSB Downstream Frames

The Figure 28-43 shows the two types of MSC downstream frames - command frame, and data frame.

The first transmitted bit, called the selection bit, determines the frame type:

• The selection bit “0” indicates a data frame

• The selection bit “1” indicates a command frame

Data frame may contain up to 2 selection bits to support two external slave devices, (so called dual receiver
configuration) or no selection bits at all.

The command frame can be written by software, through SPI TX FIFO, using one or two FIFO entries
with help of the CONT bit. The data frame consists of up to 32 bits from the SDR or ASDR registers and
up to two zero selection bits. Number of data bits in the data frame is defined by the DSCICR1[TSBCNT]
field.

The selection bit of the MSC command frames (1) can be implemented by software.

The selection bits in the data frames are enabled by DSPI_DSICR1 DSE0 and DSE1 bits. Each DSEn bit
set increases the data frame size by one bit.

To comply with MSC specification, set DSPI_CTARn[LSBFE] to transmit least significant bit first.

Regardless the LSBFE bit setting, the Data Frame Selection Bits, if enabled, are always transmitted first,
before corresponded data sub frames.

28.4.9.1 MSC Dual Receiver Support with PCS Switch Over

When in TSB mode it is possible to switch the set of CSx signals that are driven during the first part of the
frame to a different set of CSx signals during the second part of the frame. The bit, at which this switch
over occurs, is defined by FMSZ field of the DSPI_CTARn register, selected by DSICTAS field of the
DSICR register.

tDT

Data Frame

Invalid
LSB

Active Phase

0

SCK

CS

Master SOUT

tDT = from 1 to 64 TSCK

Invalid

Command Frame

tDT

Command Frame = 4 to 32 bits

LSB1

 Selection BitData Frame = 4 to 32 bits

(CPOL = 0)

Active Phase

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

776 Freescale Semiconductor

Number of the bits, not including the Data Selection Bit, in the first part of the frame is equal to value of
the FMSZ field plus one. During this part of the frame the CSx signal levels are controlled by
DSPI_DSICR DPCSn bits, after that by DSPI_DSICR1 DPCS1_n bits.

The PCS switch over occurs at driving edge of the SCK clock output.

The second Data Selection Bit is inserted after the PCS switch over if enabled.

Data Frame with PCS switch over is shown in Figure 28-44.

Figure 28-44. TSB Data Frame Format for MSC Dual Receiver Operation

28.4.10 Parity Generation and Check.

The DSPI module can generate and check parity in the serial frame. The parity bit replaces the last
transmitted bit in the frame. The parity is calculated for all transmitted data bits in frame, not including the
last, would be transmitted, data bit. The parity generation/control is done on frame basis. The registers
fields, setting frame size defines the total number of bits in the frame, including the parity bit. Thus, to
transmit/receive the same number of data bits with parity check, increase the frame size by one versus the
same data size frame without the parity check.

Parity can be selected as odd or even. Parity Errors in the received frame set Parity Error flags in the Status
register. The Parity Error Interrupt Requests are generated if enabled. The DSPI module can be
programmed to stop SPI or/and DSI frame transmission in case of a frame reception with parity error.

28.4.10.1 Parity for SPI Frames

When the DSPI is in the master mode the parity generation is controlled by PE and PP bits of the TX FIFO
entries (DSPI_PUSHR). Setting the PE bit enables parity generation for transmitted SPI frames and parity
check for received frames. PP bit defines polarity of the parity bit.

When continuous PCS selection is used to transmit SPI data, two parity generation scenarios are available:

• Generate/check parity for the whole frame

• Generate/check parity for each sub-frame separately.

SCK

CS0

SOUT

Data Sub frame 1 tDT

Invalid
LSB0 0

Data Selection Bits

Data Frame = 4 to 34 bits

CS1

Data Sub frame 2

DSPI_CTARn[FMSZ] + 1
TSBCNT - FMSZ

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 777

To generate/check parity for the whole frame set PE bit only in the last command/TX FIFO entry, forming
this frame (with the DSPI_PUSHR register).

To generate/check parity for each sub-frame set PE bit in each command/TX FIFO entry, forming this
frame.

If the parity error occurs for received SPI frame, the DSPI_SR[SPEF] bit is set. If DSPI_MCR[PES] bit is
set, the DSPI stops SPI frames transmission. To resume SPI operation clear the DSPI_SR[SPEF] or the
DSPI_MCR[PES] bits.

In slave mode the parity is controlled by the PE and PP bits of the DSPI_CTAR0 register similar to the
master mode parity generation without continuous PCS selection.

28.4.10.2 Parity for DSI Frames

Parity generation is controlled by PE and PP bits of the DSPI_DSICR register similar to the SPI frames.
The parity is calculated and checked for each DSI frame. (DSPI_DSICR[DCONT] bit has no effect on
parity generation.)

If the parity error occurs for received DSI frame, the DSPI_SR[DPEF] bit is set. If DSPI_DSICR[PES] bit
is set, the DSPI stops DSI frames transmission. To resume DSI operation clear the DSPI_SR[DPEF] or the
DSPI_DSICR[PES] bits.

28.4.11 Interrupts/DMA Requests

The DSPI has several conditions that can only generate interrupt requests and two conditions that can
generate interrupt or DMA request. Table 28-35 lists these conditions.

Each condition has a flag bit in the DSPI Status Register (DSPI_SR) and an Request Enable bit in the DSPI
DMA/Interrupt Request Select and Enable Register (DSPI_RSER). The TX FIFO Fill Flag (TFFF) and
RX FIFO Drain Flag (RFDF) generate interrupt requests or DMA requests depending on the TFFFDIRS
and RFDFDIRS bits in the DSPI_RSER.

Table 28-35. Interrupt and DMA Request Conditions

Condition Flag Interrupt DMA

End of Queue (EOQ) EOQF X

TX FIFO Fill TFFF X X

Transfer Complete TCF X

TX FIFO Underflow TFUF X

RX FIFO Drain RFDF X X

RX FIFO Overflow RFOF X

SPI Parity Error SPEF X

DSI Parity Error DPEF X

DSI Data Interrupt DDIF X

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

778 Freescale Semiconductor

The DSPI module also provides a global interrupt request line, which is asserted when any of individual
interrupt requests lines is asserted.

28.4.11.1 End of Queue Interrupt Request

The End of Queue Request indicates that the end of a transmit queue is reached. The End of Queue Request
is generated when the EOQ bit in the executing SPI command is set and the DSPI_RSER[EOQFRE] bit is
set.

28.4.11.2 Transmit FIFO Fill Interrupt or DMA Request

The Transmit FIFO Fill Request indicates that the TX FIFO is not full. The Transmit FIFO Fill Request is
generated when the number of entries in the TX FIFO is less than the maximum number of possible entries,
and the DSPI_RSER[TFFFRE] bit is set. The DSPI_RSER[TFFFDIRS] bit selects whether a DMA
request or an interrupt request is generated.

28.4.11.3 Transfer Complete Interrupt Request

The Transfer Complete Request indicates the end of the transfer of a serial frame. The Transfer Complete
Request is generated at the end of each frame transfer when the DSPI_RSER[TCFRE] bit is set.

28.4.11.4 Transmit FIFO Underflow Interrupt Request

The Transmit FIFO Underflow Request indicates that an underflow condition in the TX FIFO has
occurred. The transmit underflow condition is detected only for the DSPI, operating in slave mode and SPI
configuration. The TFUF bit is set when the TX FIFO of a DSPI is empty, and a transfer is initiated from
an external SPI master. If the TFUF bit is set while the DSPI_RSER[TFUFRE] bit is set, an interrupt
request is generated.

28.4.11.5 Receive FIFO Drain Interrupt or DMA Request

The Receive FIFO Drain Request indicates that the RX FIFO is not empty. The Receive FIFO Drain
Request is generated when the number of entries in the RX FIFO is not zero, and the
DSPI_RSER[RFDFRE] bit is set. The DSPI_RSER[RFDFDIRS] selects whether a DMA request or an
interrupt request is generated.

28.4.11.6 Receive FIFO Overflow Interrupt Request

The Receive FIFO Overflow Request indicates that an overflow condition in the RX FIFO has occurred.
A Receive FIFO Overflow request is generated when RX FIFO and shift register are full and a transfer is
initiated. The DSPI_RSER[RFOFRE] bit must be set for the interrupt request to be generated.

Depending on the state of the ROOE bit in the DSPI_MCR, the data from the transfer that generated the
overflow is either ignored or shifted in to the shift register. If the ROOE bit is set, the incoming data is
shifted in to the shift register. If the ROOE bit is cleared, the incoming data is ignored.

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 779

28.4.11.7 SPI Frame Parity Error Interrupt Request

The SPI Frame Parity Error Flag indicates that a SPI frame with parity error had been received. The
DSPI_RSER[SPEFRE] bit must be set for the interrupt request to be generated.

28.4.11.8 DSI Frame Parity Error Interrupt Request

The DSI Frame Parity Error Flag indicates that a DSI frame with parity error has been received. The
DSPI_RSER[DPEFRE] bit must be set for the interrupt request to be generated.

28.4.12 Power Saving Features

The DSPI supports two power-saving strategies:

• External Stop mode

• Module Disable mode - Clock gating of non-memory mapped logic

28.4.12.1 Stop Mode (External Stop Mode)

The DSPI supports the stop mode protocol. When a request is made to enter external stop mode, the DSPI
block acknowledges the request. If a serial transfer is in progress, the DSPI waits until it reaches the frame
boundary before it is ready to have its clocks shut off.While the clocks are shut off, the DSPI
memory-mapped logic is not accessible. The states of the interrupt and DMA request signals cannot be
changed while in External Stop mode.

28.4.12.2 Module Disable Mode

Module disable mode is a block-specific mode that the DSPI can enter to save power. Host CPU can
initiate the module disable mode by setting the MDIS bit in the DSPI_MCR.

When the MDIS bit is set, the DSPI negates Clock Enable signal at the next frame boundary. If
implemented, the Clock Enable signal can stop the clock to the non-memory mapped logic. When Clock
Enable is negated, the DSPI is in a dormant state, but the memory mapped registers are still accessible.
Certain read or write operations have a different effect when the DSPI is in the module disable mode.
Reading the RX FIFO Pop Register does not change the state of the RX FIFO. Likewise, writing to the TX
FIFO Push Register does not change the state of the TX FIFO. Clearing either of the FIFOs has no effect
in the module disable mode. Changes to the DIS_TXF and DIS_RXF fields of the DSPI_MCR have no
effect in the module disable mode. In the module disable mode, all status bits and register flags in the DSPI
return the correct values when read, but writing to them has no effect. Writing to the DSPI_TCR during
module disable mode has no effect. Interrupt and DMA request signals cannot be cleared while in the
module disable mode.

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

780 Freescale Semiconductor

28.5 Initialization/Application Information

28.5.1 How to Manage DSPI Queues

The queues are not part of the DSPI, but the DSPI includes features in support of queue management.
Queues are primarily supported in SPI Configuration.

1. When DSPI executes last command word from a queue, the EOQ bit in the command word is set
to indicate to the DSPI that this is the last entry in the queue.

2. At the end of the transfer, corresponding to the command word with EOQ set is sampled, the EOQ
flag (EOQF) in the DSPI_SR is set.

3. The setting of the EOQF flag disables serial transmission and reception of data, putting the DSPI
in the STOPPED state. The TXRXS bit is cleared to indicate the STOPPED state.

4. The DMA can continue to fill TX FIFO until it is full or step 5 occurs.

5. Disable DSPI DMA transfers by disabling the DMA enable request for the DMA channel assigned
to TX FIFO and RX FIFO. This is done by clearing the corresponding DMA enable request bits in
the DMA Controller.

6. Ensure all received data in RX FIFO has been transferred to memory receive queue by reading the
RXCNT in DSPI_SR or by checking RFDF in the DSPI_SR after each read operation of the
DSPI_POPR.

7. Modify DMA descriptor of TX and RX channels for new queues

8. Flush TX FIFO by writing a ‘1’ to the CLR_TXF bit in the DSPI_MCR. Flush RX FIFO by writing
a ‘1’ to the CLR_RXF bit in the DSPI_MCR.

9. Clear transfer count either by setting CTCNT bit in the command word of the first entry in the new
queue or via CPU writing directly to DSPI_TCR[TCNT].

10. Enable DMA channel by enabling the DMA enable request for the DMA channel assigned to the
DSPI TX FIFO, and RX FIFO by setting the corresponding DMA set enable request bit.

11. Enable serial transmission and serial reception of data by clearing the EOQF bit.

28.5.2 Switching Master and Slave Mode

When changing modes in the DSPI, follow the steps below to guarantee proper operation.

1. Halt the DSPI by setting DSPI_MCR[HALT].

2. Clear the transmit and receive FIFOs by writing a 1 to the CLR_TXF and CLR_RXF bits in
DSPI_MCR.

3. Set the appropriate mode in DSPI_MCR[MSTR] and enable the DSPI by clearing
DSPI_MCR[HALT].

28.5.3 Baud Rate Settings

Table 28-36 shows the baud rate that is generated based on the combination of the baud rate prescaler PBR
and the baud rate scaler BR in the DSPI_CTAR registers. The values calculated assume a 100 MHz system
frequency and the double baud rate DBR bit is clear.

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 781

28.5.4 Delay Settings

Table 28-37 shows the values for the Delay after Transfer (tDT) and CS to SCK Delay (TCSC) that can be
generated based on the prescaler values and the scaler values set in the DSPI_CTAR registers. The values
calculated assume a 100 MHz system frequency.

This table does not apply for TSB Continuous mode.

Table 28-36. Baud Rate Values (bps)

Baud Rate Divider Prescaler Values

2 3 5 7

B
au

d
 R

at
e

S
ca

le
r

V
al

u
es

2 25.0M 16.7M 10.0M 7.14M

4 12.5M 8.33M 5.00M 3.57M

6 8.33M 5.56M 3.33M 2.38M

8 6.25M 4.17M 2.50M 1.79M

16 3.12M 2.08M 1.25M 893k

32 1.56M 1.04M 625k 446k

64 781k 521k 312k 223k

128 391k 260k 156k 112k

256 195k 130k 78.1k 55.8k

512 97.7k 65.1k 39.1k 27.9k

1024 48.8k 32.6k 19.5k 14.0k

2048 24.4k 16.3k 9.77k 6.98k

4096 12.2k 8.14k 4.88k 3.49k

8192 6.10k 4.07k 2.44k 1.74k

16384 3.05k 2.04k 1.22k 872

32768 1.53k 1.02k 610 436

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

782 Freescale Semiconductor

28.5.5 Calculation of FIFO Pointer Addresses

Complete visibility of the TX and RX FIFO contents is available through the FIFO registers, and valid
entries can be identified through a memory mapped pointer and a memory mapped counter for each FIFO.
The pointer to the first-in entry in each FIFO is memory mapped. For the TX FIFO the first-in pointer is
the Transmit Next Pointer (TXNXTPTR). For the RX FIFO the first-in pointer is the Pop Next Pointer
(POPNXTPTR). Figure 28-45 illustrates the concept of first-in and last-in FIFO entries along with the
FIFO Counter. The TX FIFO is chosen for the illustration, but the concepts carry over to the RX FIFO.
See Section 28.4.2.4, “Transmit First In First Out (TX FIFO) Buffering Mechanism,” and
Section 28.4.2.5, “Receive First In First Out (RX FIFO) Buffering Mechanism,” for details on the FIFO
operation.

Table 28-37. Delay Values

Delay Prescaler Values

1 3 5 7

D
el

ay
 S

ca
le

r
V

al
u

es

2 20.0 ns 60.0 ns 100.0 ns 140.0 ns

4 40.0 ns 120.0 ns 200.0 ns 280.0 ns

8 80.0 ns 240.0 ns 400.0 ns 560.0 ns

16 160.0 ns 480.0 ns 800.0 ns 1.1 s

32 320.0 ns 960.0 ns 1.6 s 2.2 s

64 640.0 ns 1.9 s 3.2 s 4.5 s

128 1.3 s 3.8 s 6.4 s 9.0 s

256 2.6 s 7.7 s 12.8 s 17.9 s

512 5.1 s 15.4 s 25.6 s 35.8 s

1024 10.2 s 30.7 s 51.2 s 71.7 s

2048 20.5 s 61.4 s 102.4 s 143.4 s

4096 41.0 s 122.9 s 204.8 s 286.7 s

8192 81.9 s 245.8 s 409.6 s 573.4 s

16384 163.8 s 491.5 s 819.2 s 1.1 ms

32768 327.7 s 983.0 s 1.6 ms 2.3 ms

65536 655.4 s 2.0 ms 3.3 ms 4.6 ms

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 783

Figure 28-45. TX FIFO Pointers and Counter

28.5.5.1 Address Calculation for the First-in Entry and Last-in Entry in the TX
FIFO

The memory address of the first-in entry in the TX FIFO is computed by the following equation:

Eqn. 28-8

The memory address of the last-in entry in the TX FIFO is computed by the following equation:

Eqn. 28-9

TX FIFO Base - Base address of TX FIFO
TXCTR - TX FIFO Counter

TXNXTPTR - Transmit Next Pointer

TX FIFO Depth - Transmit FIFO depth, implementation specific

28.5.5.2 Address Calculation for the First-in Entry and Last-in Entry in the RX
FIFO

The memory address of the first-in entry in the RX FIFO is computed by the following equation:

Eqn. 28-10

The memory address of the last-in entry in the RX FIFO is computed by the following equation:

Eqn. 28-11

RX FIFO Base - Base address of RX FIFO

-

-

Entry A (first in)

Entry B

Entry C

Entry D (last in)

-

-

Push TX FIFO Register

Transmit Next
Data Pointer

Shift Register SOUT

+1 -1TX FIFO Counter

TX FIFO Base

First-in Entry Address TX FIFO Base 4 TXNXTPTR +=

Last-in Entry address TX FIFO Base 4 TXCTR TXNXTPTR 1–+  mod TXFIFOdepth +=

First-in Entry Address RX FIFO Base 4 POPNXTPTR +=

Last-in Entry address RX FIFO Base 4 RXCTR POPNXTPTR 1–+  mod (RXFIFOdepth)+=

Chapter 28 Deserial Serial Peripheral Interface (DSPI)

MPC5646C Microcontroller Reference Manual, Rev. 5

784 Freescale Semiconductor

RXCTR - RX FIFO counter
POPNXTPTR - Pop Next Pointer

RX FIFO Depth - Receive FIFO depth, implementation specific

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 785

Chapter 29
FlexRay Communication Controller (FLEXRAY)

29.1 Introduction

29.1.1 Reference

The following documents are referenced.

• FlexRay Communications System Protocol Specification, Version 2.1 Rev A1

• FlexRay Communications System Electrical Physical Layer Specification, Version 2.1 Rev A

29.1.2 Glossary

This section provides a list of terms used in this chapter.

1. The FlexRay Specifications have been developed for automotive applications.The FlexRay Specifications have been neither
developed nor tested for non-automotive applications.

Table 29-1. List of Terms

Term Definition

BCU Buffer Control Unit. Handles message buffer access.

BMIF Bus Master Interface. Provides master access to FlexRay memory area.

CC Communication Controller

CDC Clock Domain Crosser

CHI Controller Host Interface

Cycle length in T The actual length of a cycle in T for the ideal controller (+/- 0 ppm)

EBI External Bus Interface

FlexRay Memory Area Memory area to store the physical message buffer payload data, frame header, frame and slot
status, and synchronization frame related tables.

System Memory Memory that is contains the FlexRay Memory Area.

System Bus Bus that connects the controller and System Memory

FSS Frame Start Sequence

HIF Host Interface. Provides host access to controller.

Host The FlexRay CC host MCU

LUT Look Up Table. Stores message buffer header index value.

LRAM Look Up Table RAM. Module internal memory to store message buffer configuration data and data
field offsets for individual message buffers and receive shadow buffers.

MB Message Buffer

MBIDX Message Buffer Index: the position of a header field entry within the header area. If the header area
is accessed as an array, this is the same as the array index of the entry.

MBNum Message Buffer Number: Position of message buffer configuration registers within the register map.
For example, Message Buffer Number 5 corresponds to the MBCCS5 register.

MCU Microcontroller Unit

T Microtick

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

786 Freescale Semiconductor

29.1.3 Color Coding

Throughout this chapter types of items are highlighted through the use of an italicized color font.

FlexRay protocol parameters, constants and variables are highlighted with blue italics. An example is the
parameter gdActionPointOffset.

FlexRay protocol states are highlighted in green italics. An example is the state POC:normal active.

29.1.4 Overview

The CC is a FlexRay communication controller that implements the FlexRay Communications System
Protocol Specification, Version 2.1 Rev A.

The CC has three main components:

• Controller host interface (CHI)

• Protocol engine (PE)

• Clock domain crossing unit (CDC)

A block diagram of the CC with its surrounding modules is given in Figure 29-1.

MT Macrotick

MTS Media Access Test Symbol

NIT Network Idle Time

PE Protocol Engine

POC Protocol Operation Control. Each state of the POC is denoted by POC:state

Rx Reception

SEQ Sequencer Engine

TCU Time Control Unit

Tx Transmission

sync frame null frame or message frame with Sync Frame Indicator set to 1

startup frame null frame or message frame with both Sync Frame Indicator and Startup Frame Indicator set to 1

normal frame null frame or message frame with both Sync Frame Indicator and Startup Frame Indicator set to 0

null frame frame with Null Frame Indicator set to 0

message frame frame with Null Frame Indicator set to 1

Table 29-1. List of Terms (continued)

Term Definition

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 787

Figure 29-1. FLEXRAY Block Diagram

The protocol engine has two transmitter units TxA and TxB and two receiver units RxA and RxB for
sending and receiving frames through the two FlexRay channels. The time control unit (TCU) is
responsible for maintaining global clock synchronization to the FlexRay network. The overall activity of
the PE is controlled by the sequencer engine (SEQ).

The controller host interface provides host access to the module’s configuration, control, and status
registers, as well as to the message buffer configuration, control, and status registers. The message buffers
themselves, which contain the frame header and payload data received or to be transmitted, and the slot
status information, are stored in the flexray memory area.

The clock domain crossing unit implements signal crossing from the CHI clock domain to the PE clock
domain and vice versa, to allow for asynchronous PE and CHI clock domains.

The CC stores the frame header and payload data of frames received or of frames to be transmitted in the
flexray memory area. The application accesses the flexray memory area to retrieve and provide the frames
to be processed by the CC. In addition to the frame header and payload data, the CC stores the
synchronization frame related tables in the flexray memory area for application processing.

The flexray memory area is located in the system memory of the MCU. The CC has access to the flexray
memory area via its bus master interface (BMIF). The host provides the start address of the flexray
memory area within the system memory by programming the System Memory Base Address Register
(FR_SYMBADR). All flexray memory area related offsets are stored in offset registers. The physical
address pointer into the flexray memory area is calculated using the offset values the flexray memory base
address.

C
lo

ck
 D

om
ai

n
C

ro
ss

in
g

PE

TxA

RxA

TCU

config
SEQ

CHI

HIF

SEARCH

LUT

BCU

FR_A_RX

FR_B_RX

FR_DBG[0]

FR_A_TX

FR_A_TX_EN

FR_B_TX

FR_B_TX_EN

FR_DBG[1]

FR_DBG[2]

FR_DBG[3]

FLEXRAY

Peripheral
Bridge B

System
Memory

BMIF
System Bus

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

788 Freescale Semiconductor

NOTE

The CC does not provide a memory protection scheme for the flexray
memory area.

29.1.5 Features

The CC provides the following features:

• FlexRay Communications System Protocol Specification, Version 2.1 Rev A compliant protocol
implementation

• FlexRay Communications System Electrical Physical Layer Specification, Version 2.1 Rev A
compliant bus driver interface

• single channel support

— FlexRay Port A can be configured to be connected either to physical FlexRay channel A or
physical FlexRay channel B.

• FlexRay bus data rates of 10 Mbit/s, 8 Mbit/s, 5 Mbit/s, and 2.5 Mbit/s supported

• 128 configurable message buffers with

— individual frame ID filtering

— individual channel ID filtering

— individual cycle counter filtering

• message buffer header, status and payload data stored in dedicated flexray memory area

— allows for flexible and efficient message buffer implementation

— consistent data access ensured by means of buffer locking scheme

— application can lock multiple buffers at the same time

• size of message buffer payload data section configurable from 0 up to 254 bytes

• two independent message buffer segments with configurable size of payload data section

— each segment can contain message buffers assigned to the static segment and message buffers
assigned to the dynamic segment at the same time

• zero padding for transmit message buffers in static segment

— applied when the frame payload length exceeds the size of the message buffer data section

• transmit message buffers configurable with state/event semantics

• message buffers can be configured as

— receive message buffer

— transmit message buffer

• individual message buffer reconfiguration supported

— means provided to safely disable individual message buffers

— disabled message buffers can be reconfigured

• two independent receive FIFOs

— one receive FIFO per channel

— up to 255 entries for each FIFO

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 789

— global frame ID filtering, based on both value/mask filters and range filters

— global channel ID filtering

— global message ID filtering for the dynamic segment

• 4 configurable slot error counters

• 4 dedicated slot status indicators

— used to observe slots without using receive message buffers

• measured value indicators for the clock synchronization

— internal synchronization frame ID and synchronization frame measurement tables can be
copied into the flexray memory area

• fractional macroticks are supported for clock correction

• maskable interrupt sources provided via individual and combined interrupt lines

• 1 absolute timer

• 1 timer that can be configured to absolute or relative

• SECDED for protocol engine data ram

• SEDDED for chi lookup table ram

29.1.6 Modes of Operation

This section describes the basic operational power modes of the CC.

29.1.6.1 Disabled Mode

The CC enters the Disabled Mode during hard reset. The CC indicates that it is in the Disabled Mode by
negating the module enable bit MEN in the Module Configuration Register (FR_MCR).

No communication is performed on the FlexRay bus.

All registers with the write access conditions Any Time and Disabled Mode can be accessed for writing as
stated in Section 29.5.2, “Register Descriptions”.

The application configures the CC by accessing the configuration bits and fields in the Module
Configuration Register (FR_MCR).

29.1.6.1.1 Leave Disabled Mode

The CC leaves the Disabled Mode and enters the Normal Mode, when the application writes 1 to the
module enable bit MEN in the Module Configuration Register (FR_MCR)

NOTE
When the CC was enabled, it cannot be disabled the later on.

29.1.6.2 Normal Mode

In this mode the CC is fully functional. The CC indicates that it is in Normal Mode by asserting the module
enable bit MEN in the Module Configuration Register (FR_MCR).

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

790 Freescale Semiconductor

29.1.6.2.1 Enter Normal Mode

This mode is entered when the application requests the CC to leave the Disabled Mode. If the Normal
Mode was entered by leaving the Disabled Mode, the application has to perform the protocol initialization
described in 29.7.2.2, “Protocol Initialization” to achieve full FlexRay functionality.

Depending on the values of the SCM, CHA, and CHB bits in the Module Configuration Register
(FR_MCR), the corresponding FlexRay bus driver ports are enabled and driven.

29.2 External Signal Description
This section lists and describes the CC signals, connected to external pins. These signals are summarized
in Table 29-2 and described in detail in Section 29.2.1, “Detailed Signal Descriptions”.

NOTE
The off chip signals FR_A_RX, FR_A_TX, and FR_A_TX_EN are
available on each package option. The availability of the other off chip
signals depends on the package option.

29.2.1 Detailed Signal Descriptions

This section provides a detailed description of the CC signals, connected to external pins.

29.2.1.1 FR_A_RX — Receive Data Channel A

The FR_A_RX signal carries the receive data for channel A from the corresponding FlexRay bus driver.

29.2.1.2 FR_A_TX — Transmit Data Channel A

The FR_A_TX signal carries the transmit data for channel A to the corresponding FlexRay bus driver.

Table 29-2. External Signal Properties

Name Direction Active Reset Function

FR_A_RX Input — — Receive Data Channel A

FR_A_TX Output — 1 Transmit Data Channel A

FR_A_TX_EN Output Low 1 Transmit Enable Channel A

FR_B_RX Input — — Receive Data Channel B

FR_B_TX Output — 1 Transmit Data Channel B

FR_B_TX_EN Output Low 1 Transmit Enable Channel B

FR_DBG[0] Output — 0 Debug Strobe Signal 0

FR_DBG[1] Output — 0 Debug Strobe Signal 1

FR_DBG[2] Output — 0 Debug Strobe Signal 2

FR_DBG[3] Output — 0 Debug Strobe Signal 3

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 791

29.2.1.3 FR_A_TX_EN — Transmit Enable Channel A

The FR_A_TX_EN signal indicates to the FlexRay bus driver that the CC is attempting to transmit data
on channel A.

29.2.1.4 FR_B_RX — Receive Data Channel B

The FR_B_RX signal carries the receive data for channel B from the corresponding FlexRay bus driver.

29.2.1.5 FR_B_TX — Transmit Data Channel B

The FR_B_TX signal carries the transmit data for channel B to the corresponding FlexRay bus driver

29.2.1.6 FR_B_TX_EN — Transmit Enable Channel B

The FR_B_TX_EN signal indicates to the FlexRay bus driver that the CC is attempting to transmit data
on channel B.

29.2.1.7 FR_DBG[3], FR_DBG[2], FR_DBG[1], FR_DBG[0] — Strobe Signals

These signals provide the selected debug strobe signals. For details on the debug strobe signal selection
refer to Section 29.6.16, “Strobe Signal Support”.

29.3 Controller Host Interface Clocking
The clock for the CHI is derived from the system bus clock and has the same phase and frequency as the
system bus clock. There are two constraints for the minimum CHI clock frequency.

The first constraint corresponds to the number of utilized message buffers and is specified in
Section 29.7.5, “Number of Usable Message Buffers”.

The second constraint corresponds to the value of the TIMEOUT field in the System Memory Access
Time-Out Register (FR_SYMATOR) and is specified in Section 29.7.1.1, “Configure System Memory
Access Time-Out Register (FR_SYMATOR)”.

29.4 Protocol Engine Clocking
The clock for the protocol engine can be generated by two sources. The first source is the external high
speed crystal oscillator and the second source is an internal PLL. The clock source to be used is selected
by the clock source select bit CLKSEL in the Module Configuration Register (FR_MCR).

29.4.1 Oscillator Clocking

If the protocol engine is clocked by the external crystal oscillator, a 40 MHz crystal or CMOS compatible
clock must be connected to the oscillator pins. The crystal or clock must fulfill the requirements given by
the FlexRay Communications System Protocol Specification, Version 2.1 Rev A.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

792 Freescale Semiconductor

29.4.2 PLL Clocking

FlexRay protocol engine can be clocked by the internal PLL (see Figure 6-1., “MPC5646C system clock
generation”). For PLL clocking, the input to FlexRay has to be 80Mhz. If the System clock output of PLL
is selected as Protocol clock for FlexRay through AUX_CLK_MUX, then PLL needs to be programmed
for 80Mhz frequency. If the PLL_PHI1_CLK output of PLL is selected, then PLL needs to be programmed
such that VCO of the PLL is 480 MHz and PLL_PHI1_CLk is VCO/6 = 80Mhz.

29.5 Memory Map and Register Description
The CC occupies 8 KB (8192 bytes) of address space starting at the CCs base address defined by the
memory map of the MCU.

29.5.1 Memory Map

The complete memory map of the CC is shown in Table 29-3. The addresses presented here are the offsets
relative to the CC base address.

Table 29-3. FlexRay memory map

Base address: 0xFFFE_0000

Address offset Register Location

0x0000 Module Version Register (FR_MVR) on page 798

0x0002 Module Configuration Register (FR_MCR) on page 798

0x0004 System Memory Base Address High Register (FR_SYMBADHR) on page 800

0x0006 System Memory Base Address Low Register (FR_SYMBADLR) on page 800

0x0008 Strobe Signal Control Register (FR_STBSCR) on page 801

0x000A Reserved

0x000C Message Buffer Data Size Register (FR_MBDSR) on page 802

0x000E Message Buffer Segment Size and Utilization Register (FR_MBSSUTR) on page 803

0x0010 PE DRAM Access Register (FR_PEDRAR) on page 803

0x0012 PE DRAM Data Register (FR_PEDRDR) on page 804

0x0014 Protocol Operation Control Register (FR_POCR) on page 805

0x0016 Global Interrupt Flag and Enable Register (FR_GIFER) on page 806

0x0018 Protocol Interrupt Flag Register 0 (FR_PIFR0) on page 808

0x001A Protocol Interrupt Flag Register 1 (FR_PIFR1) on page 810

0x001C Protocol Interrupt Enable Register 0 (FR_PIER0) on page 811

0x001E Protocol Interrupt Enable Register 1 (FR_PIER1) on page 813

0x0020 CHI Error Flag Register (FR_CHIERFR) on page 814

0x0022 Message Buffer Interrupt Vector Register (FR_MBIVEC) on page 816

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 793

0x0024 Channel A Status Error Counter Register (FR_CASERCR) on page 816

0x0026 Channel B Status Error Counter Register (FR_CBSERCR) on page 817

0x0028 Protocol Status Register 0 (FR_PSR0) on page 817

0x002A Protocol Status Register 1 (FR_PSR1) on page 819

0x002C Protocol Status Register 2 (FR_PSR2) on page 820

0x002E Protocol Status Register 3 (FR_PSR3) on page 821

0x0030 Macrotick Counter Register (FR_MTCTR) on page 823

0x0032 Cycle Counter Register (FR_CYCTR) on page 823

0x0034 Slot Counter Channel A Register (FR_SLTCTAR) on page 824

0x0036 Slot Counter Channel B Register (FR_SLTCTBR) on page 824

0x0038 Rate Correction Value Register (FR_RTCORVR) on page 824

0x003A Offset Correction Value Register (FR_OFCORVR) on page 825

0x003C Combined Interrupt Flag Register (FR_CIFR) on page 825

0x003E System Memory Access Time-Out Register (FR_SYMATOR) on page 827

0x0040 Sync Frame Counter Register (FR_SFCNTR) on page 827

0x0042 Sync Frame Table Offset Register (FR_SFTOR) on page 828

0x0044 Sync Frame Table Configuration, Control, Status Register (FR_SFTCCSR) on page 828

0x0046 Sync Frame ID Rejection Filter Register (FR_SFIDRFR) on page 830

0x0048 Sync Frame ID Acceptance Filter Value Register (FR_SFIDAFVR) on page 830

0x004A Sync Frame ID Acceptance Filter Mask Register (FR_SFIDAFMR) on page 830

0x004C Network Management Vector Register 0 (FR_NMVR0) on page 831

0x004E Network Management Vector Register 1 (FR_NMVR1) on page 831

0x0050 Network Management Vector Register 2 (FR_NMVR2) on page 831

0x0052 Network Management Vector Register 3 (FR_NMVR3) on page 831

0x0054 Network Management Vector Register 4 (FR_NMVR4) on page 831

0x0056 Network Management Vector Register 5 (FR_NMVR5) on page 831

0x0058 Network Management Vector Length Register (FR_NMVLR) on page 832

0x005A Timer Configuration and Control Register (FR_TICCR) on page 832

0x005C Timer 1 Cycle Set Register (FR_TI1CYSR) on page 833

0x005E Timer 1 Macrotick Offset Register (FR_TI1MTOR) on page 834

0x0060 Timer 2 Configuration Register 0 (FR_TI2CR0) on page 834

Table 29-3. FlexRay memory map (continued)

Base address: 0xFFFE_0000

Address offset Register Location

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

794 Freescale Semiconductor

0x0062 Timer 2 Configuration Register 1 (FR_TI2CR1) on page 835

0x0064 Slot Status Selection Register (FR_SSSR) on page 836

0x0066 Slot Status Counter Condition Register (FR_SSCCR) on page 837

0x0068 Slot Status Register 0 (FR_SSR0) on page 838

0x006A Slot Status Register 1 (FR_SSR1) on page 838

0x006C Slot Status Register 2 (FR_SSR2) on page 838

0x006E Slot Status Register 3 (FR_SSR3) on page 838

0x0070 Slot Status Register 4 (FR_SSR4) on page 838

0x0072 Slot Status Register 5 (FR_SSR5) on page 838

0x0074 Slot Status Register 6 (FR_SSR6) on page 838

0x0076 Slot Status Register 7 (FR_SSR7) on page 838

0x0078 Slot Status Counter Register 0 (FR_SSCR0) on page 840

0x007A Slot Status Counter Register 1 (FR_SSCR1) on page 840

0x007C Slot Status Counter Register 2 (FR_SSCR2) on page 840

0x007E Slot Status Counter Register 3 (FR_SSCR3) on page 840

0x0080 MTS A Configuration Register (FR_MTSACFR) on page 841

0x0082 MTS B Configuration Register (MTSBCFR) on page 841

0x0084 Receive Shadow Buffer Index Register (FR_RSBIR) on page 842

0x0086 Receive FIFO Watermark and Selection Register (FR_RFWMSR) on page 844

0x0088 Receive FIFO Start Index Register (FR_RFSIR) on page 845

0x008A Receive FIFO Depth and Size Register (RFDSR) on page 845

0x008C Receive FIFO A Read Index Register (FR_RFARIR) on page 845

0x008E Receive FIFO B Read Index Register (FR_RFBRIR) on page 846

0x0090 Receive FIFO Message ID Acceptance Filter Value Register
(FR_RFMIDAFVR)

on page 847

0x0092 Receive FIFO Message ID Acceptance Filter Mask Register
(FR_RFMIDAFMR)

on page 847

0x0094 Receive FIFO Frame ID Rejection Filter Value Register (FR_RFFIDRFVR) on page 848

0x0096 Receive FIFO Frame ID Rejection Filter Mask Register (FR_RFFIDRFMR) on page 848

0x0098 Receive FIFO Range Filter Configuration Register (FR_RFRFCFR) on page 849

0x009A Receive FIFO Range Filter Control Register (FR_RFRFCTR) on page 849

0x009C Last Dynamic Transmit Slot Channel A Register (FR_LDTXSLAR) on page 850

Table 29-3. FlexRay memory map (continued)

Base address: 0xFFFE_0000

Address offset Register Location

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 795

0x009E Last Dynamic Transmit Slot Channel B Register (FR_LDTXSLBR) on page 851

0x00A0
...

0x00DC

Protocol Configuration Register 0 (FR_PCR0)
...
Protocol Configuration Register 30 (FR_PCR30)

on page 853
...

on page 859

0x00DE
...

0x00E4

Reserved

0x00E6 Receive FIFO Start Data Offset Register (FR_RFSDOR) on page 842

0x00E8 Receive FIFO System Memory Base Address High Register
(FR_RFSYMBADHR)

on page 843

0x00EA Receive FIFO System Memory Base Address Low Register
(FR_RFSYMBADLR)

on page 843

0x00EC Receive FIFO Periodic Timer Register (FR_RFPTR) on page 843

0x00EE Receive FIFO Fill Level and POP Count Register (FR_RFFLPCR) on page 846

0x00F0 ECC Error Interrupt Flag and Enable Register (FR_EEIFER) on page 859

0x00F2 ECC Error Report and Injection Control Register (FR_EERICR) on page 861

0x00F4 ECC Error Report Address Register (FR_EERAR) on page 862

0x00F6 ECC Error Report Data Register (FR_EERDR) on page 863

0x00F8 ECC Error Report Code Register (FR_EERCR) on page 864

0x00FA ECC Error Injection Address Register (FR_EEIAR) on page 865

0x00FC ECC Error Injection Data Register (FR_EEIDR) on page 865

0x00FE ECC Error Injection Code Register (FR_EEICR) on page 866

0x0100
...

0x07FE

Reserved

0x0800 Message Buffer Configuration, Control, Status Register 0 (FR_MBCCSR0) on page 866

0x0802 Message Buffer Cycle Counter Filter Register 0 (FR_MBCCFR0) on page 868

0x0804 Message Buffer Frame ID Register 0 (FR_MBFIDR0) on page 869

0x0806 Message Buffer Index Register 0 (FR_MBIDXR0) on page 869

...

0x0BF8 Message Buffer Configuration, Control, Status Register 127
(FR_MBCCSR127)

on page 866

0x0BFA Message Buffer Cycle Counter Filter Register 127 (FR_MBCCFR127) on page 868

0x0BFC Message Buffer Frame ID Register 127 (FR_MBFIDR127) on page 869

0x0BFE Message Buffer Index Register 127 (FR_MBIDXR127) on page 869

Table 29-3. FlexRay memory map (continued)

Base address: 0xFFFE_0000

Address offset Register Location

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

796 Freescale Semiconductor

29.5.2 Register Descriptions

This section provides detailed descriptions of all registers in ascending address order, presented as 16-bit
wide entities

Table 29-4 provides a key for the register figures and register tables.

29.5.2.1 Register Reset

All registers except the Message Buffer Cycle Counter Filter Registers (FR_MBCCFRn), Message Buffer
Frame ID Registers (FR_MBFIDRn), and Message Buffer Index Registers (FR_MBIDXRn) are reset to
their reset value on system reset. The registers mentioned above are located in physical memory blocks
and, thus, they are not affected by reset. For some register fields, additional reset conditions exist. These

0x0C00
...

0x0FFF

Reserved

0x1000
...

0x1106

Message Buffer Data Field Offset Register 0 (FR_MBDOR0)
...
Message Buffer Data Field Offset Register 131 (FR_MBDOR131)

on page 870

0x1108
...

0x1112

LRAM ECC Error Test Register 0 (FR_LEETR0)
...
LRAM ECC Error Test Register 5 (FR_LEETR5)

on page 870

0x1114
...

0x1FFE

Reserved

Table 29-4. Register Access Conventions

Convention Description

Depending on its placement in the read or write row, indicates that the bit is not readable or not writeable.

R* Reserved bit or field, will not be changed. Application must not write any value different from the reset value.

FIELDNAME Identifies the field. Its presence in the read or write row indicates that it can be read or written.

Register Field Types

rwm A read/write bit that may be modified by a hardware in some fashion other than by a reset.

w1c Write one to clear. A flag bit that can be read, is cleared by writing a one, writing 0 has no effect.

Reset Value

0 Resets to zero.

1 Resets to one.

– Not defined after reset and not affected by reset.

Table 29-3. FlexRay memory map (continued)

Base address: 0xFFFE_0000

Address offset Register Location

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 797

additional reset conditions are mentioned in the detailed description of the register. The additional reset
conditions are explained in Table 29-5.

29.5.2.2 Register Write Access

This section describes the write access restriction terms that apply to all registers.

29.5.2.2.1 Register Write Access Restriction

For each register bit and register field, the write access conditions are specified in the detailed register
description. A description of the write access conditions is given in Table 29-6. If, for a specific register
bit or field, none of the given write access conditions is fulfilled, any write attempt to this register bit or
field is ignored without any notification. The values of the bits or fields are not changed. The condition
term [A or B] indicates that the register or field can be written to if at least one of the conditions is
fulfilled.The condition term [A and B] indicates that the register or field can be written to if both conditions
are fulfilled.

29.5.2.2.2 Register Write Access Requirements

All registers can be accessed with 8-bit, 16-bit and 32-bit wide operations.

For some of the registers, at least a 16-bit wide write access is required to ensure correct operation. This
write access requirement is stated in the detailed register description for each register affected. If an 8-bit
wide write access is performed to any of these registers, this access is ignored without notification.

29.5.2.2.3 Internal Register Access

The following memory mapped registers are used to access multiple internal registers.

Table 29-5. Additional Register Reset Conditions

Condition Description

Protocol RUN Command The register field is reset when the application writes to RUN command “0101” to the
POCCMD field in the Protocol Operation Control Register (FR_POCR).

Message Buffer Disable The register field is reset when the application has disabled the message buffer.
This happens when the application writes 1 to the message buffer disable trigger bit
FR_MBCCSRn[EDT] while the message buffer is enabled (FR_MBCCSRn[EDS] = 1) and
the CC grants the disable to the application by clearing the FR_MBCCSRn[EDS] bit.

Table 29-6. Register Write Access Restrictions

Condition Indication Description

Any Time - No write access restriction.

Disabled Mode FR_MCR[MEN] = 0 Write access only when CC is in Disabled Mode.

Normal Mode FR_MCR[MEN] = 1 Write access only when CC is in Normal Mode.

POC:config FR_PSR0[PROTSTATE] = POC:config Write access only when Protocol is in the POC:config state.

MB_DIS FR_MBCCSR[EDS] = 0 Write access only when related Message Buffer is disabled.

MB_LCK FR_MBCCSRn[LCKS] = 1 Write access only when related Message Buffer is locked.

IDL FR_EEIRICR[BSY] = 0 Write access only when ECC configuration is idle

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

798 Freescale Semiconductor

• Strobe Signal Control Register (FR_STBSCR)

• Slot Status Selection Register (FR_SSSR)

• Slot Status Counter Condition Register (FR_SSCCR)

• Receive Shadow Buffer Index Register (FR_RSBIR)

Each of these memory mapped registers provides a SEL field and a WMD bit. The SEL field is used to
select the internal register. The WMD bit controls the write mode. If the WMD bit is set to 0 during the
write access, all fields of the internal register are updated. If the WMD bit set to 1, only the SEL field is
changed. All other fields of the internal register remain unchanged. This allows for reading back the values
of the selected internal register in a subsequent read access.

29.5.2.3 Module Version Register (FR_MVR)

This register provides the CC version number. The module version number is derived from the CHI version
number and the PE version number.

29.5.2.4 Module Configuration Register (FR_MCR)

This register defines the global configuration of the CC.

Base + 0x0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CHIVER PEVER

W

Reset 1 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0

Figure 29-2. Module Version Register (FR_MVR)

Table 29-7. FR_MVR Field Descriptions

Field Description

CHIVER CHI Version Number — This field provides the version number of the controller host interface.

PEVER PE Version Number — This field provides the version number of the protocol engine.

Base + 0x0002 Write: MEN, SBFF, SCM, CHB, CHA, ECCE, FUM, FAM, CLKSEL, BITRATE: Disabled Mode
SFFE: Disabled Mode or POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MEN SBFF SCM CHB CHA SFFE ECCE R* FUM FAM

0 CLK
SEL

BITRATE
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-3. Module Configuration Register (FR_MCR)

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 799

Table 29-8. FR_MCR Field Descriptions

Field Description

MEN Module Enable — This bit indicates whether or not the CC is in the Disabled Mode. The application requests
the CC to leave the Disabled Mode by writing 1 to this bit Before leaving the Disabled Mode, the application must
configure the SCM, SBFF, CHB, CHA, TMODE, BITRATE values. For details see Section 29.1.6, “Modes of
Operation”.
0 Write: ignored, CC disable not possible

Read: CC disabled
1 Write: enable CC

Read: CC enabled
Note: If the CC is enabled it can not be disabled.

SBFF System Bus Failure Freeze — This bit controls the behavior of the CC in case of a system bus failure.
0 Continue normal operation
1 Transition to freeze mode

SCM Single Channel Device Mode — This control bit defines the channel device mode of the CC as described in
Section 29.6.10, “Channel Device Modes”.
0 CC works in dual channel device mode
1 CC works in single channel device mode

CHB
CHA

Channel Enable — protocol related parameter: pChannels
The semantic of these control bits depends on the channel device mode controlled by the SCM bit and is given
Table 29-9.

SFFE Synchronization Frame Filter Enable — This bit controls the filtering for received synchronization frames. For
details see Section 29.6.15, “Sync Frame Filtering”.
0 Synchronization frame filtering disabled
1 Synchronization frame filtering enabled

ECCE ECC Functionality Enable — This bit controls the ecc memory error detection functionality. For details see
Section 29.6.24, “Memory Content Error Detection”.
0 ECC functionality (injection, detection, reporting, response) disabled
1 ECC functionality enabled

FUM FIFO Update Mode — This bit controls the FIFO update behavior when the interrupt flags FR_GIFER[FAFAIF]
and FR_GIFER[FAFBIF] are written by the application (see Section 29.6.9.8, “FIFO Update”)
0 FIFOA/FIFOB is updated on writing 1 to FR_GIFER[FAFAIF] /FR_GIFER[FAFBIF]
1 FIFOA/FIFOB) is not updated on writing 1 to FR_GIFER[FAFAIF]/FR_GIFER[FAFBIF]

FAM FIFO Address Mode — This bit controls the location of the system memory base address for the FIFOs. (see
Section 29.6.9.2, “FIFO Configuration”)
0 FIFO Base Address located in System Memory Base Address Register (FR_SYMBADR)
1 FIFO Base Address located in Receive FIFO System Memory Base Address Register (FR_RFSYMBADR)

CLKSEL Protocol Engine Clock Source Select — This bit is used to select the clock source for the protocol engine.
0 PE clock source is generated by on-chip crystal oscillator.
1 PE clock source is generated by on-chip PLL.
Note: Before changing the clock source, the FlexRay module should be disabled to prevent any communication

glitches.

BITRATE FlexRay Bus Bit Rate — This bit field defines the FlexRay Bus Bit Rate.
000 10.0 Mbit/sec
001 5.0 Mbit/sec
010 2.5 Mbit/sec
011 8.0 Mbit/sec
100 reserved
101 reserved
110 reserved
111 reserved

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

800 Freescale Semiconductor

29.5.2.5 System Memory Base Address Register (FR_SYMBADR)

NOTE
The system memory base address must be set before the CC is enabled.

The system memory base address registers define the base address of the flexray memory area within the
system memory. The base address is used by the BMIF to calculate the physical memory address for
system memory accesses.

Table 29-9. FlexRay Channel Selection

SCM CHB CHA Description

Dual Channel Device Modes

0

0 0
ports FR_A_RX, FR_A_TX, and FR_A_TX_EN not driven by CC
ports FR_B_RX, FR_B_TX, and FR_A_TX_EN not driven by CC

0 1
ports FR_A_RX, FR_A_TX, and FR_A_TX_EN driven by CC - connected to FlexRay channel A
ports FR_B_RX, FR_B_TX, and FR_A_TX_EN not driven by CC

1 0
ports FR_A_RX, FR_A_TX, and FR_A_TX_EN not driven by CC
ports FR_B_RX, FR_B_TX, and FR_A_TX_EN driven by CC - connected to FlexRay channel B

1 1
ports FR_A_RX, FR_A_TX, and FR_A_TX_EN driven by CC - connected to FlexRay channel A
ports FR_B_RX, FR_B_TX, and FR_A_TX_EN driven by CC - connected to FlexRay channel B

Single Channel Device Mode

1

0 0
ports FR_A_RX, FR_A_TX, and FR_A_TX_EN not driven by CC
ports FR_B_RX, FR_B_TX, and FR_A_TX_EN not driven by CC

0 1
ports FR_A_RX, FR_A_TX, and FR_A_TX_EN driven by CC - connected to FlexRay channel A
ports FR_B_RX, FR_B_TX, and FR_A_TX_EN not driven by CC

1 0
ports FR_A_RX, FR_A_TX, and FR_A_TX_EN driven by CC - connected to FlexRay channel B
ports FR_B_RX, FR_B_TX, and FR_A_TX_EN not driven by CC

1 1 reserved

Base + 0x0004 Write: Disabled Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SMBA[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-4. System Memory Base Address High Register (FR_SYMBADHR)

Base + 0x0006 Write: Disabled Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SMBA[15:4]

0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-5. System Memory Base Address Low Register (FR_SYMBADLR)

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 801

29.5.2.6 Strobe Signal Control Register (FR_STBSCR)

This register is used to assign the individual protocol timing related strobe signals given in Table 29-12 to
the external strobe ports. Each strobe signal can be assigned to at most one strobe port. Each write access
to registers overwrites the previously written ENB and STBPSEL values for the signal indicated by SEL.
If more than one strobe signal is assigned to one strobe port, the current values of the strobe signals are
combined with a binary OR and presented at the strobe port. If no strobe signal is assigned to a strobe port,
the strobe port carries logic 0. For more detailed and timing information refer to Section 29.6.16, “Strobe
Signal Support”.

NOTE
In single channel device mode, channel B related strobe signals are
undefined and should not be assigned to the strobe ports.

Table 29-10. FR_SYMBADR Field Descriptions

Field Description

SMBA System Memory Base Address — This is the value of the system memory base address for the individual
message buffers and sync frame table. This is the value of the system memory base address for the receive
FIFO if the FIFO address mode bit FR_MCR[FAM] is set to 1. It is defines as a byte address.

Base + 0x0008 16-bit write access required Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
SEL

0 0 0
ENB

0 0
STBPSEL

W WMD

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-6. Strobe Signal Control Register (FR_STBSCR)

Table 29-11. FR_STBSCR Field Descriptions

Field Description

WMD Write Mode — This control bit defines the write mode of this register.
0 Write to all fields in this register on write access.
1 Write to SEL field only on write access.

SEL Strobe Signal Select — This control field selects one of the strobe signals given in Table 29-12 to be enabled
or disabled and assigned to one of the four strobe ports given in Table 29-12.

ENB Strobe Signal Enable — The control bit is used to enable and to disable the strobe signal selected by
STBSSEL.
0 Strobe signal is disabled and not assigned to any strobe port.
1 Strobe signal is enabled and assigned to the strobe port selected by STBPSEL.

STBPSEL Strobe Port Select — This field selects the strobe port that the strobe signal selected by the SEL is assigned
to. All strobe signals that are enabled and assigned to the same strobe port are combined with a binary OR
operation.
00 assign selected signal to FR_DBG[0]
01 assign selected signal to FR_DBG[1]
10 assign selected signal to FR_DBG[2]
11 assign selected signal to FR_DBG[3]

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

802 Freescale Semiconductor

.;

29.5.2.7 Message Buffer Data Size Register (FR_MBDSR)

This register defines the size of the message buffer data section for the two message buffer segments in a
number of two-byte entities.

The CC provides two independent segments for the individual message buffers. All individual message
buffers within one segment have to have the same size for the message buffer data section. This size can
be different for the two message buffer segments.

Table 29-12. Strobe Signal Mapping

SEL
Description Channel Type Offset1

1 Given in PE clock cycles

Reference
dec hex

0 0x0 arm - value +1 MT start

1 0x1 mt - value +1 MT start

2 0x2 cycle start - pulse 0 MT start

3 0x3 minislot start - pulse 0 MT start

4 0x4 slot start A
pulse 0 MT start

5 0x5 B

6 0x6 receive data after glitch filtering A
value +4

FR_A_RX

7 0x7 B FR_B_RX

8 0x8 channel idle indicator A
level +5

FR_A_RX

9 0x9 B FR_B_RX

10 0xA syntax error detected A
pulse +4

FR_A_RX

11 0xB B FR_B_RX

12 0xC content error detected A
level +4

FR_A_RX

13 0xD B FR_B_RX

14 0xE receive FIFO almost-full interrupt signals
A

value n.a.

RX FIFO A
Almost Full

Interrupt

15 0xF
B

RX FIFO B
Almost Full

Interrupt

Base + 0x000C Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
MBSEG2DS

0
MBSEG1DS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-7. Message Buffer Data Size Register (FR_MBDSR)

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 803

29.5.2.8 Message Buffer Segment Size and Utilization Register (FR_MBSSUTR)

This register is used to define the last individual message buffer that belongs to the first message buffer
segment and the number of the last used individual message buffer.

29.5.2.9 PE DRAM Access Register (FR_PEDRAR)

Table 29-13. FR_MBDSR Field Descriptions

Field Description

MBSEG2DS Message Buffer Segment 2 Data Size — The field defines the size of the message buffer data section in
two-byte entities for message buffers within the second message buffer segment.

MBSEG1DS Message Buffer Segment 1 Data Size — The field defines the size of the message buffer data section in
two-byte entities for message buffers within the first message buffer segment.

Base + 0x000E Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
LAST_MB_SEG1

0
LAST_MB_UTIL

W

Reset 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

Figure 29-8. Message Buffer Segment Size and Utilization Register (FR_MBSSUTR)

Table 29-14. FR_MBSSUTR Field Descriptions

Field Description

LAST_MB_SEG1 Last Message Buffer In Segment 1 — This field defines the message buffer number of the last individual
message buffer that is assigned to the first message buffer segment. The individual message buffers in the
first segment correspond to the message buffer control registers FR_MBCCSRn, FR_MBCCFRn,
FR_MBFIDRn, FR_MBIDXRn with n <= LAST_MB_SEG1. The first message buffer segment contains
LAST_MB_SEG1+1 individual message buffers.
Note: The first message buffer segment contains at least one individual message buffer.

The individual message buffers in the second message buffer segment correspond to the message buffer
control registers FR_MBCCSRn, FR_MBCCFRn, FR_MBFIDRn, FR_MBIDXRn with LAST_MB_SEG1 < n
< 128.
Note: If LAST_MB_SEG1 = 127 all individual message buffers belong to the first message buffer segment

and the second message buffer segment is empty.

LAST_MB_UTIL Last Message Buffer Utilized — This field defines the message buffer number of last utilized individual
message buffer. The message buffer search engine examines all individual message buffer with a message
buffer number n <= LAST_MB_UTIL.
Note: If LAST_MB_UTIL=LAST_MB_SEG1 all individual message buffers belong to the first message

buffer segment and the second message buffer segment is empty.

Base + 0x0010 16-bit write access required Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
INST ADDR

DAD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-9. PE DRAM Access Register (FR_PEDRAR)

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

804 Freescale Semiconductor

This register is used to trigger write and read operations on the PE data memory (PE DRAM). These
operations are used for memory error injection and memory error observation.

Each write access to this registers initiates a read or write operation on the PE DRAM. The access done
status bit DAD is cleared after the write access and is set if the PE DRAM access has been finished.

In case of an PE DRAM write access, the data provided in PE DRAM Data Register (FR_PEDRDR) are
written into the PE DRAM, read back from the PE DRAM and are stored into the PE DRAM Data Register
(FR_PEDRDR).

In case of an PE DRAM read access, the requested data are read from PE DRAM and stored into the PE
DRAM Data Register (FR_PEDRDR).

For a detailed description refer to Section 29.6.24, “Memory Content Error Detection”

29.5.2.10 PE DRAM Data Register (FR_PEDRDR)

This register provides the data to be written to or read from the PE DRAM by the access initiated by write
access to the PE DRAM Access Register (FR_PEDRAR).

Table 29-15. FR_PEDRAR Field Descriptions

Field Description

INST PE DRAM Access Instruction — This field defines the operation to be executed on the PE DRAM.
0011 PE DRAM write: Write FR_PEDRDR[DATA] to PE DRAM address ADDR (16 bit)
0101 PE DRAM read: Read Data from PE DRAM address ADDR (16 bit) into FR_PEDRDR[DATA]

other reserved

ADDR PE DRAM Access Address — This field defines the address in the PE DRAM to be written to or read from.

DAD PE DRAM Access Done — This status bit is cleared when the application has written to this register and is
set when the PE DRAM access has finished.
0 PE DRAM access running
1 PE DRAM access done

Base + 0x0012 16-bit write access required Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-10. PE DRAM Data Register (FR_PEDRDR)

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 805

29.5.2.11 Protocol Operation Control Register (FR_POCR)

The application uses this register to issue

• protocol control commands

• external clock correction commands

Protocol control commands are issued by writing to the POCCMD field. For more information on protocol
control commands, see Section 29.7.6, “Protocol Control Command Execution”.

External clock correction commands are issued by writing to the EOC_AP and ERC_AP fields. For more
information on external clock correction, refer to Section 29.6.11, “External Clock Synchronization”.

Base + 0x0014 Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
EOC_AP ERC_AP

BSY 0 0 0
POCCMD

W WME WMC

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-11. Protocol Operation Control Register (FR_POCR)

Table 29-16. FR_POCR Field Descriptions

Field Description

WME Write Mode External Correction — This bit controls the write mode of the EOC_AP and ERC_AP fields.
0 Write to EOC_AP and ERC_AP fields on register write.
1 No write to EOC_AP and ERC_AP fields on register write.

EOC_AP External Offset Correction Application — This field is used to trigger the application of the external offset
correction value defined in the Protocol Configuration Register 29 (FR_PCR29).
00 do not apply external offset correction value
01 reserved
10 subtract external offset correction value
11 add external offset correction value

ERC_AP External Rate Correction Application — This field is used to trigger application of the external rate correction
value defined in the Protocol Configuration Register 21 (FR_PCR21)
00 do not apply external rate correction value
01 reserved
10 subtract external rate correction value
11 add external rate correction value

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

806 Freescale Semiconductor

29.5.2.12 Global Interrupt Flag and Enable Register (FR_GIFER)

This register provides the means to control some of the interrupt request lines and provides the
corresponding interrupt flags. The interrupt flags MIF, PRIF, CHIF, RBIF, and TBIF are the outcome of a
binary OR of the related individual interrupt flags and interrupt enables. The generation scheme for these
flags is depicted in Figure 29-157. For more details on interrupt generation, see Section 29.6.20, “Interrupt
Support. These flags are cleared automatically when all of the corresponding interrupt flags or interrupt
enables in the related interrupt flag and enable registers are cleared by the application.

BSY

WMC

Protocol Control Command Write Busy — This status bit indicates the acceptance of the protocol control
command issued by the application via the POCCMD field. The CC sets this status bit when the application has
issued a protocol control command via the POCCMD field. The CC clears this status bit when protocol control
command was accepted by the PE.When the application issues a protocol control command while the BSY bit
is asserted, the CC ignores this command, sets the protocol command ignored error flag PCMI_EF in the CHI
Error Flag Register (FR_CHIERFR), and will not change the value of the POCCMD field.
0 Command write idle, command accepted and ready to receive new protocol command.
1 Command write busy, command not yet accepted, not ready to receive new protocol command.
Write Mode Command — This bit controls the write mode of the POCCMD field.
0 Write to POCCMD field on register write.
1 Do not write to POCCMD field on register write.

POCCMD Protocol Control Command — The application writes to this field to issue a protocol control command to the
PE. The CC sends the protocol command to the PE immediately. While the transfer is running, the BSY bit is set.
0000 ALLOW_COLDSTART — Immediately activate capability of node to cold start cluster.
0001 ALL_SLOTS — Delayed1 transition to the all slots transmission mode.
0010 CONFIG — Immediately transition to the POC:config state.
0011 FREEZE — Immediately transition to the POC:halt state.
0100 READY, CONFIG_COMPLETE — Immediately transition to the POC:ready state.
0101 RUN — Immediately transition to the POC:startup start state.
0110 DEFAULT_CONFIG — Immediately transition to the POC:default config state.
0111 HALT — Delayed transition to the POC:halt state
1000 WAKEUP — Immediately initiate the wakeup procedure.
1001 reserved
1010 reserved
1011 reserved
1100 reserved
1101 reserved
1110 reserved
1111 reserved

1 Delayed means on completion of current communication cycle.

Base + 0x0016 Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MIF PRIF CHIF

WUP
IF

FAFB
IF

FAFA
IF

RBIF TBIF
MIE PRIE CHIE

WUP
IE

FAFB
IE

FAFA
IE

RBIE TBIE
W w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-12. Global Interrupt Flag and Enable Register (FR_GIFER)

Table 29-16. FR_POCR Field Descriptions

Field Description

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 807

Table 29-17. FR_GIFER Field Descriptions

Field Description

MIF Module Interrupt Flag — This interrupt flag is set if at least one of the other interrupt flags in this register and
the related interrupt enable bit are set.
0 No interrupt flag and related interrupt enable bit are set
1 At least one of the other interrupt flags in this register and the related interrupt bit are set.

PRIF Protocol Interrupt Flag — This interrupt flag is set if at least one of the individual flags in the Protocol Interrupt
Flag Register 0 (FR_PIFR0) and Protocol Interrupt Flag Register 1 (FR_PIFR1) and the related interrupt enable
bit are set.
0 No individual protocol interrupt flag and related interrupt enable bit are set.
1 At least one of the individual protocol interrupt flags and the related interrupt enable bit are set.

CHIF CHI Interrupt Flag — This interrupt flag is set if at least one of the error flags in the CHI Error Flag Register
(FR_CHIERFR) and the chi error interrupt enable bit FR_GIFER[CHIE] are set.
0 All CHI error flags are equal to 0 or the chi error interrupt is disabled.
1 At least one CHI error flag and the chi error interrupt enable are is set.

WUPIF Wakeup Interrupt Flag — This interrupt flag is set when the CC has received a wakeup symbol on the FlexRay
bus. The application can determine on which channel the wakeup symbol was received by reading the related
wakeup flags WUB and WUA in the Protocol Status Register 3 (FR_PSR3).
0 No Wakeup symbol received on FlexRay bus
1 Wakeup symbol received on FlexRay bus

FAFBIF Receive FIFO Channel B Almost Full Interrupt Flag — This interrupt flag is set when one of the following
events occurs
a) the current number of FIFO B entries is equal to or greater than the watermark defined by the WM field in the
Receive FIFO Watermark and Selection Register (FR_RFWMSR), and the CC writes a received message into
the FIFO B, or
b) the current number of FIFO B entries is at least 1 and the periodic timer as defined by Receive FIFO Periodic
Timer Register (FR_RFPTR) expires.
0 no such event
1 FIFO B almost full event has occurred

FAFAIF Receive FIFO Channel A Almost Full Interrupt Flag — This interrupt flag is set when one of the following
events occurs
a) the current number of FIFO A entries is equal to or greater than the watermark defined by the WM field in the
Receive FIFO Watermark and Selection Register (FR_RFWMSR), and the CC writes a received message into
the FIFO A, or
b) the current number of FIFO B entries is at least 1 and the periodic timer as defined by Receive FIFO Periodic
Timer Register (FR_RFPTR) expires.
0 no such event
1 FIFO A almost full event has occurred

RBIF Receive Message Buffer Interrupt Flag — This interrupt flag is set if for at least one of the individual receive
message buffers (FR_MBCCSRn[MTD] = 0) both the interrupt flag MBIF and the interrupt enable bit MBIE in the
corresponding Message Buffer Configuration, Control, Status Registers (FR_MBCCSRn) are asserted. The
application can not clear this interrupt flag directly, instead it is cleared by the CC when all of the interrupt flags
MBIF of the individual receive message buffers are cleared by the application or if the application has cleared
the related interrupt enables bit MBIE.
0 None of the individual receive message buffers has the MBIF and MBIE flag set.
1 At least one individual receive message buffer has the MBIF and MBIE flag set.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

808 Freescale Semiconductor

29.5.2.13 Protocol Interrupt Flag Register 0 (FR_PIFR0)

TBIF Transmit Message Buffer Interrupt Flag — This flag is set if for at least one of the individual message buffers
(FR_MBCCSRn[MTD] = 1) both the interrupt flag MBIF and the interrupt enable bit MBIE in the corresponding
Message Buffer Configuration, Control, Status Registers (FR_MBCCSRn) are equal to 1. The application can
not clear this interrupt flag directly, instead, this interrupt flag is cleared by the CC when either all of the individual
interrupt flags MBIF of the individual transmit message buffers are cleared by the application or the application
has cleared the related interrupt enables bit MBIE.
0 None of the individual transmit message buffers has the MBIF and MBIE flag set.
1 At least one individual transmit message buffer has the MBIF and MBIE flag set.

MIE Module Interrupt Enable — This bit controls if the Module Interrupt line is asserted when the MIF flag is set.
0 Disable interrupt line
1 Enable interrupt line

PRIE Protocol Interrupt Enable — This bit controls if the Protocol Interrupt line is asserted when the PRIF flag is set.
0 Disable interrupt line
1 Enable interrupt line

CHIE CHI Interrupt Enable — This bit controls if the CHI Interrupt line is asserted when the CHIF flag is set.
0 Disable interrupt line
1 Enable interrupt line

WUPIE Wakeup Interrupt Enable — This bit controls if the Wakeup Interrupt line is asserted when the WUPIF flag is
set.
0 Disable interrupt line
1 Enable interrupt line

FAFBIE Receive FIFO Channel B Almost Full Interrupt Enable — This bit controls if the RX FIFO B Almost Full
Interrupt line is asserted when the FAFBIF flag is set.
0 Disable interrupt line
1 Enable interrupt line

FAFAIE Receive FIFO Channel A Almost Full Interrupt Enable — This bit controls if the RX FIFO A Almost Full
Interrupt line is asserted when the FAFAIF flag is set.
0 Disable interrupt line
1 Enable interrupt line

RBIE Receive Message Buffer Interrupt Enable — This bit controls if the Receive Message Buffer Interrupt line is
asserted when the RBIF flag is set.
0 Disable interrupt line
1 Enable interrupt line

TBIE Transmit Message Buffer Interrupt Enable — This bit controls if the Transmit Message Buffer Interrupt line is
asserted when the TBIF flag is set.
0 Disable interrupt line
1 Enable interrupt line

Base + 0x0018 Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FATL
_IF

INTL
_IF

ILCF
_IF

CSA
_IF

MRC
_IF

MOC
_IF

CCL
_IF

MXS
_IF

MTX
_IF

LTXB
_IF

LTXA
_IF

TBVB
_IF

TBVA
_IF

TI2
_IF

TI1
_IF

CYS
_IF

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-13. Protocol Interrupt Flag Register 0 (FR_PIFR0)

Table 29-17. FR_GIFER Field Descriptions (continued)

Field Description

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 809

The register holds one set of the protocol-related individual interrupt flags.

Table 29-18. FR_PIFR0 Field Descriptions

Field Description

FATL_IF Fatal Protocol Error Interrupt Flag — This flag is set when the protocol engine has detected a fatal protocol
error. In this case, the protocol engine goes into the POC:halt state immediately. The fatal protocol errors are:
1) pLatestTx violation, as described in the MAC process of the FlexRay protocol
2) transmission across slot boundary violation, as described in the FSP process of the FlexRay protocol
0 No such event.
1 Fatal protocol error detected.

INTL_IF Internal Protocol Error Interrupt Flag — This flag is set when the protocol engine has detected an internal
protocol error. In this case, the protocol engine goes into the POC:halt state immediately. An internal protocol
error occurs when the protocol engine has not finished a calculation and a new calculation is requested. This
can be caused by a hardware error.
0 No such event.
1 Internal protocol error detected.

ILCF_IF Illegal Protocol Configuration Interrupt Flag — This flag is set when the protocol engine has detected an
illegal protocol configuration parameter setting. In this case, the protocol engine goes into the POC:halt state
immediately.
The protocol engine checks the listen_timeout value programmed into the Protocol Configuration Register 14
(FR_PCR14) and Protocol Configuration Register 15 (FR_PCR15) when the CONFIG_COMPLETE command
was sent by the application via the Protocol Operation Control Register (FR_POCR). If the value of
listen_timeout is equal to zero, the protocol configuration setting is considered as illegal.
0 No such event.
1 Illegal protocol configuration detected.

CSA_IF Cold Start Abort Interrupt Flag — This flag is set when the configured number of allowed cold start attempts
is reached and none of these attempts was successful. The number of allowed cold start attempts is configured
by the coldstart_attempts field in the Protocol Configuration Register 3 (FR_PCR3).
0 No such event.
1 Cold start aborted and no more coldstart attempts allowed.

MRC_IF Missing Rate Correction Interrupt Flag — This flag is set when an insufficient number of measurements is
available for rate correction at the end of the communication cycle.
0 No such event
1 Insufficient number of measurements for rate correction detected

MOC_IF Missing Offset Correction Interrupt Flag — This flag is set when an insufficient number of measurements is
available for offset correction. This is related to the MISSING_TERM event in the CSP process for offset
correction in the FlexRay protocol.
0 No such event.
1 Insufficient number of measurements for offset correction detected.

CCL_IF Clock Correction Limit Reached Interrupt Flag — This flag is set when the internal calculated offset or rate
calculation values have reached or exceeded its configured thresholds as given by the offset_coorection_out
field in the Protocol Configuration Register 9 (FR_PCR9) and the rate_correction_out field in the Protocol
Configuration Register 14 (FR_PCR14).
0 No such event.
1 Offset or rate correction limit reached.

MXS_IF Max Sync Frames Detected Interrupt Flag — This flag is set when the number of synchronization frames
detected in the current communication cycle exceeds the value of the node_sync_max field in the Protocol
Configuration Register 30 (FR_PCR30).
0 No such event.
1 More than node_sync_max sync frames detected.
Note: Only synchronization frames that have passed the synchronization frame acceptance and rejection filters

are taken into account.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

810 Freescale Semiconductor

29.5.2.14 Protocol Interrupt Flag Register 1 (FR_PIFR1)

The register holds one set of the protocol-related individual interrupt flags.

MTX_IF Media Access Test Symbol Received Interrupt Flag — This flag is set when the MTS symbol was received
on channel A or channel B.
0 No such event.
1 MTS symbol received.

LTXB_IF pLatestTx Violation on Channel B Interrupt Flag — This flag is set when the frame transmission on channel B
in the dynamic segment exceeds the dynamic segment boundary. This is related to the pLatestTx violation, as
described in the MAC process of the FlexRay protocol.
0 No such event.
1 pLatestTx violation occurred on channel B.

LTXA_IF pLatestTx Violation on Channel A Interrupt Flag — This flag is set when the frame transmission on channel A
in the dynamic segment exceeds the dynamic segment boundary. This is related to the pLatestTx violation as
described in the MAC process of the FlexRay protocol.
0 No such event.
1 pLatestTx violation occurred on channel A.

TBVB_IF Transmission across boundary on channel B Interrupt Flag — This flag is set when the frame transmission
on channel B crosses the slot boundary. This is related to the transmission across slot boundary violation as
described in the FSP process of the FlexRay protocol.
0 No such event.
1 Transmission across boundary violation occurred on channel B.

TBVA_IF Transmission across boundary on channel A Interrupt Flag — This flag is set when the frame transmission
on channel A crosses the slot boundary. This is related to the transmission across slot boundary violation as
described in the FSP process of the FlexRay protocol.
0 No such event.
1 Transmission across boundary violation occurred on channel A.

TI2_IF Timer 2 Expired Interrupt Flag — This flag is set whenever timer 2 expires.
0 No such event.
1 Timer 2 has reached its time limit.

TI1_IF Timer 1 Expired Interrupt Flag — This flag is set whenever timer 1 expires.
0 No such event
1 Timer 1 has reached its time limit

CYS_IF Cycle Start Interrupt Flag — This flag is set when a communication cycle starts.
0 No such event
1 Communication cycle started.

Base + 0x001A Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EMC
_IF

IPC
_IF

PECF
_IF

PSC
_IF

SSI3
_IF

SSI2
_IF

SSI1
_IF

SSI0
_IF

0 0
EVT
_IF

ODT
_IF

0 0 0 0

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-14. Protocol Interrupt Flag Register 1 (FR_PIFR1)

Table 29-18. FR_PIFR0 Field Descriptions (continued)

Field Description

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 811

29.5.2.15 Protocol Interrupt Enable Register 0 (FR_PIER0)

This register defines whether or not the individual interrupt flags defined in the Protocol Interrupt Flag
Register 0 (FR_PIFR0) can generate a protocol interrupt request.

Table 29-19. FR_PIFR1 Field Descriptions

Field Description

EMC_IF Error Mode Changed Interrupt Flag — This flag is set when the value of the ERRMODE bit field in the Protocol
Status Register 0 (FR_PSR0) is changed by the CC.
0 No such event.
1 ERRMODE field changed.

IPC_IF Illegal Protocol Control Command Interrupt Flag — This flag is set when the PE tries to execute a protocol
control command, which was issued via the POCCMD field of the Protocol Operation Control Register
(FR_POCR), and detects that this protocol control command is not allowed in the current protocol state. In this
case the command is not executed. For more details, see Section 29.7.6, “Protocol Control Command
Execution”.
0 No such event.
1 Illegal protocol control command detected.

PECF_IF Protocol Engine Communication Failure Interrupt Flag — This flag is set if the CC has detected a
communication failure between the PE and the CHI.
0 No such event.
1 Protocol Engine Communication Failure detected.

PSC_IF Protocol State Changed Interrupt Flag — This flag is set when the protocol state in the PROTSTATE field in
the Protocol Status Register 0 (FR_PSR0) has changed.
0 No such event.
1 Protocol state changed.

SSI3_IF
SSI2_IF
SSI1_IF
SSI0_IF

Slot Status Counter Incremented Interrupt Flag — Each of these flags is set when the SLOTSTATUSCNT
field in the corresponding Slot Status Counter Registers (FR_SSCR0–FR_SSCR3) is incremented.
0 No such event.
1 The corresponding slot status counter has incremented.

EVT_IF Even Cycle Table Written Interrupt Flag — This flag is set if the CC has written the sync frame measurement
/ ID tables into the flexray memory area for the even cycle.
0 No such event.
1 Sync frame measurement table written

ODT_IF Odd Cycle Table Written Interrupt Flag — This flag is set if the CC has written the sync frame measurement
/ ID tables into the flexray memory area for the odd cycle.
0 No such event.
1 Sync frame measurement table written

Base + 0x001C Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FATL
_IE

INTL
_IE

ILCF
_IE

CSA
_IE

MRC
_IE

MOC
_IE

CCL
_IE

MXS
_IE

MTX
_IE

LTXB
_IE

LTXA
_IE

TBVB
_IE

TBVA
_IE

TI2
_IE

TI1
_IE

CYS
_IEW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-15. Protocol Interrupt Enable Register 0 (FR_PIER0)

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

812 Freescale Semiconductor

Table 29-20. FR_PIER0 Field Descriptions

Field Description

FATL_IE Fatal Protocol Error Interrupt Enable — This bit controls FATL_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

INTL_IE Internal Protocol Error Interrupt Enable — This bit controls INTL_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

ILCF_IE Illegal Protocol Configuration Interrupt Enable — This bit controls ILCF_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

CSA_IE Cold Start Abort Interrupt Enable — This bit controls CSA_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

MRC_IE Missing Rate Correction Interrupt Enable — This bit controls MRC_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

MOC_IE Missing Offset Correction Interrupt Enable — This bit controls MOC_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

CCL_IE Clock Correction Limit Reached Interrupt Enable — This bit controls CCL_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

MXS_IE Max Sync Frames Detected Interrupt Enable — This bit controls MXS_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

MTX_IE Media Access Test Symbol Received Interrupt Enable — This bit controls MTX_IF interrupt request
generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

LTXB_IE pLatestTx Violation on Channel B Interrupt Enable — This bit controls LTXB_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

LTXA_IE pLatestTx Violation on Channel A Interrupt Enable — This bit controls LTXA_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

TBVB_IE Transmission across boundary on channel B Interrupt Enable — This bit controls TBVB_IF interrupt request
generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

TBVA_IE Transmission across boundary on channel A Interrupt Enable — This bit controls TBVA_IF interrupt request
generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

TI2_IE Timer 2 Expired Interrupt Enable — This bit controls TI1_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 813

29.5.2.16 Protocol Interrupt Enable Register 1 (FR_PIER1)

This register defines whether or not the individual interrupt flags defined in Protocol Interrupt Flag
Register 1 (FR_PIFR1) can generate a protocol interrupt request.

TI1_IE Timer 1 Expired Interrupt Enable — This bit controls TI1_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

CYS_IE Cycle Start Interrupt Enable — This bit controls CYC_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

Base + 0x001E Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EMC
_IE

IPC
_IE

PECF
_IE

PSC
_IE

SSI3
_IE

SSI2
_IE

SSI1
_IE

SSI0
_IE

0 0 EVT
_IE

ODT
_IE

0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-16. Protocol Interrupt Enable Register 1 (FR_PIER1)

Table 29-21. FR_PIER1 Field Descriptions

Field Description

EMC_IE Error Mode Changed Interrupt Enable — This bit controls EMC_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

IPC_IE Illegal Protocol Control Command Interrupt Enable — This bit controls IPC_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

PECF_IE Protocol Engine Communication Failure Interrupt Enable — This bit controls PECF_IF interrupt request
generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

PSC_IE Protocol State Changed Interrupt Enable — This bit controls PSC_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

SSI3_IE
SSI2_IE
SSI1_IE
SSI0_IE

Slot Status Counter Incremented Interrupt Enable — This bit controls SSI[3:0]_IF interrupt request
generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

EVT_IE Even Cycle Table Written Interrupt Enable — This bit controls EVT_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

ODT_IE Odd Cycle Table Written Interrupt Enable — This bit controls ODT_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

Table 29-20. FR_PIER0 Field Descriptions (continued)

Field Description

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

814 Freescale Semiconductor

29.5.2.17 CHI Error Flag Register (FR_CHIERFR)

This register holds the CHI related error flags. The interrupt generation for each of these error flags is
controlled by the CHI interrupt enable bit CHIE in the Global Interrupt Flag and Enable Register
(FR_GIFER).

Base + 0x0020 Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FRLB
_EF

FRLA
_EF

PCMI
_EF

FOVB
_EF

FOVA
_EF

MBS
_EF

MBU
_EF

LCK
_EF

0
SBCF
_EF

FID
_EF

DPL
_EF

SPL
_EF

NML
_EF

NMF
_EF

ILSA
_EF

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-17. CHI Error Flag Register (FR_CHIERFR)

Table 29-22. FR_CHIERFR Field Descriptions

Field Description

FRLB_EF Frame Lost Channel B Error Flag — This flag is set if a complete frame was received on channel B but could
not be stored in the selected individual message buffer because this message buffer is currently locked by the
application. In this case, the frame and the related slot status information are lost.
0 No such event
1 Frame lost on channel B detected

FRLA_EF Frame Lost Channel A Error Flag — This flag is set if a complete frame was received on channel A but could
not be stored in the selected individual message buffer because this message buffer is currently locked by the
application. In this case, the frame and the related slot status information are lost.
0 No such error
1 Frame lost on channel A detected

PCMI_EF Protocol Command Ignored Error Flag — This flag is set if the application has issued a POC command by
writing to the POCCMD field in the Protocol Operation Control Register (FR_POCR) while the BSY flag is equal
to 1. In this case the command is ignored by the CC and is lost.
0 No such error
1 POC command ignored

FOVB_EF Receive FIFO Overrun Channel B Error Flag — This flag is set when an overrun of the FIFO for channel B
occurred. This error occurs if a semantically valid frame was received on channel B and matches the all criteria
to be appended to the FIFO for channel B but the FIFO is full. In this case, the received frame and its related slot
status information is lost.
0 No such error
1 FIFO overrun on channel B has been detected

FOVA_EF Receive FIFO Overrun Channel A Error Flag — This flag is set when an overrun of the FIFO for channel A
occurred. This error occurs if a semantically valid frame was received on channel A and matches the all criteria
to be appended to the FIFO for channel A but the FIFO is full. In this case, the received frame and its related slot
status information is lost.
0 No such error
1 FIFO overrun on channel B has been detected

MBS_EF Message Buffer Search Error Flag — This flag is set if at least one of the following events occurs:
a) The message buffer search engine is still running while the next search must be started due to the FlexRay
protocol timing.
b) A message buffer index greater than 131 is detected in the FR_MBIDXR[MBIDX] field of an found message
buffer or in one of the FR_RSBIR[RSBIDX] fields.
Refer to Section 29.6.7.4, “Message Buffer Search Error” for details.
0 No such event
1 Search engine active while search start appears or illegal message buffer index detected

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 815

MBU_EF Message Buffer Utilization Error Flag — This flag is asserted if the application writes to a message buffer
control field that is beyond the number of utilized message buffers programmed in the Message Buffer
Segment Size and Utilization Register (FR_MBSSUTR).
If the application writes to a FR_MBCCSRn register with n > LAST_MB_UTIL, the CC ignores the write attempt
and asserts the message buffer utilization error flag MBU_EF in the CHI Error Flag Register (FR_CHIERFR).

0 No such event
1 Non-utilized message buffer enabled

LCK_EF Lock Error Flag — This flag is set if the application tries to lock a message buffer that is already locked by the
CC due to internal operations. In that case, the CC does not grant the lock to the application. The application
must issue the lock request again.
0 No such error
1 Lock error detected

SBCF_EF System Bus Communication Failure Error Flag — This flag is set if a system bus access was not finished
within the required amount of time (see Section 29.6.19.1.2, “System Bus Access Timeout”).
0 No such event
1 System bus access not finished in time

FID_EF Frame ID Error Flag — This flag is set if the frame ID stored in the message buffer header area differs from the
frame ID stored in the message buffer control register.
0 No such error occurred
1 Frame ID error occurred

DPL_EF Dynamic Payload Length Error Flag — This flag is set if the payload length written into the message buffer
header field of a transmit message buffer assigned to the dynamic segment is greater than the maximum
payload length for the dynamic segment as it is configured in the corresponding protocol configuration register
field max_payload_length_dynamic in the Protocol Configuration Register 24 (FR_PCR24).
0 No such error occurred
1 Dynamic payload length error occurred

SPL_EF Static Payload Length Error Flag — This flag is set if the payload length written into the message buffer header
field of a transmit message buffer assigned to the static segment is different from the payload length for the static
segment as it is configured in the corresponding protocol configuration register field payload_length_static in the
Protocol Configuration Register 19 (FR_PCR19).
0 No such error occurred
1 Static payload length error occurred

NML_EF Network Management Length Error Flag — This flag is set if the payload length written into the header
structure of a receive message buffer assigned to the static segment is less than the configured length of the
Network Management Vector as configured in the Network Management Vector Length Register (FR_NMVLR).
In this case the received part of the Network Management Vector will be used to update the Network
Management Vector.
0 No such error occurred
1 Network management length error occurred

Table 29-22. FR_CHIERFR Field Descriptions (continued)

Field Description

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

816 Freescale Semiconductor

29.5.2.18 Message Buffer Interrupt Vector Register (FR_MBIVEC)

This register indicates the lowest numbered receive message buffer and the lowest numbered transmit
message buffer that have their interrupt status flag MBIF and interrupt enable MBIE bits asserted. This
means that message buffers with lower message buffer numbers have higher priority.

29.5.2.19 Channel A Status Error Counter Register (FR_CASERCR)

NMF_EF Network Management Frame Error Flag — This flag is set if a received message in the static segment with a
Preamble Indicator flag PP asserted has its Null Frame indicator flag NF asserted as well. In this case, the Global
Network Management Registers (see Network Management Vector Registers (FR_NMVR0–FR_NMVR5)) are
not updated.
0 No such error occurred
1 Network management frame error occurred

ILSA_EF Illegal System Bus Address Error Flag — This flag is set if the external system bus subsystem has detected
an access to an illegal system bus address from the CC (see Section 29.6.19.1.1, “System Bus Illegal Address
Access”).
0 No such event
1 Illegal system bus address accessed

Base + 0x0022

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 TBIVEC 0 RBIVEC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-18. Message Buffer Interrupt Vector Register (FR_MBIVEC)

Table 29-23. FR_MBIVEC Field Descriptions

Field Description

TBIVEC Transmit Buffer Interrupt Vector — This field provides the number of the lowest numbered enabled transmit
message buffer that has its interrupt status flag MBIF and its interrupt enable bit MBIE set. If there is no transmit
message buffer with the interrupt status flag MBIF and the interrupt enable MBIE bits asserted, the value in this
field is set to 0.

RBIVEC Receive Buffer Interrupt Vector — This field provides the message buffer number of the lowest numbered
receive message buffer which has its interrupt flag MBIF and its interrupt enable bit MBIE asserted. If there is
no receive message buffer with the interrupt status flag MBIF and the interrupt enable MBIE bits asserted, the
value in this field is set to 0.

Base + 0x0024 Additional Reset: RUN Command

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R STATUS_ERR_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-19. Channel A Status Error Counter Register (FR_CASERCR)

Table 29-22. FR_CHIERFR Field Descriptions (continued)

Field Description

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 817

This register provides the channel status error counter for channel A. The protocol engine generates a slot
status vector for each static slot, each dynamic slot, the symbol window, and the NIT. The slot status vector
contains the four protocol related error indicator bits vSS!SyntaxError, vSS!ContentError, vSS!BViolation,
and vSS!TxConflict. The CC increments the status error counter by 1 if, for a slot or segment, at least one
error indicator bit is set to 1. The counter wraps around after it has reached the maximum value. For more
information on slot status monitoring, see Section 29.6.18, “Slot Status Monitoring”.

29.5.2.20 Channel B Status Error Counter Register (FR_CBSERCR)

This register provides the channel status error counter for channel B. The protocol engine generates a slot
status vector for each static slot, each dynamic slot, the symbol window, and the NIT. The slot status vector
contains the four protocol related error indicator bits vSS!SyntaxError, vSS!ContentError, vSS!BViolation,
and vSS!TxConflict. The CC increments the status error counter by 1 if, for a slot or segment, at least one
error indicator bit is set to 1. The counter wraps around after it has reached the maximum value. For more
information on slot status monitoring see Section 29.6.18, “Slot Status Monitoring”.

29.5.2.21 Protocol Status Register 0 (FR_PSR0)

This register provides information about the current protocol status.

Table 29-24. FR_CASERCR Field Descriptions

Field Description

STATUS_ERR_CNT Channel Status Error Counter — This field provides the current value channel status error counter. The
counter value is updated within the first macrotick of the following slot or segment.

Base + 0x0026 Additional Reset: RUN Command

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R STATUS_ERR_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-20. Channel B Status Error Counter Register (FR_CBSERCR)

Table 29-25. FR_CBSERCR Field Descriptions

Field Description

STATUS_ERR_CNT Channel Status Error Counter — This field provides the current channel status error count. The counter
value is updated within the first macrotick of the following slot or segment.

Base + 0x0028

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R ERRMODE SLOTMODE 0 PROTSTATE STARTUPSTATE 0 WAKEUPSTATUS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-21. Protocol Status Register 0 (FR_PSR0)

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

818 Freescale Semiconductor

Table 29-26. FR_PSR0 Field Descriptions

Field Description

ERRMODE Error Mode — protocol related variable: vPOC!ErrorMode. This field indicates the error mode of the protocol.
00 ACTIVE
01 PASSIVE
10 COMM_HALT
11 reserved

SLOTMODE Slot Mode — protocol related variable: vPOC!SlotMode. This field indicates the slot mode of the protocol.
00 SINGLE
01 ALL_PENDING
10 ALL
11 reserved

PROTSTATE Protocol State — protocol related variable: vPOC!State. This field indicates the state of the protocol.
000 POC:default config
001 POC:config
010 POC:wakeup
011 POC:ready
100 POC:normal passive
101 POC:normal active
110 POC:halt
111 POC:startup

STARTUP
STATE

Startup State — protocol related variable: vPOC!StartupState. This field indicates the current sub-state of the
startup procedure.
0000 reserved
0001 reserved
0010 POC:coldstart collision resolution
0011 POC:coldstart listen
0100 POC:integration consistency check
0101 POC:integrationi listen
0110 reserved
0111 POC:initialize schedule
1000 reserved
1001 reserved
1010 POC:coldstart consistency check
1011 reserved
1100 reserved
1101 POC:integration coldstart check
1110 POC:coldstart gap
1111 POC:coldstart join

WAKEUP
STATUS

Wakeup Status — protocol related variable: vPOC!WakeupStatus. This field provides the outcome of the
execution of the wakeup mechanism.
000 UNDEFINED
001 RECEIVED_HEADER
010 RECEIVED_WUP
011 COLLISION_HEADER
100 COLLISION_WUP
101 COLLISION_UNKNOWN
110 TRANSMITTED
111 reserved

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 819

29.5.2.22 Protocol Status Register 1 (FR_PSR1)

Base + 0x002A Additional Reset: CSAA, CSP, CPN: RUN Command Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CSAA CSP 0 REMCSAT CPN HHR FRZ APTAC

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-22. Protocol Status Register 1 (FR_PSR1)

Table 29-27. FR_PSR1 Field Descriptions

Field Description

CSAA Cold Start Attempt Aborted Flag — protocol related event: ‘set coldstart abort indicator in CHI’
This flag is set when the CC has aborted a cold start attempt.
0 No such event
1 Cold start attempt aborted

CSP Leading Cold Start Path — This status bit is set when the CC has reached the POC:normal active state via the
leading cold start path. This indicates that this node has started the network
0 No such event
1 POC:normal active reached from POC:startup state via leading cold start path

REMCSAT Remaining Coldstart Attempts — protocol related variable: vRemainingColdstartAttempts
This field provides the number of remaining cold start attempts that the CC will execute.

CPN Leading Cold Start Path Noise — protocol related variable: vPOC!ColdstartNoise
This status bit is set if the CC has reached the POC:normal active state via the leading cold start path under
noise conditions. This indicates there was some activity on the FlexRay bus while the CC was starting up the
cluster.
0 No such event
1 POC:normal active state was reached from POC:startup state via noisy leading cold start path

HHR Host Halt Request Pending — protocol related variable: vPOC!CHIHaltRequest
This status bit is set when CC receives the HALT command from the application via the Protocol Operation
Control Register (FR_POCR). The CC clears this status bit after a hard reset condition or when the protocol is
in the POC:default config state.
0 No such event
1 HALT command received

FRZ Freeze Occurred — protocol related variable: vPOC!Freeze
This status bit is set when the CC has reached the POC:halt state due to the host FREEZE command or due to
an internal error condition requiring immediate halt. The CC clears this status bit after a hard reset condition or
when the protocol is in the POC:default config state.
0 No such event
1 Immediate halt due to FREEZE or internal error condition

APTAC Allow Passive to Active Counter — protocol related variable: vPOC!vAllowPassivetoActive
This field provides the number of consecutive even/odd communication cycle pairs that have passed with valid
rate and offset correction terms, but the protocol is still in the POC:normal passive state due to an application
configured delay to enter POC:normal active state. This delay is defined by the allow_passive_to_active field in
the Protocol Configuration Register 12 (FR_PCR12).

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

820 Freescale Semiconductor

29.5.2.23 Protocol Status Register 2 (FR_PSR2)

This register provides a snapshot of status information about the Network Idle Time NIT, the Symbol
Window and the clock synchronization. The NIT related status bits NBVB, NSEB, NBVA, and NSEA are
updated by the CC after the end of the NIT and before the end of the first slot of the next communication
cycle. The Symbol Window related status bits STCB, SBVB, SSEB, MTB, STCA, SBVA, SSEB, and
MTA are updated by the CC after the end of the symbol window and before the end of the current
communication cycle. If no symbol window is configured, the symbol window related status bits remain
in their reset state. The clock synchronization related CLKCORRFAILCNT is updated by the CC after the
end of the static segment and before the end of the current communication cycle.

Base + 0x002C Additional Reset: RUN Command

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R NBVB NSEB STCB SBVB SSEB MTB NBVA NSEA STCA SBVA SSEA MTA CLKCORRFAILCNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-23. Protocol Status Register 2 (FR_PSR2)

Table 29-28. FR_PSR2 Field Descriptions

Field Description

NBVB NIT Boundary Violation on Channel B — protocol related variable: vSS!BViolation for NIT on channel B
This status bit is set when there was some media activity on the FlexRay bus channel B at the end of the NIT.
0 No such event
1 Media activity at boundaries detected

NSEB NIT Syntax Error on Channel B — protocol related variable: vSS!SyntaxError for NIT on channel B
This status bit is set when a syntax error was detected during NIT on channel B.
0 No such event
1 Syntax error detected

STCB Symbol Window Transmit Conflict on Channel B — protocol related variable: vSS!TxConflict for symbol
window on channel B
This status bit is set if there was a transmission conflict during the symbol window on channel B.
0 No such event
1 Transmission conflict detected

SBVB Symbol Window Boundary Violation on Channel B — protocol related variable: vSS!BViolation for symbol
window on channel B
This status bit is set if there was some media activity on the FlexRay bus channel B at the start or at the end of
the symbol window.
0 No such event
1 Media activity at boundaries detected

SSEB Symbol Window Syntax Error on Channel B — protocol related variable: vSS!SyntaxError for symbol window
on channel B
This status bit is set when a syntax error was detected during the symbol window on channel B.
0 No such event
1 Syntax error detected

MTB Media Access Test Symbol MTS Received on Channel B — protocol related variable: vSS!ValidMTS for
Symbol Window on channel B
This status bit is set if the Media Access Test Symbol MTS was received in the symbol window on channel B.
0 No such event
1 MTS symbol received

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 821

29.5.2.24 Protocol Status Register 3 (FR_PSR3)

NBVA NIT Boundary Violation on Channel A — protocol related variable: vSS!BViolation for NIT on channel A
This status bit is set when there was some media activity on the FlexRay bus channel A at the end of the NIT.
0 No such event
1 Media activity at boundaries detected

NSEA NIT Syntax Error on Channel A — protocol related variable: vSS!SyntaxError for NIT on channel A
This status bit is set when a syntax error was detected during NIT on channel A.
0 No such event
1 Syntax error detected

STCA Symbol Window Transmit Conflict on Channel A — protocol related variable: vSS!TxConflict for symbol
window on channel A
This status bit is set if there was a transmission conflicts during the symbol window on channel A.
0 No such event
1 Transmission conflict detected

SBVA Symbol Window Boundary Violation on Channel A — protocol related variable: vSS!BViolation for symbol
window on channel A
This status bit is set if there was some media activity on the FlexRay bus channel A at the start or at the end of
the symbol window.
0 No such event
1 Media activity at boundaries detected

SSEA Symbol Window Syntax Error on Channel A — protocol related variable: vSS!SyntaxError for symbol window
on channel A
This status bit is set when a syntax error was detected during the symbol window on channel A.
0 No such event
1 Syntax error detected

MTA Media Access Test Symbol MTS Received on Channel A — protocol related variable: vSS!ValidMTS for
symbol window on channel A
This status bit is set if the Media Access Test Symbol MTS was received in the symbol window on channel A.
1 MTS symbol received
0 No such event

CLKCORR-
FAILCNT

Clock Correction Failed Counter — protocol related variable: vClockCorrectionFailed
This field provides the number of consecutive even/odd communication cycle pairs that have passed without
clock synchronization having performed an offset or a rate correction due to lack of synchronization frames. It is
not incremented when it has reached the configured value of either max_without_clock_correction_fatal or
max_without_clock_correction_passive as defined in the Protocol Configuration Register 8 (FR_PCR8). The CC
resets this counter on a hard reset condition, when the protocol enters the POC:normal active state, or when
both the rate and offset correction terms have been calculated successfully.

Base + 0x002E Additional Reset: RUN Command Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 WUB ABVB AACB ACEB ASEB AVFB 0 0 WUA ABVA AACA ACEA ASEA AVFA

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-24. Protocol Status Register 3 (FR_PSR3)

Table 29-28. FR_PSR2 Field Descriptions (continued)

Field Description

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

822 Freescale Semiconductor

This register provides aggregated channel status information as an accrued status of channel activity for
all communication slots, regardless of whether they are assigned for transmission or subscribed for
reception. It provides accrued information for the symbol window, the NIT, and the wakeup status.

Table 29-29. FR_PSR3 Field Descriptions

Field Description

WUB Wakeup Symbol Received on Channel B — This flag is set when a wakeup symbol was received on
channel B.
0 No wakeup symbol received
1 Wakeup symbol received

ABVB Aggregated Boundary Violation on Channel B — This flag is set when a boundary violation has been
detected on channel B. Boundary violations are detected in the communication slots, the symbol window, and
the NIT.
0 No boundary violation detected
1 Boundary violation detected

AACB Aggregated Additional Communication on Channel B — This flag is set when at least one valid frame was
received on channel B in a slot that also contained an additional communication with either syntax error, content
error, or boundary violations.
0 No additional communication detected
1 Additional communication detected

ACEB Aggregated Content Error on Channel B — This flag is set when a content error has been detected on
channel B. Content errors are detected in the communication slots, the symbol window, and the NIT.
0 No content error detected
1 Content error detected

ASEB Aggregated Syntax Error on Channel B — This flag is set when a syntax error has been detected on
channel B. Syntax errors are detected in the communication slots, the symbol window and the NIT.
0 No syntax error detected
1 Syntax errors detected

AVFB Aggregated Valid Frame on Channel B — This flag is set when a syntactically correct valid frame has been
received in any static or dynamic slot through channel B.
1 At least one syntactically valid frame received
0 No syntactically valid frames received

WUA Wakeup Symbol Received on Channel A — This flag is set when a wakeup symbol was received on
channel A.
0 No wakeup symbol received
1 Wakeup symbol received

ABVA Aggregated Boundary Violation on Channel A — This flag is set when a boundary violation has been
detected on channel A. Boundary violations are detected in the communication slots, the symbol window, and
the NIT.
0 No boundary violation detected
1 Boundary violation detected

AACA Aggregated Additional Communication on Channel A — This flag is set when a valid frame was received in
a slot on channel A that also contained an additional communication with either syntax error, content error, or
boundary violations.
0 No additional communication detected
1 Additional communication detected

ACEA Aggregated Content Error on Channel A — This flag is set when a content error has been detected on
channel A. Content errors are detected in the communication slots, the symbol window, and the NIT.
0 No content error detected
1 Content error detected

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 823

29.5.2.25 Macrotick Counter Register (FR_MTCTR)

This register provides the macrotick count of the current communication cycle.

29.5.2.26 Cycle Counter Register (FR_CYCTR)

This register provides the number of the current communication cycle.

ASEA Aggregated Syntax Error on Channel A — This flag is set when a syntax error has been detected on channel
A. Syntax errors are detected in the communication slots, the symbol window, and the NIT.
0 No syntax error detected
1 Syntax errors detected

AVFA Aggregated Valid Frame on Channel A — This flag is set when a syntactically correct valid frame has been
received in any static or dynamic slot through channel A.
0 No syntactically valid frames received
1 At least one syntactically valid frame received

Base + 0x0030

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 MTCT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-25. Macrotick Counter Register (FR_MTCTR)

Table 29-30. FR_MTCTR Field Descriptions

Field Description

MTCT Macrotick Counter — protocol related variable: vMacrotick
This field provides the macrotick count of the current communication cycle.

Base + 0x0032

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 CYCCNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-26. Cycle Counter Register (FR_CYCTR)

Table 29-31. FR_CYCTR Field Descriptions

Field Description

CYCCNT Cycle Counter — protocol related variable: vCycleCounter
This field provides the number of the current communication cycle. If the counter reaches the maximum value of
63, the counter wraps and starts from zero again.

Table 29-29. FR_PSR3 Field Descriptions (continued)

Field Description

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

824 Freescale Semiconductor

29.5.2.27 Slot Counter Channel A Register (FR_SLTCTAR)

This register provides the number of the current slot in the current communication cycle for channel A.

29.5.2.28 Slot Counter Channel B Register (FR_SLTCTBR)

This register provides the number of the current slot in the current communication cycle for channel B.

29.5.2.29 Rate Correction Value Register (FR_RTCORVR)

This register provides the sign extended rate correction value in microticks as it was calculated by the clock
synchronization algorithm. The CC updates this register during the NIT of each odd numbered
communication cycle.

Base + 0x0034

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 SLOTCNTA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-27. Slot Counter Channel A Register (FR_SLTCTAR)

Table 29-32. FR_SLTCTAR Field Descriptions

Field Description

SLOTCNTA Slot Counter Value for Channel A — protocol related variable: vSlotCounter for channel A
This field provides the number of the current slot in the current communication cycle.

Base + 0x0036

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 SLOTCNTB

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-28. Slot Counter Channel B Register (FR_SLTCTBR)

Table 29-33. FR_SLTCTBR Field Descriptions

Field Description

SLOTCNTA Slot Counter Value for Channel B — protocol related variable: vSlotCounter for channel B
This field provides the number of the current slot in the current communication cycle.

Base + 0x0038 Additional Reset: RUN Command

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R RATECORR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-29. Rate Correction Value Register (FR_RTCORVR)

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 825

29.5.2.30 Offset Correction Value Register (FR_OFCORVR)

This register provides the sign extended offset correction value in microticks as it was calculated by the
clock synchronization algorithm. The CC updates this register during the NIT.

29.5.2.31 Combined Interrupt Flag Register (FR_CIFR)

Table 29-34. FR_RTCORVR Field Descriptions

Field Description

RATECORR Rate Correction Value — protocol related variable: vRateCorrection (before value limitation and external rate
correction)
This field provides the sign extended rate correction value in microticks as it was calculated by the clock
synchronization algorithm. The value is represented in 2’s complement format. This value does not include the
value limitation and the application of the external rate correction. If the magnitude of the internally calculated
rate correction value exceeds the limit given by rate_correction_out in the Protocol Configuration Register 13
(FR_PCR13), the clock correction reached limit interrupt flag CCL_IF is set in the Protocol Interrupt Flag
Register 0 (FR_PIFR0).
Note: If the CC was not able to calculate a new rate correction term due to a lack of synchronization frames, the

RATECORR value is not updated.

Base + 0x003A Additional Reset: RUN Command

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R OFFSETCORR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-30. Offset Correction Value Register (FR_OFCORVR)

Table 29-35. FR_OFCORVR Field Descriptions

Field Description

OFFSET-
CORR

Offset Correction Value — protocol related variable: vOffsetCorrection (before value limitation and external
offset correction)
This field provides the sign extended offset correction value in microticks as it was calculated by the clock
synchronization algorithm. The value is represented in 2’s complement format. This value does not include the
value limitation and the application of the external offset correction. If the magnitude of the internally calculated
rate correction value exceeds the limit given by offset_correction_out field in the Protocol Configuration Register
29 (FR_PCR29), the clock correction reached limit interrupt flag CCL_IF is set in the Protocol Interrupt Flag
Register 0 (FR_PIFR0).
Note: If the CC was not able to calculate an new offset correction term due to a lack of synchronization frames,

the OFFSETCORR value is not updated.

Base + 0x003C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
0 0 0 0 0 0 0 0 MIF PRIF CHIF

WUP
IF

FAFB
IF

FAFA
IF

RBIF TBIF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-31. Combined Interrupt Flag Register (FR_CIFR)

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

826 Freescale Semiconductor

This register provides five combined interrupt flags and a copy of three individual interrupt flags. The
combined interrupt flags are the result of a binary OR of the values of other interrupt flags regardless of
the state of the interrupt enable bits. The generation scheme for the combined interrupt flags is depicted in
Figure 29-159. The individual interrupt flags WUPIF, FAFBIF, and FAFAIF are copies of corresponding
flags in the Global Interrupt Flag and Enable Register (FR_GIFER) and are provided here to simplify the
application interrupt flag check. To clear the individual interrupt flags, the application must use the Global
Interrupt Flag and Enable Register (FR_GIFER).

NOTE
The meanings of the combined status bits MIF, PRIF, CHIF, RBIF, and
TBIF are different from those mentioned in the Global Interrupt Flag and
Enable Register (FR_GIFER).

Table 29-36. FR_CIFR Field Descriptions

Field Description

MIF Module Interrupt Flag — This flag is set if there is at least one interrupt source that has its interrupt flag
asserted.
0 No interrupt source has its interrupt flag asserted
1 At least one interrupt source has its interrupt flag asserted

PRIF Protocol Interrupt Flag — This flag is set if at least one of the individual protocol interrupt flags in the Protocol
Interrupt Flag Register 0 (FR_PIFR0) or Protocol Interrupt Flag Register 1 (FR_PIFR1) is equal to 1.
0 All individual protocol interrupt flags are equal to 0
1 At least one of the individual protocol interrupt flags is equal to 1

CHIF CHI Interrupt Flag — This flag is set if at least one of the individual CHI error flags in the CHI Error Flag Register
(FR_CHIERFR) is equal to 1.
0 All CHI error flags are equal to 0
1 At least one CHI error flag is equal to 1

WUPIF Wakeup Interrupt Flag — Provides the same value as FR_GIFER[WUPIF]

FAFBIF Receive FIFO Channel B Almost Full Interrupt Flag — Provides the same value as FR_GIFER[FAFBIF]

FAFAIF Receive FIFO Channel A Almost Full Interrupt Flag — Provides the same value as FR_GIFER[FAFAIF]

RBIF Receive Message Buffer Interrupt Flag — This flag is set if for at least one of the individual receive message
buffers (FR_MBCCSRn[MTD] = 0) the interrupt flag MBIF in the corresponding Message Buffer Configuration,
Control, Status Registers (FR_MBCCSRn) is equal to 1.
0 None of the individual receive message buffers has the MBIF flag asserted.
1 At least one individual receive message buffers has the MBIF flag asserted.

TBIF Transmit Message Buffer Interrupt Flag — This flag is set if for at least one of the individual transmit message
buffers (FR_MBCCSRn[MTD] = 1) the interrupt flag MBIF in the corresponding Message Buffer Configuration,
Control, Status Registers (FR_MBCCSRn) is equal to 1.
0 None of the individual transmit message buffers has the MBIF flag asserted.
1 At least one individual transmit message buffers has the MBIF flag asserted.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 827

29.5.2.32 System Memory Access Time-Out Register (FR_SYMATOR)

29.5.2.33 Sync Frame Counter Register (FR_SFCNTR)

This register provides the number of synchronization frames that are used for clock synchronization in the
last even and in the last odd numbered communication cycle. This register is updated after the start of the
NIT and before 10 MT after offset correction start.

NOTE
If the application has locked the even synchronization table at the end of the
static segment of an even communication cycle, the CC will not update the
fields SFEVB and SFEVA.

If the application has locked the odd synchronization table at the end of the
static segment of an odd communication cycle, the CC will not update the
values SFODB and SFODA.

Base + 0x003E Write: Disabled Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
TIMEOUT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

Figure 29-32. System Memory Access Time-Out Register (FR_SYMATOR)

Table 29-37. FR_SYMATOR Field Descriptions

Field Description

TIMEOUT System Memory Access Time-Out — This value defines when a system bus access timout is detected. For a
detailed description see Section 29.7.1.1, “Configure System Memory Access Time-Out Register
(FR_SYMATOR)” and Section 29.6.19.1.2, “System Bus Access Timeout”.

Base + 0x0040 Additional Reset: RUN Command

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SFEVB SFEVA SFODB SFODA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-33. Sync Frame Counter Register (FR_SFCNTR)

Table 29-38. FR_SFCNTR Field Descriptions

Field Description

SFEVB Sync Frames Channel B, even cycle — protocol related variable: size of (vsSyncIdListB for even cycle)
This field provides the size of the internal list of frame IDs of received synchronization frames used for clock
synchronization.

SFEVB Sync Frames Channel A, even cycle — protocol related variable: size of (vsSyncIdListA for even cycle)
This field provides the size of the internal list of frame IDs of received synchronization frames used for clock
synchronization.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

828 Freescale Semiconductor

29.5.2.34 Sync Frame Table Offset Register (FR_SFTOR)

This register defines the flexray memory area related offset for sync frame tables. For more details, see
Section 29.6.12, “Sync Frame ID and Sync Frame Deviation Tables”.

29.5.2.35 Sync Frame Table Configuration, Control, Status Register
(FR_SFTCCSR)

This register provides configuration, control, and status information related to the generation and access
of the clock sync ID tables and clock sync measurement tables. For a detailed description, see
Section 29.6.12, “Sync Frame ID and Sync Frame Deviation Tables”.

SFODB Sync Frames Channel B, odd cycle — protocol related variable: size of (vsSyncIdListB for odd cycle)
This field provides the size of the internal list of frame IDs of received synchronization frames used for clock
synchronization.

SFODA Sync Frames Channel A, odd cycle — protocol related variable: size of (vsSyncIdListA for odd cycle)
This field provides the size of the internal list of frame IDs of received synchronization frames used for clock
synchronization.

Base + 0x0042 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SFT_OFFSET[15:1]

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-34. Sync Frame Table Offset Register (FR_SFTOR)

Table 29-39. FR_SFTOR Field Description

Field Description

SFT_OFFSE
T

Sync Frame Table Offset — The offset of the Sync Frame Tables in the flexray memory area. This offset is
required to be 16-bit aligned. Thus STF_OFFSET[0] is always 0.

Base + 0x0044 Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 CYCNUM ELKS OLKS EVAL OVAL 0 0 SDV
EN

SID
ENW ELKT OLKT OPT

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-35. Sync Frame Table Configuration, Control, Status Register (FR_SFTCCSR)

Table 29-38. FR_SFCNTR Field Descriptions

Field Description

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 829

Table 29-40. FR_SFTCCSR Field Descriptions

Field Description

ELKT Even Cycle Tables Lock/Unlock Trigger — This trigger bit is used to lock and unlock the even cycle tables.
0 No effect
1 Triggers lock/unlock of the even cycle tables.

OLKT Odd Cycle Tables Lock/Unlock Trigger — This trigger bit is used to lock and unlock the odd cycle tables.
0 No effect
1 Triggers lock/unlock of the odd cycle tables.

CYCNUM Cycle Number — This field provides the number of the cycle in which the currently locked table was
recorded. If none or both tables are locked, this value is related to the even cycle table.

ELKS Even Cycle Tables Lock Status — This status bit indicates whether the application has locked the even
cycle tables.
0 Application has not locked the even cycle tables.
1 Application has locked the even cycle tables.

OLKS Odd Cycle Tables Lock Status — This status bit indicates whether the application has locked the odd cycle
tables.
0 Application has not locked the odd cycle tables.
1 Application has locked the odd cycle tables.

EVAL Even Cycle Tables Valid — This status bit indicates whether the Sync Frame ID and Sync Frame Deviation
Tables for the even cycle are valid. The CC clears this status bit when it starts updating the tables, and sets
this bit when it has finished the table update.
0 Tables are not valid (update is ongoing)
1 Tables are valid (consistent).

OVAL Odd Cycle Tables Valid — This status bit indicates whether the Sync Frame ID and Sync Frame Deviation
Tables for the odd cycle are valid. The CC clears this status bit when it starts updating the tables, and sets
this bit when it has finished the table update.
0 Tables are not valid (update is ongoing)
1 Tables are valid (consistent).

OPT One Pair Trigger — This trigger bit controls whether the CC writes continuously or only one pair of Sync
Frame Tables into the flexray memory area.
If this trigger is set to 1 while SDVEN or SIDEN is set to 1, the CC writes only one pair of the enabled Sync
Frame Tables corresponding to the next even-odd-cycle pair into the flexray memory area. In this case, the
CC clears the SDVEN or SIDEN bits immediately.
If this trigger is set to 0 while SDVEN or SIDEN is set to 1, the CC writes continuously the enabled Sync
Frame Tables into the flexray memory area.
0 Write continuously pairs of enabled Sync Frame Tables into flexray memory area.
1 Write only one pair of enabled Sync Frame Tables into flexray memory area.

SDVEN Sync Frame Deviation Table Enable — This bit controls the generation of the Sync Frame Deviation Tables.
The application must set this bit to request the CC to write the Sync Frame Deviation Tables into the flexray
memory area.
0 Do not write Sync Frame Deviation Tables
1 Write Sync Frame Deviation Tables into flexray memory area
Note: If SDVEN is set to 1, then SIDEN must also be set to 1.

SIDEN Sync Frame ID Table Enable — This bit controls the generation of the Sync Frame ID Tables. The
application must set this bit to 1 to request the CC to write the Sync Frame ID Tables into the flexray memory
area.
0 Do not write Sync Frame ID Tables
1 Write Sync Frame ID Tables into flexray memory area

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

830 Freescale Semiconductor

29.5.2.36 Sync Frame ID Rejection Filter Register (FR_SFIDRFR)

This register defines the Sync Frame Rejection Filter ID. The application must update this register outside
of the static segment. If the application updates this register in the static segment, it can appear that the CC
accepts the sync frame in the current cycle.

29.5.2.37 Sync Frame ID Acceptance Filter Value Register (FR_SFIDAFVR)

This register defines the sync frame acceptance filter value. For details on filtering, see Section 29.6.15,
“Sync Frame Filtering”.

29.5.2.38 Sync Frame ID Acceptance Filter Mask Register (FR_SFIDAFMR)

This register defines the sync frame acceptance filter mask. For details on filtering see Section 29.6.15.1,
“Sync Frame Acceptance Filtering”.

Base + 0x0046 16-bit write access required Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0
SYNFRID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-36. Sync Frame ID Rejection Filter Register (FR_SFIDRFR)

Table 29-41. FR_SFIDRFR Field Descriptions

Field Description

SYNFRID Sync Frame Rejection ID — This field defines the frame ID of a frame that must not be used for clock
synchronization. For details see Section 29.6.15.2, “Sync Frame Rejection Filtering”.

Base + 0x0048 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0
FVAL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-37. Sync Frame ID Acceptance Filter Value Register (FR_SFIDAFVR)

Table 29-42. FR_SFIDAFVR Field Descriptions

Field Description

FVAL Filter Value — This field defines the value for the sync frame acceptance filtering.

Base + 0x004A Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0
FMSK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-38. Sync Frame ID Acceptance Filter Mask Register (FR_SFIDAFMR)

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 831

29.5.2.39 Network Management Vector Registers (FR_NMVR0–FR_NMVR5)

Each of these six registers holds one part of the Network Management Vector. The length of the Network
Management Vector is configured in the Network Management Vector Length Register (FR_NMVLR). If
FR_NMVLR is programmed with a value that is less than 12 bytes, the remaining bytes of the Network
Management Vector Registers (FR_NMVR0–FR_NMVR5), which are not used for the Network
Management Vector accumulating, will remain 0.

The NMVR provides accrued information over all received NMVs in the last communication cycle. All
NMVs received in one cycle are ORed into the NMVR. The NMVR is updated at the end of the
communication cycle.

Table 29-43. FR_SFIDAFMR Field Descriptions

Field Description

FMSK Filter Mask — This field defines the mask for the sync frame acceptance filtering.

Base + 0x004C (FR_NMVR0)
Base + 0x004E (FR_NMVR1)
Base + 0x0050 (FR_NMVR2)
Base + 0x0052 (FR_NMVR3)
Base + 0x0054 (FR_NMVR4)
Base + 0x0056 (FR_NMVR5)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R NMVP[15:8] NMVP[7:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-39. Network Management Vector Registers (FR_NMVR0–FR_NMVR5)

Table 29-44. NMVR[0:5] Field Descriptions

Field Description

NMVP Network Management Vector Part — The mapping between the Network Management Vector Registers
(FR_NMVR0–FR_NMVR5) and the receive message buffer payload bytes in NMV[0:11] is depicted in
Table 29-45.

Table 29-45. Mapping of NMVRn to the Received Payload Bytes NMVn

NMVRn Register NMVn Received Payload

FR_NMVR0[NMVP[15:8]] NMV0

FR_NMVR0[NMVP[7:0]] NMV1

FR_NMVR1[NMVP[15:8]] NMV2

FR_NMVR1[NMVP[7:0]] NMV3

...

FR_NMVR5[NMVP[15:8]] NMV10

FR_NMVR5[NMVP[7:0]] NMV11

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

832 Freescale Semiconductor

29.5.2.40 Network Management Vector Length Register (FR_NMVLR)

This register defines the length of the network management vector in bytes.

29.5.2.41 Timer Configuration and Control Register (FR_TICCR)

This register is used to configure and control the two timers T1 and T2. For timer details, see
Section 29.6.17, “Timer Support”. The Timer T1 is an absolute timer. The Timer T2 can be configured as
an absolute or relative timer.

Base + 0x0058 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0
NMVL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-40. Network Management Vector Length Register (FR_NMVLR)

Table 29-46. FR_NMVLR Field Descriptions

Field Description

NMVL Network Management Vector Length — protocol related variable: gNetworkManagementVectorLength
This field defines the length of the Network Management Vector in bytes. Legal values are between 0 and 12.

Base + 0x005A Write: T2_CFG: POC:config
T2_REP, T1_REP, T1SP, T2SP, T1TR, T2TR: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 T2_
CFG

T2_
REP

0 0 0 T2ST 0 0 0 T1_
REP

0 0 0 T1ST

W T2SP T2TR T1SP T1TR

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-41. Timer Configuration and Control Register (FR_TICCR)

Table 29-47. FR_TICCR Field Descriptions

Field Description

T2_CFG Timer T2 Configuration — This bit configures the timebase mode of Timer T2.
0 T2 is absolute timer.
1 T2 is relative timer.

T2_REP Timer T2 Repetitive Mode — This bit configures the repetition mode of Timer T2.
0 T2 is non repetitive
1 T2 is repetitive

T2SP Timer T2 Stop — This trigger bit is used to stop timer T2.
0 no effect
1 stop timer T2

T2TR Timer T2 Trigger — This trigger bit is used to start timer T2.
0 no effect
1 start timer T2

T2ST Timer T2 State — This status bit provides the current state of timer T2.
0 timer T2 is idle
1 timer T2 is running

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 833

NOTE
Both timers are deactivated immediately when the protocol enters a state
different from POC:normal active or POC:normal passive.

29.5.2.42 Timer 1 Cycle Set Register (FR_TI1CYSR)

This register defines the cycle filter value and the cycle filter mask for timer T1. For a detailed description
of timer T1, refer to Section 29.6.17.1, “Absolute Timer T1”.

NOTE
If the application modifies the value in this register while the timer is
running, the change becomes effective immediately and timer T1 will expire
according to the changed value.

T1_REP Timer T1 Repetitive Mode — This bit configures the repetition mode of timer T1.
0 T1 is non repetitive
1 T1 is repetitive

T1SP Timer T1 Stop — This trigger bit is used to stop timer T1.
0 no effect
1 stop timer T1

T1TR Timer T1 Trigger — This trigger bit is used to start timer T1.
0 no effect
1 start timer T1

T1ST Timer T1 State — This status bit provides the current state of timer T1.
0 timer T1 is idle
1 timer T1 is running

Base + 0x005C Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
T1_CYC_VAL

0 0
T1_CYC_MSK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-42. Timer 1 Cycle Set Register (FR_TI1CYSR)

Table 29-48. FR_TI1CYSR Field Descriptions

Field Description

T1_CYC_VAL Timer T1 Cycle Filter Value — This field defines the cycle filter value for timer T1.

T1_CYC_MSK Timer T1 Cycle Filter Mask — This field defines the cycle filter mask for timer T1.

Table 29-47. FR_TICCR Field Descriptions

Field Description

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

834 Freescale Semiconductor

29.5.2.43 Timer 1 Macrotick Offset Register (FR_TI1MTOR)

This register holds the macrotick offset value for timer T1. For a detailed description of timer T1, refer to
Section 29.6.17.1, “Absolute Timer T1”.

NOTE
If the application modifies the value in this register while the timer is
running, the change becomes effective immediately and timer T1 will expire
according to the changed value.

29.5.2.44 Timer 2 Configuration Register 0 (FR_TI2CR0)

The content of this register depends on the value of the T2_CFG bit in the Timer Configuration and Control
Register (FR_TICCR). For a detailed description of timer T2, refer to Section 29.6.17.2, “Absolute /
Relative Timer T2”.

Base + 0x005E Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
T1_MTOFFSET

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-43. Timer 1 Macrotick Offset Register (FR_TI1MTOR)

Table 29-49. FR_TI1MTOR Field Descriptions

Field Description

T1_MTOFFSET Timer 1 Macrotick Offset — This field defines the macrotick offset value for timer 1.

Base + 0x0060 Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
R* T2_CYC_VAL R* T2_CYC_MSK

W

R
T2_MTCNT[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-44. Timer 2 Configuration Register 0 (FR_TI2CR0)

Table 29-50. FR_TI2CR0 Field Descriptions

Field Description

Fields for absolute timer T2 (FR_TICCR[T2_CFG] = 0)

T2_CYC_VAL Timer T2 Cycle Filter Value — This field defines the cycle filter value for timer T2.

T2_CYC_MSK Timer T2 Cycle Filter Mask — This field defines the cycle filter mask for timer T2.

Fields for relative timer T2 (FR_TICCR[T2_CFG = 1)

T2_MTCNT[31:16] Timer T2 Macrotick High Word — This field defines the high word of the macrotick count for timer T2.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 835

NOTE
If timer T2 is configured as an absolute timer and the application modifies
the values in this register while the timer is running, the change becomes
effective immediately and timer T2 will expire according to the changed
values.

If timer T2 is configured as a relative timer and the application changes the
values in this register while the timer is running, the change becomes
effective when the timer has expired according to the old values.

29.5.2.45 Timer 2 Configuration Register 1 (FR_TI2CR1)

The content of this register depends on the value of the T2_CFG bit in the Timer Configuration and Control
Register (FR_TICCR). For a detailed description of timer T2, refer to Section 29.6.17.2, “Absolute /
Relative Timer T2”.

NOTE
If timer T2 is configured as an absolute timer and the application modifies
the values in this register while the timer is running, the change becomes
effective immediately and the timer T2 will expire according to the changed
values.

If timer T2 is configured as a relative timer and the application changes the
values in this register while the timer is running, the change becomes
effective when the timer has expired according to the old values.

Base + 0x0062 Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
R* T2_MTOFFSET

W

R
T2_MTCNT[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-45. Timer 2 Configuration Register 1 (FR_TI2CR1)

Table 29-51. FR_TI2CR1 Field Descriptions

Field Description

Fields for absolute timer T2 (FR_TICCR[T2_CFG] = 0)

T2_MTOFFSET Timer T2 Macrotick Offset — This field holds the macrotick offset value for timer T2.

Fields for relative timer T2 (FR_TICCR[T2_CFG] = 1)

T2_MTCNT[15:0] Timer T2 Macrotick Low Word — This field defines the low word of the macrotick value for timer T2.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

836 Freescale Semiconductor

29.5.2.46 Slot Status Selection Register (FR_SSSR)

This register is used to access the four internal non-memory mapped slot status selection registers
FR_SSSR0 to FR_SSSR3. Each internal register selects a slot, or symbol window/NIT, whose status
vector will be saved in the corresponding Slot Status Registers (FR_SSR0–FR_SSR7) according to
Table 29-53. For a detailed description of slot status monitoring, refer to Section 29.6.18, “Slot Status
Monitoring”.

Base + 0x0064 16-bit write access required Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
SEL

0
SLOTNUMBER

W WMD

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-46. Slot Status Selection Register (FR_SSSR)

Table 29-52. FR_SSSR Field Descriptions

Field Description

WMD Write Mode — This control bit defines the write mode of this register.
0 Write to all fields in this register on write access.
1 Write to SEL field only on write access.

SEL Selector — This field selects one of the four internal slot status selection registers for access.
00 select FR_SSSR0.
01 select FR_SSSR1.
10 select FR_SSSR2.
11 select FR_SSSR3.

SLOTNUMBER Slot Number — This field specifies the number of the slot whose status will be saved in the corresponding
slot status registers.
Note: If this value is set to 0, the related slot status register provides the status of the symbol window after the

NIT start, and provides the status of the NIT after the cycle start.

Table 29-53. Mapping Between FR_SSSRn and FR_SSRn

Internal Slot
Status Selection

Register

Write the Slot Status of the Slot Selected by FR_SSSRn for each

Even Communication Cycle Odd Communication Cycle

For Channel B
to

For Channel A
to

For Channel B
to

For Channel A
to

FR_SSSR0 FR_SSR0[15:8] FR_SSR0[7:0] FR_SSR1[15:8] FR_SSR1[7:0]

FR_SSSR1 FR_SSR2[15:8] FR_SSR2[7:0] FR_SSR3[15:8] FR_SSR3[7:0]

FR_SSSR2 FR_SSR4[15:8] FR_SSR4[7:0] FR_SSR5[15:8] FR_SSR5[7:0]

FR_SSSR3 FR_SSR6[15:8] FR_SSR6[7:0] FR_SSR7[15:8] FR_SSR7[7:0]

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 837

29.5.2.47 Slot Status Counter Condition Register (FR_SSCCR)

This register is used to access and program the four internal non-memory mapped Slot Status Counter
Condition Registers FR_SSCCR0 to FR_SSCCR3. Each of these four internal slot status counter condition
registers defines the mode and the conditions for incrementing the counter in the corresponding Slot Status
Counter Registers (FR_SSCR0–FR_SSCR3). The correspondence is given in Table 29-55. For a detailed
description of slot status counters, refer to Section 29.6.18.4, “Slot Status Counter Registers”.

Base + 0x0066 16-bit write access required Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
SEL

0
CNTCFG MCY VFR SYF NUF SUF STATUSMASK[3:0]

W WMD

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-47. Slot Status Counter Condition Register (FR_SSCCR)

Table 29-54. FR_SSCCR Field Descriptions

Field Description

WMD Write Mode — This control bit defines the write mode of this register.
0 Write to all fields in this register on write access.
1 Write to SEL field only on write access.

SEL Selector — This field selects one of the four internal slot counter condition registers for access.
00 select FR_SSCCR0.
01 select FR_SSCCR1.
10 select FR_SSCCR2.
11 select FR_SSCCR3.

CNTCFG Counter Configuration — These bit field controls the channel related incrementing of the slot status counter.
00 increment by 1 if condition is fulfilled on channel A.
01 increment by 1 if condition is fulfilled on channel B.
10 increment by 1 if condition is fulfilled on at least one channel.
11 increment by 2 if condition is fulfilled on both channels channel.

increment by 1 if condition is fulfilled on only one channel.

MCY Multi Cycle Selection — This bit defines whether the slot status counter accumulates over multiple
communication cycles or provides information for the previous communication cycle only.
0 The Slot Status Counter provides information for the previous communication cycle only.
1 The Slot Status Counter accumulates over multiple communication cycles.

VFR Valid Frame Restriction — This bit is used to restrict the counter to received valid frames.
0 The counter is not restricted to valid frames only.
1 The counter is restricted to valid frames only.

SYF Sync Frame Restriction — This bit is used to restrict the counter to received frames with the sync frame
indicator bit set to 1.
0 The counter is not restricted with respect to the sync frame indicator bit.
1 The counter is restricted to frames with the sync frame indicator bit set to 1.

NUF Null Frame Restriction — This bit is used to restrict the counter to received frames with the null frame
indicator bit set to 0.
0 The counter is not restricted with respect to the null frame indicator bit.
1 The counter is restricted to frames with the null frame indicator bit set to 0.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

838 Freescale Semiconductor

29.5.2.48 Slot Status Registers (FR_SSR0–FR_SSR7)

Each of these eight registers holds the status vector of the slot specified in the corresponding internal slot
status selection register, which can be programmed using the Slot Status Selection Register (FR_SSSR).
Each register is updated after the end of the corresponding slot as shown in Figure 29-155. The register
bits are directly related to the protocol variables and described in more detail in Section 29.6.18, “Slot
Status Monitoring”.

SUF Startup Frame Restriction — This bit is used to restrict the counter to received frames with the startup frame
indicator bit set to 1.
0 The counter is not restricted with respect to the startup frame indicator bit.
1 The counter is restricted to received frames with the startup frame indicator bit set to 1.

STATUS
MASK[3:0]

Slot Status Mask — This bit field is used to enable the counter with respect to the four slot status error
indicator bits.
STATUSMASK[3] – This bit enables the counting for slots with the syntax error indicator bit set to 1.
STATUSMASK[2] – This bit enables the counting for slots with the content error indicator bit set to 1.
STATUSMASK[1] – This bit enables the counting for slots with the boundary violation indicator bit set to 1.
STATUSMASK[0] – This bit enables the counting for slots with the transmission conflict indicator bit set to 1.

Table 29-55. Mapping between internal FR_SSCCRn and FR_SSCRn

Condition Register Condition Defined for Register

FR_SSCCR0 FR_SSCR0

FR_SSCCR1 FR_SSCR1

FR_SSCCR2 FR_SSCR2

FR_SSCCR3 FR_SSCR3

Base + 0x0068 (FR_SSR0)
Base + 0x006A (FR_SSR1)
Base + 0x006C (FR_SSR2)
Base + 0x006E (FR_SSR3)
Base + 0x0070 (FR_SSR4)
Base + 0x0072 (FR_SSR5)
Base + 0x0074 (FR_SSR6)
Base + 0x0076 (FR_SSR7)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R VFB SYB NFB SUB SEB CEB BVB TCB VFA SYA NFA SUA SEA CEA BVA TCA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-48. Slot Status Registers (FR_SSR0–FR_SSR7)

Table 29-54. FR_SSCCR Field Descriptions

Field Description

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 839

Table 29-56. FR_SSR0–FR_SSR7 Field Descriptions

Field Description

VFB Valid Frame on Channel B — protocol related variable: vSS!ValidFrame channel B
0 vSS!ValidFrame = 0
1 vSS!ValidFrame = 1

SYB Sync Frame Indicator Channel B — protocol related variable: vRF!Header!SyFIndicator channel B
0 vRF!Header!SyFIndicator = 0
1 vRF!Header!SyFIndicator = 1

NFB Null Frame Indicator Channel B — protocol related variable: vRF!Header!NFIndicator channel B
0 vRF!Header!NFIndicator = 0
1 vRF!Header!NFIndicator = 1

SUB Startup Frame Indicator Channel B — protocol related variable: vRF!Header!SuFIndicator channel B
0 vRF!Header!SuFIndicator = 0
1 vRF!Header!SuFIndicator = 1

SEB Syntax Error on Channel B — protocol related variable: vSS!SyntaxError channel B
0 vSS!SyntaxError = 0
1 vSS!SyntaxError = 1

CEB Content Error on Channel B — protocol related variable: vSS!ContentError channel B
0 vSS!ContentError = 0
1 vSS!ContentError = 1

BVB Boundary Violation on Channel B — protocol related variable: vSS!BViolation channel B
0 vSS!BViolation = 0
1 vSS!BViolation = 1

TCB Transmission Conflict on Channel B — protocol related variable: vSS!TxConflict channel B
0 vSS!TxConflict = 0
1 vSS!TxConflict = 1

VFA Valid Frame on Channel A — protocol related variable: vSS!ValidFrame channel A
0 vSS!ValidFrame = 0
1 vSS!ValidFrame = 1

SYA Sync Frame Indicator Channel A — protocol related variable: vRF!Header!SyFIndicator channel A
0 vRF!Header!SyFIndicator = 0
1 vRF!Header!SyFIndicator = 1

NFA Null Frame Indicator Channel A — protocol related variable: vRF!Header!NFIndicator channel A
0 vRF!Header!NFIndicator = 0
1 vRF!Header!NFIndicator = 1

SUA Startup Frame Indicator Channel A — protocol related variable: vRF!Header!SuFIndicator channel A
0 vRF!Header!SuFIndicator = 0
1 vRF!Header!SuFIndicator = 1

SEA Syntax Error on Channel A — protocol related variable: vSS!SyntaxError channel A
0 vSS!SyntaxError = 0
1 vSS!SyntaxError = 1

CEA Content Error on Channel A — protocol related variable: vSS!ContentError channel A
0 vSS!ContentError = 0
1 vSS!ContentError = 1

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

840 Freescale Semiconductor

29.5.2.49 Slot Status Counter Registers (FR_SSCR0–FR_SSCR3)

Each of these four registers provides the slot status counter value for the previous communication cycle(s)
and is updated at the cycle start. The provided value depends on the control bits and fields in the related
internal slot status counter condition register FR_SSCCRn, which can be programmed by using the Slot
Status Counter Condition Register (FR_SSCCR). For more details, see Section 29.6.18.4, “Slot Status
Counter Registers”.

NOTE
If the counter has reached its maximum value 0xFFFF and is in the
multicycle mode, i.e. FR_SSCCRn[MCY] = 1, the counter is not reset to
0x0000. The application can reset the counter by clearing the
FR_SSCCRn[MCY] bit and waiting for the next cycle start, when the CC
clears the counter. Subsequently, the counter can be set into the multicycle
mode again.

BVA Boundary Violation on Channel A — protocol related variable: vSS!BViolation channel A
0 vSS!BViolation = 0
1 vSS!BViolation = 1

TCA Transmission Conflict on Channel A — protocol related variable: vSS!TxConflict channel A
0 vSS!TxConflict = 0
1 vSS!TxConflict = 1

Base + 0x0078 (FR_SSCR0)
Base + 0x007A (FR_SSCR1)
Base + 0x007C (FR_SSCR2)
Base + 0x007E (FR_SSCR3)

Additional Reset: RUN Command

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SLOTSTATUSCNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-49. Slot Status Counter Registers (FR_SSCR0–FR_SSCR3)

Table 29-57. FR_SSCR0–FR_SSCR3 Field Descriptions

Field Description

SLOTSTATUSCNT Slot Status Counter — This field provides the current value of the Slot Status Counter.

Table 29-56. FR_SSR0–FR_SSR7 Field Descriptions (continued)

Field Description

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 841

29.5.2.50 MTS A Configuration Register (FR_MTSACFR)

This register controls the transmission of the Media Access Test Symbol MTS on channel A. For more
details, see Section 29.6.13, “MTS Generation”.

29.5.2.51 MTS B Configuration Register (MTSBCFR)

This register controls the transmission of the Media Access Test Symbol MTS on channel B. For more
details, see Section 29.6.13, “MTS Generation”.

Base + 0x0080 Write: MTE: Anytime
CYCCNTMSK,CYCCNTVAL:POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MTE

0
CYCCNTMSK

0 0
CYCCNTVAL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-50. MTS A Configuration Register (FR_MTSACFR)

Table 29-58. FR_MTSACFR Field Descriptions

Field Description

MTE Media Access Test Symbol Transmission Enable — This control bit is used to enable and disable the
transmission of the Media Access Test Symbol in the selected set of cycles.
0 MTS transmission disabled
1 MTS transmission enabled

CYCCNTMSK Cycle Counter Mask — This field provides the filter mask for the MTS cycle count filter.

CYCCNTVAL Cycle Counter Value — This field provides the filter value for the MTS cycle count filter.

Base + 0x0082 Write: MTE: Anytime
CYCCNTMSK,CYCCNTVAL:POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MTE

0
CYCCNTMSK

0 0
CYCCNTVAL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-51. MTS B Configuration Register (MTSBCFR)

Table 29-59. MTSBCFR Field Descriptions

Field Description

MTE Media Access Test Symbol Transmission Enable — This control bit is used to enable and disable the
transmission of the Media Access Test Symbol in the selected set of cycles.
0 MTS transmission disabled
1 MTS transmission enabled

CYCCNTMSK Cycle Counter Mask — This field provides the filter mask for the MTS cycle count filter.

CYCCNTVAL Cycle Counter Value — This field provides the filter value for the MTS cycle count filter.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

842 Freescale Semiconductor

29.5.2.52 Receive Shadow Buffer Index Register (FR_RSBIR)

This register is used to provide and retrieve the indices of the message buffer header fields currently
associated with the receive shadow buffers. For more details on the receive shadow buffer concept, refer
to Section 29.6.6.3.5, “Receive Shadow Buffers Concept”.

29.5.2.53 Receive FIFO Start Data Offset Register (FR_RFSDOR)

Base + 0x0084 16-bit write access required Write: WMD, SEL: Any Time
RSBIDX: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
SEL

0 0 0 0 RSBIDXA1/RSBIDXA2

RSBIDXB1/RSBIDXB2W WMD

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-52. Receive Shadow Buffer Index Register (FR_RSBIR)

Table 29-60. FR_RSBIR Field Descriptions

Field Description

WMD Write Mode — This bit controls the write mode for this register.
0 update SEL and RSBIDX field on register write
1 update only SEL field on register write

SEL Selector — This field is used to select the internal receive shadow buffer index register for access.
00 FR_RSBIR_A1 — receive shadow buffer index register for channel A, segment 1
01 FR_RSBIR_A2 — receive shadow buffer index register for channel A, segment 2
10 FR_RSBIR_B1 — receive shadow buffer index register for channel B, segment 1
11 FR_RSBIR_B2 — receive shadow buffer index register for channel B, segment 2

RSBIDXA1
RSBIDXA2
RSBIDXB1
RSBIDXB2

Receive Shadow Buffer Index — This field contains the current index of the message buffer header field of the
receive shadow message buffer selected by the SEL field. The CC uses this index to determine the physical
location of the shadow buffer header field in the flexray memory area. The CC will update this field during receive
operation.The application provides initial message buffer header index value in the configuration phase.
CC: Updates the message buffer header index after successful reception.
Application: Provides initial message buffer header index.
Legal Values are 0 <= i <= 131. Illegal values will be detected during the message buffer search.

Base + 0x00E6 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SDOA/SDOBW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-53. Receive FIFO Start Data Offset Register (FR_RFSDOR)

Table 29-61. FR_RFSDOR Field Descriptions

Field Description

SDOA
SDOB

Start Data Field Offset — This field defines the data field offset of the header field of the first message buffer
of the selected FIFO. The CC uses the value of the SDO field to determine the physical location of the receiver
FIFO’s first message buffer header field. For configuration constraints see Section 29.7.1.2, “Configure Data
Field Offsets”.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 843

NOTE
Since all data fields of the FIFO are of equal length and are located at
subsequent system memory addresses the content of the FR_RFSDOR
register corresponds to the start address of payload area of the selected
FIFO.

29.5.2.54 Receive FIFO System Memory Base Address Register
(FR_RFSYMBADR)

These registers define the system memory base address for the receive FIFO if the FIFO address mode bit
FR_MCR[FAM] is set to 1. The system memory base address is used by the BMIF to calculate the physical
memory address for system memory accesses for the FIFOs.

29.5.2.55 Receive FIFO Periodic Timer Register (FR_RFPTR)

This register holds periodic timer duration for the periodic FIFO timer. The periodic timer applies to both
FIFOs (see Section 29.6.9.3, “FIFO Periodic Timer”).

Base + 0x00E8 Write: Disabled Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SMBA[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-54. Receive FIFO System Memory Base Address High Register (FR_RFSYMBADHR)

Base + 0x00EA Write: Disabled Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SMBA[15:4]

0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-55. Receive FIFO System Memory Base Address Low Register (FR_RFSYMBADLR)

Table 29-62. FR_RFSYMBADR Field Descriptions

Field Description

SMBA System Memory Base Address — This is the value of the system memory base address for the receive FIFO
if the FIFO address mode bit FR_MCR[FAM] is set to 1. It is defines as a byte address.

Base + 0x00EC Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
PTD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-56. Receive FIFO Periodic Timer Register (FR_RFPTR)

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

844 Freescale Semiconductor

29.5.2.56 Receive FIFO Watermark and Selection Register (FR_RFWMSR)

This register is used to

• select a receiver FIFO for subsequent programming access through the receiver FIFO
configuration registers summarized in Table 29-64.

• to define the watermark for the selected FIFO.

Table 29-63. FR_RFPTR Field Descriptions

Field Description

PTD Periodic Timer Duration — This value defines the periodic timer duration in terms of macroticks.
0000 timer stays expired
3FFF timer never expires
other timer expires after specified number of macroticks, expires and is restarted at each cycle start

Base + 0x0086 Write: WMA/WMB: POC:config, SEL: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
WMA//WMB

0 0 0 0 0 0 0
SEL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-57. Receive FIFO Watermark and Selection Register (FR_RFWMSR)

Table 29-64. SEL Controlled Receiver FIFO Registers

Register

Receive FIFO Start Index Register (FR_RFSIR)

Receive FIFO Depth and Size Register (RFDSR)

Receive FIFO Message ID Acceptance Filter Value Register (FR_RFMIDAFVR)

Receive FIFO Message ID Acceptance Filter Mask Register (FR_RFMIDAFMR)

Receive FIFO Frame ID Rejection Filter Value Register (FR_RFFIDRFVR)

Receive FIFO Frame ID Rejection Filter Mask Register (FR_RFFIDRFMR)

Receive FIFO Range Filter Configuration Register (FR_RFRFCFR)

Receive FIFO Range Filter Control Register (FR_RFRFCTR)

Table 29-65. FR_RFWMSR Field Descriptions

Field Description

WMA
WMB

Watermark — This field defines the watermark value for the selected FIFO. This value is used to control the
generation of the almost full interrupt flags.

SEL Select — This control bit selects the receiver FIFO for subsequent programming.
0 Receiver FIFO for channel A selected
1 Receiver FIFO for channel B selected

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 845

29.5.2.57 Receive FIFO Start Index Register (FR_RFSIR)

This register defines the message buffer header index of the first message buffer of the selected FIFO.

29.5.2.58 Receive FIFO Depth and Size Register (RFDSR)

This register defines the structure of the selected FIFO, i.e. the number of entries and the size of each entry.

29.5.2.59 Receive FIFO A Read Index Register (FR_RFARIR)

Base + 0x0088 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0
SIDXA/SIDXBW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-58. Receive FIFO Start Index Register (FR_RFSIR)

Table 29-66. FR_RFSIR Field Descriptions

Field Description

SIDXA
SIDXB

Start Index — This field defines the number of the message buffer header field of the first message buffer of the
selected FIFO. The CC uses the value of the SIDX field to determine the physical location of the receiver FIFO’s
first message buffer header field.

Base + 0x008A Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
FIFO_DEPTHA/FIFO_DEPTHB

0
ENTRY_SIZEA/ENTRY_SIZEBW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-59. Receive FIFO Depth and Size Register (RFDSR)

Table 29-67. RFDSR Field Descriptions

Field Description

FIFO_DEPTHA
FIFO_DEPTHB

FIFO Depth — This field defines the depth of the selected FIFO, i.e. the number of entries.
Note: If the FIFO_DEPTH is configured to 0, FR_RFFIDRFMR[FIDRFMSK] must be configured to 0 too, to
ensure that no frames are received into the FIFO.

ENTRY_SIZEA
ENTRY_SIZEB

Entry Size — This field defines the size of the frame data sections for the selected FIFO in 2 byte entities.

Base + 0x008C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 RDIDX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-60. Receive FIFO A Read Index Register (FR_RFARIR)

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

846 Freescale Semiconductor

This register provides the message buffer header index of the next available FIFO A entry that the
application can read.

NOTE
If the FIFO is empty, the RDIDX field points to an physical message buffer
with invalid content.

29.5.2.60 Receive FIFO B Read Index Register (FR_RFBRIR)

This register provides the message buffer header index of the next available FIFO B entry that the
application can read.

NOTE
If the FIFO is empty, the RDIDX field points to an physical message buffer
with invalid content.

29.5.2.61 Receive FIFO Fill Level and POP Count Register (FR_RFFLPCR)

Table 29-68. FR_RFARIR Field Descriptions

Field Description

RDIDX Read Index — This field provides the message buffer header index of the next available FIFO message buffer
that the application can read.

Base + 0x008E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 RDIDX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-61. Receive FIFO B Read Index Register (FR_RFBRIR)

Table 29-69. FR_RFBRIR Field Descriptions

Field Description

RDIDX Read Index — This field provides the message buffer header index of the next available FIFO message buffer
that the application can read.

Base + 0x00EE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FLB FLA

W PCB PCA

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-62. Receive FIFO Fill Level and POP Count Register (FR_RFFLPCR)

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 847

This register provides the current fill level of the two receiver FIFOs and is used to pop a number of entries
from the FIFOs.

NOTE
If the pop count value PCA/PCB is greater than the current FIFO fill level
FLB/FLA, than the FIFO is empty after the update. No notification is given
that not the required number of entries was removed.

29.5.2.62 Receive FIFO Message ID Acceptance Filter Value Register
(FR_RFMIDAFVR)

This register defines the filter value for the message ID acceptance filter of the selected FIFO. For details
on message ID filtering see Section 29.6.9.9, “FIFO Filtering”.

29.5.2.63 Receive FIFO Message ID Acceptance Filter Mask Register
(FR_RFMIDAFMR)

Table 29-70. FR_RFFLPCR Field Descriptions

Field Description

FLB Fill Level FIFO B — This field provides the current number of entries in the FIFO B.

FLA Fill Level FIFO A— This field provides the current number of entries in the FIFO A.

PCB Pop Count FIFO B — This field defines the number of entries to be removed from FIFO B.

PCA Pop Count FIFO A— This field defines the number of entries to be removed from FIFO A.

Base + 0x0090 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MIDAFVALA/MIDAFVALBW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-63. Receive FIFO Message ID Acceptance Filter Value Register (FR_RFMIDAFVR)

Table 29-71. FR_RFMIDAFVR Field Descriptions

Field Description

MIDAFVALA
MIDAFVALB

Message ID Acceptance Filter Value — Filter value for the message ID acceptance filter.

Base + 0x0092 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MIDAFMSKA/MIDAFMSKBW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-64. Receive FIFO Message ID Acceptance Filter Mask Register (FR_RFMIDAFMR)

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

848 Freescale Semiconductor

This register defines the filter mask for the message ID acceptance filter of the selected FIFO. For details
on message ID filtering see Section 29.6.9.9, “FIFO Filtering”.

29.5.2.64 Receive FIFO Frame ID Rejection Filter Value Register (FR_RFFIDRFVR)

This register defines the filter value for the frame ID rejection filter of the selected FIFO. For details on
frame ID filtering see Section 29.6.9.9, “FIFO Filtering”.

29.5.2.65 Receive FIFO Frame ID Rejection Filter Mask Register (FR_RFFIDRFMR)

This register defines the filter mask for the frame ID rejection filter of the selected FIFO. For details on
frame ID filtering see Section 29.6.9.9, “FIFO Filtering”.

Table 29-72. FR_RFMIDAFMR Field Descriptions

Field Description

MIDAFMSKA
MIDAFMSKB

Message ID Acceptance Filter Mask — Filter mask for the message ID acceptance filter.

Base + 0x0094 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
FIDRFVALA/FIDRFVALBW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-65. Receive FIFO Frame ID Rejection Filter Value Register (FR_RFFIDRFVR)

Table 29-73. FR_RFFIDRFVR Field Descriptions

Field Description

FIDRFVALA
FIDRFVALB

Frame ID Rejection Filter Value — Filter value for the frame ID rejection filter.

Base + 0x0096 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
FIDRFMSKA/FIDRFMSKBW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-66. Receive FIFO Frame ID Rejection Filter Mask Register (FR_RFFIDRFMR)

Table 29-74. FR_RFFIDRFMR Field Descriptions

Field Description

FIDRFMSK Frame ID Rejection Filter Mask — Filter mask for the frame ID rejection filter.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 849

29.5.2.66 Receive FIFO Range Filter Configuration Register (FR_RFRFCFR)

This register provides access to the four internal frame ID range filter boundary registers of the selected
FIFO. For details on frame ID range filter see Section 29.6.9.9, “FIFO Filtering”.

29.5.2.67 Receive FIFO Range Filter Control Register (FR_RFRFCTR)

This register is used to enable and disable each frame ID range filter and to define whether it is running as
acceptance or rejection filter.

Base + 0x0098 16-bit write access required Write: WMD, IBD, SEL: Any Time
SID: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
IBD SEL

0
SIDA/SIDBW WMD

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-67. Receive FIFO Range Filter Configuration Register (FR_RFRFCFR)

Table 29-75. FR_RFRFCFR Field Descriptions

Field Description

WMD Write Mode — This control bit defines the write mode of this register.
0 Write to all fields in this register on write access.
1 Write to SEL and IBD field only on write access.

IBD Interval Boundary — This control bit selects the interval boundary to be programmed with the SID value.
0 program lower interval boundary
1 program upper interval boundary

SEL Filter Selector — This control field selects the frame ID range filter to be accessed.
00 select frame ID range filter 0.
01 select frame ID range filter 1.
10 select frame ID range filter 2.
11 select frame ID range filter 3.

SIDA
SIDB

Slot ID — Defines the IBD-selected frame ID boundary value for the SEL-selected range filter.

Base + 0x009A Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
F3MD F2MD F1MD F0MD

0 0 0 0
F3EN F2EN F1EN F0EN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-68. Receive FIFO Range Filter Control Register (FR_RFRFCTR)

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

850 Freescale Semiconductor

29.5.2.68 Last Dynamic Transmit Slot Channel A Register (FR_LDTXSLAR)

This register provides the number of the last transmission slot in the dynamic segment for channel A. This
register is updated after the end of the dynamic segment and before the start of the next communication
cycle.

Table 29-76. FR_RFRFCTR Field Descriptions

Field Description

F3MD Range Filter 3 Mode — This control bit defines the filter mode of the frame ID range filter 3.
0 range filter 3 runs as acceptance filter
1 range filter 3 runs as rejection filter

F2MD Range Filter 2 Mode — This control bit defines the filter mode of the frame ID range filter 2.
0 range filter 2 runs as acceptance filter
1 range filter 2 runs as rejection filter

F1MD Range Filter 1 Mode — This control bit defines the filter mode of the frame ID range filter 1.
0 range filter 1 runs as acceptance filter
1 range filter 1 runs as rejection filter

F0MD Range Filter 0 Mode — This control bit defines the filter mode of the frame ID range filter 0.
0 range filter 0 runs as acceptance filter
1 range filter 0 runs as rejection filter

F3EN Range Filter 3 Enable — This control bit is used to enable and disable the frame ID range filter 3.
0 range filter 3 disabled
1 range filter 3 enabled

F2EN Range Filter 2 Enable — This control bit is used to enable and disable the frame ID range filter 2.
0 range filter 2 disabled
1 range filter 2 enabled

F1EN Range Filter 1 Enable — This control bit is used to enable and disable the frame ID range filter 1.
0 range filter 1 disabled
1 range filter 1 enabled

F0EN Range Filter 0 Enable — This control bit is used to enable and disable the frame ID range filter 0.
0 range filter 0 disabled
1 range filter 0 enabled

Base + 0x009C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 LASTDYNTXSLOTA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-69. Last Dynamic Transmit Slot Channel A Register (FR_LDTXSLAR)

Table 29-77. FR_LDTXSLAR Field Descriptions

Field Description

LASTDYNTX
SLOTA

Last Dynamic Transmission Slot Channel A — protocol related variable: zLastDynTxSlot channel A
Number of the last transmission slot in the dynamic segment for channel A. If no frame was transmitted during
the dynamic segment on channel A, the value of this field is set to 0.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 851

29.5.2.69 Last Dynamic Transmit Slot Channel B Register (FR_LDTXSLBR)

This register provides the number of the last transmission slot in the dynamic segment for channel B. This
register is updated after the end of the dynamic segment and before the start of the next communication
cycle.

29.5.2.70 Protocol Configuration Registers

The following configuration registers provide the necessary configuration information to the protocol
engine. The individual values in the registers are described in Table 29-79. For more details about the
FlexRay related configuration parameters and the allowed parameter ranges, see FlexRay
Communications System Protocol Specification, Version 2.1 Rev A.

Base + 0x009E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 LASTDYNTXSLOTB

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-70. Last Dynamic Transmit Slot Channel B Register (FR_LDTXSLBR)

Table 29-78. FR_LDTXSLBR Field Descriptions

Field Description

LASTDYNTX
SLOTB

Last Dynamic Transmission Slot Channel B — protocol related variable: zLastDynTxSlot channel B
Number of the last transmission slot in the dynamic segment for channel B. If no frame was transmitted during
the dynamic segment on channel B the value of this field is set to 0.

Table 29-79. Protocol Configuration Register Fields

Name Description1 Min Max Unit FR_PCR

coldstart_attempts gColdstartAttempts number 3

action_point_offset gdActionPointOffset - 1 MT 0

cas_rx_low_max gdCASRxLowMax - 1 gdBit 4

dynamic_slot_idle_phase gdDynamicSlotIdlePhase minislot 28

minislot_action_point_offset gdMinislotActionPointOffset - 1 MT 3

minislot_after_action_point gdMinislot - gdMinislotActionPointOffset - 1 MT 2

static_slot_length gdStaticSlot MT 0

static_slot_after_action_point gdStaticSlot - gdActionPointOffset - 1 MT 13

symbol_window_exists gdSymbolWindow!=0 0 1 bool 9

symbol_window_after_action_point gdSymbolWindow - gdActionPointOffset - 1 MT 6

tss_transmitter gdTSSTransmitter gdBit 5

wakeup_symbol_rx_idle gdWakeupSymbolRxIdle gdBit 5

wakeup_symbol_rx_low gdWakeupSymbolRxLow gdBit 3

wakeup_symbol_rx_window gdWakeupSymbolRxWindow gdBit 4

wakeup_symbol_tx_idle gdWakeupSymbolTxIdle gdBit 8

wakeup_symbol_tx_low gdWakeupSymbolTxLow gdBit 5

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

852 Freescale Semiconductor

noise_listen_timeout (gListenNoise * pdListenTimeout) - 1 T 16/17

macro_initial_offset_a pMacroInitialOffset[A] MT 6

macro_initial_offset_b pMacroInitialOffset[B] MT 16

macro_per_cycle gMacroPerCycle MT 10

macro_after_first_static_slot gMacroPerCycle - gdStaticSlot MT 1

macro_after_offset_correction gMacroPerCycle - gOffsetCorrectionStart MT 28

max_without_clock_correction_fatal gMaxWithoutClockCorrectionFatal cyclepairs 8

max_without_clock_correction_passive gMaxWithoutClockCorrectionPassive cyclepairs 8

minislot_exists gNumberOfMinislots!=0 0 1 bool 9

minislots_max gNumberOfMinislots - 1 minislot 29

number_of_static_slots gNumberOfStaticSlots static slot 2

offset_correction_start gOffsetCorrectionStart MT 11

payload_length_static gPayloadLengthStatic 2-bytes 19

max_payload_length_dynamic pPayloadLengthDynMax 2-bytes 24

first_minislot_action_point_offset max(gdActionPointOffset,
gdMinislotActionPointOffset) - 1

MT 13

allow_halt_due_to_clock pAllowHaltDueToClock bool 26

allow_passive_to_active pAllowPassiveToActive cyclepairs 12

cluster_drift_damping pClusterDriftDamping T 24

comp_accepted_startup_range_a pdAcceptedStartupRange -
pDelayCompensation[A]

T 22

comp_accepted_startup_range_b pdAcceptedStartupRange -
pDelayCompensation[B]

T 26

listen_timeout pdListenTimeout - 1 T 14/15

key_slot_id pKeySlotId number 18

key_slot_used_for_startup pKeySlotUsedForStartup bool 11

key_slot_used_for_sync pKeySlotUsedForSync bool 11

latest_tx gNumberOfMinislots - pLatestTx minislot 21

sync_node_max gSyncNodeMax number 30

micro_initial_offset_a pMicroInitialOffset[A] T 20

micro_initial_offset_b pMicroInitialOffset[B] T 20

micro_per_cycle pMicroPerCycle T 22/23

micro_per_cycle_min pMicroPerCycle - pdMaxDrift T 24/25

micro_per_cycle_max pMicroPerCycle + pdMaxDrift T 26/27

micro_per_macro_nom_half round(pMicroPerMacroNom / 2) T 7

offset_correction_out pOffsetCorrectionOut T 9

rate_correction_out pRateCorrectionOut T 14

single_slot_enabled pSingleSlotEnabled bool 10

wakeup_channel pWakeupChannel see Table 29-80 10

wakeup_pattern pWakeupPattern number 18

Table 29-79. Protocol Configuration Register Fields (continued)

Name Description1 Min Max Unit FR_PCR

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 853

29.5.2.70.1 Protocol Configuration Register 0 (FR_PCR0)

29.5.2.70.2 Protocol Configuration Register 1 (FR_PCR1)

29.5.2.70.3 Protocol Configuration Register 2 (FR_PCR2)

decoding_correction_a pDecodingCorrection +
pDelayCompensation[A] + 2

T 19

decoding_correction_b pDecodingCorrection +
pDelayCompensation[B] + 2

T 7

key_slot_header_crc header CRC for key slot 0x000 0x7FF number 12

extern_offset_correction pExternOffsetCorrection T 29

extern_rate_correction pExternRateCorrection T 21
1 See FlexRay Communications System Protocol Specification, Version 2.1 Rev A for detailed protocol parameter definitions

Table 29-80. Wakeup Channel Selection

wakeup_channel Wakeup Channel

0 A

1 B

Base + 0x00A0 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
action_point_offset static_slot_length

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-71. Protocol Configuration Register 0 (FR_PCR0)

Base + 0x00A2 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
macro_after_first_static_slot

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-72. Protocol Configuration Register 1 (FR_PCR1)

Base + 0x00A4 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
minislot_after_action_point number_of_static_slots

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-73. Protocol Configuration Register 2 (FR_PCR2)

Table 29-79. Protocol Configuration Register Fields (continued)

Name Description1 Min Max Unit FR_PCR

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

854 Freescale Semiconductor

29.5.2.70.4 Protocol Configuration Register 3 (FR_PCR3)

29.5.2.70.5 Protocol Configuration Register 4 (FR_PCR4)

29.5.2.70.6 Protocol Configuration Register 5 (FR_PCR5)

29.5.2.70.7 Protocol Configuration Register 6 (FR_PCR6)

29.5.2.70.8 Protocol Configuration Register 7 (FR_PCR7)

Base + 0x00A6 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
wakeup_symbol_rx_low minislot_action_point_offset[4:0] coldstart_attempts

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-74. Protocol Configuration Register 3 (FR_PCR3)

Base + 0x00A8 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
cas_rx_low_max wakeup_symbol_rx_window

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-75. Protocol Configuration Register 4 (FR_PCR4)

Base + 0x00AA Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
tss_transmitter wakeup_symbol_tx_low wakeup_symbol_rx_idle

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-76. Protocol Configuration Register 5 (FR_PCR5)

Base + 0x00AC Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
symbol_window_after_action_point macro_initial_offset_a

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-77. Protocol Configuration Register 6 (FR_PCR6)

Base + 0x00AE Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
decoding_correction_b micro_per_macro_nom_half

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-78. Protocol Configuration Register 7 (FR_PCR7)

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 855

29.5.2.70.9 Protocol Configuration Register 8 (FR_PCR8)

29.5.2.70.10 Protocol Configuration Register 9 (FR_PCR9)

29.5.2.70.11 Protocol Configuration Register 10 (FR_PCR10)

29.5.2.70.12 Protocol Configuration Register 11 (FR_PCR11)

Base + 0x00B0 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R max_without_clock_
correction_fatal

max_without_clock_
correction_passive

wakeup_symbol_tx_idle
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-79. Protocol Configuration Register 8 (FR_PCR8)

Base + 0x00B2 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
mini
slot_
exists

sym
bol_
win

dow_
exists

offset_correction_out

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-80. Protocol Configuration Register 9 (FR_PCR9)

Base + 0x00B4 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R single
_slot
_en

abled

wake
up_
chan
nel

macro_per_cycle
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-81. Protocol Configuration Register 10 (FR_PCR10)

Base + 0x00B6 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R key_
slot_

used_
for_
start
up

key_
slot_

used_
for_
sync

offset_correction_start
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-82. Protocol Configuration Register 11 (FR_PCR11)

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

856 Freescale Semiconductor

29.5.2.70.13 Protocol Configuration Register 12 (FR_PCR12)

29.5.2.70.14 Protocol Configuration Register 13 (FR_PCR13)

29.5.2.70.15 Protocol Configuration Register 14 (FR_PCR14)

29.5.2.70.16 Protocol Configuration Register 15 (FR_PCR15)

29.5.2.70.17 Protocol Configuration Register 16 (FR_PCR16)

Base + 0x00B8 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
allow_passive_to_active key_slot_header_crc

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-83. Protocol Configuration Register 12 (FR_PCR12)

Base + 0x00BA Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
first_minislot_action_point_offset static_slot_after_action_point

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-84. Protocol Configuration Register 13 (FR_PCR13)

Base + 0x00BC Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
rate_correction_out listen_timeout[20:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-85. Protocol Configuration Register 14 (FR_PCR14)

Base + 0x00BE Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
listen_timeout[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-86. Protocol Configuration Register 15 (FR_PCR15)

Base + 0x00C0 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
macro_initial_offset_b noise_listen_timeout[24:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-87. Protocol Configuration Register 16 (FR_PCR16)

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 857

29.5.2.70.18 Protocol Configuration Register 17 (FR_PCR17)

29.5.2.70.19 Protocol Configuration Register 18 (FR_PCR18)

29.5.2.70.20 Protocol Configuration Register 19 (FR_PCR19)

29.5.2.70.21 Protocol Configuration Register 20 (FR_PCR20)

29.5.2.70.22 Protocol Configuration Register 21 (FR_PCR21)

Base + 0x00C2 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
noise_listen_timeout[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-88. Protocol Configuration Register 17 (FR_PCR17)

Base + 0x00C4 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
wakeup_pattern key_slot_id

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-89. Protocol Configuration Register 18 (FR_PCR18)

Base + 0x00C6 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
decoding_correction_a payload_length_static

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-90. Protocol Configuration Register 19 (FR_PCR19)

Base + 0x00C8 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
micro_initial_offset_b micro_initial_offset_a

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-91. Protocol Configuration Register 20 (FR_PCR20)

Base + 0x00CA Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R extern_rate_
correction

latest_tx
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-92. Protocol Configuration Register 21 (FR_PCR21)

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

858 Freescale Semiconductor

29.5.2.70.23 Protocol Configuration Register 22 (FR_PCR22)

29.5.2.70.24 Protocol Configuration Register 23 (FR_PCR23)

29.5.2.70.25 Protocol Configuration Register 24 (FR_PCR24)

29.5.2.70.26 Protocol Configuration Register 25 (FR_PCR25)

29.5.2.70.27 Protocol Configuration Register 26 (FR_PCR26)

Base + 0x00CC Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
R* comp_accepted_startup_range_a micro_per_cycle[19:16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-93. Protocol Configuration Register 22 (FR_PCR22)

Base + 0x00CE Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
micro_per_cycle[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-94. Protocol Configuration Register 23 (FR_PCR23)

Base + 0x00D0 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
cluster_drift_damping max_payload_length_dynamic

micro_per_cycle_min
[19:16]W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-95. Protocol Configuration Register 24 (FR_PCR24)

Base + 0x00D2 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
micro_per_cycle_min[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-96. Protocol Configuration Register 25 (FR_PCR25)

Base + 0x00D4 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R allow
halt
due
to
clock

comp_accepted_startup_range_b
micro_per_cycle_max

[19:16]W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-97. Protocol Configuration Register 26 (FR_PCR26)

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 859

29.5.2.70.28 Protocol Configuration Register 27 (FR_PCR27)

29.5.2.70.29 Protocol Configuration Register 28 (FR_PCR28)

29.5.2.70.30 Protocol Configuration Register 29 (FR_PCR29)

29.5.2.70.31 Protocol Configuration Register 30 (FR_PCR30)

29.5.2.71 ECC Error Interrupt Flag and Enable Register (FR_EEIFER)

Base + 0x00D6 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
micro_per_cycle_max[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-98. Protocol Configuration Register 27 (FR_PCR27)

Base + 0x00D8 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R dynamic_slot
_idle_phase

macro_after_offset_correction
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-99. Protocol Configuration Register 28 (FR_PCR28)

Base + 0x00DA Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R extern_offset_
correction

minislots_max
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-100. Protocol Configuration Register 29 (FR_PCR29)

Base + 0x00DC Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0
sync_node_max

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-101. Protocol Configuration Register 30 (FR_PCR30)

Base + 0x00F0 Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

LR
N

E
_O

F

LR
C

E
_O

F

D
R

N
E

_O
F

D
R

C
E

_O
F

LR
N

E
_I

F

LR
C

E
_I

F

D
R

N
E

_I
F

D
R

C
E

_I
F

0 0 0 0

LR
N

E
_I

E

LR
C

E
_I

E

D
R

N
E

_I
E

D
R

C
E

_I
E

W w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-102. ECC Error Interrupt Flag and Enable Register (FR_EEIFER)

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

860 Freescale Semiconductor

This register provides the means to control the ECC related interrupt request lines and provides the
corresponding interrupt flags. The interrupt flags are cleared by writing 1, which resets the corresponding
report registers. For a detailed description see Section 29.6.24.2, “Memory Error Reporting”.

Table 29-81. FR_EEIFER Field Descriptions

Field Description

Error Overflow Flags

LRNE_OF LRAM Non-Corrected Error Overflow Flag — This flag is set to 1 when at least one of the following events
appears:
a) memory errors are detected but not corrected on CHI LRAM and interrupt flag LRNE_IF is already 1.
b) memory errors are detected but not corrected on at least two banks of CHI LRAM
0 no such event
1 Non-Corrected Error overflow detected on CHI LRAM

LRCE_OF LRAM Corrected Error Overflow Flag — This flag is set to 1 when at least one of the following events
appears:
a) memory errors are detected and corrected on CHI LRAM and interrupt flag LRCE_IF is already 1.
b) memory errors are detected and corrected on at least two banks of CHI LRAM
0 no such event
1 Corrected Error overflow detected on CHI LRAM
Note: Error Correction not implemented on CHI LRAM, flag will never be asserted.

DRNE_OF DRAM Non-Corrected Error Overflow Flag — This flag is set to 1 when at least one of the following events
appears:
a) memory errors are detected but not corrected on PE DRAM and interrupt flag DRNE_IF is already 1.
b) memory errors are detected but not corrected on at least two banks of the PE DRAM
0 no such event
1 Non-Corrected Error overflow detected on PE DRAM

DRCE_OF DRAM Corrected Error Overflow Flag — This flag is set to 1 when at least one of the following events
appears:
a) memory errors are detected and corrected on PE DRAM and interrupt flag DRCE_IF is already 1.
b) memory errors are detected and corrected on at least two banks of PE DRAM
0 no such event
1 Corrected Error overflow detected on PE DRAM

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 861

29.5.2.72 ECC Error Report and Injection Control Register (FR_EERICR)

Error Interrupt Flags

LRNE_IF LRAM Non-Corrected Error Interrupt Flag — This interrupt flag is set to 1 when a memory error is detected
but not corrected on the CHI LRAM.
0 no such event
1 Non-Corrected Error detected on CHI LRAM

LRCE_IF LRAM Corrected Error Interrupt Flag — This interrupt flag is set to 1 when a memory error is detected and
corrected on the CHI LRAM.
0 no such event
1 Corrected Error detected on CHI LRAM
Note: Error Correction not implemented on CHI LRAM, flag will never be asserted.

DRNE_IF DRAM Non-Corrected Error Interrupt Flag — This interrupt flag is set to 1 when a memory error is detected
but not corrected on PE DRAM.
0 no such event
1 Non-Corrected Error detected on PE DRAM

DRCE_IF DRAM Corrected Error Interrupt Flag — This interrupt flag is set to 1 when a memory error is detected and
corrected on PE DRAM.
0 no such event
1 Corrected Error detected on PE DRAM

Error Interrupt Enables

LRNE_IE LRAM Non-Corrected Error Interrupt Enable — This flag controls if the LRAM Non-Corrected Error
Interrupt line is asserted when the LRNE_IF flag is set.
0 Disable interrupt line
1 Enable interrupt line

LRCE_IE LRAM Corrected Error Interrupt Enable — This flag controls if the LRAM Corrected Error Interrupt line is
asserted when the LRCE_IF flag is set.
0 Disable interrupt line
1 Enable interrupt line

DRNE_IE DRAM Non-Corrected Error Interrupt Enable — This flag controls if the DRAM Non-Corrected Error
Interrupt line is asserted when the DRNE_IF flag is set.
0 Disable interrupt line
1 Enable interrupt line

DRCE_IE DRAM Corrected Error Interrupt Enable — This flag controls if the DRAM Corrected Error Interrupt line is
asserted when the DRCE_IF flag is set.
0 Disable interrupt line
1 Enable interrupt line

Base + 0x00F2 Write: ERS: Anytime
ERM, EIM, EIE: IDL

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BSY 0 0 0 0 0
ERS

0 0 0
ERM

0 0
EIM EIE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-103. ECC Error Report and Injection Control Register (FR_EERICR)

Table 29-81. FR_EEIFER Field Descriptions (continued)

Field Description

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

862 Freescale Semiconductor

This register configures the error injection and error reporting and provides the selector for the content of
the report registers.

29.5.2.73 ECC Error Report Address Register (FR_EERAR)

This register provides the memory identifier, bank, and address for which the memory error is reported.

Table 29-82. FR_EERICR Field Descriptions

Field Description

BSY Register Update Busy— This field indicates the current state of the ECC configuration update and controls
the register write access condition IDL specified in “Section 29.5.2.2, “Register Write Access”
0 ECC configuration is idle
1 ECC configuration is running

ERS Error Report Select — This field selects the content of the ECC Error reporting registers.
00 show PE DRAM non-corrected error information
01 show PE DRAM corrected error information
10 show CHI LRAM non-corrected error information
11 show CHI LRAM corrected error information

ERM Error Report Mode — This bit configures the type of data written into the internal error report registers on
the detection of a memory error.
0 store data and code as delivered by ecc decoding logic.
1 store data and code as read from the memory.

EIM Error Injection Mode — This bit configures the ECC error injection mode.
0 use FR_EEIDR[DATA] and FR_EEICR[CODE] as XOR distortion pattern for error injection.
1 use FR_EEIDR[DATA] and FR_EEICR[CODE] as write value for error injection.

EIE Error Injection Enable — This bit configures the ECC error injection on the memories.
0 Error injection disabled
1 Error injection enabled

Base + 0x00F4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R MID BANK ADDR

W

Reset 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-104. ECC Error Report Address Register (FR_EERAR)

Table 29-83. FR_EERAR Field Descriptions

Field Description

MID Memory Identifier — This flag provides the memory instance for which the memory error is reported.
0 PE DRAM
1 CHI LRAM

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 863

29.5.2.74 ECC Error Report Data Register (FR_EERDR)

This register provides the data related information of the reported memory read access. The assignment of
the bits depends on the selected memory and memory bank as shown in Table 29-86.

BANK Memory Bank — This field provides the BANK for which the memory error is reported.
111 reset value, indicates no error found after reset.
For MID=0:
000 PE DRAM [7:0]
001 PE DRAM [15:8]
others - not used
For MID=1: Refer to Table 29-84 for the assignment of the LRAM banks.

ADDR Memory Address — This field provides the address of the failing memory location.

Table 29-84. LRAM Bank Value for MID = 1

BANK Register

000 FR_MBCCFR(2n) FR_MBDOR(6n) FR_LEETR0

001 FR_MBFIDR(2n) FR_MBDOR(6n + 1) FR_LEETR1

010 FR_MBIDXR(2n) FR_MBDOR(6n + 2) FR_LEETR2

011 FR_MBCCFR(2n+1) FR_MBDOR(6n + 3) FR_LEETR3

100 FR_MBFIDR(2n+1) FR_MBDOR(6n + 4) FR_LEETR4

101 FR_MBIDXR(2n+1) FR_MBDOR(6n + 5) FR_LEETR5

110
Not Used Not Used Not Used

111

Base + 0x00F6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-105. ECC Error Report Data Register (FR_EERDR)

Table 29-85. FR_EERDR Field Descriptions

Field Description

DATA Data — The content of this field depends on the report mode selected by FR_EERICR[ERM]
ERM=0: Ecc Data, shows data as generated by the ecc decoding logic.
ERM=1: Memory Data, shows data as read from the memory.

Table 29-83. FR_EERAR Field Descriptions

Field Description

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

864 Freescale Semiconductor

29.5.2.75 ECC Error Report Code Register (FR_EERCR)

This register provides the ecc related information of the reported memory read access.

Table 29-86. Valid Bits in FR_EERDR[DATA] / FR_EEIDR[DATA] field

MEM BANK 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PE DRAM 0 PE DRAM[7:0]

PE DRAM 1 PE DRAM[15:8]

CHI LRAM 0 FR_MBCCFR(2n)

CHI LRAM 0 FR_MBDOR(6n)

CHI LRAM 0 FR_LEETR0

CHI LRAM 1 FR_MBFIDR(2n)[FID]

CHI LRAM 1 FR_MBDOR(6n+1)

CHI LRAM 1 FR_LEETR1

CHI LRAM 2 FR_MBIDXR(2n)[MBIDX]

CHI LRAM 2 FR_MBDOR(6n+2)

CHI LRAM 2 FR_LEETR2

CHI LRAM 3 FR_MBCCFR(2n+1)

CHI LRAM 3 FR_MBDOR(6n+3)

CHI LRAM 3 FR_LEETR3

CHI LRAM 4 FR_MBFIDR(2n+1)[FID]

CHI LRAM 4 FR_MBDOR(6n+4)

CHI LRAM 4 FR_LEETR4

CHI LRAM 5 FR_MBIDXR(2n+1)[MBIDX]

CHI LRAM 5 FR_MBDOR(6n+5)

CHI LRAM 5 FR_LEETR5

Base + 0x00F8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 CODE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-106. ECC Error Report Code Register (FR_EERCR)

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 865

29.5.2.76 ECC Error Injection Address Register (FR_EEIAR)

This register defines the memory module, bank, and address where the ECC error has to be injected.

29.5.2.77 ECC Error Injection Data Register (FR_EEIDR)

This register defines the data distortion pattern for the error injection write. The number of valid bits
depends on the selected memory and memory bank as shown in Table 29-86.

Table 29-87. FR_EERSR Field Descriptions

Field Description

CODE Code — The content of this field depends on the report mode selected by FR_EERICR[ERM]
ERM=0: Syndrome. Shows the ecc syndrome generated by the ecc decoding logic.
The coding of the PE DRAM syndrome is shown in Section 29.6.24.2.2, “PE DRAM Syndrome”
The coding of the CHI LRAM syndrome is shown in Section 29.6.24.2.4, “CHI LRAM Syndrome”.
ERM=1: Checkbits. Shows the ecc checkbits read from the memory.

Base + 0x00FA Write: IDL

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MID BANK ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-107. ECC Error Injection Address Register (FR_EEIAR)

Table 29-88. FR_EEIAR Field Descriptions

Field Description

MID Memory Identifier — This flag defines the memory instance for ECC error injection.
0 PE DRAM
1 CHI LRAM

BANK Memory Bank — This field defines the memory bank for ECC error injection.
For MID=0:
000 BANK0: PE DRAM [7:0]
001 BANK1: PE DRAM [15:8]
others reserved
For MID=1: Refer to Table 29-84 for the assignment of the LRAM banks.

ADDR Memory Address — This flag defines the memory address for ECC error injection.

Base + 0x00FC Write: IDL

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-108. ECC Error Injection Data Register (FR_EEIDR)

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

866 Freescale Semiconductor

NOTE
The effect of the error injected depends from the LRAM content at the
address accessed and from the module internal usage of the data. Refer to
Section 29.6.24.3, “Memory Error Response” for details.

29.5.2.78 ECC Error Injection Code Register (FR_EEICR)

This register defines the ecc code distortion pattern for the error injection write.

29.5.2.79 Message Buffer Configuration, Control, Status Registers
(FR_MBCCSRn)

The content of these registers comprises message buffer configuration data, message buffer control data,
message buffer status information, and message buffer interrupt flags. A detailed description of all flags
can be found in Section 29.6.6, “Individual Message Buffer Functional Description”

Table 29-89. FR_EEIDR Field Descriptions

Field Description

DATA Data — The content of this field depends on the error injection mode selected by FR_EERICR[EIM].
EIM=0: This field defines the XOR distortion pattern for the data written into the memory.
EIM=1: This field defines the data to be written into the memory.

Base + 0x00FE Write: IDL

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0
CODE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-109. ECC Error Injection Code Register (FR_EEICR)

Table 29-90. FR_EEICR Field Descriptions

Field Description

CODE Code — The content of this field depends on the error injection mode selected by FR_EERICR[EIM].
EIM=0: This field defines the XOR distortion pattern for the ecc checkbits written into the memory.
EIM=1: This field defines the ecc checkbits written into the memory.

Base + 0x0800 (FR_MBCCSR0)
Base + 0x0808 (FR_MBCCSR1)
...
Base + 0x0BF8 (FR_MBCCSR127)

Write: MTD: POC:cnfig or MB_DIS
CMT: MB_LCK or MB_DIS

EDT, LCKT, MBIE, MBIF: Normal Mode

Additional Reset: CMT, DUP, DVAL, MBIF: Message Buffer Disable

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0
MTD

CMT 0 0
MBIE

0 0 0 DUP DVAL EDS LCKS MBIF

W rwm EDT LCKT w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-110. Message Buffer Configuration, Control, Status Registers (FR_MBCCSRn)

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 867

If the application writes 1 to the EDT bit, no write access to the other register bits is performed.If the
application writes 0 to the EDT bit and 1 to the LCKT bit, no write access to the other bits is performed.

Table 29-91. FR_MBCCSRn Field Descriptions

Field Description

Message Buffer Configuration

MTD Message Buffer Transfer Direction — This bit configures the transfer direction of a message buffer.
0 Receive message buffer
1 Transmit message buffer

Message Buffer Control

CMT Commit for Transmission — This bit indicates if the transmit message buffer data are ready for transmission.
0 Message buffer data not ready for transmission
1 Message buffer data ready for transmission

EDT Enable/Disable Trigger — If the application writes 1 to this bit, a message buffer enable or disable is triggered,
depending on the current value of the EDS status bit.
0 No effect
1 Message buffer enable or disable is triggered

LCKT Lock/Unlock Trigger — If the application writes 1 to this bit and writes 0 to the EDT bit, a message buffer lock
or unlock is triggered, depending on the current value of the LCKS status bit.
0 No effect
1 Message buffer lock or unlock is triggered

MBIE Message Buffer Interrupt Enable — This control bit defines whether the message buffer will generate an
interrupt request when its MBIF flag is set.
0 Interrupt request generation disabled
1 Interrupt request generation enabled

Message Buffer Status

DUP Data Updated — This status bit indicates whether the frame header in the message buffer header field and the
data in the message buffer data field were updated after a frame reception.
0 Frame Header and Message buffer data field not updated
1 Frame Header and Message buffer data field updated

DVAL Data Valid — For receive message buffers this status bit indicates whether the message buffer data field
contains valid frame data. For transmit message buffers the status bit indicates if a message is transferred again
due to the state transmission mode of the message buffer.
0 receive message buffer contains no valid frame data / message is transmitted for the first time
1 receive message buffer contains valid frame data / message will be transferred again

EDS Enable/Disable Status — This status bit indicates whether the message buffer is enabled or disabled.
0 Message buffer is disabled.
1 Message buffer is enabled.

LCKS Lock Status — This status bit indicates the current lock status of the message buffer.
0 Message buffer is not locked by the application.
1 Message buffer is locked by the application.

MBIF Message Buffer Interrupt Flag — This flag is set when the slot status field of the message buffer was updated
after frame transmission or reception, or when a transmit message buffer was just enabled by the application.
0 No such event
1 Slot status field updated or transmit message buffer just enabled

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

868 Freescale Semiconductor

29.5.2.80 Message Buffer Cycle Counter Filter Registers (FR_MBCCFRn)

This register contains message buffer configuration data for the transmission mode, the channel
assignment, and for the cycle counter filtering. For detailed information on cycle counter filtering, refer to
Section 29.6.7.1, “Message Buffer Cycle Counter Filtering”.

.

Base + 0x0802 (FR_MBCCFR0)
Base + 0x080A (FR_MBCCFR1)
...
Base + 0x0BFA (FR_MBCCFR127)

16-bit write access required Write: POC:config or MB_DIS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MTM CHA CHB CCFE CCFMSK CCFVAL

W

Reset - - - - - - - - - - - - - - - -

Figure 29-111. Message Buffer Cycle Counter Filter Registers (FR_MBCCFRn)

Table 29-92. FR_MBCCFRn Field Descriptions

Field Description

MTM Message Buffer Transmission Mode — This control bit applies only to transmit message buffers and defines
the transmission mode.
0 Event transmission mode
1 State transmission mode

CHA
CHB

Channel Assignment — These control bits define the channel assignment and control the receive and transmit
behavior of the message buffer according to Table 29-93.

CCFE Cycle Counter Filtering Enable — This control bit is used to enable and disable the cycle counter filtering.
0 Cycle counter filtering disabled
1 Cycle counter filtering enabled

CCFMSK Cycle Counter Filtering Mask — This field defines the filter mask for the cycle counter filtering.

CCFVAL Cycle Counter Filtering Value — This field defines the filter value for the cycle counter filtering.

Table 29-93. Channel assignment description

CHA CHB
Transmit Message Buffer Receive Message Buffer

static segment dynamic segment static segment dynamic segment

1 1 transmit on both channel A
and channel B

reserved; functionality not
guaranteed

store first valid frame
received on either
channel A or channel B

reserved; functionality not
guaranteed

0 1 transmit on channel B transmit on channel B store first valid frame
received on channel B

store first valid frame
received on channel B

1 0 transmit on channel A transmit on channel A store first valid frame
received on channel A

store first valid frame
received on channel A

0 0 no frame transmission no frame transmission no frame stored no frame stored

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 869

NOTE
If at least one message buffer assigned to a certain slot is assigned to both
channels, then all message buffers assigned to this slot have to be assigned
to both channels. Otherwise, the message buffer configuration is illegal and
the result of the message buffer search is not defined.

29.5.2.81 Message Buffer Frame ID Registers (FR_MBFIDRn)

29.5.2.82 Message Buffer Index Registers (FR_MBIDXRn)

Base + 0x0804 (FR_MBFIDR0)
Base + 0x080C (FR_MBFIDR1)
...
Base + 0x0BFC (FR_MBFIDR127)

16-bit write access required Write: POC:config or MB_DIS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
FID

W

Reset 0 0 0 0 0 - - - - - - - - - - -

Figure 29-112. Message Buffer Frame ID Registers (FR_MBFIDRn)

Table 29-94. FR_MBFIDRn Field Descriptions

Field Description

FID Frame ID — The semantic of this field depends on the message buffer transfer type.
 • Receive Message Buffer: This field is used as a filter value to determine if the message buffer is used for

reception of a message received in a slot with the slot ID equal to FID.
 • Transmit Message Buffer: This field is used to determine the slot in which the message in this message buffer

should be transmitted.

Base + 0x0806 (FR_MBIDXR0)
Base + 0x080E (FR_MBIDXR1)
...
Base + 0x0BFE (FR_MBIDXR127)

16-bit write access required Write: POC:config or MB_DIS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
MBIDX

W

Reset 0 0 0 0 0 0 0 0 - - - - - - - -

Figure 29-113. Message Buffer Index Registers (FR_MBIDXRn)

Table 29-95. FR_MBIDXRn Field Descriptions

Field Description

MBIDX Message Buffer Index — This field provides the index of the message buffer header field of the physical
message buffer that is currently associated with this message buffer.
The application writes the index of the initially associated message buffer header field into this register. The CC
updates this register after frame reception or transmission. Legal Values are 0 <= i <= 131. Illegal values will be
detected during the message buffer search.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

870 Freescale Semiconductor

29.5.2.83 Message Buffer Data Field Offset Registers (FR_MBDORn)

29.5.2.84 LRAM ECC Error Test Registers (FR_LEETRn)

Base + 0x1000 (FR_MBDOR0)
Base + 0x1002 (FR_MBDOR1)
...
Base + 0x1106 (FR_MBDOR131)

16-bit write access required Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MBDO

W

Reset - - - - - - - - - - - - - - - -

Figure 29-114. Message Buffer Data Field Offset Registers (FR_MBDORn)

Table 29-96. FR_MBDORn Field Descriptions

Field Description

MBDO Message Buffer Data Field Offset — This field provides the data field offset belonging to a particular Message
Buffer Index. For configuration constraints see Section 29.7.1.2, “Configure Data Field Offsets”.

Base + 0x1108 (FR_LEETR0)
...
Base + 0x1112 (FR_LEETR5)

16-bit write access required Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
LEETD

W

Reset - - - - - - - - - - - - - - - -

Figure 29-115. LRAM ECC Error Test Registers (FR_LEETRn)

Table 29-97. FR_LEETRn Field Descriptions

Field Description

LEETD LRAM ECC Error Test Data — This field contains the LRAM data belonging to the test register located in LRAM
Bank n.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 871

29.6 Functional Description
This section provides a detailed description of the functionality implemented in the CC.

29.6.1 Message Buffer Concept

The CC uses a data structure called message buffer to store frame data, configuration, control, and status
data. Each message buffer consists of two parts, the message buffer control data and the physical message
buffer. The message buffer control data are located in dedicated registers. The structure of the message
buffer control data depends on the message buffer type and is described in Section 29.6.3, “Message
Buffer Types”. The physical message buffer is located in the flexray memory area and is described in
Section 29.6.2, “Physical Message Buffer”.

29.6.2 Physical Message Buffer

All FlexRay messages and related frame and slot status information of received frames and of frames to
be transmitted to the FlexRay bus are stored in data structures called physical message buffers. The
physical message buffers are located in the flexray memory area.The structure of a physical message buffer
is depicted in Figure 29-116.

A physical message buffer consists of two fields, the message buffer header field and the message buffer
data field. The message buffer header field contains the frame header and the slot status.The message
buffer data field contains the frame data.

The connection between the two fields is established by the data field offset.

Figure 29-116. Physical Message Buffer Structure

29.6.2.1 Message Buffer Header Field

The message buffer header field is a contiguous region in the flexray memory area and occupies eight
bytes. It contains the frame header, and the slot status. Its structure is shown in Figure 29-116. The physical
start address SADR_MBHF of the message buffer header field must be 16-bit aligned.

29.6.2.1.1 Frame Header

The frame header occupies the first six bytes in the message buffer header field. It contains all FlexRay
frame header related information according to the FlexRay Communications System Protocol

Frame Data

Message Buffer Header Field

Message Buffer Data Field

Slot StatusFrame Header

SADR_MBDF

SADR_MBHF

F
le

xR
ay

 M
em

or
y

A
re

a

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

872 Freescale Semiconductor

Specification, Version 2.1 Rev A. A detailed description of the usage and the content of the frame header
is provided in Section 29.6.5.2.1, “Frame Header Description”.

29.6.2.1.2 Slot Status

The slot status occupies the last two bytes of the message buffer header field. It provides the slot and frame
status related information according to the FlexRay Communications System Protocol Specification,
Version 2.1 Rev A. A detailed description of the content and usage of the slot status is provided in
Section 29.6.5.2.2, “Slot Status Description”.

29.6.2.2 Message Buffer Data Field

The message buffer data field is a contiguous area of 2-byte entities. This field contains the frame payload
data, or a part of it, of the frame to be transmitted to or received from the FlexRay bus. The minimum
length of this field depends on the specific message buffer configuration and is specified in the message
buffer descriptions given in Section 29.6.3, “Message Buffer Types”.

29.6.3 Message Buffer Types

The CC provides three different types of message buffers.

• Individual Message Buffers

• Receive Shadow Buffers

• Receive FIFO Buffers

For each message buffer type the structure of the physical message buffer is identical. The message buffer
types differ only in the structure and content of message buffer control data, which control the related
physical message buffer. The message buffer control data are described in the following sections.

29.6.3.1 Individual Message Buffers

The individual message buffers are used for all types of frame transmission and for dedicated frame
reception based on individual filter settings for each message buffer. The CC supports three types of
individual message buffers, which are described in Section 29.6.6, “Individual Message Buffer Functional
Description”.

Each individual message buffer consists of two parts, the physical message buffer, which is located in the
flexray memory area, and the message buffer control data, which are located in dedicated registers. The
structure of an individual message buffer is given in Figure 29-117.

Each individual message buffer has a message buffer number n assigned, which determines the set of
message buffer control registers associated to this individual message buffer. The individual message
buffer with message buffer number n is controlled by the registers FR_MBCCSRn, FR_MBCCFRn,
FR_MBFIDRn, and FR_MBIDXRn.

The connection between the message buffer control registers and the physical message buffer is
established by the message buffer index field MBIDX in the Message Buffer Index Registers

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 873

(FR_MBIDXRn). The start address SADR_MBHF of the related message buffer header field in the flexray
memory area is determined according to Equation 29-1.

SADR_MBHF = (FR_MBIDXRn[MBIDX] * 8) + SMBA Eqn. 29-1

The data field belonging to a particular physical message buffer is characterized by the data field offset.
For each physical message buffer with MBIDX i the FR_MBDORi contains the offset of the
corresponding message buffer data field with respect to the CC flexray memory area base address as
provided by SMBA field in the System Memory Base Address Register (FR_SYMBADR)”.

The data field offset is used to determine the start address SADR_MBDF of the corresponding message buffer
data field in the flexray memory area according to Equation 29-2.

SADR_MBDF = [Data Field Offset] + SMBA Eqn. 29-2

The FR_MBDORn are stored in the module internal memory LRAM. Refer to Section 29.7.2.3, “CHI
LRAM Initialization” for the setup of the data field offset values.

Figure 29-117. Individual Message Buffer Structure

29.6.3.1.1 Individual Message Buffer Segments

The set of the individual message buffers can be split up into two message buffer segments using the
Message Buffer Segment Size and Utilization Register (FR_MBSSUTR). All individual message buffers
with a message buffer number n <= FR_MBSSUTR[LAST_MB_SEG1] belong to the first message buffer
segment. All individual message buffers with a message buffer number n >
FR_MBSSUTR[LAST_MB_SEG1] belong to the second message buffer segment. The following rules
apply to the length of the message buffer data field:

FR_MBFIDRn

Message Buffer Control Registers

FR_MBCCSRn FR_MBCCFRn FR_MBIDXRn

(min) MBDSR[MBSEG1DS] * 2 bytes / MBDSR[MBSEG2DS] * 2 bytes

Frame Data

Message Buffer Header Field

Message Buffer Data Field

Slot StatusFrame Header

SADR_MBDF

SADR_MBHF

F
le

xR
ay

 M
em

or
y

A
re

a

...

FR_MBDORi

...

FR_MBDOR0 Lo
ok

up
 T

ab
le

 R
A

M

FR_MBDOR131

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

874 Freescale Semiconductor

• all physical message buffers associated to individual message buffers that belong to the same
message buffer segment must have message buffer data fields of the same length

• the minimum length of the message buffer data field for individual message buffers in the first
message buffer segment is 2 * FR_MBDSR[MBSEG1DS] bytes

• the minimum length of the message buffer data field for individual message buffers assigned to the
second segment is 2 * FR_MBDSR[MBSEG2DS] bytes.

29.6.3.2 Receive Shadow Buffers

The receive shadow buffers are required for the frame reception process for individual message buffers.
The CC provides four receive shadow buffers, one receive shadow buffer per channel and per message
buffer segment.

Each receive shadow buffer consists of two parts, the physical message buffer located in the flexray
memory area and the receive shadow buffer control registers located in dedicated registers. The structure
of a receive shadow buffer is shown in Figure 29-118. The four internal shadow buffer control registers
can be accessed by the Receive Shadow Buffer Index Register (FR_RSBIR).

The connection between the receive shadow buffer control register and the physical message buffer for the
selected receive shadow buffer is established by the receive shadow buffer index field RSBIDX in the
Receive Shadow Buffer Index Register (FR_RSBIR). The start address SADR_MBHF of the related
message buffer header field in the flexray memory area is determined according to Equation 29-3.

SADR_MBHF = (FR_RSBIR[RSBIDX] * 8) + SMBA Eqn. 29-3

The length required for the message buffer data field depends on the message buffer segment that the
receive shadow buffer is assigned to. For the receive shadow buffers assigned to the first message buffer
segment, the length must be the same as for the individual message buffers assigned to the first message
buffer segment. For the receive shadow buffers assigned to the second message buffer segment, the length
must be the same as for the individual message buffers assigned to the second message buffer segment.
The receive shadow buffer assignment is described in Receive Shadow Buffer Index Register
(FR_RSBIR).

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 875

Figure 29-118. Receive Shadow Buffer Structure

29.6.3.3 Receive FIFO

The receive FIFO implements a frame reception system based on the FIFO concept. The CC provides two
independent receive FIFOs, one per channel.

A receive FIFO consists of a set of physical message buffers in the flexray memory area and a set of receive
FIFO control registers located in dedicated registers. The structure of a receive FIFO is given in
Figure 29-119.

The connection between the receive FIFO control registers and the set of physical message buffers is
established by the Receive FIFO Start Index Register (FR_RFSIR), the Receive FIFO Depth and Size
Register (RFDSR), and the Receive FIFO A Read Index Register (FR_RFARIR) / Receive FIFO B Read
Index Register (FR_RFBRIR).

The system memory base address SMBA valid for the receive FIFOs is defined by the system memory
base address register selected by the FIFO address mode bit FR_MCR[FAM], refer to Section 29.5.2.4,
“Module Configuration Register (FR_MCR)”.

The start byte address SADR_MBHF[1] of the first message buffer header field that belongs to the receive
FIFO is determined according to Equation 29-4.

SADR_MBHF[1] = (8 * FR_RFSIR[SIDX]) + SMBA Eqn. 29-4

The start byte address SADR_MBHF[n] of the last message buffer header field that belongs to the receive
FIFO in the flexray memory area is determined according to Equation 29-5.

SADR_MBHF[n] = (8 * (FR_RFSIR[SIDX] + RFDSR[FIFO_DEPTH])) + SMBA Eqn. 29-5

RSBIDX[3]
RSBIDX[2]

RSBIDX[1]
RSBIDX[0]

Receive Shadow Buffer Control Register

(min) MBDSR[MBSEG1DS] * 2 bytes / MBDSR[MBSEG2DS] * 2 bytes

Frame Data

Message Buffer Header Field

Message Buffer Data Field

Slot StatusFrame Header

SADR_MBDF

SADR_MBHF

F
le

xR
ay

 M
em

or
y

A
re

a

Lo
ok

up
 T

ab
le

 R
A

M

...

FR_MBDORi

...

FR_MBDOR0

FR_MBDOR131

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

876 Freescale Semiconductor

The required information to access the current entry of the FIFO is given in the following registers:

• The registers Receive FIFO A Read Index Register (FR_RFARIR) and Receive FIFO B Read
Index Register (FR_RFBRIR) provide the index of the physical message buffer belonging to the
current entry.

The data field offset belonging to the current FIFO entry RF_DFO[X] must be calculated using the
current read index i according to the following formula:

RF_DFO[X] = FR_RFSDOR[X] + (FR_RFDSR[X][ENTRY_SIZE] * 2) * i - FR_RFSIDX[X}) Eqn. 29-6

NOTE
The current read index loops up starting at the number given in the
FR_RD[A/B]RDIDX register for the required number of entries.

Refer to Section 29.6.9.8, “FIFO Update” for details about updating the
FIFO read pointer.

All message buffer header fields assigned to a receive FIFO are within a
contiguous region defined by FR_RFSIR[SIDX] and
RFDSR[FIFO_DEPTH].

The data sections of all FIFO entries within on receive FIFO are of the same
length defined by RFDSR[FIFO_SIZE].

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 877

Figure 29-119. Receive FIFO Structure

NOTE
The actual values of the data field offsets RF_DFO[A/B] need to be
calculated according to Equation 29-6. They are not stored in a register.

29.6.3.4 Message Buffer Configuration and Control Data

This section describes the configuration and control data for each message buffer type.

29.6.3.4.1 Individual Message Buffer Configuration Data

Before an individual message buffer can be used for transmission or reception, it must be configured.
There is a set of common configuration parameters that applies to all individual message buffers and a set
of configuration parameters that applies to each message buffer individually.

29.6.3.4.1.1 Common Configuration Data

The set of common configuration data for individual message buffers is located in the following registers.

RF_DFO[B] RFBRIRRFDSR[B] RFSIR[B]
RFARIRRFDSR[A] RFSIR[A]

Frame Header[1] Slot Status[1]

Receive FIFO Control Register

Message Buffer Header Fields

Message Buffer Data Fields

Frame Header[n] Slot Status[n]

(min) RFDSR[ENTRY_SIZE] * 2 bytes

R
F

D
S

R
[F

IF
O

_D
E

P
T

H
]

+

Frame Header[i] Slot Status[i]

Frame Data[n]

SADR_MBDF[n]

Frame Data[i]

SADR_MBDF[i]

Frame Data[1]

SADR_MBDF[1]

R
F

D
S

R
[F

IF
O

_D
E

P
T

H
]

SADR_MBHF[n]

SADR_MBHF[i]

SADR_MBHF[1]

F
le

xR
ay

 M
em

or
y

A
re

a

RF_DFO[A]

+

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

878 Freescale Semiconductor

• Message Buffer Data Size Register (FR_MBDSR)
The MBSEG2DS and MBSEG1DS fields define the minimum length of the message buffer data
field with respect to the message buffer segment.

• Message Buffer Segment Size and Utilization Register (FR_MBSSUTR)
The LAST_MB_SEG1 and LAST_MB_UTIL fields define the segmentation of the individual
message buffers and the number of individual message buffers that are used. For more details, see
Section 29.6.3.1.1, “Individual Message Buffer Segments”

29.6.3.4.1.2 Specific Configuration Data

The set of message buffer specific configuration data for individual message buffers is located in the
following registers.

• Message Buffer Configuration, Control, Status Registers (FR_MBCCSRn)
The MTD bit configures the message buffer type.

• Message Buffer Cycle Counter Filter Registers (FR_MBCCFRn)
The MTM, CHA, CHB bits configure the transmission mode and the channel assignment. The
CCFE, CCFMSK, and CCFVAL bits and fields configure the cycle counter filter.

• Message Buffer Frame ID Registers (FR_MBFIDRn)
For a transmit message buffer, the FID field is used to determine the slot in which the message in
this message buffer will be transmitted.

• Message Buffer Index Registers (FR_MBIDXRn)
This MBIDX field provides the index of the message buffer header field of the physical message
buffer that is currently associated with this message buffer.

29.6.3.5 Individual Message Buffer Control Data

During normal operation, each individual message buffer can be controlled by the control and trigger bits
CMT, LCKT, EDT, and MBIE in the Message Buffer Configuration, Control, Status Registers
(FR_MBCCSRn).

29.6.3.6 Receive Shadow Buffer Configuration Data

Before frame reception into the individual message buffers can be performed, the receive shadow buffers
must be configured. The configuration data are provided by the Receive Shadow Buffer Index Register
(FR_RSBIR). For each receive shadow buffer, the application provides the message buffer header index.
When the protocol is in the POC:normal active or POC:normal passive state, the receive shadow buffers
are under full CC control.

29.6.3.7 Receive FIFO Control and Configuration Data

This section describes the configuration and control data for the two receive FIFOs.

29.6.3.7.1 Receive FIFO Configuration Data

The CC provides two functional independent receive FIFOs, one per channel. The FIFOs have a common
subset of configuration data:

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 879

• Receive FIFO Periodic Timer Register (FR_RFPTR)

Each FIFO has its own set of configuration data. The configuration data are located in the following
registers:

• Receive FIFO Watermark and Selection Register (FR_RFWMSR)

• Receive FIFO Start Index Register (FR_RFSIR)

• Receive FIFO Start Data Offset Register (FR_RFSDOR)

• Receive FIFO Depth and Size Register (RFDSR)

• Receive FIFO Message ID Acceptance Filter Value Register (FR_RFMIDAFVR)

• Receive FIFO Message ID Acceptance Filter Mask Register (FR_RFMIDAFMR)

• Receive FIFO Frame ID Rejection Filter Value Register (FR_RFFIDRFVR)

• Receive FIFO Frame ID Rejection Filter Mask Register (FR_RFFIDRFMR)

• Receive FIFO Range Filter Configuration Register (FR_RFRFCFR)

29.6.3.7.2 Receive FIFO Control Data

The application can access the FIFOs at any time using the control bits in the following registers:

• Global Interrupt Flag and Enable Register (FR_GIFER)

• Receive FIFO Fill Level and POP Count Register (FR_RFFLPCR)

29.6.3.7.3 Receive FIFO Status Data

The current status of the receive fifo is provided in the following register:

• Global Interrupt Flag and Enable Register (FR_GIFER)

• Receive FIFO A Read Index Register (FR_RFARIR)

• Receive FIFO B Read Index Register (FR_RFBRIR)

• Receive FIFO Fill Level and POP Count Register (FR_RFFLPCR)

29.6.4 Flexray Memory Area Layout

The CC supports a wide range of possible layouts for the flexray memory area. Two basic layout modes
can be selected by the FIFO address mode bit FR_MCR[FAM].

29.6.4.1 Flexray Memory Area Layout (FR_MCR[FAM] = 0)

Figure 29-120 shows an example layout for the FIFO address mode FR_MCR[FAM]=0. In this mode, the
following set of rules applies to the layout of the flexray memory area:

• The flexray memory area is one contiguous region.

• The flexray memory area size is maximum 64 Kbytes.

• The flexray memory area starts at a 16 byte boundary

The flexray memory area contains three areas: the message buffer header area, the message buffer data
area, and the sync frame table area.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

880 Freescale Semiconductor

Figure 29-120. Example of FlexRay Memory Area Layout (FR_MCR[FAM] = 0)

29.6.4.2 FlexRay Memory Area Layout (FR_MCR[FAM] = 1)

Figure 29-121 shows an example layout for the FIFO address mode FR_MCR[FAM]=1. The following set
of rules applies to the layout of the flexray memory area:

• The flexray memory area consists of two contiguous regions.

• The size of each region is maximum 64 Kbytes.

• Each region start at a 16 byte boundary.

M
es

sa
ge

 B
uf

fe
r

H
ea

de
r

A
re

a

F
le

xR
ay

 M
em

or
y

A
re

a Message Buffer Data Area

Sync Frame Table Area

Frame Header Slot Status

Frame Header Slot Status
Message Buffer Header Fields

Individual Message Buffers
Receive Shadow Buffers

Frame Header Slot Status

Frame Header Slot Status

Message Buffer Header Fields
Receive FIFO A

Frame Header Slot Status

Frame Header Slot Status

Message Buffer Header Fields
Receive FIFO B

Frame Header Slot Status

8 bytesFR_SYMBADR[SMBA]

System Memory

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 881

Area

Figure 29-121. Example of FlexRay Memory Area Layout (FR_MCR[FAM] = 1)

29.6.4.3 Message Buffer Header Area (FR_MCR[FAM] = 0)

The message buffer header area contains all message buffer header fields of the physical message buffers
for all message buffer types. The following rules apply to the message buffer header fields for the three
type of message buffers.

1. The start byte address SADR_MBHF of each message buffer header field for individual message
buffers and receive shadow buffers must fulfill Equation 29-7.

SADR_MBHF = (i * 8) + FR_SYMBADR[SMBA]; (0 <= i <= 131) Eqn. 29-7

2. The start byte address SADR_MBHF of each message buffer header field for the FIFO must fulfill
Equation 29-8.

SADR_MBHF = (i * 8) + FR_SYMBADR[SMBA]; (0 <= i <= 1023) Eqn. 29-8

SADR_MBHF = (i * 8) + FR_SYMBADR[SMBA]; (0 <= i <= 1023) Eqn. 29-9

F
IF

O
 H

ea
de

r
A

re
a

F
IF

O
 F

le
xR

ay
 M

em
or

y
A

re
a

Frame Header Slot Status

Frame Header Slot Status

Message Buffer Header Fields
Receive FIFO A

Frame Header Slot Status

Frame Header Slot Status

Message Buffer Header Fields
Receive FIFO B

FR_RFSYMBADR[SMBA]

M
es

sa
ge

 B
uf

fe
r

H
ea

de
r

A
re

a

F
le

xR
ay

 M
em

or
y

A
re

a

Message Buffer Data Area

Sync Frame Table Area

Frame Header Slot Status

Frame Header Slot Status
Message Buffer Header Fields

Individual Message Buffers
Receive Shadow Buffers

Frame Header Slot Status

8 bytesFR_SYMBADR[SMBA]

FIFO Message Buffer Data Area

System Memory

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

882 Freescale Semiconductor

3. The message buffer header fields for each FIFO have to be a contiguous area.

29.6.4.4 Message Buffer Header Area (FR_MCR[FAM] = 1)

The message buffer header area contains all message buffer header fields of the physical message buffers
for the individual message buffers and receiver shadow buffers. The following rules apply to the message
buffer header fields for the two type of message buffers.

1. The start address SADR_MBHF of each message buffer header field for individual message
buffers and receive shadow buffers must fulfill Equation 29-10.

SADR_MBHF = (i * 8) + FR_SYMBADR[SMBA]; (0 <= i <= 131) Eqn. 29-10

29.6.4.5 FIFO Message Buffer Header Area (FR_MCR[FAM] = 1)

The FIFO message buffer header area contains all message buffer header fields of the physical message
buffers for the FIFO. The following rules apply to the FIFO message buffer header fields.

1. The start byte address SADR_MBHF of each message buffer header field for the FIFO must fulfill
Equation 29-11.

SADR_MBHF = (i * 8) + FR_RFSYMBADR[SMBA]; (0 <= i <= 1023) Eqn. 29-11

2. The message buffer header fields for each FIFO have to be a contiguous area.

29.6.4.6 Message Buffer Data Area

The message buffer data area contains all the message buffer data fields of the physical message buffers.
Each message buffer data field must start at a 16-bit boundary.

29.6.4.7 Sync Frame Table Area

The sync frame table area is used to provide a copy of the internal sync frame tables for application access.
Refer to Section 29.6.12, “Sync Frame ID and Sync Frame Deviation Tables” for the description of the
sync frame table area.

29.6.5 Physical Message Buffer Description

This section provides a detailed description of the usage and the content of the two parts of a physical
message buffer, the message buffer header field and the message buffer data field.

29.6.5.1 Message Buffer Protection and Data Consistency

The physical message buffers are located in the flexray memory area. The CC provides no means to protect
the flexray memory area from uncontrolled or illegal host or other client write access. To ensure data
consistency of the physical message buffers, the application must follow the write access scheme that is
given in the description of each of the physical message buffer fields.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 883

29.6.5.2 Message Buffer Header Field Description

This section provides a detailed description of the usage and content of the message buffer header field. A
description of the structure of the message buffer header fields is given in Section 29.6.2.1, “Message
Buffer Header Field”. Each message buffer header field consists of two sections: the frame header section
and the slot status section.

29.6.5.2.1 Frame Header Description

29.6.5.2.1.1 Frame Header Content

The semantic and content of the frame header section depends on the message buffer type.

For individual receive message buffers and receive FIFOs, the frame header receives the frame header data
of the first valid frame received on the assigned channels.

For receive shadow buffers, the frame header receives the frame header data of the current frame received
regardless of whether the frame is valid or not.

For transmit message buffers, the application writes the frame header of the frame to be transmitted into
this location. The frame header will be read out when the frame is transferred to the FlexRay bus.

The structure of the frame header in the message buffer header field for receive message buffers and the
receive FIFO is given in Figure 29-122. A detailed description is given in Table 29-99.

Figure 29-122. Frame Header Structure (Receive Message Buffer and Receive FIFO)

The structure of the frame header in the message buffer header field for transmit message buffers is given
in Figure 29-123. A detailed description is given in Table 29-100. The checks that will be performed are
described in Frame Header Checks.

Figure 29-123. Frame Header Structure (Transmit Message Buffer)

The structure of the frame header in the message buffer header field for transmit message buffers assigned
to key slot is given in Figure 29-124.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0x0 R PPI NUF SYF SUF FID
0x2 0 0 CYCCNT 0 PLDLEN
0x4 0 0 0 0 0 HDCRC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0x0 R PPI NUF SYF SUF FID
0x2 CYCCNT PLDLEN
0x4 HDCRC

= not used = checked = checked if static slot

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

884 Freescale Semiconductor

Figure 29-124. Frame Header Structure (Transmit Message Buffer for Key Slot)

29.6.5.2.1.2 Frame Header Access

The frame header is located in the flexray memory area. To ensure data consistency, the application must
follow the write access scheme described below.

For receive message buffers, receive shadow buffers, and receive FIFOs, the application must not write to
the frame header field.

For transmit message buffers, the application must follow the write access restrictions given in
Table 29-98. This table shows the condition under which the application can write to the frame header
entries without corrupting the FlexRay message transmission.

29.6.5.2.1.3 Frame Header Checks

As shown in Figure 29-123 and Figure 29-124 not all fields in the message buffer frame header are used
for transmission. Some fields in the message buffer frame header are ignored, some are used for
transmission, and some of them are checked for correct values. All checks that will be performed are
described below.

For message buffers assigned to the key slot, no checks will be performed.

The value of the FID field must be equal to the value of the corresponding Message Buffer Frame ID
Registers (FR_MBFIDRn). If the CC detects a mismatch while transmitting the frame header, it will set
the frame ID error flag FID_EF in the CHI Error Flag Register (FR_CHIERFR). The value of the FID field
will be ignored and replaced by the value provided in the Message Buffer Frame ID Registers
(FR_MBFIDRn).

For transmit message buffers assigned to the static segment, the PLDLEN value must be equal to the value
of the payload_length_static field in the Protocol Configuration Register 19 (FR_PCR19). If this is not
fulfilled, the static payload length error flag SPL_EF in the CHI Error Flag Register (FR_CHIERFR) is set
when the message buffer is under transmission. A syntactically and semantically correct frame is generated
with payload_length_static payload words and the payload length field in the transmitted frame header set
to payload_length_static.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0x0 R PPI NUF SYF SUF FID
0x2 CYCCNT PLDLEN
0x4 HDCRC

= not used

Table 29-98. Frame Header Write Access Constraints (Transmit Message Buffer)

Field Static Segment Dynamic Segment

FID POC:config or MB_DIS

PPI,
PLDLEN,
HDCRC

POC:config or MB_DIS or

MB_LCK

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 885

For transmit message buffers assigned to the dynamic segment, the PLDLEN value must be less than or
equal to the value of the max_payload_length_dynamic field in the Protocol Configuration Register 24
(FR_PCR24). If this is not fulfilled, the dynamic payload length error flag DPL_EF in the CHI Error Flag
Register (FR_CHIERFR) is set when the message buffer is under transmission. A syntactically and
semantically correct dynamic frame is generated with PLDLEN payload words and the payload length
field in the frame header set to PLDLEN.

Table 29-99. Frame Header Field Descriptions (Receive Message Buffer and Receive FFO)

Field Description

R Reserved Bit — This is the value of the Reserved bit of the received frame stored in the message buffer

PPI Payload Preamble Indicator — This is the value of the Payload Preamble Indicator of the received frame stored
in the message buffer.

NUF Null Frame Indicator — This is the value of the Null Frame Indicator of the received frame stored in the message
buffer.

SYF Sync Frame Indicator — This is the value of the Sync Frame Indicator of the received frame stored in the
message buffer.

SUF Startup Frame Indicator — This is the value of the Startup Frame Indicator of the received frame stored in the
message buffer.

FID Frame ID — This is the value of the Frame ID field of the received frame stored in the message buffer.

CYCCNT Cycle Count — This is the number of the communication cycle in which the frame stored in the message buffer
was received.

PLDLEN Payload Length — This is the value of the Payload Length field of the received frame stored in the message
buffer.

HDCRC Header CRC — This is the value of the Header CRC field of the received frame stored in the message buffer.

Table 29-100. Frame Header Field Descriptions (Transmit Message Buffer)

Field Description

R Reserved Bit — This bit is not used, the value of the Reserved bit is generated internally according to FlexRay
Communications System Protocol Specification, Version 2.1 Rev A.

PPI Payload Preamble Indicator — This bit provides the value of the Payload Preamble Indicator for the frame
transmitted from the message buffer.

NUF Null Frame Indicator — This bit is not used, the value of the Null Frame Indicator is generated internally
according to FlexRay Communications System Protocol Specification, Version 2.1 Rev A.

SYF Sync Frame Indicator — This bit is not used, the value of the Sync Frame Indicator is generated internally
according to FlexRay Communications System Protocol Specification, Version 2.1 Rev A.

SUF Startup Frame Indicator — This bit is not used, the value of the Startup Frame Indicator is generated internally
according to FlexRay Communications System Protocol Specification, Version 2.1 Rev A.

FID Frame ID — This field is checked as described in Frame Header Checks.

CYCCNT Cycle Count — This field is not used, the value of the transmitted Cycle Count field is taken from the internal
communication cycle counter.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

886 Freescale Semiconductor

29.6.5.2.2 Slot Status Description

The slot status is a read-only structure for the application and a write-only structure for the CC. The
meaning and content of the slot status in the message buffer header field depends on the message buffer
type.

29.6.5.2.2.1 Receive Message Buffer and Receive FIFO Slot Status Description

This section describes the slot status structure for the individual receive message buffers and receive
FIFOs. The content of the slot status structure for receive message buffers depends on the message buffer
type and on the channel assignment for individual receive message buffers as given by Table 29-101.

The meaning of the bits in the slot status structure is explained in Table 29-102.

Figure 29-125. Receive Message Buffer Slot Status Structure (ChAB)

Figure 29-126. Receive Message Buffer Slot Status Structure (ChA)

PLDLEN Payload Length — This field is checked and used as described in Frame Header Checks.

HDCRC Header CRC — This field provides the value of the Header CRC field for the frame transmitted from the message
buffer.

Table 29-101. Receive Message Buffer Slot Status Content

Receive Message Buffer Type Slot Status Content

Individual Receive Message Buffer assigned to both channels
FR_MBCCFRn[CHA]=1 and FR_MBCCFRn[CHB]=1

see Figure 29-125

Individual Receive Message Buffer assigned to channel A
FR_MBCCFRn[CHA]=1 and FR_MBCCFRn[CHB[=0

see Figure 29-126

Individual Receive Message Buffer assigned to channel B
FR_MBCCFRn[CHA]=0 and FR_MBCCFRn[CHB]=1

see Figure 29-127

Receive FIFO Channel A Message Buffer see Figure 29-126

Receive FIFO Channel B Message Buffer see Figure 29-127

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R VFB SYB NFB SUB SEB CEB BVB CH VFA SYA NFA SUA SEA CEA BVA 0

Reset – – – – – – – – – – – – – – – –

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 VFA SYA NFA SUA SEA CEA BVA 0

Reset – – – – – – – – – – – – – – – –

Table 29-100. Frame Header Field Descriptions (Transmit Message Buffer)

Field Description

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 887

Figure 29-127. Receive Message Buffer Slot Status Structure (ChB)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R VFB SYB NFB SUB SEB CEB BVB 1 0 0 0 0 0 0 0 0

Reset – – – – – – – – – – – – – – – –

Table 29-102. Receive Message Buffer Slot Status Field Description

Field Description

Common Message Buffer Status Bits

VFB Valid Frame on Channel B — protocol related variable: vSS!ValidFrame channel B
0 vSS!ValidFrame = 0
1 vSS!ValidFrame = 1

SYB Sync Frame Indicator Channel B — protocol related variable: vRF!Header!SyFIndicator channel B
0 vRF!Header!SyFIndicator = 0
1 vRF!Header!SyFIndicator = 1

NFB Null Frame Indicator Channel B — protocol related variable: vRF!Header!NFIndicator channel B
0 vRF!Header!NFIndicator = 0
1 vRF!Header!NFIndicator = 1

SUB Startup Frame Indicator Channel B — protocol related variable: vRF!Header!SuFIndicator channel B
0 vRF!Header!SuFIndicator = 0
1 vRF!Header!SuFIndicator = 1

SEB Syntax Error on Channel B — protocol related variable: vSS!SyntaxError channel B
0 vSS!SyntaxError = 0
1 vSS!SyntaxError = 1

CEB Content Error on Channel B — protocol related variable: vSS!ContentError channel B
0 vSS!ContentError = 0
1 vSS!ContentError = 1

BVB Boundary Violation on Channel B — protocol related variable: vSS!BViolation channel B
0 vSS!BViolation = 0
1 vSS!BViolation = 1

CH Channel first valid received — This status bit applies only to receive message buffers assigned to the static
segment and to both channels. It indicates the channel that has received the first valid frame in the slot. This flag
is set to 0 if no valid frame was received at all in the subscribed slot.
0 first valid frame received on channel A, or no valid frame received at all
1 first valid frame received on channel B

VFA Valid Frame on Channel A — protocol related variable: vSS!ValidFrame channel A
0 vSS!ValidFrame = 0
1 vSS!ValidFrame = 1

SYA Sync Frame Indicator Channel A — protocol related variable: vRF!Header!SyFIndicator channel A
0 vRF!Header!SyFIndicator = 0
1 vRF!Header!SyFIndicator = 1

NFA Null Frame Indicator Channel A — protocol related variable: vRF!Header!NFIndicator channel A
0 vRF!Header!NFIndicator = 0
1 vRF!Header!NFIndicator = 1

SUA Startup Frame Indicator Channel A — protocol related variable: vRF!Header!SuFIndicator channel A
0 vRF!Header!SuFIndicator = 0
1 vRF!Header!SuFIndicator = 1

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

888 Freescale Semiconductor

29.6.5.2.2.2 Transmit Message Buffer Slot Status Description

This section describes the slot status structure for transmit message buffers. Only the TCA and TCB status
bits are directly related to the transmission process. All other status bits in this structure are related to a
receive process that may have occurred. The content of the slot status structure for transmit message
buffers depends on the channel assignment as given by Table 29-103.

The meaning of the bits in the slot status structure is described in Table 29-102.

Figure 29-128. Transmit Message Buffer Slot Status Structure (ChAB)

Figure 29-129. Transmit Message Buffer Slot Status Structure (ChA)

Figure 29-130. Transmit Message Buffer Slot Status Structure (ChB)

SEA Syntax Error on Channel A — protocol related variable: vSS!SyntaxError channel A
0 vSS!SyntaxError = 0
1 vSS!SyntaxError = 1

CEA Content Error on Channel A — protocol related variable: vSS!ContentError channel A
0 vSS!ContentError = 0
1 vSS!ContentError = 1

BVA Boundary Violation on Channel A — protocol related variable: vSS!BViolation channel A
0 vSS!BViolation = 0
1 vSS!BViolation = 1

Table 29-103. Transmit Message Buffer Slot Status Content

Transmit Message Buffer Type Slot Status Content

Individual Transmit Message Buffer assigned to both channels
FR_MBCCFRn[CHA]=1 and FR_MBCCFRn[CHB]=1

see Figure 29-128

Individual Transmit Message Buffer assigned to channel A
FR_MBCCFRn[CHA]=1 and FR_MBCCFRn[CHB]=0

see Figure 29-129

Individual Transmit Message Buffer assigned to channel B
FR_MBCCFRn[CHA]=0 and FR_MBCCFRn[CHB]=1

see Figure 29-130

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R VFB SYB NFB SUB SEB CEB BVB TCB VFA SYA NFA SUA SEA CEA BVA TCA

Reset – – – – – – – – – – – – – – – –

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 VFA SYA NFA SUA SEA CEA BVA TCA

Reset – – – – – – – – – – – – – – – –

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R VFB SYB NFB SUB SEB CEB BVB TCB 0 0 0 0 0 0 0 0

Reset – – – – – – – – – – – – – – – –

Table 29-102. Receive Message Buffer Slot Status Field Description

Field Description

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 889

Table 29-104. Transmit Message Buffer Slot Status Structure Field Descriptions

Field Description

VFB Valid Frame on Channel B — protocol related variable: vSS!ValidFrame channel B
0 vSS!ValidFrame = 0
1 vSS!ValidFrame = 1

SYB Sync Frame Indicator Channel B — protocol related variable: vRF!Header!SyFIndicator channel B
0 vRF!Header!SyFIndicator = 0
1 vRF!Header!SyFIndicator = 1

NFB Null Frame Indicator Channel B — protocol related variable: vRF!Header!NFIndicator channel B
0 vRF!Header!NFIndicator = 0
1 vRF!Header!NFIndicator = 1

SUB Startup Frame Indicator Channel B — protocol related variable: vRF!Header!SuFIndicator channel B
0 vRF!Header!SuFIndicator = 0
1 vRF!Header!SuFIndicator = 1

SEB Syntax Error on Channel B — protocol related variable: vSS!SyntaxError channel B
0 vSS!SyntaxError = 0
1 vSS!SyntaxError = 1

CEB Content Error on Channel B — protocol related variable: vSS!ContentError channel B
0 vSS!ContentError = 0
1 vSS!ContentError = 1

BVB Boundary Violation on Channel B — protocol related variable: vSS!BViolation channel B
0 vSS!BViolation = 0
1 vSS!BViolation = 1

TCB Transmission Conflict on Channel B — protocol related variable: vSS!TxConflict channel B
0 vSS!TxConflict = 0
1 vSS!TxConflict = 1

VFA Valid Frame on Channel A — protocol related variable: vSS!ValidFrame channel A
0 vSS!ValidFrame = 0
1 vSS!ValidFrame = 1

SYA Sync Frame Indicator Channel A — protocol related variable: vRF!Header!SyFIndicator channel A
0 vRF!Header!SyFIndicator = 0
1 vRF!Header!SyFIndicator = 1

NFA Null Frame Indicator Channel A — protocol related variable: vRF!Header!NFIndicator channel A
0 vRF!Header!NFIndicator = 0
1 vRF!Header!NFIndicator = 1

SUA Startup Frame Indicator Channel A — protocol related variable: vRF!Header!SuFIndicator channel A
0 vRF!Header!SuFIndicator = 0
1 vRF!Header!SuFIndicator = 1

SEA Syntax Error on Channel A — protocol related variable: vSS!SyntaxError channel A
0 vSS!SyntaxError = 0
1 vSS!SyntaxError = 1

CEA Content Error on Channel A — protocol related variable: vSS!ContentError channel A
0 vSS!ContentError = 0
1 vSS!ContentError = 1

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

890 Freescale Semiconductor

29.6.5.3 Message Buffer Data Field Description

The message buffer data field is used to store the frame payload data, or a part of it, of the frame to be
transmitted to or received from the FlexRay bus. The minimum required length of this field depends on
the message buffer type that the physical message buffer is assigned to and is given in Table 29-105. The
structure of the message buffer data field is given in Figure 29-131.

NOTE
The CC will not access any locations outside the message buffer data field
boundaries given by Table 29-105.

Figure 29-131. Message Buffer Data Field Structure

The message buffer data field is located in the flexray memory area; thus, the CC has no means to control
application write access to the field. To ensure data consistency, the application must follow a write and
read access scheme.

29.6.5.3.1 Message Buffer Data Field Read Access

For transmit message buffers, the CC will not modify the content of the Message Buffer Data Field. Thus
the application can read back the data at any time without any impact on data consistency.

BVA Boundary Violation on Channel A — protocol related variable: vSS!BViolation channel A
0 vSS!BViolation = 0
1 vSS!BViolation = 1

TCA Transmission Conflict on Channel A — protocol related variable: vSS!TxConflict channel A
0 vSS!TxConflict = 0
1 vSS!TxConflict = 1

Table 29-105. Message Buffer Data Field Minimum Length

physical message buffer
assigned to

minimum length defined by

Individual Message Buffer in Segment 1 FR_MBDSR[MBSEG1DS]

Receive Shadow Buffer in Segment 1 FR_MBDSR[MBSEG1DS]

Individual Message Buffer in Segment 2 FR_MBDSR[MBSEG2DS]

Receive Shadow Buffer in Segment 2 FR_MBDSR[MBSEG2DS]

Receive FIFO for channel A FR_RFDSR[ENTRY_SIZE] (FR_RFWMSR[SEL] = 0)

Receive FIFO for channel B FR_RFDSR[ENTRY_SIZE] (FR_RFWMSR[SEL] = 1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0x0 DATA0 / MID0 / NMV0 DATA1 / MID1 / NMV1

0x2 DATA2 / NMV2 DATA3 / NMV3

...

0xN-2 DATA N-2 DATA N-1

Table 29-104. Transmit Message Buffer Slot Status Structure Field Descriptions (continued)

Field Description

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 891

For receive message buffers the application must lock the related receive message buffer and retrieve the
message buffer header index from the Message Buffer Index Registers (FR_MBIDXRn). While the
message buffer is locked, the CC will not update the Message Buffer Data Field.

For receive FIFOs, the application can read the message buffer indicated by the Receive FIFO A Read
Index Register (FR_RFARIR) or the Receive FIFO B Read Index Register (FR_RFBRIR) when the related
fill levels in the Receive FIFO Fill Level and POP Count Register (FR_RFFLPCR) indicate an non-empty
FIFO.

29.6.5.3.2 Message Buffer Data Field Write Access

For receive message buffers, receive shadow buffers, and receive FIFOs, the application must not write to
the message buffer data field.

For transmit message buffers, the application must follow the write access restrictions given in
Table 29-106.

29.6.6 Individual Message Buffer Functional Description

The CC provides three basic types of individual message buffers:

1. Transmit Message Buffers

2. Receive Message Buffers

Before an individual message buffer can be used, it must be configured by the application. After the initial
configuration, the message buffer can be reconfigured later. The set of the configuration data for individual
message buffers is given in Section 29.6.3.4.1, “Individual Message Buffer Configuration Data”.

Table 29-106. Frame Data Write Access Constraints

Field CC/MB State

DATA, MID, NMV POC:config or MB_DIS or MB_LCK

Table 29-107. Frame Data Field Descriptions

Field Description

DATA 0,
DATA 1,

...
DATA N-1

Message Data — Provides the message data received or to be transmitted.
For receive message buffer and receive FIFOs, this field provides the message data received for this message
buffer.
For transmit message buffers, the field provides the message data to be transmitted.

MID 0,
MID 1

Message Identifier — If the payload preamble bit PPI is set in the message buffer frame header, the MID field
holds the message ID of a dynamic frame located in the message buffer. The receive FIFO filter uses the received
message ID for message ID filtering.

NMV 0,
NMV 1,

...
NMV 11

Network Management Vector — If the payload preamble bit PPI is set in the message buffer frame header, the
network management vector field holds the network management vector of a static frame located in the message
buffer.
Note: The MID and NMV bytes replace the corresponding DATA bytes.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

892 Freescale Semiconductor

29.6.6.1 Individual Message Buffer Configuration

The individual message buffer configuration consists of two steps. The first step is the allocation of the
required amount of memory for the flexray memory area. The second step is the programming of the
message buffer configuration registers, which is described in this section.

29.6.6.1.1 Common Configuration Data

One part of the message buffer configuration data is common to all individual message buffers and the
receive shadow buffers. These data can only be set when the protocol is in the POC:config state.

The application configures the number of utilized individual message buffers by writing the message
buffer number of the last utilized message buffer into the LAST_MB_UTIL field in the Message Buffer
Segment Size and Utilization Register (FR_MBSSUTR).

The application configures the size of the two segments of individual message buffers by writing the
message buffer number of the last message buffer in the first segment into the LAST_MB_SEG1 field in
the Message Buffer Segment Size and Utilization Register (FR_MBSSUTR)

The application configures the length of the message buffer data fields for both of the message buffer
segments by writing to the MBSEG2DS and MBSEG1DS fields in the Message Buffer Data Size Register
(FR_MBDSR).

Depending on the current receive functionality of the CC, the application must configure the receive
shadow buffers. For each segment and for each channel with at least one individual receive message buffer
assigned, the application must configure the related receive shadow buffer using the Receive Shadow
Buffer Index Register (FR_RSBIR).

29.6.6.1.2 Specific Configuration Data

The second part of the message buffer configuration data is specific for each message buffer.

These data can be changed only when either

• the protocol is in the POC:config state or

• the message buffer is disabled, i.e. FR_MBCCSRn[EDS] = 0

The individual message buffer type is defined by the MTD and MBT bits in the Message Buffer
Configuration, Control, Status Registers (FR_MBCCSRn) as given in Table 29-108.

Table 29-108. Individual Message Buffer Types

FR_MBCCSRn
Individual Message Buffer Description

MTD MBT

0 0 Receive Message Buffer

0 1 Reserved

1 0 Transmit Message Buffer

1 1 Reserved

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 893

The message buffer specific configuration data are

1. MTD bits in Message Buffer Configuration, Control, Status Registers (FR_MBCCSRn)

2. all fields and bits in Message Buffer Cycle Counter Filter Registers (FR_MBCCFRn)

3. all fields and bits in Message Buffer Frame ID Registers (FR_MBFIDRn)

4. all fields and bits in Message Buffer Index Registers (FR_MBIDXRn)

The meaning of the specific configuration data depends on the message buffer type, as given in the detailed
message buffer type descriptions Section 29.6.6.2, “Transmit Message Buffers” and Section 29.6.6.3,
“Receive Message Buffers”.

29.6.6.2 Transmit Message Buffers

The section provides a detailed description of the functionality of single buffered transmit message buffers.

A transmit message buffer is used by the application to provide message data to the CC that will be
transmitted over the FlexRay Bus. The CC uses the transmit message buffers to provide information about
the transmission process and status information about the slot in which message was transmitted.

The individual message buffer with message buffer number n is configured to be a transmit message buffer
by the following settings:

• FR_MBCCSRn[MBT] = 0 (single buffered message buffer)

• FR_MBCCSRn[MTD] = 1 (transmit message buffer)

29.6.6.2.1 Access Regions

To certain message buffer fields, both the application and the CC have access. To ensure data consistency,
a message buffer locking scheme is implemented, which is used to control the access to the data, control,
and status bits of a message buffer. The access regions for transmit message buffers are depicted in
Figure 29-132. A description of the regions is given in Table 29-109. If an region is active as indicated in
Table 29-110, the access scheme given for that region applies to the message buffer.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

894 Freescale Semiconductor

Figure 29-132. Transmit Message Buffer Access Regions

The trigger bits FR_MBCCSRn[EDT] and FR_MBCCSRn[LCKT], and the interrupt enable bit
FR_MBCCSRn[MBIE] are not under access control and can be accessed from the application at any time.
The status bits FR_MBCCSRn[EDS] and FR_MBCCSRn[LCKS] are not under access control and can be
accessed from the CC at any time.

The interrupt flag FR_MBCCSRn[MBIF] is not under access control and can be accessed from the
application and the CC at any time. CC clear access has higher priority.

The CC restricts its access to the regions depending on the current state of the message buffer. The
application must adhere to these restrictions in order to ensure data consistency. The transmit message
buffer states are given in Figure 29-133. A description of the states is given in Table 29-110, which also
provides the access scheme for the access regions.

The status bits FR_MBCCSRn[EDS] and FR_MBCCSRn[LCKS] provide the application with the
required message buffer status information. The internal status information is not visible to the application.

29.6.6.2.2 Message Buffer States

This section describes the transmit message buffer states and provides a state diagram.

Table 29-109. Transmit Message Buffer Access Regions Description

Region
Access from

Region used for
Application Module

CFG read/write - Message Buffer Configuration

MSG read/write - Message Data and Slot Status Access

NF - read-only Message Header Access for Null Frame Transmission

TX - read/write Message Transmission and Slot Status Update

CM - read-only Message Buffer Validation

SR - read-only Message Buffer Search

Message Buffer Data Field: DATA[0-N]

Message Buffer Header Field: Frame Header

FR_MBCCSRn[CMT]

Message Buffer Header Field: Slot Status

Message Buffer Header Field: Data Field Offset

FR_MBCCFRn[MTM/CHA/CHB/CCF*]

FR_MBFIDRn[FID]

FR_MBIDXRn[MBIDX]
TX

NF

CMT

SR

CFG

MSG

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 895

Figure 29-133. Transmit Message Buffer States

Table 29-110. Transmit Message Buffer State Description

State
FR_MBCCSRn Access Region

Description
EDS LCKS Appl. Module

Idle 1 0 – CM,
SR

Idle - Message Buffer is idle.
Included in message buffer search.

HDis 0 0 CFG – Disabled - Message Buffer under configuration.
Excluded from message buffer search.

HDisLck 0 1 CFG – Disabled and Locked - Message Buffer under configuration.
Excluded from message buffer search.

HLck 1 1 MSG SR Locked - Applications access to data, control, and status.
Included in message buffer search.

CCSa 1 0 – – Slot Assigned - Message buffer assigned to next static slot.
Ready for Null Frame transmission.

HLckCCSa 1 1 MSG – Locked and Slot Assigned - Applications access to data, control,
and status.Message buffer assigned to next static slot

CCNf 1 0 – NF Null Frame Transmission
Header is used for null frame transmission.

HLckCCNf 1 1 MSG NF Locked and Null Frame Transmission - Applications access to
data, control, and status. Header is used for null frame transmission.

CCMa 1 0 – CM Message Available - Message buffer is assigned to next slot and
cycle counter filter matches.

HLckCCMa 1 1 MSG – Locked and Message Available - Applications access to data,
control, and status. Message buffer is assigned to next slot and cycle
counter filter matches.

CCTx 1 0 – TX Message Transmission - Message buffer data transmit. Payload
data from buffer transmitted

CCSu 1 0 – TX Status Update - Message buffer status update. Update of status
flags, the slot status field, and the header index.

HDis

RESET_STATE
HD

HE
Idle

SA
DSS

SU
CCSu

CCSa CCTx

TX

HLck HLckCCSa CCNf

HL
HU

CCMa

HL
HU

HLckCCNf HLckCCMa

SSS

STS

HE

HL

STS

HU

HL

DSS

MA

SSS

HDisLck

HD

HU
HL

HU

STS
MA

SSS

SA

DSS

STS

DSS

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

896 Freescale Semiconductor

29.6.6.2.3 Message Buffer Transitions

29.6.6.2.3.1 Application Transitions

The application transitions can be triggered by the application using the commands described in
Table 29-111. The application issues the commands by writing to the Message Buffer Configuration,
Control, Status Registers (FR_MBCCSRn). Only one command can be issued with one write access. Each
command is executed immediately. If the command is ignored, it must be issued again.

Message Buffer Enable and Disable

The enable and disable commands issued by writing 1 to the trigger bit FR_MBCCSRn[EDT]. The
transition that will be triggered by each of these command depends on the current value of the status bit
FR_MBCCSRn[EDS]. If the command triggers the disable transition HD and the message buffer is in one
of the states CCSa, HLckCCSa, CCMa, HLckCCMa, CCNf, HLckCCNf, or CCTx, the disable transition
has no effect (command is ignored) and the message buffer state is not changed. No notification is given
to the application.

Message Buffer Lock and Unlock

The lock and unlock commands issued by writing 1 to the trigger bit FR_MBCCSRn[LCKT]. The
transition that will be triggered by each of these commands depends on the current value of the status bit
FR_MBCCSRn[LCKS]. If the command triggers the lock transition HL and the message buffer is in the
state CCTx, the lock transition has no effect (command is ignored) and message buffer state is not changed.
In this case, the message buffer lock error flag LCK_EF in the CHI Error Flag Register (FR_CHIERFR)
is set.

29.6.6.2.3.2 Module Transitions

The module transitions that can be triggered by the CC are described in Table 29-112. Each transition will
be triggered for certain message buffers when the related condition is fulfilled.

Table 29-111. Transmit Message Buffer Application Transitions

Transition Command Condition Description

HE
FR_MBCCSRn[EDT]:= 1

FR_MBCCSRn[EDS] = 0 Application triggers message buffer enable.

HD FR_MBCCSRn[EDS] = 1 Application triggers message buffer disable.

HL
FR_MBCCSRn[LCKT]:= 1

FR_MBCCSRn[LCKS] = 0 Application triggers message buffer lock.

HU FR_MBCCSRn[LCKS] = 1 Application triggers message buffer unlock.

Table 29-112. Transmit Message Buffer Module Transitions

Transition Condition Description

SA slot match and
static slot

Slot Assigned - Message buffer is assigned to next static slot.

MA slot match and
CycleCounter match

Message Available - Message buffer is assigned to next slot and cycle counter
filter matches.

TX slot start and
FR_MBCCSRn[CMT] = 1

Transmission Slot Start - Slot Start and commit bit CMT is set.
In case of a dynamic slot, pLatestTx is not exceeded.

SU status updated Status Updated - Slot Status field and message buffer status flags updated.
Interrupt flag set.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 897

29.6.6.2.3.3 Transition Priorities

The application can trigger only one transition at a time. There is no need to specify priorities among them.

As shown in the first part of Table 29-113, the module transitions have a higher priority than the
application transitions. For all states except the CCMa state, both a lock/unlock transition HL/HD and a
module transition can be executed at the same time. The result state is reached by first applying the
application transition and subsequently the module transition to the intermediately reached state. For
example, if the message buffer is in the HLck state and the application unlocks the message buffer by the
HU transition and the module triggers the slot assigned transition SA, the intermediate state is Idle and the
resulting state is CCSa.

The priorities among the module transitions is given in the second part of Table 29-113.

29.6.6.2.4 Transmit Message Setup

To transmit a message over the FlexRay bus, the application writes the message data into the message
buffer data field and sets the commit bit CMT in the Message Buffer Configuration, Control, Status
Registers (FR_MBCCSRn). The physical access to the message buffer data field is described in
Section 29.6.3.1, “Individual Message Buffers”.

As indicated by Table 29-110, the application shall write to the message buffer data field and change the
commit bit CMT only if the transmit message buffer is in one of the states HDis, HDisLck, HLck,
HLckCCSa, HLckCCMa, or HLckCCMa. The application can change the state of a message buffer if it
issues the appropriate commands shown in Table 29-111. The state change is indicated through the
FR_MBCCSRn[EDS] and FR_MBCCSRn[LCKS] status bits.

STS static slot start Static Slot Start - Start of static slot.

DSS
dynamic slot start or

symbol window start or
NIT start

Dynamic Slot or Segment Start. - Start of dynamic slot or symbol window or
NIT.

SSS
slot start or

symbol window start or
NIT start

Slot or Segment Start - Start of static slot or dynamic slot or symbol window or
NIT.

Table 29-113. Transmit Message Buffer Transition Priorities

State Priorities Description

module vs. application

Idle, HLck SA > HD
MA > HD

Slot Assigned > Message Buffer Disable
Message Available > Message Buffer Disable

CCMa TX > HL Transmission Start > Message Buffer Lock

module internal

Idle, HLck MA > SA Message Available > Slot Assigned

CCMa TX > STS
TX > DSS

Transmission Slot Start > Static Slot Start
Transmission Slot Start > Dynamic Slot Start

Table 29-112. Transmit Message Buffer Module Transitions

Transition Condition Description

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

898 Freescale Semiconductor

If the transmit message buffer enters one of the states HDis, HDisLck, HLck, HLckCCSa, HLckCCMa, or
HLckCCMa the FR_MBCCSRn[DVAL] flag is negated.

29.6.6.2.5 Message Transmission

As a result of the message buffer search described in Section 29.6.7, “Individual Message Buffer Search”,
the CC triggers the message available transition MA for up to two transmit message buffers. This changes
the message buffer state from Idle to CCMa and the message buffers can be used for message transmission
in the next slot.

The CC transmits a message from a message buffer if both of the following two conditions are fulfilled at
the start of the transmission slot:

1. the message buffer is in the message available state CCMa

2. the message data are still valid, i.e. FR_MBCCSRn[CMT] = 1

In this case, the CC triggers the TX transition and changes the message buffer state to CCTx. A transmit
message buffer timing and state change diagram for message transmission is given in Figure 29-134. In
this example, the message buffer with message buffer number n is Idle at the start of the search slot,
matches the slot and cycle number of the next slot, and message buffer data are valid, i.e.
FR_MBCCSRn[CMT] = 1.

Figure 29-134. Message Transmission Timing

Figure 29-135. Message Transmission from HLck state with unlock

The amount of message data read from the flexray memory area and transferred to the FlexRay bus is
determined by the following three items

1. the message buffer segment that the message buffer is assigned to, as defined by the Message
Buffer Segment Size and Utilization Register (FR_MBSSUTR).

2. the message buffer data field size, as defined by the related field of the Message Buffer Data Size
Register (FR_MBDSR)

search[s+1]

MA

slot s

TX SU

CCMa CCTx

slot s+1

Idle

MT st
art

Idle

slot s+2

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

message transmit

SSS

CCSu

search[s+1]

MA

slot s

TX SSS

HLckCCMa CCTx

slot s+1

HLck

MT st
art

Idle

slot s+2

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

HU

CCMa

message transmit

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 899

3. the value of the PLDLEN field in the message buffer header field, as described in
Section 29.6.5.2.1, “Frame Header Description”

If a message buffer is assigned to message buffer segment 1, and PLDLEN > MBSEG1DS, then
2 * MBSEG1DS bytes will be read from the message buffer data field and zero padding is used for the
remaining bytes for the FlexRay bus transfer. If PLDLEN <= MBSEG1DS, the CC reads and transfers
2*PLDLEN bytes. The same holds for segment 2 and MBSEG2DS.

29.6.6.2.6 Null Frame Transmission

A static slot with slot number S is assigned to the CC for channel A, if at least one transmit message buffer
is configured with the FR_MBFIDRn[FID] set to S and FR_MBCCFRn[CHA] set to 1. A Null Frame is
transmitted in the static slot S on channel A, if this slot is assigned to the CC for channel A, and all transmit
message buffers with FR_MBFIDRn[FID] = s and FR_MBCCFRn[CHA] = 1 are either not committed,
i.e FR_MBCCSRn[CMT] = 0, or locked by the application, i.e. FR_MBCCSRn[LCKS] = 1, or the cycle
counter filter is enabled and does not match.

Additionally, the application can clear the commit bit of a message buffer that is in the CCMa state, which
is called uncommit or transmit abort. This message buffer will be used for null frame transmission.

As a result of the message buffer search described in Section 29.6.7, “Individual Message Buffer Search”,
the CC triggers the slot assigned transition SA for up to two transmit message buffers if at least one of the
conditions mentioned above is fulfilled for these message buffers. The transition SA changes the message
buffer states from either Idle to CCSa or from HLck to HLckCCSa. In each case, these message buffers
will be used for null frame transmission in the next slot. A message buffer timing and state change diagram
for null frame transmission from Idle state is given in Figure 29-136.

Figure 29-136. Null Frame Transmission from Idle state

A message buffer timing and state change diagram for null frame transmission from HLck state is given
in Figure 29-137.

Figure 29-137. Null Frame Transmission from HLck state

If a transmit message buffer is in the CCSa or HLckCCSa state at the start of the transmission slot, a null
frame is transmitted in any case, even if the message buffer is unlocked or committed before the

search[s+1]

SA

slot s

STS SSS

CCSa CCNf

slot s+1

Idle

MT st
art

Idle

slot s+2

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

null frame transmit

search[s+1]

SA

slot s

STS SSS

HLckCCSa HLckCCNf

slot s+1

HLck

MT st
art

HLck

slot s+2

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

null frame transmit

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

900 Freescale Semiconductor

transmission slot starts. A transmit message buffer timing and state change diagram for null frame
transmission for this case is given in Figure 29-138.

Figure 29-138. Null Frame Transmission from HLck state with unlock

Since the null frame transmission will not use the message buffer data, the application can lock/unlock the
message buffer during null frame transmission. A transmit message buffer timing and state change
diagram for null frame transmission for this case is given in Figure 29-139.

Figure 29-139. Null Frame Transmission from Idle state with locking

29.6.6.2.7 Message Buffer Status Update

After the end of each slot, the PE generates the slot status vector. Depending on the this status, the
transmitted frame type, and the amount of transmitted data, the message buffer status is updated.

29.6.6.2.7.1 Message Buffer Status Update after Complete Message Transmission

The term complete message transmission refers to the fact that all payload data stored in the message
buffer were send to FlexRay bus. In this case, the CC updates the slot status field of the message buffer
and triggers the status updated transition SU. With the SU transition, the CC sets the message buffer
interrupt flag FR_MBCCSRn[MBIF] to indicate the successful message transmission.

Depending on the transmission mode flag FR_MBCCFRn[MTM], the CC changes the commit flag
FR_MBCCSRn[CMT] and the valid flag FR_MBCCSRn[DVAL]. If the FR_MBCCFRn[MTM] flag is
negated, the message buffer is in the event transmission mode. In this case, each committed message is
transmitted only once. The commit flag FR_MBCCSRn[CMT] is cleared with the SU transition. If the
FR_MBCCFRn[MTM] flag is asserted, the message buffer is in the state transmission mode. In this case,
each committed message is transmitted as long as the application provides new data or locks the message
buffers. The CC will not clear the FR_MBCCSRn[CMT] flag at the end of transmission and will set the
valid flag FR_MBCCSRn[DVAL] to indicate that the message will be transmitted again.

search[s+1]

SA

slot s

STS SSS

HLckCCSa CCNf

slot s+1

HLck

MT st
art

Idle

slot s+2

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

HU

CCSa

null frame transmit

search[s+1]

SA

slot s

STS SSS

slot s+1

Idle

MT st
art

HLck

slot s+2

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

null frame transmit

HL

CCSa CCNf HLckCCNf

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 901

29.6.6.2.7.2 Message Buffer Status Update after Incomplete Message Transmission

The term incomplete message transmission refers to the fact that not all payload data that should be
transmitted were send to FlexRay bus. This may be caused by the following regular conditions in the
dynamic segment:

1. The transmission slot starts in a minislot with a minislot number greater than pLatestTx.

2. The transmission slot did not exist in the dynamic segment at all.

Additionally, an incomplete message transmission can be caused by internal communication errors. If
those error occur, the Protocol Engine Communication Failure Interrupt Flag PECF_IF is set in the
Protocol Interrupt Flag Register 1 (FR_PIFR1).

In any of these two cases, the status of the message buffer is not changed at all with the SU transition. The
slot status field is not updated, the status and control flags are not changed, and the interrupt flag is not set.

29.6.6.2.7.3 Message Buffer Status Update after Null Frame Transmission

After the transmission of a null frame, the status of the message buffer that was used for the null frame
transmission is not changed at all. The slot status field is not updated, the status and control flags are not
changed, and the interrupt flag is not set.

29.6.6.3 Receive Message Buffers

The section provides a detailed description of the functionality of the receive message buffers. If receive
message buffers are used it is required to configure the related receive shadow buffer as described in
Section 29.6.3.2, “Receive Shadow Buffers”

A receive message buffer is used to receive a message from the FlexRay Bus based on individual filter
criteria. The CC uses the receive message buffer to provide the following data to the application

1. message data received

2. information about the reception process

3. status information about the slot in which the message was received

A individual message buffer with message buffer number n is configured as a receive message buffer by
the following configuration settings

• FR_MBCCSRn[MTD] = 0 (receive message buffer)

To certain message buffer fields, both the application and the CC have access. To ensure data consistency,
a message buffer locking scheme is implemented that is used to control the access to the data, control, and
status bits of a message buffer. The access regions for receive message buffers are depicted in
Figure 29-140. A description of the regions is given in Table 29-114. If an region is active as indicated in
Table 29-115, the access scheme given for that region applies to the message buffer.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

902 Freescale Semiconductor

Figure 29-140. Receive Message Buffer Access Regions

The trigger bits FR_MBCCSRn[EDT] and FR_MBCCSRn[LCKT] and the interrupt enable bit
FR_MBCCSRn[MBIE] are not under access control and can be accessed from the application at any time.
The status bits FR_MBCCSRn[EDS] and FR_MBCCSRn[LCKS] are not under access control and can be
accessed from the CC at any time.

The interrupt flag FR_MBCCSRn[MBIF] is not under access control and can be accessed from the
application and the CC at any time. CC set access has higher priority.

The CC restricts its access to the regions depending on the current state of the message buffer. The
application must adhere to these restrictions in order to ensure data consistency. The receive message
buffer states are given in Figure 29-141. A description of the message buffer states is given in
Table 29-110, which also provides the access scheme for the access regions.

The status bits FR_MBCCSRn[EDS] and FR_MBCCSRn[LCKS] provide the application with the
required status information. The internal status information is not visible to the application.

Table 29-114. Receive Message Buffer Access Region Description

Region
Access from

Region used for
Application Module

CFG read/write - Message Buffer Configuration, Message Data and Status Access

MSG read/write - Message Data, Header, and Status Access

RX - write-only Message Reception and Status Update

SR - read-only Message Buffer Search Data

Message Buffer Data Field: DATA[0-N]

Message Buffer Header Field: Frame Header

FR_MBCCSRn[DVAL/DUP]

Message Buffer Header Field: Slot Status

Message Buffer Header Field: Data Field Offset

FR_MBCCFRn[CHA/CHB/CCF*]

FR_MBFIDRn[FID]

FR_MBIDXRn[MBIDX]

FR_MBCCSRn[MTD]

RX

SR

CFG

MSG

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 903

Figure 29-141. Receive Message Buffer States

29.6.6.3.1 Message Buffer Transitions

29.6.6.3.1.1 Application Transitions

The application transitions that can be triggered by the application using the commands described in
Table 29-116. The application issues the commands by writing to the Message Buffer Configuration,
Control, Status Registers (FR_MBCCSRn). Only one command can be issued with one write access. Each
command is executed immediately. If the command is ignored, it must be issued again.

Message Buffer Enable and Disable

Table 29-115. Receive Message Buffer States and Access

State
FR_MBCCSRn Access from

Description
EDS LCKS Appl. Module

Idle 1 0 – SR Idle - Message Buffer is idle.
Included in message buffer search.

HDis 0 0 CFG – Disabled - Message Buffer under configuration.
Excluded from message buffer search.

HDisLck 0 1 CFG – Disabled and Locked - Message Buffer under configuration.
Excluded from message buffer search.

HLck 1 1 MSG – Locked - Applications access to data, control, and status.
Included in message buffer search.

CCBs 1 0 – – Buffer Subscribed - Message buffer subscribed for reception. Filter
matches next (slot, cycle, channel) tuple.

HLckCCBs 1 1 MSG – Locked and Buffer Subscribed - Applications access to data,
control, and status. Message buffer subscribed for reception.

CCRx 1 0 – – Message Receive - Message data received into related shadow
buffer.

HLckCCRx 1 1 MSG – Locked and Message Receive - Applications access to data,
control, and status. Message data received into related shadow
buffer.

CCSu 1 0 – RX Status Update - Message buffer status update. Update of status
flags, the slot status field, and the header index.

HDis

RESET_STATE
HD

HE
Idle

BS
SNS

SU
CCSu

CCBs CCRx

HLck HLckCCBs HLckCCRx

SSS

SLS

HE

HL

HDisLck

HD

HL
HU

BS

SNS

HL
HU

HU

HL
HU

SLS

SSS

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

904 Freescale Semiconductor

The enable and disable commands issued by writing 1 to the trigger bit FR_MBCCSRn[EDT]. The
transition that will be triggered by each of these command depends on the current value of the status bit
FR_MBCCSRn[EDS]. If the command triggers the disable transition HD and the message buffer is in one
of the states CCBs, HLckCCBs, or CCRx, the disable transition has no effect (command is ignored) and
the message buffer state is not changed. No notification is given to the application.

Message Buffer Lock and Unlock

The lock and unlock commands issued by writing 1 to the trigger bit FR_MBCCSRn[LCKT]. The
transition that will be triggered by each of these commands depends on the current value of the status bit
FR_MBCCSRn[LCKS]. If the command triggers the lock transition HL while the message buffer is in the
state CCRx, the lock transition has no effect (command is ignored) and message buffer state is not
changed. In this case, the message buffer lock error flag LCK_EF in the CHI Error Flag Register
(FR_CHIERFR) is set.

29.6.6.3.1.2 Module Transitions

The module transitions that can be triggered by the CC are described in Table 29-117. Each transition will
be triggered for certain message buffers when the related condition is fulfilled.

29.6.6.3.1.3 Transition Priorities

The application can trigger only one transition at a time. There is no need to specify priorities among them.

As shown in Table 29-118, the module transitions have a higher priority than the application transitions.
For all states except the CCRx state, a module transition and the application lock/unlock transition HL/HU
and can be executed at the same time. The result state is reached by first applying the module transition
and subsequently the application transition to the intermediately reached state. For example, if the message

Table 29-116. Receive Message Buffer Application Transitions

Transition Host Command Condition Description

HE
FR_MBCCSRn[EDT]:= 1

FR_MBCCSRn[EDS] = 0 Application triggers message buffer enable.

HD FR_MBCCSRn[EDS] = 1 Application triggers message buffer disable.

HL
FR_MBCCSRn[LCKT]:= 1

FR_MBCCSRn[LCKS] = 0 Application triggers message buffer lock.

HU FR_MBCCSRn[LCKS] = 1 Application triggers message buffer unlock.

Table 29-117. Receive Message Buffer Module Transitions

Transition Condition Description

BS slot match and
CycleCounter match

Buffer Subscribed - The message buffer filter matches next slot and cycle.

SLS slot start Slot Start - Start of either Static Slot or Dynamic Slot.

SNS symbol window start or
NIT start

Symbol Window or NIT Start - Start of either Symbol Window or NIT.

SSS slot start or
symbol window start or

NIT start

Slot or Segment Start - Start of either Static Slot, Dynamic Slot, Symbol
Window, or NIT.

SU status updated Status Updated - Slot Status field, message buffer status flags, header index
updated. Interrupt flag set.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 905

buffer is in the buffer subscribed state CCBs and the module triggers the slot start transition SLS at the
same time as the application locks the message buffer by the HL transition, the intermediate state is CCRx
and the resulting state is locked buffer subscribed state HLckCCRx.

29.6.6.3.2 Message Reception

As a result of the message buffer search, the CC changes the state of up to two enabled receive message
buffers from either idle state Idle or locked state HLck to the either subscribed state CCBs or locked buffer
subscribed state HLckCCBs by triggering the buffer subscribed transition BS.

If the receive message buffers for the next slot are assigned to both channels, then at most one receive
message buffer is changed to a buffer subscribed state.

If more than one matching message buffers assigned to a certain channel, then only the message buffer
with the lowest message buffer number is in one of the states mentioned above.

With the start of the next static or dynamic slot the module trigger the slot start transition SLS. This
changes the state of the subscribed receive message buffers from either CCBs to CCRx or from
HLckCCBs to HLckCCRx, respectively.

During the reception slot, the received frame data are written into the shadow buffers. For details on
receive shadow buffers, see Section 29.6.6.3.5, “Receive Shadow Buffers Concept”. The data and status
of the receive message buffers that are the CCRx or HLckCCRx are not modified in the reception slot.

29.6.6.3.3 Message Buffer Update

With the start of the next static or dynamic slot or with the start of the symbol window or NIT, the module
triggers the slot or segment start transition SSS. This transition changes the state of the receiving receive
message buffers from either CCRx to CCSu or from HLckCCRx to HLck, respectively.

If a message buffer was in the locked state HLckCCRx, no update will be performed. The received data
are lost. This is indicated by setting the Frame Lost Channel A/B Error Flag FRLA_EF/FRLB_EF in the
CHI Error Flag Register (FR_CHIERFR).

If a message buffer was in the CCRx state it is now in the CCSu state. After the evaluation of the slot status
provided by the PE the message buffer is updated. The message buffer update depends on the slot status
bits and the segment the message buffer is assigned to. This is described in Table 29-119.

Table 29-118. Receive Message Buffer Transition Priorities

State Priorities Description

module vs. application

Idle BS > HD Buffer Subscribed > Message Buffer Disable

HLck BS > HD Buffer Subscribed > Message Buffer Disable

CCRx SSS > HL Slot or Segment Start > Message Buffer Lock

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

906 Freescale Semiconductor

NOTE
If the number of the last slot in the current communication cycle on a given
channel is n, then all receive message buffers assigned to this channel with
FR_MBFIDRn[FID] > n will not be updated at all.

When the receive message buffer update has finished the status updated transition SU is triggered, which
changes the buffer state from CCSu to Idle. An example receive message buffer timing and state change
diagram for a normal frame reception is given in Figure 29-142.

Figure 29-142. Message Reception Timing

The amount of message data written into the message buffer data field of the receive shadow buffer is
determined by the following two items:

1. the message buffer segment that the message buffer is assigned to, as defined by the Message
Buffer Segment Size and Utilization Register (FR_MBSSUTR).

Table 29-119. Receive Message Buffer Update

vSS!ValidFrame vRF!Header!NFIndicator Update description

1 1 Valid non-null frame received.
- Message Buffer Data Field updated.
- Frame Header Field updated.
- Slot Status Field updated.
- DUP:= 1
- DVAL:= 1
- MBIF:= 1

1 0 Valid null frame received.
- Message Buffer Data Field not updated.
- Frame Header Field not updated.
- Slot Status Field updated.
- DUP:= 0
- DVAL not changed
- MBIF:= 1

0 x No valid frame received.
- Message Buffer Data Field not updated.
- Frame Header Field not updated.
- Slot Status Field updated.
- DUP:= 0
- DVAL not changed.
- MBIF:= 1, if the slot was not an empty dynamic slot.
Note: An empty dynamic slot is indicated by the following frame and slot

status bit values:
vSS!ValidFrame = 0 and vSS!SyntaxError = 0 and
vSS!ContentError = 0 and vSS!BViolation = 0.

search[s+1]

BS

slot s

SLS SU

CCBs CCRx

slot s+1

Idle

MT st
art

Idle

slot s+2

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

message receive to receive shadow buffer

SSS

CCSu

sl
ot

 s
ta

rt

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 907

2. the message buffer data field size, as defined by the related field of the Message Buffer Data Size
Register (FR_MBDSR)

3. the number of bytes received over the FlexRay bus

If the message buffer is assigned to the message buffer segment 1, and the number of received bytes is
greater than 2*FR_MBDSR.MBSEG1DS, the CC writes only 2*FR_MBDSR.MBSEG1DS bytes into the
message buffer data field of the receive shadow buffer. If the number of received bytes is less than
2*FR_MBDSR.MBSEG1DS, the CC writes only the received number of bytes and will not change the
trailing bytes in the message buffer data field of the receive shadow buffer. The same holds for the message
buffer segment 2 with FR_MBDSR.MBSEG2DS.

29.6.6.3.4 Received Message Access

To access the message data received over the FlexRay bus, the application reads the message data stored
in the message buffer data field of the corresponding receive message buffer. The access to the message
buffer data field is described in Section 29.6.3.1, “Individual Message Buffers”.

The application can read the message buffer data field if the receive message buffer is one of the states
HDis, HDisLck, or HLck. If the message buffer is in one of these states, the CC will not change the content
of the message buffer.

29.6.6.3.5 Receive Shadow Buffers Concept

The receive shadow buffer concept applies only to individual receive message buffers. The intention of
this concept is to ensure that only syntactically and semantically valid received non-null frames are
presented to the application in a receive message buffer. The basic structure of a receive shadow buffer is
described in Section 29.6.3.2, “Receive Shadow Buffers”.

The receive shadow buffers temporarily store the received frame header and message data. After the slot
boundary the slot status information is generated. If the slot status information indicates the reception of
the valid non-null frame (see Table 29-119), the CC writes the slot status into the slot status field of the
receive shadow buffer and exchanges the content of the Message Buffer Index Registers (FR_MBIDXRn)
with the content of the corresponding internal shadow buffer index register. In all other cases, the CC
writes the slot status into the identified receive message buffer, depending on the slot status and the
FlexRay segment the message buffer is assigned to.

The shadow buffer concept, with its index exchange, results in the fact that the flexray memory area
located message buffer associated to an individual receive message buffer changes after successful
reception of a valid frame. This means that the message buffer area in the flexray memory area accessed
by the application for reading the received message is different from the initial setting of the message
buffer. Therefore, the application must not rely on the index information written initially into the Message
Buffer Index Registers (FR_MBIDXRn). Instead, the index of the message buffer header field must be
fetched from the Message Buffer Index Registers (FR_MBIDXRn).

29.6.7 Individual Message Buffer Search

This section provides a detailed description of the message buffer search algorithm.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

908 Freescale Semiconductor

The message buffer search determines for each enabled channel if a slot s in a communication cycle c is
assigned for frame or null frame transmission or if it is subscribed for frame reception on that channel.

The message buffer search is a sequential algorithm which is invoked at the following protocol related
events:

1. NIT start

2. slot start in the static segment

3. minislot start in the dynamic segment

The message buffer search within the NIT searches for message buffers assigned or subscribed to slot 1.
The message buffer search within slot n searches for message buffers assigned or subscribed to slot n+1.

In general, the message buffer search for the next slot n considers only message buffers which are

1. enabled, i.e. FR_MBCCSRn[EDS] = 1, and

2. matches the next slot n, i.e. FR_MBFIDRn[FID] = n, and

On top of that, for the static segment only those message buffers are considered, that match the condition
of at least one row of Table 29-120. For the dynamic segment only those message buffers are considered,
that match the condition of at least one row of Table 29-121. These message buffers are called matching
message buffers.

For each enabled channel the message buffer search may identify multiple matching message buffers.
Among all matching message buffers the message buffers with highest priority according to Table 29-120
for the static segment and according to Table 29-121 for the dynamic segment are selected.

Table 29-120. Message Buffer Search Priority (static segment)

Priority MTD LCKS CMT CCFM1

1 Cycle Counter Filter Match, see Section 29.6.7.1, “Message Buffer Cycle Counter Filtering”

Description Transition

(highest) 0 1 0 1 1 transmit buffer, matches cycle count, not locked and committed MA

1
1 - 0 1 transmit buffer, matches cycle count, not committed SA

1 1 - 1 transmit buffer, matches cycle count, locked SA

2 1 - - - transmit buffer SA

3 0 0 n/a 1 receive buffer, matches cycle count, not locked SB

(lowest) 4 0 1 n/a 1 receive buffer, matches cycle count, locked SB

Table 29-121. Message Buffer Search Priority (dynamic segment)

Priority MTD LCKS CMT CCFM1

1 Cycle Counter Filter Match, see Section 29.6.7.1, “Message Buffer Cycle Counter Filtering”

Description Transition

(highest) 0 1 0 1 1 transmit buffer, matches cycle count, not locked and committed MA

1 0 0 n/a 1 receive buffer, matches cycle count, not locked SB

(lowest) 2 0 1 n/a 1 receive buffer, matches cycle count, locked SB

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 909

If there are multiple message buffer with highest priority, the message buffer with the lowest message
buffer number is selected. All message buffer which have the highest priority must have a consistent
channel assignment as specified in Section 29.6.7.2, “Message Buffer Channel Assignment Consistency”.

Depending on the message buffer channel assignment the same message buffer can be found for both
channel A and channel B. In this case, this message buffer is used as described in Section 29.6.3.1,
“Individual Message Buffers”.

29.6.7.1 Message Buffer Cycle Counter Filtering

The message buffer cycle counter filter is a value-mask filter defined by the CCFE, CCFMSK, and
CCFVAL fields in the Message Buffer Cycle Counter Filter Registers (FR_MBCCFRn). This filter
determines a set of communication cycles in which the message buffer is considered for message reception
or message transmission. If the cycle counter filter is disabled, i.e. CCFE = 0, this set of cycles consists of
all communication cycles.

If the cycle counter filter of a message buffer does not match a certain communication cycle number, this
message buffer is not considered for message transmission or reception in that communication cycle. In
case of a transmit message buffer assigned to a slot in the static segment, though, this buffer is added to
the matching message buffers to indicate the slot assignment and to trigger the null frame transmission.

The cycle counter filter of a message buffer matches the communication cycle with the number CYCCNT
if at least one of the following conditions evaluates to true:

Eqn. 29-12

Eqn. 29-13

29.6.7.2 Message Buffer Channel Assignment Consistency

The message buffer channel assignment given by the CHA and CHB bits in the Message Buffer Cycle
Counter Filter Registers (FR_MBCCFRn) defines the channels on which the message buffer will receive
or transmit. The message buffer with number n transmits or receives on channel A if
FR_MBCCFRn[CHA] = 1 and transmits or receives on channel B if FR_MBCCFRn[CHB] = 1.

To ensure correct message buffer operation, all message buffers assigned to the same slot and with the
same priority must have a consistent channel assignment. That means they must be either assigned to one
channel only, or must be assigned to both channels. The behavior of the message buffer search is not
defined, if both types of channel assignments occur for one slot and priority. An inconsistent channel
assignment for message buffer 0 and message buffer 1 is depicted in Figure 29-143.

Figure 29-143. Inconsistent Channel Assignment

MBCCFRn CCFE  0=

CYCCNT & MBCCFRn CCFMSK  MBCCFRn CCFVAL  & MBCCFRn CCFMSK =

MB0 FR_MBCCFR0[CHA] = 1, FR_MBCCFR0[CHB] = 0

MB1 dual channel assignment

single channel assignmentFR_MBFIDR0[FID] = 10

FR_MBFIDR1[FID] = 10 FR_MBCCFR1[CHA] = 1, FR_MBCCFR1[CHB] = 1

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

910 Freescale Semiconductor

29.6.7.3 Node Related Slot Multiplexing

The term Node Related Slot Multiplexing applies to the dynamic segment only and refers to the
functionality if there are transmit as well as receive message buffers are configured for the same slot.

According to Table 29-121 the transmit buffer is only found if the cycle counter filter matches, and the
buffer is not locked and committed. In all other cases, the receive buffer will be found. Thus, if the block
has no data to transmit in a dynamic slot, it is able to receive frames on that slot.

29.6.7.4 Message Buffer Search Error

There are two kinds of errors which may occur during message buffer search1.

29.6.7.4.1 Message Buffer Search Start while Running

If the message buffer search is running in slot n-1 and the next message buffer search start event appears
due to the start of slot n, the message buffer search engine is stopped and the Message Buffer Search Error
Flag MBS_EF is set in the CHI Error Flag Register (FR_CHIERFR). As a result of this stop, no individual
message buffer is identified for transmission or reception in slot n. Additionally, the search engine will not
be started in slot n, and consequently no individual message buffer is identified for transmission or
reception in slot n+1.

A message buffer search error appears only if the CHI frequency is too slow to allow the search through
all message buffers to be completed within the NIT or a minislot.

For more details of minimum required CHI frequency see Section 29.7.5, “Number of Usable Message
Buffers”.

29.6.7.4.2 Illegal Message Buffer Index Found

If the message buffer search has finished the message buffer search in slot n-1, it retrieves the data offset
values for the found message buffers and the receive shadow buffers. If one of these message buffers
contains an illegal message buffer index, the Message Buffer Search Error Flag MBS_EF is set in the CHI
Error Flag Register (FR_CHIERFR) is set and no individual message buffer is identified for transmission
or reception in slot n. The legal message buffer index values for the individual and receive shadow buffers
are specified in Section 29.5.2.52, “Receive Shadow Buffer Index Register (FR_RSBIR)” and
Section 29.5.2.82, “Message Buffer Index Registers (FR_MBIDXRn)”.

29.6.8 Individual Message Buffer Reconfiguration

The initial configuration of each individual message buffer can be changed even when the protocol is not
in the POC:config state. This is referred to as individual message buffer reconfiguration. The
configuration bits and fields that can be changed are given in the section on Specific Configuration Data.
The common configuration data given in the section on Specific Configuration Data can not be
reconfigured when the protocol is out of the POC:config state.

1. The FIFO reception is not affected by the search errors. Additionally, if no rx buffer has been found due to an search error, the
received frame is considered for FIFO reception.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 911

29.6.8.1 Reconfiguration Schemes

Depending on the target and destination basic state of the message buffer that is to be reconfigured, there
are three reconfiguration schemes.

29.6.8.1.1 Basic Type Not Changed (RC1)

A reconfiguration will not change the basic type of the individual message buffer, if the message buffer
transfer direction bit FR_MBCCSRn[MTD] are not changed. This type of reconfiguration is denoted by
RC1 in Figure 29-144. Transmit and receive message buffers can be RC1-reconfigured when in the HDis
or HDisLck state.

29.6.8.1.2 Buffer Type Not Changed (RC2)

A reconfiguration will not change the buffer type of the individual message buffer. This type of
reconfiguration is denoted by RC2 in Figure 29-144. It applies to transmit and receive message buffers.
Transmit and receive message buffers can be RC2-reconfigured when in the HDis or HDisLck state.

Figure 29-144. Message Buffer Reconfiguration Scheme

29.6.9 Receive FIFOs

This section provides the functional description of the two receive FIFOs.

29.6.9.1 Overview

The two receive FIFOs implement the queued message buffer concept defined by the FlexRay
Communications System Protocol Specification, Version 2.1 Rev A. One FIFO is assigned to channel A,
the other FIFO is assigned to channel B. Both FIFOs work completely independent from each other.

The message buffer structure of each FIFO is described in Section 29.6.3.3, “Receive FIFO”. The area in
the flexray memory area for each of the two FIFOs is characterized by:

• The FIFO system memory base address

• The index of the first FIFO entry given by Receive FIFO Start Index Register (FR_RFSIR)

• The data field offset of the data field belonging to the first FIFO entry given by Receive FIFO Start
Data Offset Register (FR_RFSDOR)

• The number of FIFO entries and the length of each FIFO entry as given by Receive FIFO Depth
and Size Register (RFDSR)

29.6.9.2 FIFO Configuration

The FIFOs can be configured for two different locations of the system memory base address via the FIFO
address mode bit FAM in the Module Configuration Register (FR_MCR).

single RX single TX RC1RC1 RC2

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

912 Freescale Semiconductor

29.6.9.2.1 Single System Memory Base Address Mode

This mode is configured, when the FIFO address mode flag FR_MCR[FAM] is set to 0. In this mode, the
location of the system memory base address for the FIFO buffers is System Memory Base Address
Register (FR_SYMBADR).

29.6.9.2.2 Dual System Memory Base Address Mode

This mode is configured, when the FIFO address mode flag FR_MCR[FAM] is set to 1. In this mode, the
location of the system memory base address for the FIFO buffers is Receive FIFO System Memory Base
Address Register (FR_RFSYMBADR).

The FIFO control and configuration data are given in Section 29.6.3.7, “Receive FIFO Control and
Configuration Data”. The configuration of the FIFOs consists of two steps.

The first step is the allocation of the required amount of flexray memory area for the FlexRay window.
This includes the allocation of the message buffer header area and the allocation of the message buffer data
fields. For more details see Section 29.6.4, “Flexray Memory Area Layout”.

The second step is the programming of the configuration data register while the PE is in POC:config.

The following steps configure the layout of the FIFO.

• Configure the FIFO update and address modes in Module Configuration Register (FR_MCR)

• Configure the FIFO system memory base address

• Configure the Receive FIFO Start Index Register (FR_RFSIR) with the first message buffer header
index that belongs to the FIFO

• Configure the Receive FIFO Start Data Offset Register (FR_RFSDOR) with the data field offset
of the data field belonging to the first message buffer that belongs to the FIFO

• Configure the Receive FIFO Depth and Size Register (RFDSR) with FIFO entry size

• Configure the Receive FIFO Depth and Size Register (RFDSR) with FIFO depth

• Configure the FIFO Filters

29.6.9.3 FIFO Periodic Timer

The FIFO periodic timer is used to generate an FIFO almost-full interrupt at certain point in time, if the
almost-full watermark is not reached, but the FIFO is not empty. This can be used to prevent frames from
get stuck in the FIFO for a long time.

The FIFO periodic timer is configured via the Receive FIFO Periodic Timer Register (FR_RFPTR). If the
periodic timer duration FR_RFPTR[PTD] is configured to 0x0000, the periodic timer is continuously
expired. If the periodic timer duration FR_RFPTR[PTD] is configured to 0x3FFF, the periodic timer never
expires. If the periodic timer is configured to a value ptd, greater than 0x0000 and smaller 0x3FFF, the
periodic timer expires and is restarted at the start of every communication cycle, and expires and is
restarted after ptd macroticks have been elapsed.

29.6.9.4 FIFO Reception

The FIFO reception is a CC internal operation.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 913

A message frame reception is directed into the FIFO, if no individual message buffer is assigned for
transmission or subscribed for reception for the current slot. In this case the FIFO filter path shown in
Figure 29-145 is activated.

If the FIFO filter path indicates that the received frame has to be appended to the FIFO and the FIFO is
not full, the CC writes the received frame header into the message buffer header field indicated by the CC
internal FIFO write index. The frame payload data are written into the corresponding message buffer data
field. If the status of the received frame indicates a valid non-null frame, the slot status information is
written into the message buffer header field and the CC internal FIFO write index is updated by 1 and the
fifo fill level FLA (FLB) in the Receive FIFO Fill Level and POP Count Register (FR_RFFLPCR) is
incremented.If the status of the received frame indicates an invalid or null frame, the frame is not appended
to the FIFO.

29.6.9.5 FIFO Almost-Full Interrupt Generation

If the fifo fill level FLA (FLB) is updated after a frame reception and exceeds the FIFO watermark level
WM, i.e. FLA>WMA (FLB>WMB), then the FIFO almost-full interrupt flag FR_GIFER[FAFAIF]
(FR_GIFER[FAFBIF]) is asserted.If the periodic timer expires, and FIFOA (FIFOB) is not empty, i.e.
FLA>0 (FLB>0), then the FIFO almost-full interrupt flag FR_GIFER[FAFAIF] (FR_GIFER[FAFBIF]) is
asserted.

29.6.9.6 FIFO Overflow Error Generation

If the FIFOA (FIFOB) is full, i.e. FLA=FIFO_DEPTHA (FLB=FIFO_DEPTHB) and the conditions for a
FIFO reception as described in Section 29.6.9.4, “FIFO Reception” are fulfilled, then the fifo overflow
error flag FR_CHIERFR[FOVA_EF] (FR_CHIERFR[FOVB_EF]) is asserted.

29.6.9.7 FIFO Message Access

The FIFOA (FIFOB) contains valid messages if the FIFO fill level given in the fields FLA (FLB) in the
Receive FIFO Fill Level and POP Count Register (FR_RFFLPCR) is greater than 0. The Receive FIFO A
Read Index Register (FR_RFARIR) and the (Receive FIFO B Read Index Register (FR_RFBRIR)) point
to a message buffer with valid content and the oldest frames stored in the FIFO.The respective read data
field offsets can be calculated according to Equation 29-6.

If the FIFO fill level FLA (FLB) in the Receive FIFO Fill Level and POP Count Register (FR_RFFLPCR)
is 0, than the FIFOA (FIFOB) contains no valid messages and the corresponding read index register
Receive FIFO A Read Index Register (FR_RFARIR) or (Receive FIFO B Read Index Register
(FR_RFBRIR) point to a message buffer with invalid content. In this case the application must not read
data from this FIFO.

To access the oldest message in the FIFOA (FIFOB), the application first reads the read index RDIDX out
of the Receive FIFO A Read Index Register (FR_RFARIR) (Receive FIFO B Read Index Register
(FR_RFBRIR)). This read index points to the message buffer header field of the oldest message buffer that
contains valid received message data. The data field offset belonging to this message buffer must be
calculated by the application according to Equation 29-6. The application can access the message data as

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

914 Freescale Semiconductor

described in Section 29.6.3.3, “Receive FIFO”. When the application has read the message buffer data and
status information, it can update the FIFO as described in Section 29.6.9.8, “FIFO Update”.

29.6.9.8 FIFO Update

The application updates the FIFOA (FIFOB) by writing a pop count value pc different from 0 to the
PCA (PCB) field in the Receive FIFO Fill Level and POP Count Register (FR_RFFLPCR).

As a result of the this operation, the CC removes the oldest pc entries from FIFOA (FIFOB).

If the specified pop count value pc is greater than the current fill level fl provided in FLA (FAB) field, then
only fl entries are removed from the FIFOA (FIFOB), the remaining fl-pc requested pop operations are
discarded without any notification. In this case FIFOA (FIFOB) is empty after the update operation.

The read index in the Receive FIFO A Read Index Register (FR_RFARIR) (Receive FIFO B Read Index
Register (FR_RFBRIR)) is incremented by the number of removed items. If the read index reaches the top
of the FIFO, it wraps around to the FIFO start index defined in Receive FIFO Start Index Register
(FR_RFSIR) automatically.

29.6.9.8.1 FIFO Interrupt Flag Update

The FIFO Interrupt Flag Update mode is configured, when the FIFO update mode flag FR_MCR[FUM]
is set to 0. In this mode FIFOA (FIFOB) will be updated by 1 entry, when the interrupt flag
FR_GIFER[FAFAIF] (FR_GIFER[FAFBIF]) is written with 1 by the application.

If the FIFO is empty, the update request is ignored without any notification.

The read index in the Receive FIFO A Read Index Register (FR_RFARIR) (Receive FIFO B Read Index
Register (FR_RFBRIR)) is incremented by 1, if the FIFO was not empty. If the read index reaches the top
of the FIFO, it wraps around to the FIFO start index automatically.

29.6.9.9 FIFO Filtering

The FIFO filtering is activated after all enabled individual receive message buffers have been searched
without success for a message buffer to receive the current frame.

The CC provides three sets of FIFO filters. The FIFO filters are applied to valid non-null frames only. The
FIFO will not receive invalid or null-frames. For each FIFO filter, the pass criteria is specified in the
related section given below. Only frames that have passed all filters will be appended to the FIFO. The
FIFO filter path is depicted in Figure 29-145.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 915

Figure 29-145. Received Frame FIFO Filter Path

Valid Frame Received (vRF)

Individual

Null Frame

Frame ID Value-

Frame ID

Append to FIFO (vRF)

Frame ID

No

Frame Received

FIFO full

Set FIFO Overflow Interrupt Flag

Message Buffer Found
?

No

Passed

Passed

Passed

Yes

(vRF!Header!NFIndicator=0)
?

Mask Rejection Filter
?

Range Rejection Filter
?

Range Acceptance Filter
?

in Dynamic Segment
?

?

Store Into Message Buffer (vRF)

Yes

No

Else

Ignore frame

Yes

Else

Else

Message ID
(vRF!Header!PPIndicator=1)

?

Message ID

Yes

Passed

Acceptance Filter
?

No

Yes

No

Else

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

916 Freescale Semiconductor

A received frame passes the FIFO filtering if it has passed all three type of filter.

29.6.9.9.1 RX FIFO Frame ID Value-Mask Rejection Filter

The frame ID value-mask rejection filter is a value-mask filter and is defined by the fields in the Receive
FIFO Frame ID Rejection Filter Value Register (FR_RFFIDRFVR) and the Receive FIFO Frame ID
Rejection Filter Mask Register (FR_RFFIDRFMR). Each received frame with a frame ID FID that does
not match the value-mask filter value passes the filter, i.e. is not rejected.

Consequently, a received valid frame with the frame ID FID passes the RX FIFO Frame ID Value-Mask
Rejection Filter if Equation 29-14 is fulfilled.

Eqn. 29-14

The RX FIFO Frame ID Value-Mask Rejection Filter can be configured to pass all frames by the following
settings.

• FR_RFFIDRFVR[FIDRFVAL]:= 0x000 and FR_RFFIDRFMR[FIDRFMSK]:= 0x7FF

Using the settings above, only the frame with frame ID 0 will be rejected, which is an invalid frame. All
other frames will pass.

The RX FIFO Frame ID Value-Mask Rejection Filter can be configured to reject all frames by the
following settings.

• FR_RFFIDRFMR[FIDRFMSK]:= 0x000

Using the settings above, Equation 29-14 can never be fulfilled (0!= 0) and thus all frames are rejected; no
frame will pass. This is the reset value for the RX FIFO.

29.6.9.9.2 RX FIFO Frame ID Range Rejection Filter

Each of the four RX FIFO Frame ID Range filters can be configured as a rejection filter. The filters are
configured by the Receive FIFO Range Filter Configuration Register (FR_RFRFCFR) and controlled by
the Receive FIFO Range Filter Control Register (FR_RFRFCTR). The RX FIFO Frame ID range filters
apply to all received valid frames. A received frame with the frame ID FID passes the RX FIFO Frame ID
Range rejection filters if either no rejection filter is enabled, or, for all of the enabled RX FIFO Frame ID
Range rejection filters, i.e. FR_RFRFCTR[FiMD] = 1 and FR_RFRFCTR[FiEN] = 1, Equation 29-15 is
fulfilled.

Eqn. 29-15

Consequently, all frames with a frame ID that fulfills Equation 29-16 for at least one of the enabled
rejection filters will be rejected and thus not pass.

Eqn. 29-16

29.6.9.9.3 RX FIFO Frame ID Range Acceptance filter

Each of the four RX FIFO Frame ID Range filters can be configured as an acceptance filter. The filters are
configured by the Receive FIFO Range Filter Configuration Register (FR_RFRFCFR) and controlled by
the Receive FIFO Range Filter Control Register (FR_RFRFCTR). The RX FIFO Frame ID range filters

ID & FR_RFFIDRFMR FIDRFMSK  FR_RFFIDRFVR FIDRFVAL  & FR_RFFIDRFMR FIDRFMSK

FID FR_RFRFCFRSEL SIDIBD 0=   or FR_RFRFCFRSEL SIDIBD 1=  FID

FR_RFRFCFRSEL SIDIBD 0=  FID FR_RFRFCFRSEL SIDIBD 1= 

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 917

apply to all received valid frames. A received frame with the frame ID FID passes the RX FIFO Frame ID
Range acceptance filters if either no acceptance filter is enabled, or, for at least one of the enabled RX FIFO
Frame ID Range acceptance filters, i.e. FR_RFRFCTR[FiMD] = 0 and FR_RFRFCTR[FiEN] = 1,
Equation 29-17 is fulfilled.

Eqn. 29-17

29.6.9.9.4 RX FIFO Message ID Acceptance Filter

The RX FIFO Message ID Acceptance Filter is a value-mask filter and is defined by the Receive FIFO
Message ID Acceptance Filter Value Register (FR_RFMIDAFVR) and the Receive FIFO Message ID
Acceptance Filter Mask Register (FR_RFMIDAFMR). This filter applies only to valid frames received in
the dynamic segment with the payload preamble indicator bit PPI set to 1. All other frames will pass this
filter.

A received valid frame in the dynamic segment with the payload preamble indicator bit PPI set to 1 and
with the message ID MID (the first two bytes of the payload) will pass the RX FIFO Message ID
Acceptance Filter if Equation 29-18 is fulfilled.

Eqn. 29-18

The RX FIFO Message ID Acceptance Filter can be configured to accept all frames by setting

• FR_RFMIDAFMR[MIDAFMSK]:= 0x000

Using the settings above, Equation 29-18 is always fulfilled and all frames will pass.

29.6.10 Channel Device Modes

This section describes the two FlexRay channel device modes that are supported by the CC.

29.6.10.1 Dual Channel Device Mode

In the dual channel device mode, both FlexRay ports are connected to physical FlexRay bus lines. The
FlexRay port consisting of FR_A_RX, FR_A_TX, and FR_A_TX_EN is connected to the physical bus
channel A and the FlexRay port consisting of FR_B_RX, FR_B_TX, and FR_B_TX_EN is connected to
the physical bus channel B. The dual channel system is shown in Figure 29-146.

 FR_RFRFCFRSEL SIDIBD 0=  FID FR_RFRFCFRSEL SIDIBD 1= 

MID & FR_RFMIDAFMR MIDAFMSK  FR_RFMIDAFMR MIDAFVAL  & FR_RFMIDAFMR MIDAFMSK=

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

918 Freescale Semiconductor

Figure 29-146. Dual Channel Device Mode

29.6.10.2 Single Channel Device Mode

The single channel device mode supports devices that have only one FlexRay port available. This FlexRay
port consists of the signals FR_A_RX, FR_A_TX, and FR_A_TX_EN and can be connected to either the
physical bus channel A (shown in Figure 29-147) or the physical bus channel B (shown in Figure 29-148).

If the device is configured as a single channel device by setting FR_MCR[SCM] to 1, only the internal
channel A and the FlexRay Port A is used. Depending on the setting of FR_MCR[CHA] and
FR_MCR[CHB], the internal channel A behaves either as a FlexRay Channel A or FlexRay Channel B.
The bit FR_MCR[CHA] must be set, if the FlexRay Port A is connected to a FlexRay Channel A. The bit
FR_MCR[CHB] must be set if the FlexRay Port A is connected to a FlexRay Channel B. The two FlexRay
channels differ only in the initial value for the frame CRC cCrcInit. For a single channel device, the
application can access and configure only the registers related to internal channel A.

CHI PE

cfg(A)

reg(A)

cCrcInit[A]

cCrcInit[B]

cfg(B)

reg(B)

channel 0

channel 1

FlexRay Channel A
FlexRay Bus Driver

Channel A

FR_A_RX

FR_A_TX

FR_A_TX_EN

FlexRay Channel B
FlexRay Bus Driver

Channel B

FR_B_RX

FR_B_TX

FR_B_TX_EN

FLEXRAY

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 919

Figure 29-147. Single Channel Device Mode (Channel A)

Figure 29-148. Single Channel Device Mode (Channel B)

29.6.11 External Clock Synchronization

The application of the external rate and offset correction is triggered when the application writes to the
EOC_AP and ERC_AP fields in the Protocol Operation Control Register (FR_POCR). The PE applies the
external correction values in the next even-odd cycle pair as shown in Figure 29-149 and Figure 29-150.

CHI PE

cfg(A)

reg(A)

cCrcInit[A]

cCrcInit[B]

cfg(B)

reg(B)

channel A

channel B

FlexRay Channel A
FlexRay Bus Driver

Channel A

FR_A_RX

FR_A_TX

FR_A_TX_EN

FR_B_RX

FR_B_TX

FR_B_TX_EN

FLEXRAY

CHI PE

cfg(A)

reg(A)

cCrcInit[B]

cfg(B)

reg(B)

channel A

channel B

FlexRay Channel B

Init Value for Frame CRC is cCrcInit[B]cCrcInit[A]

FlexRay Bus Driver
Channel A

FR_A_RX

FR_A_TX

FR_A_TX_EN

FR_B_RX

FR_B_TX

FR_B_TX_EN

FLEXRAY

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

920 Freescale Semiconductor

NOTE
The values provided in the EOC_AP and ERC_AP fields are the values that
were written from the application most recently. If these value were already
applied, they will not be applied in the current cycle pair again.

If the offset correction applied in the NIT of cycle 2n+1 shall be affect by the external offset correction,
the EOC_AP field must be written to after the start of cycle 2n and before the end of the static segment of
cycle 2n+1. If this field is written to after the end of the static segment of cycle 2n+1, it is not guaranteed
that the external correction value is applied in cycle 2n+1. If the value is not applied in cycle 2n+1, then
the value will be applied in the cycle 2n+3. Refer to Figure 29-149 for timing details.

Figure 29-149. External Offset Correction Write and Application Timing

If the rate correction for the cycle pair [2n+2, 2n+3] shall be affect by the external offset correction, the
ERC_AP field must be written to after the start of cycle 2n and before the end of the static segment start
of cycle 2n+1. If this field is written to after the end of the static segment of cycle 2n+1, it is not guaranteed
that the external correction value is applied in cycle pair [2n+2, 2n+3]. If the value is not applied for cycle
pair [2n+2, 2n+3], then the value will be applied for cycle pair [2n+4, 2n+5]. Refer to Figure 29-150 for
details.

Figure 29-150. External Rate Correction Write and Application Timing

29.6.12 Sync Frame ID and Sync Frame Deviation Tables

The FlexRay protocol requires the provision of a snapshot of the Synchronization Frame ID tables for the
even and odd communication cycle for both channels. The CC provides the means to write a copy of these
internal tables into the flexray memory area and ensures application access to consistent tables by means
of table locking. Once the application has locked the table successfully, the CC will not overwrite these
tables and the application can read a consistent snapshot.

NOTE
Only synchronization frames that have passed the synchronization frame
filters are considered for clock synchronization and appear in the sync frame
tables.

static segment NIT static segment NIT

EOC_AP write window EOC_AP application

cycle 2n cycle 2n+1

static segment NIT

ERC_AP write window ERC_AP application

cycle 2n

static segment NIT

cycle 2n+1

static segment NIT

cycle 2n+2

static segment NIT

cycle 2n+3

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 921

29.6.12.1 Sync Frame ID Table Content

The Sync Frame ID Table is a snapshot of the protocol related variables vsSyncIdListA and vsSyncIdListB
for each even and odd communication cycle. This table provides a list of the frame IDs of the
synchronization frames received on the corresponding channel and cycle that are used for the clock
synchronization.

29.6.12.2 Sync Frame Deviation Table Content

The Sync Frame Deviation Table is a snapshot of the protocol related variable zsDev(id)(oe)(ch)!Value.
Each Sync Frame Deviation Table entry provides the deviation value for the sync frame, with the frame
ID presented in the corresponding entry in the Sync Frame ID Table.

Figure 29-151. Sync Table Memory Layout

29.6.12.3 Sync Frame ID and Sync Frame Deviation Table Setup

The CC writes a copy of the internal synchronization frame ID and deviation tables into the flexray
memory area if requested by the application. The application must provide the appropriate amount of
flexray memory area for the tables. The memory layout of the tables is given in Figure 29-151. Each table
occupies 120 16-bit entries.

FR_SFTOR FR_SFTOR + 180

Sync Frame ID ChA 1
Sync Frame ID ChA 2
Sync Frame ID ChA 3
Sync Frame ID ChA 4
Sync Frame ID ChA 5
Sync Frame ID ChA 6
Sync Frame ID ChA 7
Sync Frame ID ChA 8
Sync Frame ID ChA 9
Sync Frame ID ChA 10
Sync Frame ID ChA 11
Sync Frame ID ChA 12
Sync Frame ID ChA 13
Sync Frame ID ChA 14
Sync Frame ID ChA 15

Sync Deviation ChA 1
Sync Deviation ChA 2
Sync Deviation ChA 3
Sync Deviation ChA 4
Sync Deviation ChA 5
Sync Deviation ChA 6
Sync Deviation ChA 7
Sync Deviation ChA 8
Sync Deviation ChA 9
Sync Deviation ChA 10
Sync Deviation ChA 11
Sync Deviation ChA 12
Sync Deviation ChA 13
Sync Deviation ChA 14
Sync Deviation ChA 15

FR_SFTOR + 60 FR_SFTOR +120

Sync Frame ID ChA 1
Sync Frame ID ChA 2
Sync Frame ID ChA 3
Sync Frame ID ChA 4
Sync Frame ID ChA 5
Sync Frame ID ChA 6
Sync Frame ID ChA 7
Sync Frame ID ChA 8
Sync Frame ID ChA 9
Sync Frame ID ChA 10
Sync Frame ID ChA 11
Sync Frame ID ChA 12
Sync Frame ID ChA 13
Sync Frame ID ChA 14
Sync Frame ID ChA 15

Sync Deviation ChA 1
Sync Deviation ChA 2
Sync Deviation ChA 3
Sync Deviation ChA 4
Sync Deviation ChA 5
Sync Deviation ChA 6
Sync Deviation ChA 7
Sync Deviation ChA 8
Sync Deviation ChA 9
Sync Deviation ChA 10
Sync Deviation ChA 11
Sync Deviation ChA 12
Sync Deviation ChA 13
Sync Deviation ChA 14
Sync Deviation ChA 15

Offset + $00
Offset + $02
Offset + $04
Offset + $06
Offset + $08
Offset + $0A
Offset + $0C
Offset + $0E
Offset + $10
Offset + $12
Offset + $14
Offset + $16
Offset + $18
Offset + $1A
Offset + $1C

Sync Frame ID ChB 1
Sync Frame ID ChB 2
Sync Frame ID ChB 3
Sync Frame ID ChB 4
Sync Frame ID ChB 5
Sync Frame ID ChB 6
Sync Frame ID ChB 7
Sync Frame ID ChB 8
Sync Frame ID ChB 9
Sync Frame ID ChB 10
Sync Frame ID ChB 11
Sync Frame ID ChB 12
Sync Frame ID ChB 13
Sync Frame ID ChB 14
Sync Frame ID ChB 15

Sync Deviation ChB 1
Sync Deviation ChB 2
Sync Deviation ChB 3
Sync Deviation ChB 4
Sync Deviation ChB 5
Sync Deviation ChB 6
Sync Deviation ChB 7
Sync Deviation ChB 8
Sync Deviation ChB 9
Sync Deviation ChB 10
Sync Deviation ChB 11
Sync Deviation ChB 12
Sync Deviation ChB 13
Sync Deviation ChB 14
Sync Deviation ChB 15

Sync Frame ID ChB 1
Sync Frame ID ChB 2
Sync Frame ID ChB 3
Sync Frame ID ChB 4
Sync Frame ID ChB 5
Sync Frame ID ChB 6
Sync Frame ID ChB 7
Sync Frame ID ChB 8
Sync Frame ID ChB 9
Sync Frame ID ChB 10
Sync Frame ID ChB 11
Sync Frame ID ChB 12
Sync Frame ID ChB 13
Sync Frame ID ChB 14
Sync Frame ID ChB 15

Sync Deviation ChB 1
Sync Deviation ChB 2
Sync Deviation ChB 3
Sync Deviation ChB 4
Sync Deviation ChB 5
Sync Deviation ChB 6
Sync Deviation ChB 7
Sync Deviation ChB 8
Sync Deviation ChB 9
Sync Deviation ChB 10
Sync Deviation ChB 11
Sync Deviation ChB 12
Sync Deviation ChB 13
Sync Deviation ChB 14
Sync Deviation ChB 15

Offset + $1E
Offset + $20
Offset + $22
Offset + $24
Offset + $26
Offset + $28
Offset + $2A
Offset + $2C
Offset + $2E
Offset + $30
Offset + $32
Offset + $34
Offset + $36
Offset + $38
Offset + $3A

FR_SFCNTR
SFEVA
SFEVB

FR_SFCNTR
SFODA
SFODB

EVEN ODD EVEN ODD

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

922 Freescale Semiconductor

While the protocol is in POC:config state, the application must program the offsets for the tables into the
Sync Frame Table Offset Register (FR_SFTOR).

29.6.12.4 Sync Frame ID and Sync Frame Deviation Table Generation

The application controls the generation process of the Sync Frame ID and Sync Frame Deviation Tables
into the flexray memory area using the Sync Frame Table Configuration, Control, Status Register
(FR_SFTCCSR). A summary of the copy modes is given in Table 29-122.

The Sync Frame Table generation process is described in the following for the even cycle. The same
sequence applies to the odd cycle.

If the application has enabled the sync frame table generation by setting FR_SFTCCSR[SIDEN] to 1, the
CC starts the update of the even cycle related tables after the start of the NIT of the next even cycle. The
CC checks if the application has locked the tables by reading the FR_SFTCCSR[ELKS] lock status bit. If
this bit is set, the CC will not update the table in this cycle. If this bit is cleared, the CC locks this table and
starts the table update. To indicate that these tables are currently updated and may contain inconsistent
data, the CC clears the even table valid status bit FR_SFTCCSR[EVAL]. Once all table entries related to
the even cycle have been transferred into the flexray memory area, the CC sets the even table valid bit
FR_SFTCCSR[EVAL] and the Even Cycle Table Written Interrupt Flag EVT_IF in the Protocol Interrupt
Flag Register 1 (FR_PIFR1). If the interrupt enable flag EVT_IE is set, an interrupt request is generated.

To read the generated tables, the application must lock the tables to prevent the CC from updating these
tables. The locking is initiated by writing a 1 to the even table lock trigger FR_SFTCCSR[ELKT]. When
the even table is not currently updated by the CC, the lock is granted and the even table lock status bit
FR_SFTCCSR[ELKS] is set. This indicates that the application has successfully locked the even sync
tables and the corresponding status information fields SFRA, SFRB in the Sync Frame Counter Register
(FR_SFCNTR). The value in the FR_SFTCCSR[CYCNUM] field provides the number of the cycle that
this table is related to.

The number of available table entries per channel is provided in the FR_SFCNTR[SFEVA] and
FR_SFCNTR[SFEVB] fields. The application can now start to read the sync table data from the locations
given in Figure 29-151.

Table 29-122. Sync Frame Table Generation Modes

FR_SFTCCSR
Description

OPT SDVEN SIDEN

0 0 0 No Sync Frame Table copy

0 0 1 Sync Frame ID Tables will be copied continuously

0 1 0 Reserved

0 1 1 Sync Frame ID Tables and Sync Frame Deviation Tables will be copied continuously

1 0 0 No Sync Frame Table copy

1 0 1 Sync Frame ID Tables for next even-odd-cycle pair will be copied

1 1 0 Reserved

1 1 1 Sync Frame ID Tables and Sync Frame Deviation Tables for next even-odd-cycle pair will be
copied

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 923

After reading all the data from the locked tables, the application must unlock the table by writing to the
even table lock trigger FR_SFTCCSR[ELKT] again. The even table lock status bit FR_SFTCCSR[ELKS]
is reset immediately.

If the sync frame table generation is disabled, the table valid bits FR_SFTCCSR[EVAL] and
FR_SFTCCSR[EVAL] are reset when the counter values in the Sync Frame Counter Register
(FR_SFCNTR) are updated. This is done because the tables stored in the flexray memory area are no
longer related to the values in the Sync Frame Counter Register (FR_SFCNTR).

Figure 29-152. Sync Frame Table Trigger and Generation Timing

29.6.12.5 Sync Frame Table Access

The sync frame tables will be transferred into the flexray memory area during the table write windows
shown in Figure 29-152. During the table write, the application can not lock the table that is currently
written. If the application locks the table outside of the table write window, the lock is granted
immediately.

29.6.12.5.1 Sync Frame Table Locking and Unlocking

The application locks the even/odd sync frame table by writing 1 to the lock trigger bit ELKT/OLKT in
the Sync Frame Table Configuration, Control, Status Register (FR_SFTCCSR). If the affected table is not
currently written to the flexray memory area, the lock is granted immediately, and the lock status bit
ELKS/OLKS is set. If the affected table is currently written to the flexray memory area, the lock is not
granted. In this case, the application must issue the lock request again until the lock is granted.

The application unlocks the even/odd sync frame table by writing 1 to the lock trigger bit ELKT/OLKT.
The lock status bit ELKS/OLKS is cleared immediately.

29.6.13 MTS Generation

The CC provides a flexible means to request the transmission of the Media Access Test Symbol MTS in
the symbol window on channel A or channel B.

The application can configure the set of communication cycles in which the MTS will be transmitted over
the FlexRay bus by programming the CYCCNTMSK and CYCCNTVAL fields in the MTS A
Configuration Register (FR_MTSACFR) and MTS B Configuration Register (MTSBCFR).

The application enables or disables the generation of the MTS on either channel by setting or clearing the
MTE control bit in the MTS A Configuration Register (FR_MTSACFR) or MTS B Configuration Register
(MTSBCFR). If an MTS is to be transmitted in a certain communication cycle, the application must set
the MTE control bit during the static segment of the preceding communication cycle.

FR_SFTCCSR.[OPT,SIDEN,SDVEN] write window
even table write

static segment NIT static segment NIT static segment NIT

cycle 2n-1 cycle 2n cycle 2n+1

odd table write

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

924 Freescale Semiconductor

The MTS is transmitted over channel A in the communication cycle with number CYCCNT, if
Equation 29-20, Equation 29-21, and Equation 29-21 are fulfilled.

Eqn. 29-19

Eqn. 29-20

Eqn. 29-21

The MTS is transmitted over channel B in the communication cycle with number CYCCNT, if
Equation 29-19, Equation 29-22, and Equation 29-23 are fulfilled.

Eqn. 29-22

Eqn. 29-23

29.6.14 Key Slot Transmission

29.6.14.1 Key Slot Assignment

A key slot is assigned to the CC if the key_slot_id field in the Protocol Configuration Register 18
(FR_PCR18) is configured with a value greater than 0 and less or equal to number_of_static_slots in
Protocol Configuration Register 2 (FR_PCR2), otherwise no key slot is assigned.

29.6.14.2 Key Slot Transmission in POC:startup

If a key slot is assigned and the CC is in the POC:startup state, startup null frames will be transmitted as
specified by FlexRay Communications System Protocol Specification, Version 2.1 Rev A.

29.6.14.3 Key Slot Transmission in POC:normal active

If a key slot is assigned and the CC is in POC:normal active, a frame of the type as shown in Table 29-123
is transmitted. If a transmit message buffer is configured for the key slot and a valid message is available,
a message frame is transmitted (see Section 29.6.6.2.5, “Message Transmission”). If no transmit message
buffer is configured for the key slot or no valid message is available, a null frame is transmitted (see
Section 29.6.6.2.6, “Null Frame Transmission”).

Table 29-123. Key Slot Frame Type

FR_PCR11[key_slot_used_for_sync] FR_PCR11[key_slot_used_for_startup] key slot frame type

0 0 normal frame

0 1 normal frame1

1 The frame transmitted has an semantically incorrect header and will be detected as an invalid frame at the receiver.

1 0 sync frame

1 1 startup frame

FR_PSR0 PROTSTATE  POC:normal active=

FR_MTSACRF MTE  1=

YCCNT & FR_MTSACFR CYCCNTMSK  FR_MTSACFR CYCCNTVAL  & FR_MTSACFR CYCCNTMSK=

FR_MTSBCRF MTE  1=

CYCCNT & FR_MTSBCFR CYCCNTMSK 
FR_MTSBCFR CYCCNTVAL  & FR_MTSBCFR CYCCNTMSK 

=

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 925

29.6.15 Sync Frame Filtering

Each received synchronization frame must pass the Sync Frame Acceptance Filter and the Sync Frame
Rejection Filter before it is considered for clock synchronization. If the synchronization frame filtering is
globally disabled, i.e. the SFFE control bit in the Module Configuration Register (FR_MCR) is cleared,
all received synchronization frames are considered for clock synchronization. If a received
synchronization frame did not pass at least one of the two filters, this frame is processed as a normal frame
and is not considered for clock synchronization.

29.6.15.1 Sync Frame Acceptance Filtering

The synchronization frame acceptance filter is implemented as a value-mask filter. The value is configured
in the Sync Frame ID Acceptance Filter Value Register (FR_SFIDAFVR) and the mask is configured in
the Sync Frame ID Acceptance Filter Mask Register (FR_SFIDAFMR). A received synchronization frame
with the frame ID FID passes the sync frame acceptance filter, if Equation 29-24 or
Equation 29-25evaluates to true.

Eqn. 29-24

Eqn. 29-25

NOTE
Sync frames are transmitted in the static segment only. Thus FID <= 1023.

29.6.15.2 Sync Frame Rejection Filtering

The synchronization frame rejection filter is a comparator. The compare value is defined by the Sync
Frame ID Rejection Filter Register (FR_SFIDRFR). A received synchronization frame with the frame ID
FID passes the sync frame rejection filter if Equation 29-26 or Equation 29-27 evaluates to true.

Eqn. 29-26

Eqn. 29-27

NOTE
Sync frames are transmitted in the static segment only. Thus FID <= 1023.

29.6.16 Strobe Signal Support

The CC provides a number of strobe signals for observing internal protocol timing related signals in the
protocol engine. The signals are listed and described in Table 29-12.

29.6.16.1 Strobe Signal Assignment

Each of the strobe signals listed in Table 29-12 can be assigned to one of the four strobe ports using the
Strobe Signal Control Register (FR_STBSCR). To assign multiple strobe signals, the application must
write multiple times to the Strobe Signal Control Register (FR_STBSCR) with appropriate settings.

FR_MCR SFFE  0=

ID & FR_SFIDAFMR FMSK  FR_SFIDAFVR FVAL  & FR_SFIDAFMR FMSK=

FR_MCR SFFE  0=

FID FR_SFIDRFR SYNFRID 

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

926 Freescale Semiconductor

To read out the current settings for a strobe signal with number N, the application must execute the
following sequence.

1. Write to FR_STBSCR with WMD = 1 and SEL = N. (updates SEL field only)

2. Read STBCSR.
The SEL field provides N and the ENB and STBPSEL fields provides the settings for signal N.

29.6.16.2 Strobe Signal Timing

This section provides detailed timing information of the strobe signals with respect to the protocol engine
clock.

The strobe signals display internal PE signals. Due to the internal architecture of the PE, some signals are
generated several PE clock cycles before the actual action is performed on the FlexRay Bus. These signals
are listed in Table 29-12 with a negative clock offset. An example waveform is given in Figure 29-153.

Figure 29-153. Strobe Signal Timing (type = pulse, clk_offset = -2)

Other signals refer to events that occurred on the FlexRay Bus some cycles before the strobe signal is
changed. These signals are listed in Table 29-12 with a positive clock offset. An example waveform is
given in Figure 29-154.

Figure 29-154. Strobe Signal Timing (type = pulse, clk_offset = +4)

29.6.17 Timer Support

The CC provides two timers, which run on the FlexRay time base. Each timer generates a maskable
interrupt when it reaches a configured point in time. Timer T1 is an absolute timer. Timer T2 can be
configured to be an absolute or a relative timer. Both timers can be configured to be repetitive. In the
non-repetitive mode, timer stops if it expires. In repetitive mode, timer is restarted when it expires.

PE Clock

Strobe Signal

FlexRay Bus Event

-2

PE Clock

Strobe Signal

FlexRay Bus Event
+4

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 927

Both timers are active only when the protocol is in POC:normal active or POC:normal passive state. If
the protocol is not in one of these modes, the timers are stopped. The application must restart the timers
when the protocol has reached the POC:normal active or POC:normal passive state.

29.6.17.1 Absolute Timer T1

The absolute timer T1 has the protocol cycle count and the macrotick count as the time base. The timer 1
interrupt flag TI1_IF in the Protocol Interrupt Flag Register 0 (FR_PIFR0) is set at the macrotick start
event, if Equation and Equation 29-29 are fulfilled

Eqn. 29-28

Eqn. 29-29

If the timer 1 interrupt enable bit TI1_IE in the Protocol Interrupt Enable Register 0 (FR_PIER0) is
asserted, an interrupt request is generated.

The status bit T1ST is set when the timer is triggered, and is cleared when the timer expires and is
non-repetitive. If the timer expires but is repetitive, the T1ST bit is not cleared and the timer is restarted
immediately. The T1ST is cleared when the timer is stopped.

29.6.17.2 Absolute / Relative Timer T2

The timer T2 can be configured to be an absolute or relative timer by setting the T2_CFG control bit in the
Timer Configuration and Control Register (FR_TICCR). The status bit T2ST is set when the timer is
triggered, and is cleared when the timer expires and is non-repetitive. If the timer expires but is repetitive,
the T2ST bit is not cleared and the timer is restarted immediately. The T2ST is cleared when the timer is
stopped.

29.6.17.2.1 Absolute Timer T2

If timer T2 is configured as an absolute timer, it has the same functionality timer T1 but the configuration
from Timer 2 Configuration Register 0 (FR_TI2CR0) and Timer 2 Configuration Register 1 (FR_TI2CR1)
is used. On expiration of timer T2, the interrupt flag TI2_IF in the Protocol Interrupt Flag Register 0
(FR_PIFR0) is set. If the timer 1 interrupt enable bit TI1_IE in the Protocol Interrupt Enable Register 0
(FR_PIER0) is asserted, an interrupt request is generated.

29.6.17.2.2 Relative Timer T2

If the timer T2 is configured as a relative timer, the interrupt flag TI2_IF in the Protocol Interrupt Flag
Register 0 (FR_PIFR0) is set, when the programmed amount of macroticks MT[31:0], defined by Timer
2 Configuration Register 0 (FR_TI2CR0) and Timer 2 Configuration Register 1 (FR_TI2CR1), has
expired since the trigger or restart of timer 2. The relative timer is implemented as a down counter and
expires when it has reached 0. At the macrotick start event, the value of MT[31:0] is checked and then
decremented. Thus, if the timer is started with MT[31:0] == 0, it expires at the next macrotick start.

YCTR CTCCNT  & FR_TI1CYSR T1_CYC_MSK  FR_TI1CYSR T1_CYC_VAL  & FR_TI1CYSR T1_CYC_MSK=

FR_MTCTR MTCT  FR_TI1MTOR T1_MTOFFSET =

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

928 Freescale Semiconductor

29.6.18 Slot Status Monitoring

The CC provides several means for slot status monitoring. All slot status monitors use the same slot status
vector provided by the PE. The PE provides a slot status vector for each static slot, for each dynamic slot,
for the symbol window, and for the NIT, on a per channel base. The content of the slot status vector is
described in Table 29-124. The PE provides the slot status vector within the first macrotick after the end
of the related slot/window/NIT, as shown in Figure 29-155.

Figure 29-155. Slot Status Vector Update

NOTE
The slot status for the NIT of cycle n is provided after the start of cycle n+1.

cy
cl

e
st

ar
t

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

sy
m

bo
l w

in
do

w
 s

ta
rt

M
T

st
at

us
(N

IT
)

M
T

st
at

us
(s

lo
t 1

)

st
at

us
(s

lo
t k

)
M

T

st
at

us
(s

lo
t n

)
M

T

N
IT

 s
ta

rt
st

at
us

(s
ym

.w
in

)
M

T

cy
cl

e
st

ar
t

st
at

us
(N

IT
)

communication cycle

static segment dynamic segment symbol window NIT

slot 1

M
T

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 929

29.6.18.1 Channel Status Error Counter Registers

The two channel status error counter registers, Channel A Status Error Counter Register (FR_CASERCR)
and Channel B Status Error Counter Register (FR_CBSERCR), incremented by one, if at least one of four
slot status error bits, vSS!SyntaxError, vSS!ContentError, vSS!BViolation, or vSS!TxConflict is set to 1.
The status vectors for all slots in the static and dynamic segment, in the symbol window, and in the NIT
are taken into account. The counters wrap round after they have reached the maximum value.

Table 29-124. Slot Status Content

Status Content

 static /
dynamic

Slot

slot related status
vSS!ValidFrame - valid frame received
vSS!SyntaxError - syntax error occurred while receiving
vSS!ContentError - content error occurred while receiving
vSS!BViolation - boundary violation while receiving
for slots in which the module transmits:
vSS!TxConflict - reception ongoing while transmission starts
for slots in which the module does not transmit:
vSS!TxConflict - reception ongoing while transmission starts
first valid - channel that has received the first valid frame
received frame related status
extracted from
a) header of valid frame, if vSS!ValidFrame = 1
b) last received header, if vSS!ValidFrame = 0
c) set to 0, if nothing was received
vRF!Header!NFIndicator - Null Frame Indicator (0 for null frame)
vRF!Header!SuFIndicator - Startup Frame Indicator
vRF!Header!SyFIndicator - Sync Frame Indicator

Symbol
Window

window related status
vSS!ValidFrame - always 0
vSS!ContentError - content error occurred while receiving
vSS!SyntaxError - syntax error occurred while receiving
vSS!BViolation - boundary violation while receiving
vSS!TxConflict - reception ongoing while transmission starts
received symbol related status
vSS!ValidMTS - valid Media Test Access Symbol received
received frame related status
see static/dynamic slot

NIT NIT related status
vSS!ValidFrame - always 0
vSS!ContentError - content error occurred while receiving
vSS!SyntaxError - syntax error occurred while receiving
vSS!BViolation - boundary violation while receiving
vSS!TxConflict - always 0
received frame related status
see static/dynamic slot

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

930 Freescale Semiconductor

29.6.18.2 Protocol Status Registers

The Protocol Status Register 2 (FR_PSR2) provides slot status information about the Network Idle Time
NIT and the Symbol Window. The Protocol Status Register 3 (FR_PSR3) provides aggregated slot status
information.

29.6.18.3 Slot Status Registers

The eight slot status registers, Slot Status Registers (FR_SSR0–FR_SSR7), can be used to observe the
status of static slots, dynamic slots, the symbol window, or the NIT without individual message buffers.
These registers provide all slot status related and received frame / symbol related status information, as
given in Table 29-124, except of the first valid indicator for non-transmission slots.

29.6.18.4 Slot Status Counter Registers

The CC provides four slot status error counter registers, Slot Status Counter Registers
(FR_SSCR0–FR_SSCR3). Each of these slot status counter registers is updated with the value of an
internal slot status counter at the start of a communication cycle. The internal slot status counter is
incremented if its increment condition, defined by the Slot Status Counter Condition Register
(FR_SSCCR), matches the status vector provided by the PE. All static slots, the symbol window, and the
NIT status are taken into account. Dynamic slots are excluded. The internal slot status counting and update
timing is shown in Figure 29-156.

Figure 29-156. Slot Status Counting and FR_SSCRn Update

The PE provides the status of the NIT in the first slot of the next cycle. Due to these facts, the FR_SSCRn
register reflects, in cycle n, the status of the NIT of cycle n-2, and the status of all static slots and the
symbol window of cycle n-1.

cy
cl

e
st

ar
t

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

sy
m

bo
l w

in
do

w
 s

ta
rt

M
T

st
at

us
(N

IT
)

M
T

st
at

us
(s

lo
t 1

)

st
at

us
(s

lo
t k

)
M

T

st
at

us
(s

lo
t n

)
M

T

N
IT

 s
ta

rt
st

at
us

(s
ym

.w
in

)
M

T

cy
cl

e
st

ar
t

st
at

us
(N

IT
)

communication cycle

static segment dynamic segment symbol window NIT

slot 1
M

T

incr. FR_SSCRn_INT on error incr. FR_SSCRn_INT on error

FR_SSCRn:= FR_SSCRn_IN

FR_SSCRn_INT not updated

_SSCRn:= FR_SSCRn_INT

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 931

The increment condition for each slot status counter consists of two parts, the frame related condition part
and the slot related condition part. The internal slot status counter FR_SSCRn_INT is incremented if at
least one of the conditions is fulfilled:

1. frame related condition:

• (FR_SSCCRn[VFR] | FR_SSCCRn[SYF] | FR_SSCCRn[NUF] | FR_SSCCRn[SUF]) // count on
frame condition
= 1;

and

• ((~FR_SSCCRn[VFR] | vSS!ValidFrame) & // valid frame restriction
(~FR_SSCCRn[SYF] | vRF!Header!SyFIndicator) & // sync frame indicator restriction
(~FR_SSCCRn[NUF] | ~vRF!Header!NFIndicator) & // null frame indicator restriction
(~FR_SSCCRn[SUF] | vRF!Header!SuFIndicator)) // startup frame indicator restriction
= 1;

NOTE
The indicator bits SYF, NUF, and SUF are valid only when a valid frame
was received. Thus it is required to set the VFR always, whenever count on
frame condition is used.

2. slot related condition:

• ((FR_SSCCRn[STATUSMASK[3]] & vSS!ContentError) | // increment on content error
(FR_SSCCRn[STATUSMASK[2]] & vSS!SyntaxError) | // increment on syntax error
(FR_SSCCRn[STATUSMASK[1]] & vSS!BViolation) | // increment on boundary violation
(FR_SSCCRn[STATUSMASK[0]] & vSS!TxConflict)) // increment on transmission conflict
= 1;

If the slot status counter is in single cycle mode, i.e. FR_SSCCRn[MCY] = 0, the internal slot status
counter FR_SSCRn_INT is reset at each cycle start. If the slot status counter is in the multicycle mode, i.e.
FR_SSCCRn[MCY] = 1, the counter is not reset and incremented, until the maximum value is reached.

29.6.18.5 Message Buffer Slot Status Field

Each individual message buffer and each FIFO message buffer provides a slot status field, which provides
the information shown in Table 29-124 for the static/dynamic slot. The update conditions for the slot status
field depend on the message buffer type. Refer to the Message Buffer Update Sections in Section 29.6.6,
“Individual Message Buffer Functional Description”.

29.6.19 System Bus Access

This section provides a description of the system bus accesses failures and the related CC behavior. System
bus access failures may occure when the CC transfers data to or from the flexray memory area.

The system bus access failure types are described in Section 29.6.19.1, “System Bus Access Failure
Types”.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

932 Freescale Semiconductor

The behavior of the CC after the occurrence of a system bus access failure is described in
Section 29.6.19.2, “System Bus Access Failure Response”.

29.6.19.1 System Bus Access Failure Types

This section describes the two types of system bus access failures.

29.6.19.1.1 System Bus Illegal Address Access

A system bus illegal address access is detected when the CC has used an illegal or invalid address to access
the flexray system memory area. There are three conditions which are treated as a system bus illegal
address access:

• The system bus subsystem detects an CC access to an illegal system memory address.

• The CC detects the usage of an data field offset with the value of 0.

• The CC detects a memory error while reading a data field offset from the CHI LRAM memory (see
Section 29.6.24.3.1, “CHI LRAM Error Response after CC Read).

If a system bus illegal address access is detected, the CC sets the ILSA_EF flag in the CHI Error Flag
Register (FR_CHIERFR).

29.6.19.1.2 System Bus Access Timeout

A system bus access timout is detected if an access to the flexray memory area is not finished in time. The
timeout value is derived from the SYMATOR[TIMEOUT] setting (see Section 29.7.1.1, “Configure
System Memory Access Time-Out Register (FR_SYMATOR)”

If a system bus access timout is detected, the CC sets the SBCF_EF flag in the CHI Error Flag Register
(FR_CHIERFR).

29.6.19.2 System Bus Access Failure Response

This section describes the two types of behavior of the CC after the occurrence of a system bus access
failure. The actual behavior is defined by the SBFF bit in the Module Configuration Register (FR_MCR).

29.6.19.2.1 Continue after System Bus Access Failure

If the SBFF bit in the Module Configuration Register (FR_MCR) is 0, the CC will continue its operation
after the occurrence of the system bus access failure, but will not generate any system bus accesses until
the start of the next communication cycle.Since no data are read from or written to the flexray memory
area, no messages are received or transmitted. Consequently, none of the individual message buffers or
receive FIFOs will be updated until the next communication cycle starts.

If a frame is under transmission when the system bus failure occurs, a correct frame is generated with the
remaining header and frame data are replaced by all zeros. Depending on the point in time this can affect
the PPI bit, the Header CRC, the Payload Length in case of an dynamic slot, and the payload data. Starting
from the next slot in the current cycle, no frames will be transmitted and received, except for the key slot,
where a sync or startup null-frame is transmitted, if the key slot is assigned.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 933

If a frame is received when the system bus failure occurs, the reception is aborted and the related receive
message buffer is not updated.

Normal operation is resumed after the start of next communication cycle.

29.6.19.2.2 Freeze after System Bus Access Failure

If the SBFF bit in the Module Configuration Register (FR_MCR) is set to 1, the CC will go into the freeze
mode immediately after the occurrence of one of the system bus access failures.

29.6.20 Interrupt Support

The CC provides 172 individual interrupt sources and five combined interrupt sources.

29.6.20.1 Individual Interrupt Sources

29.6.20.1.1 Message Buffer Interrupts

The CC provides 128 message buffer interrupt sources.

Each individual message buffer provides an interrupt flag FR_MBCCSRn[MBIF] and an interrupt enable
bit FR_MBCCSRn[MBIE]. The CC sets the interrupt flag when the slot status of the message buffer was
updated. If the interrupt enable bit is asserted, an interrupt request is generated.

29.6.20.1.2 FIFO Interrupts

The CC provides 2 FIFO interrupt sources.

Each of the 2 FIFO provides a Receive FIFO Almost Full Interrupt Flag. The CC sets the Receive FIFO
Almost Full Interrupt Flags (FR_GIFER[FAFBIF], FR_GIFER[FAFAIF]) in the Global Interrupt Flag and
Enable Register (FR_GIFER) if the corresponding Receive FIFO fill level exceeds the defined watermark.

29.6.20.1.3 Wakeup Interrupt

The CC provides one interrupt source related to the wakeup.

The CC sets the Wakeup Interrupt Flag FR_GIFER[WUPIF] when it has received a wakeup symbol on the
FlexRay bus. The CC generates an interrupt request if the interrupt enable bit FR_GIFER[WUPIE] is
asserted.

29.6.20.1.4 Protocol Interrupts

The CC provides 25 interrupt sources for protocol related events. For details, see Protocol Interrupt Flag
Register 0 (FR_PIFR0) and Protocol Interrupt Flag Register 1 (FR_PIFR1). Each interrupt source has its
own interrupt enable bit.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

934 Freescale Semiconductor

29.6.20.1.5 CHI Interrupts

The CC provides 16 interrupt sources for CHI related error events. For details, see CHI Error Flag Register
(FR_CHIERFR). There is one common interrupt enable bit FR_GIFER[CHIE] for all CHI error interrupt
sources.

29.6.20.2 Combined Interrupt Sources

Each combined interrupt source generates an interrupt request only when at least one of the interrupt
sources that is combined generates an interrupt request.

29.6.20.2.1 Receive Message Buffer Interrupt

The Receive Message Buffer Interrupt request is generated when at least one of the individual receive
message buffers generates an interrupt request MBXIRQ[n] and the interrupt enable bit FR_GIFER[RBIE]
is set.

29.6.20.2.2 Transmit Message Buffer Interrupt

The Transmit Message Buffer Interrupt request is generated when at least one of the individual transmit
message buffers generates an interrupt request MBXIRQ[n] and the interrupt enable bit FR_GIFER[TBIE]
is asserted.

29.6.20.2.3 Protocol Interrupt

The Protocol Interrupt request is generated when at least one of the individual protocol interrupt sources
generates an interrupt request and the interrupt enable bit FR_GIFER[PRIE] is set.

29.6.20.2.4 CHI Interrupt

The CHI Interrupt request is generated when at least one of the individual chi error interrupt sources
generates an interrupt request and the interrupt enable bit FR_GIFER[CHIE] is set.

29.6.20.2.5 Module Interrupt

The Module Interrupt request is generated if at least one of the combined interrupt sources generates an
interrupt request and the interrupt enable bit FR_GIFER[MIE] is set.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 935

Figure 29-157. Scheme of FR_GIFER interrupt signal generation

Interrupt Sources Interrupt Signals

FR_MBCCSRn[MBIF]

n

FR_CHIERFR[15:0] 16

FR_PIFR0[15:0]
16

FR_PIFR1[9:0]
10

Receive Message Buffer Interrupt

CHI Interrupt

FR_GIFER[FAFAIF] RX FIFO A Almost Full Interrupt

FR_GIFER[WUPIF] Wakeup Interrupt

FR_GIFER[RBIE]FR_MBCCSRn[MTD] RXBUF

TXBUF

FR_GIFER[PRIE]

FR_GIFER[WUPIE]

FR_MBCCSRn[MBIE] &

FR_PIER0[15:0]

FR_PIER1[9:0]

OR

&

&

&FR_GIFER[CHIE]

&
&

n

& OR Transmit Message Buffer Interrupt

FR_GIFER[TBIE] &

n

OR

OR
&

&FR_GIFER[FAFAIE]

FR_GIFER[FAFBIF] RX FIFO B Almost Full Interrupt
&FR_GIFER[FAFBIE]

&

FR_GIFER[RBIF]

FR_GIFER[TBIF]

FR_GIFER[PRIF]

FR_GIFER[CHIF]

Protocol Interrupt

FR_GIFER

n

PE

OR
&

Module InterruptFR_GIFER[MIF]

FR_GIFER[MIE]

RX FIFO A

RX FIFO B

Protocol Interrupt

CHI Interrupt

Wakeup Interrupt

RX FIFO A Almost Full Interrupt

RX FIFO B Almost Full Interrupt

Receive Message Buffer Interrupt

Transmit Message Buffer Interrupt

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

936 Freescale Semiconductor

Figure 29-158. Scheme of FR_EEIFER interrupt signal generation

FR_EEIFER[LRNE_IF]
LRAM Non-Corrected Error Interrupt

&
LRAM ECC

Interrupt Sources Interrupt SignalsFR_EEIFER

FR_EEIFER[LRNE_IE]

FR_EEIFER[LRCE_IF]

&FR_EEIFER[LRCE_IE]

FR_EEIFER[DRNE_IF]

&FR_EEIFER[DRNE_IE]

FR_EEIFER[DRCE_IF]

&FR_EEIFER[DRCE_IE]

DRAM ECC

LRAM Corrected Error Interrupt

DRAM Non-Corrected Error Interrupt

DRAM Corrected Error Interrupt

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 937

Figure 29-159. Scheme of FR_CIFR flags generation

29.6.21 Lower Bit Rate Support

The CC supports a number of lower bit rates on the FlexRay bus channels. The lower bit rates are
implemented by modifying the duration of the microtick pdMicrotick, the number of samples per microtick
pSamplesPerMicrotick, the number of samples per bit cSamplesPerBit, and the strobe offset cStrobeOffset.
The application configures the FlexRay channel bit rate by setting the BITRATE field in the Module
Configuration Register (FR_MCR). The protocol values are set internally. The available bit rates, the
related BITRATE field configuration settings and related protocol parameter values are shown in
Table 29-125.

Interrupt Sources

FR_MBCCSRn[MBIF] n

FR_CHIERFR[15:0] 16

FR_PIFR0[15:0] 16

FR_PIFR1[9:0] 10

FR_CIFR[FAFAIF]

FR_CIFR[WUPIF]

FR_MBCCSRn[MTD] RXBUF

TXBUF

OR&

n

& OR
n

OR

OR

FR_CIFR[FAFBIF]

FR_CIFR[RBIF]

FR_CIFR[TBIF]

FR_CIFR[PRIF]

FR_CIFR[CHIF]

FR_CIFR

n

PE

OR
FR_CIFR[MIF]

RX FIFO A

RX FIFO B

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

938 Freescale Semiconductor

NOTE
The bit rate of 8 Mbit/s is not defined by the FlexRay Communications
System Protocol Specification, Version 2.1 Rev A.

29.6.22 PE Data Memory (PE DRAM)

The PE Data Memory (PE DRAM) is 128 word, 16-bit wide memory with byte access, which contains the
program data of the PE internal CPU. The PE DRAM is divided into two banks, 8-bit each. The memory
data [7:0] are assigned to BANK0, the memory data [15:8] are assigned to BANK1.

The FlexRay module provides means to access the PE DRAM from the application. The PE DRAM
application access is initiated and controlled via PE DRAM Access Register (FR_PEDRAR) and PE
DRAM Data Register (FR_PEDRDR). This functionality is used to check the memory error detection.

29.6.22.1 PE DRAM Read Access

A read access from the PE DRAM can be initiated in any protocol state. The following sequence describes
a read access from the PE DRAM address 0x70.

1. FR_PEDRAR:= 0x50E0;
// INST=0x5; ADDR=070

2. wait until FR_PEDRAR[DAD] == 1;
// wait for end of PE DRAM access

Table 29-125. FlexRay Channel Bit Rate Control

FlexRay Channel
Bit Rate
[Mbit/s]

FR_MCR[BITRATE]

p
d

M
ic

ro
ti

ck

[n
s]

g
d

S
am

p
le

C
lo

ck
P

er
io

d

[n
s]

p
S

am
p

le
sP

er
M

ic
ro

ti
ck

cS
am

p
le

sP
er

B
it

cS
tr

o
b

eO
ff

se
t

10.0 000 25.0 12.5 2 8 5

8.0 011 25.0 12.5 2 10 6

5.0 001 25.0 25.0 1 8 5

2.5 010 50.0 50.0 1 8 5

Table 29-126. PE DRAM Layout

ADDR BANK1 BANK0

0x00 byte1 byte0

0x01 byte3 byte2

...

0x7F byte255 byte254

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 939

3. val = FR_PEDRDR[DATA];
// read PE DRAM data

The read access is handled by the PE internal CPU with the lowest execution priority. This may cause an
response delay with a maximum of 1000 PE clock cycle (25us).

29.6.22.2 PE DRAM Write Access

A write access into the PE DRAM can be initiated in any protocol state. The following sequence describes
a write access to the PE DRAM address 0x70.

1. FR_PEDRDR:= DATA;
// write value to be written into data register

2. FR_PEDRAR:= 0x30E0;
// INST=0x3; ADDR=0x70

3. wait until FR_PEDRAR[DAD] == 1;
// wait for end of PE DRAM access

4. val = FR_PEDRDR[DATA];
// read back PE DRAM data

The write access is handled by the PE internal CPU with the lowest execution priority. This may causes
an response delay with a maximum of 1000 PE clock cycle (25us).

If the conditions given in Section 29.6.22.3, “PE DRAM Write Access Limitations” are fulfilled, the data
provided in PE DRAM Data Register (FR_PEDRDR) are written into the PE DRAM, read back in the next
clock cycle and stored into the PE DRAM Data Register (FR_PEDRDR). Otherwise, data are not written
into the PE DRAM and 0x0000 is stored into the PE DRAM Data Register (FR_PEDRDR).

29.6.22.3 PE DRAM Write Access Limitations

The PE DRAM is used by the protocol engine if the module is not in POC:default config state. The only
address not used by the protocol engine is 0x70. To prevent the corruption of protocol engine data the
following PE DRAM write access limitations apply for application writes.

1. When the module is in POC:default config state, all PE DRAM addresses are writable.

2. When the module is not in POC:default config state, only PE DRAM address 0x70 is writable.

29.6.23 CHI Lookup-Table Memory (CHI LRAM)

The CHI Lookup-Table Memory (CHI LRAM) is an CHI internal memory which contains the message
buffer configuration data and the data field offsets for the physical message buffers. The configuration data
for two message buffers or 6 data field offsets are contained in one memory row. The CHI LRAM is
divided into 6 memory BANKs.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

940 Freescale Semiconductor

29.6.23.1 CHI LRAM Read and Write Access

The CHI LRAM is accessed by the application via regular register read and write accesses.

29.6.24 Memory Content Error Detection

The FlexRay module provides integrated memory content error detection for both the CHI LRAM and PE
DRAM, and memory content error correction for the PE DRAM. The memory error detection for the CHI
LRAM uses an standard Hamming code with a Hamming distance of 3 and detects all single-bit and
double-bit errors (SEDDED). The memory error detection and correction for the PE DRAM uses an
enhanced Hamming code with a Hamming distance of 4 and detects and corrects all single-bit errors and
detects all double-bit errors (SECDED).

This section describes the reporting of the occurrence of memory content errors, the reaction of the module
on the occurrence, and how the application can inject memory errors in order to trigger the report and
response behavior.

29.6.24.1 Memory Error Types

A memory error is the distortion of one or more bits read out of the memory. The reading of the values of
all zeros and all ones is considered as an special case. The FlexRay module detects and indicates the
memory errors as shown in Table 29-128. The entries on the top have higher priority.

Each memory read access reads out all banks of the addressed row, and runs error detection on all banks,
even in the case that the application has triggered a read from only one bank. This may lead to the reporting
of an memory error if at least one bank contains a memory error, even if an error free bank has been read.

Table 29-127. CHI LRAM Layout

ADR BANK5 BANK4 BANK3 BANK2 BANK1 BANK0

0x00 FR_MBIDXR1 FR_MBFIDR1 FR_MBCCFR1 FR_MBIDXR0 FR_MBFIDR0 FR_MBCCFR0

0x01 FR_MBIDXR3 FR_MBFIDR3 FR_MBCCFR3 FR_MBIDXR2 FR_MBFIDR2 FR_MBCCFR2

...

0x3F FR_MBIDXR127 FR_MBFIDR127 FR_MBCCFR127 FR_MBIDXR126 FR_MBFIDR126 FR_MBCCFR126

0x40 FR_MBDOR5 FR_MBDOR4 FR_MBDOR3 FR_MBDOR2 FR_MBDOR1 FR_MBDOR0

...

0x55 FR_MBDOR131 FR_MBDOR130 FR_MBDOR129 FR_MBDOR128 FR_MBDOR127 FR_MBDOR126

0x56 FR_LEETR5 FR_LEETR4 FR_LEETR3 FR_LEETR2 FR_LEETR1 FR_LEETR0

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 941

29.6.24.2 Memory Error Reporting

The memory error reporting is enabled only if the ECC functionality enable bit ECCE in the Module
Configuration Register (FR_MCR) is set.

For each of the two memories exists two sets of internal registers to store the detection of one corrected
and one non-corrected memory error.

If a memory error is detected, the module checks whether the related error interrupt flag in the ECC Error
Interrupt Flag and Enable Register (FR_EEIFER) is set.

• If the error interrupt flag is set, the related internal error reporting register is not updated and the
related error overflow flag is set to 1 to indicate a loss of error condition.

• If the error interrupt flag is not set, the internal reporting register is updated and the error interrupt
flag is set to 1. If two or more memory errors of the same type are detected, the error for the bank
with the lower bank number will be reported, and the error overflow flag will be set to 1.

If a memory error is detected for at least two banks of one memory, the related error overflow flag is set
to 1 to indicate a loss of error condition.

29.6.24.2.1 PE DRAM Checkbits

The coding of the checkbits reported in ECC Error Report Code Register (FR_EERCR) for PE DRAM
memory errors is shown in Table 29-130. This table shows the implemented enhanced Hamming code. If
the error injection was applied to distort the checkbits, then the distorted checkbits are reported.

Table 29-128. Detected Memory Error Types

Memory Priority Memory Data Indication

CHI LRAM

0 (highest)

All Zero’s
No Error - Valid Data

PE DRAM Non-Corrected Error

CHI LRAM
All One’s Non-Corrected Error

PE DRAM

CHI LRAM

1 (lowest)

One Bit Flipped
Non-Corrected Error

PE DRAM Corrected Error

CHI LRAM
Two Bits Flipped Non-Corrected Error

PE DRAM

CHI LRAM

Three or more
Bits Flipped

one out of {No error, Non-Corrected Error}, defined by coding
given in Section 29.6.24.2.3, “CHI LRAM Checkbits” and
Section 29.6.24.2.3, “CHI LRAM Checkbits”

PE DRAM
one out of {No error, Corrected Error, Non-Corrected Error},
defined by coding given in Section 29.6.24.2.1, “PE DRAM
Checkbits” and Section 29.6.24.2.2, “PE DRAM Syndrome”

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

942 Freescale Semiconductor

29.6.24.2.2 PE DRAM Syndrome

The coding of the syndrome reported in ECC Error Report Code Register (FR_EERCR) for PE DRAM
memory errors is shown in Table 29-130.

Table 29-129. PE DRAM checkbits coding

CODE
CODE DATA

3 2 1 0 7 6 5 4 3 2 1 0

41

1 The checkbit CODE[4] is set to 1 if and only if there is a even number of 1’s in columns with X.

X X X X X X X X X X X X

32

2 The checkbits CODE[3]... CODE[0] are set to 1 if and only if there is a odd number of 1’s in all columns with X.

This coding of the checkbit ensures that neither 0x000 nor 0xFFF are valid code words and written into
the memory.

- - - - X X X X - - - -

2 - - - - X - - - X X X -

1 - - - - - X X - X X - X

0 - - - - - X - X X - X X

Table 29-130. FR_EERCR[CODE] PE DRAM Syndrome Coding

FR_EERCR[CODE]
Description

[4] [3:0]

0x1 0x0 No Error (Never appears in error report registers)

0x0 0x0 If data == 0: Non Corrected Error (Dedicated Handling of All Zero Code Word)
If data!= 0: Corrected Error (Parity Bit 4)

0x0 0x1 Corrected Error (Parity Bit 0)

0x0 0x2 Corrected Error (Parity Bit 1)

0x0 0x3 Corrected Error (Data Bit 0)

0x0 0x4 Corrected Error (Parity Bit 2)

0x0 0x5 Corrected Error (Data Bit 1)

0x0 0x6 Corrected Error (Data Bit 2)

0x0 0x7 Corrected Error (Data Bit 3)

0x0 0x8 Corrected Error (Parity Bit 3)

0x0 0x9 Corrected Error (Data Bit 4)

0x0 0xA Corrected Error (Data Bit 5)

0x0 0xB Corrected Error (Data Bit 6)

0x0 0xC Corrected Error (Data Bit 7)

0x0 0xD-0xF Non-Corrected Error

0x1 0x1-0xF Non-Corrected Error

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 943

29.6.24.2.3 CHI LRAM Checkbits

The coding of the checkbits reported in ECC Error Report Code Register (FR_EERCR) for CHI LRAM
memory errors is shown in Table 29-131. This table shows the implemented Hamming code. If the error
injection was applied to distort the checkbits, then the distorted checkbits are reported.

???

29.6.24.2.4 CHI LRAM Syndrome

The coding of the syndrome reported in ECC Error Report Code Register (FR_EERCR) for CHI LRAM
memory errors is shown in Table 29-132.

29.6.24.3 Memory Error Response

The memory error response is enabled only when the ECC functionality enable bit ECCE in the Module
Configuration Register (FR_MCR) is set.

In case of the detection of a corrected memory error, the FlexRay module continues its normal operation
using the corrected data word. This section describes the behavior of the FlexRay module after the
detection of a non-corrected memory error.

29.6.24.3.1 CHI LRAM Error Response after CC Read

When the CC is out of the POC:default config state, it reads the configuration data and the data field offsets
of all utilized message buffers in every slot and in the NIT. If a non-corrected memory error is detected
during this module read access the error response of the module depends from LRAM location where the
error occurred.

• If the LRAM address belongs to physical message buffer configuration data the FlexRay module
will consider the affected message buffer as disabled for the current search and will exclude this
buffer from the search. The configuration of the affected message buffer is not changed.

Table 29-131. CHI LRAM checkbits coding

CODE1

1 The checkbit CODE[n] is set to 1 if and only if there is a odd number of 1’s in all columns with X.

DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4 X X X X X - - - - - - - - - - -

3 - - - - - X X X X X X X - - - -

2 X X - - - X X X X - - - X X X -

1 - - X X - X X - - X X - X X - X

0 X - X - X X - X - X - X X - X X

Table 29-132. FR_EERCR[CODE] CHI LRAM Syndrome Coding

FR_EERCR[CODE] Description

0x00 No Error (Never appears in error report registers)

0x01-0x1F Non Corrected Error

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

944 Freescale Semiconductor

If the affected message buffer is a tx message buffer, no frame will be transmitted from this
message buffer in the next slot. If the affected message buffer is a rx message buffer, no frame will
be received to this message buffer in the next slot.

• If the LRAM address belongs to the data field offset area and the related physical message buffer
is used for Rx or Tx the first access to the system memory caused by payload read or write yields
to the assertion of the FR_CHIERFR[ILSA_EF]. No memory access occurs w.r.t. payload access
is performed for the complete frame.

29.6.24.3.2 CHI LRAM Error Response after Application Read

The application can read the content of the CHI LRAM via reading the FR_MBCCFRn, FR_MBFIDRn,
FR_MBIDXRn, FR_MBDORn, and FR_LEETRn registers. If a non-corrected memory error is detected
during this kind of read access, the module indicates the detected memory error, delivers the non-corrected
data read and continues its normal operation.

29.6.24.3.3 PE DRAM Error Response after CC Read

If the CC detects an non-corrected memory error during internal read of program data which is contained
in PE DRAM, this is considered as an fatal protocol error and the module enters the protocol freeze state
immediately.

29.6.24.3.4 PE DRAM Error Response after Application Read in POC:default config state

If the CC detects an non-corrected memory error during an application triggered read from any PE DRAM
address and the protocol is in the POC:default config state, this is considered as an fatal protocol error and
the module enters the protocol freeze state. This behavior allows for checking the freeze functionality in
case of the detection of non-corrected errors.

29.6.24.3.5 PE DRAM Error Response after Application Read out of POC:default config

If the CC detects an non-corrected memory error during an application triggered read from any PE DRAM
address, and the protocol is not in the POC:default config state, this error is not considered as an fatal error
and the protocol state is not changed. This prevents any interference of the running protocol by PE DRAM
error injection reads.

29.6.25 Memory Error Injection

The error injection functionality is used by the application to inject data errors into the memories to trigger
and check the memory error detection functionality.

The error injection is enabled only if the ECC functionality enable bit ECCE in the Module Configuration
Register (FR_MCR) and the error injection enable control bit EIE in the ECC Error Report and Injection
Control Register (FR_EERICR) are set.

The error injection mode is configured by the EIM configuration bit in the ECC Error Report and Injection
Control Register (FR_EERICR).When the error injection is enabled, each write access to the configured
memory location will be distorted.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 945

The injector has the same behavior for FlexRay module memory writes and application memory writes.

29.6.25.1 CHI LRAM Error Injection

The following sequence describes an memory error injection sequence for the CHI LRAM memory. This
sequence consists of the setup of the error injector followed by an application triggered write access to
provoke an distortion of the memory content. The content of the CHI LRAM is described in Table 29-127.

When the CC is in POC:default config, there are no limitations for the error injection and no impacts of
error injection to the application. For error injection out of POC:default config see Section 29.7.3,
“Memory Error Injection out of POC:default config”.

Injector Setup:

1. FR_MCR[ECCE]:= 1;
// enable ecc functionality

2. FR_EERICE[EIE]:=I_MODE;
// configure error injection mode

3. FR_EEIAR[MID]:= 1;
// select CHI LRAM for error injection

4. FR_EEIAR[BANK]:= I_BANK;
// select bank for error injection; I_BANK = {0,1,2,3,4,5}

5. FR_EEIAR[ADDR]:= I_ADDR;
// select address for error injection; I_ADDR <= 0x56

6. FR_EEIDR[DATA]:= D_DIST;
// define data distortion pattern

7. FR_EEICR[CODE]:= C_DIST;
// define checkbit distortion pattern

8. FR_EERICE[EIE]:=1;
// enable error injection

Application Write Access:

If (I_BANK==0) -> FR_MBCCFR(2n) / FR_MBDOR(6k) / FR_LEETR0 := DATA;
If (I_BANK==1) -> FR_MBFIDR(2n) / FR_MBDOR(6k+1) / FR_LEETR1 := DATA;
If (I_BANK==2) -> FR_MBIDXR(2n) / FR_MBDOR(6k+2) / FR_LEETR2 := DATA;
If (I_BANK==3) -> FR_MBCCFR(2n+1) / FR_MBDOR(6k+3) / FR_LEETR3 := DATA;
If (I_BANK==4) -> FR_MBFIDR(2n+1) / FR_MBDOR(6k+4) / FR_LEETR4 := DATA;
If (I_BANK==5) -> FR_MBIDXR(2n+1) / FR_MBDOR(6k+5) / FR_LEETR5 := DATA;
// write DATA to the defined injection bank and injection address (see Table 29-127).

29.6.25.2 PE DRAM Error Injection

The following sequence describes an memory error injection sequence for the PE DRAM memory. This
sequence consists of the setup of the error injector followed by an application triggered write access to
provoke an distortion of the memory content.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

946 Freescale Semiconductor

When the FlexRay module is in POC:default config, there are no limitations for the error injection and no
impacts of error injection to the application. For error injection out of POC:default config see
Section 29.7.3.2, “PE DRAM Error Injection out of POC:default config”.

Injector Setup:

1. FR_MCR[ECCE]:= 1;
// enable ecc functionality

2. FR_EERICE[EIE]:=I_MODE;
// configure error injection mode

3. FR_EEIAR[MID]:= 0;
// select PE DRAM for error injection

4. FR_EEIAR[BANK]:= I_BANK;
// define bank for error injection; I_BANK = {0,1}

5. FR_EEIAR[ADDR]:= I_ADDR;
// define address for error injection; I_ADDR <= 0x7F

6. FR_EEIDR[DATA]:= D_DIST;
// define data distortion pattern

7. FR_EEICR[CODE]:= C_DIST;
// define checkbit distortion pattern

8. FR_EERICE[EIE]:=1;
// enable error injection

Application Write Access (e.g. I_ADDR=0x70):

1. FR_PEDRAR:= 0x30E0;
// INST=0x3; ADDR=0x70

2. wait until FR_PEDRAR[DAD] == 1;
// wait for end of PE DRAM access

3. val = FR_PEDRDR[DATA]; |
// get read back PE DRAM data

Note: The write access to the PE DRAM triggers an subsequent read access from PE DRAM in the next
cycle, which triggers the detection of the distorted data.

29.7 Application Information

29.7.1 Module Configuration

This section describes essential parts of the module configuration.

29.7.1.1 Configure System Memory Access Time-Out Register (FR_SYMATOR)

To ensure reliable operation of the CC, the application must ensure that the TIMEOUT value in System
Memory Access Time-Out Register (FR_SYMATOR) and the CHI clock frequency fCHI in MHz fulfill
Equation 29-301.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 947

Eqn. 29-30

For a given SYMATOR[TIMEOUT] value, fCHI can be increased without causing unreliable operation of
the CC. The same holds for reducing the SYMATOR[TIMEOUT] value for a given fCHI.

Some examples for maximum values of the SYMATOR[TIMEOUT] for a minimum CHI frequency are
given in Table 29-133.

29.7.1.1.1 System Bus Wait State Constraints

The SYMATOR[TIMEOUT] value corresponds directly to a certain acceptable number of wait states on
the system bus.

For single channel configurations and if the sync frame table generation functionality is not used
(FR_SFTCCSR[SDVEN,SIDEN] = 0) no timeout will be detected if less than
2*SYMATOR[TIMEOUT]+1 wait states will be seen on the system bus for each system bus access.

For dual channel configurations, or if the sync frame table generation functionality is used, no timeout will
be detected if less than SYMATOR[TIMEOUT]-1 wait states will be seen on the system bus for each
system bus access.

29.7.1.2 Configure Data Field Offsets

The data field offsets are located in the Message Buffer Data Field Offset Registers (FR_MBDORn) and
Receive FIFO Start Data Offset Register (FR_RFSDOR). The application has to configure the data field
offset values for all message buffers which are used.

The reset value of all data field offsets FR_MBDORn[MBDO] and FR_RFSDOR[SDO] is 0. This value
is considered to be illegal (see Section 29.6.19.1.1, “System Bus Illegal Address Access).

29.7.2 Initialization Sequence

This section describes the required steps to initialize the CC. The first subsection describes the steps
required after a system reset, the second section describes the steps required after preceding shutdown of
the CC.

1. see Section 29.3, “Controller Host Interface Clocking” for all constraints of minimum CHI clock frequency.

Table 29-133. Maximum SYMATOR[TIMEOUT] examples

fCHI SYMATOR[TIMEOUT] fCHI SYMATOR[TIMEOUT]

>= 18 MHz 0 >= 100 MHz <= 37

>= 23 MHz <= 2 >= 120 MHz <= 46

>= 27 MHz <= 4 >= 140 MHz <= 55

>= 32 MHz <= 6 >= 160 MHz <= 64

>= 60 MHz <= 19 >= 180 MHz <= 73

>= 80 MHz <= 28 >= 200 MHz <= 82

0 SYMATOR[TIMEOUT] 0.45 fCHI 8– 

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

948 Freescale Semiconductor

29.7.2.1 Module Initialization

This section describes the module related initialization steps after a system reset.

1. Configure CC.

a) configure the control bits in the Module Configuration Register (FR_MCR)

b) configure the system memory base address in System Memory Base Address Register
(FR_SYMBADR)

2. Enable the CC.

a) write 1 to the module enable bit MEN in the Module Configuration Register (FR_MCR)

The CC now enters the Normal Mode. The application can commence with the protocol initialization
described in Section 29.7.2.2, “Protocol Initialization”.

29.7.2.2 Protocol Initialization

This section describes the protocol related initialization steps.

1. Configure the Protocol Engine.

a) issue CONFIG command via Protocol Operation Control Register (FR_POCR)

b) wait for POC:config in Protocol Status Register 0 (FR_PSR0)

c) configure the FR_PCR0,..., FR_PCR30 registers to set all protocol parameters

2. Configure the Message Buffers and FIFOs.

a) set the number of message buffers used and the message buffer segmentation in the Message
Buffer Segment Size and Utilization Register (FR_MBSSUTR)

b) define the message buffer data size in the Message Buffer Data Size Register (FR_MBDSR)

c) configure each message buffer by setting the configuration values in the Message Buffer
Configuration, Control, Status Registers (FR_MBCCSRn), Message Buffer Cycle Counter
Filter Registers (FR_MBCCFRn), Message Buffer Frame ID Registers (FR_MBFIDRn),
Message Buffer Index Registers (FR_MBIDXRn)

d) configure the FIFOs

e) issue CONFIG_COMPLETE command via Protocol Operation Control Register (FR_POCR)

f) wait for POC:ready in Protocol Status Register 0 (FR_PSR0)

After this sequence, the CC is configured as a FlexRay node and is ready to integrate into the FlexRay
cluster.

29.7.2.3 CHI LRAM Initialization

The initialization of the CHI LRAM is performed by the CC when it leaves the Disabled Mode. The
unitization runs for 87 CHI clock cycles. All fields in the FR_MBCCSRn, FR_MBCCFRn,
FR_MBFIDRn, FR_MBDORn, and LEETRn registers are initialized to 0. All application read or write
accesses to these registers are delayed until the initialization is finished.

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 949

29.7.2.4 PE DRAM Initialization

The PE DRAM initialization is performed by the CC in the POC:default config state. This initialization
runs for 4.8 s, and will delay the state transition from POC:default config into POC:config.

29.7.3 Memory Error Injection out of POC:default config

This section provides information for application driven memory error injection out if POC:default config.
The CC provides means to inject memory errors from the application without any impacts to the internal
protocol operation of the CC.

29.7.3.1 CHI LRAM Error Injection out of POC:default config

The CC will never perform any internal read access from the LRAM ECC Error Test Registers
(FR_LEETRn). Any memory errors injected into these CHI LRAM locations will never be detected by
internal access, independent from the protocol state.

The application should use these registers and related CHI LRAM location to inject memory errors into
the CHI LRAM. The injection sequence is described in Section 29.6.25.1, “CHI LRAM Error Injection”.

29.7.3.2 PE DRAM Error Injection out of POC:default config

The CC will never perform any internal read access from the PE DRAM address 0x70. This is the only
one PE DRAM address writable by the application out of the POC:default config state.

The application should use these PE DRAM location to inject memory errors into the PE DRAM. The
injection sequence is described in Section 29.6.25.2, “PE DRAM Error Injection”.

29.7.4 Shut Down Sequence

This section describes a secure shut down sequence to stop the CC gracefully. The main targets of this
sequence are

• finish all ongoing reception and transmission

• do not corrupt FlexRay bus and do not disturb ongoing FlexRay bus communication

For a graceful shutdown the application shall perform the following tasks:

1. Disable all enabled message buffers.

a) repeatedly write 1 to FR_MBCCSRn[EDT] until FR_MBCCSRn[EDS] == 0.

2. Stop Protocol Engine.

a) issue HALT command via Protocol Operation Control Register (FR_POCR)

b) wait for POC:halt in Protocol Status Register 0 (FR_PSR0)

29.7.5 Number of Usable Message Buffers

This section describes the required minimum CHI clock frequency for a specified number of utilized
message buffers configured in the Message Buffer Segment Size and Utilization Register

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

950 Freescale Semiconductor

(FR_MBSSUTR), a configured minislot length gdMinislot, and a configured nominal macrotick length
gdMacrotick1.

Additional constraints for the minimum CHI clock frequency are given in Section 29.3, “Controller Host
Interface Clocking”.

The CC uses a sequential search algorithm to determine the individual message buffer assigned or
subscribed to the next slot. This search is started at the start of slot and must be finished before the start of
the next slot.

The shortest FlexRay slot is an corrected empty dynamic slot. An corrected empty dynamic slot is a
minislot and consists of gdMinislot corrected macroticks with a duration of gdMacrotick. The minimum
duration of an corrected macrotick is gdMacrotickmin = 39 µT. This results in a minimum length of an
correct slot

Eqn. 29-31

The message buffer search engine runs on the CHI clock and evaluates one individual message buffer per
CHI clock cycle. For internal status update operations and to account for clock domain crossing jitter, an
additional amount of 27 CHI clock cycles is required to ensure correct search engine operation.

For a given number of utilized message buffers FR_MBSSUTR[LAST_MB_UTIL] + 1 and for a given
CHI clock frequency fchi, this results in a search duration of

Eqn. 29-32

The message buffer search must be finished within one slot which requires that Equation 29-33 must be
fulfilled:

Eqn. 29-33

This results in the formula given in Equation 29-34 which determines the required minimum CHI
frequency for a given number of message buffers that are utilized.

Eqn. 29-34

The required minimum CHI Clock frequency for a selected set of relevant protocol parameters and for the
LAST_MB_UTIL field in the Message Buffer Segment Size and Utilization Register (FR_MBSSUTR) set
to 127 is given in Table 29-134.

1. see Section 29.3, “Controller Host Interface Clocking” for all constraints of minimum CHI clock frequency.

Table 29-134. Minimum fchi [MHz] examples (128 message buffers used)

pdMicrotick
[ns]

gdMinislot

2 3 4 5 6 7

25.0 79.5 53 39.8 31.8 26.5 22.8

50.0 39.8 26.5 19.9 15.9 13.3 11.4

slotmin 39 pdMicrotick gdMinislot =

search
1

fchi

-------- FR_MBSSUTR[LAST_MB_UTIL]+27 =

search slotmin

fchi
FR_MBSSUTR[LAST_MB_UTIL]+27 

39 pdMicrotick gdMinislot 
--

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 951

NOTE
If the minimum CHI frequency is not met the CHIERFR[MBS_EF] flag is
set. Refer to Section 29.5.2.17, “CHI Error Flag Register (FR_CHIERFR)”
for details.

29.7.6 Protocol Control Command Execution

This section considers the issues of the protocol control command execution.

The application issues any of the protocol control commands listed in the POCCMD field of Table 29-16
by writing the command to the POCCMD field of the Protocol Operation Control Register (FR_POCR).
As a result the CC sets the BSY bit while the command is transferred to the PE. When the PE has accepted
the command, the BSY flag is cleared. All commands are accepted by the PE.

The PE maintains a protocol command vector. For each command that was accepted by the PE, the PE sets
the corresponding command bit in the protocol command vector. If a command is issued while the
corresponding command bit is set, the command is not queued and is lost.

If the command execution block of the PE is idle, it selects the next accepted protocol command with the
highest priority from the current protocol command vector according to the protocol control command
priorities given in Table 29-135. If the current protocol state does not allow the execution of this protocol
command (see POC state changes in FlexRay Communications System Protocol Specification, Version 2.1
Rev A) the CC asserts the illegal protocol command interrupt flag IPC_IF in the Protocol Interrupt Flag
Register 1 (FR_PIFR1). The protocol command is not executed in this case.

Some protocol commands may be interrupted by other commands or the detection of a fatal protocol error
as indicated by Table 29-135. If the application issues the FREEZE or READY command, or if the PE
detects a fatal protocol error, some commands already stored in the command vector will be removed from
this vector.

Table 29-135. Protocol Control Command Priorities

Protocol Command Priority Interrupted By Cleared and Terminated By

FREEZE (highest) 1

noneREADY 2

CONFIG_COMPLETE 3

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

952 Freescale Semiconductor

29.7.7 Message Buffer Search on Simple Message Buffer Configuration

This sections describes the message buffer search behavior for a simplified message buffer configuration.
The FIFO behavior is not considered in this section.

29.7.7.1 Simple Message Buffer Configuration

A simple message buffer configuration is a configuration that has at most one transmit message buffer and
at most one receive message buffer assigned to a slot S. The simple configuration used in this section
utilizes two message buffers, one single buffered transmit message buffer and one receive message buffer.

The transmit message buffer has the message buffer number t and has following configuration

The availability of data in the transmit buffer is indicated by the commit bit FR_MBCCSRt[CMT] and the
lock bit FR_MBCCSRt[LCKS].

The receive message buffer has the message buffer number r and has following configuration

ALL_SLOTS 4

FREEZE,
READY,

CONFIG_COMPLET,
fatal protocol error

FREEZE, READY, CONFIG_COMPLETE,
fatal protocol error

ALLOW_COLDSTART 5

RUN 6 FREEZE,
fatal protocol error

WAKEUP 7 FREEZE,
fatal protocol error

DEFAULT_CONFIG 8 FREEZE,
fatal protocol error

CONFIG 9

HALT (lowest) 10 FREEZE, READY, CONFIG_COMPLETE,
fatal protocol error

Table 29-136. Transmit Buffer Configuration

Register Field Value Description

FR_MBCCSRt MTD 1 transmit buffer

FR_MBCCFRt

MTM 0 event transition mode

CHA 1 assigned to channel A

CHB 0 not assigned to channel B

CCFE 1 cycle counter filter enabled

CCFMSK 000011
cycle set = {4n} = {0,4,8,12,...}

CCFVAL 000000

FR_MBFIDRt FID S assigned to slot S

Table 29-135. Protocol Control Command Priorities

Protocol Command Priority Interrupted By Cleared and Terminated By

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 953

Furthermore the assumption is that both message buffers are enabled (FR_MBCCSRt[EDS] = 1 and
FR_MBCCSRr[EDS] = 1)

NOTE
The cycle set {4n+2} = {2,6,10,...} is assigned to the receive buffer only.

The cycle set {4n} = {0,4,8,12,...} is assigned to both buffers.

29.7.7.2 Behavior in static segment

In this case, both message buffers are assigned to a slot S in the static segment.

The configuration of a transmit buffer for a static slot S assigns this slot to the node as a transmit slot. The
FlexRay protocol requires:

• When a slot occurs, if the slot is assigned to a node on a channel that node must transmit either a
normal frame or a null frame on that channel. Specifically, a null frame will be sent if there is no
data ready, or if there is no match on a transmit filter (cycle counter filtering, for example).

Regardless of the availability of data and the cycle counter filter, the node will transmit a frame in the static
slot S. In any case, the result of the message buffer search will be the transmit message buffer t. The receive
message buffer r will not be found, no reception is possible.

29.7.7.3 Behavior in dynamic segment

In this case, both message buffers are assigned to a slot S in the dynamic segment. The FlexRay protocol
requires:

• When a slot occurs, if a slot is assigned to a node on a channel that node only transmits a frame on
that channel if there is data ready and there is a match on relevant transmit filters (no null frames
are sent).

The transmission of a frame in the dynamic segment is determined by the availability of data and the match
of the cycle counter filter of the transmit message buffer.

Table 29-137. Receive Buffer Configuration

Register Field Value Description

FR_MBCCSRr MTD 0 receive buffer

FR_MBCCFRr

MTM - n/a

CHA 1 assigned to channel A

CHB 0 not assigned to channel B

CCFE 1 cycle counter filter enabled

CCFMSK 000001
cycle set = {2n} = {0,2,4,6,...}

CCFVAL 000000

FR_MBFIDRr FID S subscribed slot

Chapter 29 FlexRay Communication Controller (FLEXRAY)

MPC5646C Microcontroller Reference Manual, Rev. 5

954 Freescale Semiconductor

29.7.7.3.1 Transmit Data Not Available

If transmit data are not available, i.e. the transmit buffer is not committed FR_MBCCSRt[CMT]=0 and/or
locked FR_MBCCSRt[LCKS]=1,

a) for the cycles in the set {4n}, which is assigned to both buffers, the receive buffer will be found
and the node can receive data, and

b) for the cycles in the set {4n+2}, which is assigned to the receive buffer only, the receive buffer
will be found and the node can receive data.

The receive cycles are shown in Figure 29-160.

Figure 29-160. Transmit Data Not Available

29.7.7.3.2 Transmit Data Available

If transmit data are available, i.e. the transmit buffer is committed FR_MBCCSRt[CMT]=1 and not locked
FR_MBCCSRt[LCKS]=0,

a) for the cycles in the set {4n}, which is assigned to both buffers, the transmit buffer will be found
and the node transmits data.

b) for the cycles in the set {4n+2}, which is assigned to the receive buffer only, the receive buffer
will be found and the node can receive data.

The receive and transmit cycles are shown in Figure 29-161.

Figure 29-161. Transmit Data Available

0

RX

1 2

RX

3 4

RX

5 6

RX

7 59 60

RX

61 62

RX

8

RX

63

0

TX

1 2

RX

3 4

TX

5 6

RX

7 59 60

TX

61 62

RX

8

TX

63

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 955

Chapter 30
Fast Ethernet Controller (FEC)
This chapter provides a feature-set overview, a functional block diagram, and transceiver connection
information for both the 10 and 100 Mbit/s MII (Media Independent Interface), as well as the 7-wire serial
interface. Additionally, detailed descriptions of operation and the programming model are included.

30.1 Overview
The Ethernet Media Access Controller (MAC) is designed to support both 10 and 100 Mbit/s
Ethernet/IEEE 802.3 networks. An external transceiver interface and transceiver function are required to
complete the interface to the media. The FEC supports three different standard MAC-PHY (physical)
interfaces for connection to an external Ethernet transceiver. The FEC supports the 10/100 Mbit/s MII and
the 10 Mbit/s-only 7-wire interface, which uses a subset of the MII pins.

30.1.1 Features

The FEC incorporates the following features:

• Support for three different Ethernet physical interfaces:

— 100-Mbit/s IEEE 802.3 MII

— 10-Mbit/s IEEE 802.3 MII

— 10-Mbit/s 7-wire interface (industry standard)

• IEEE 802.3 full duplex flow control

• Programmable max frame length supports IEEE 802.1 VLAN tags and priority

• Support for full-duplex operation (200 Mbit/s throughput) with a minimum system clock rate of
50MHz (see also Section 7.4.1.2, FEC Clock Divider Configuration Register (CGM_FEC_DCR))

• Support for half-duplex operation (100 Mbit/s throughput) with a minimum system clock rate of
25 MHz (see also Section 7.4.1.2, FEC Clock Divider Configuration Register (CGM_FEC_DCR))

• Retransmission from transmit FIFO following a collision (no processor bus utilization)

• Automatic internal flushing of the receive FIFO for runts (collision fragments) and address
recognition rejects (no processor bus utilization)

• Address recognition

— Frames with broadcast address may be always accepted or always rejected

— Exact match for single 48-bit individual (unicast) address

— Hash (64-bit hash) check of individual (unicast) addresses

— Hash (64-bit hash) check of group (multicast) addresses

— Promiscuous mode

30.2 Modes of Operation
The primary operational modes are described in this section.

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

956 Freescale Semiconductor

30.2.1 Full and Half Duplex Operation

Full duplex mode is intended for use on point to point links between switches or end node to switch. Half
duplex mode is used in connections between an end node and a repeater or between repeaters. Selection
of the duplex mode is controlled by TCR[FDEN].

When configured for full duplex mode, flow control may be enabled. Refer to the TCR[RFC_PAUSE] and
TCR[TFC_PAUSE] bits, the RCR[FCE] bit, and Section 30.4.10, Full Duplex Flow Control, for more
details.

30.2.2 Interface Options

The following interface options are supported. A detailed discussion of the interface configurations is
provided in Section 30.4.5, Network Interface Options.

30.2.2.1 10 Mbit/s and 100 Mbit/s MII Interface

MII is the Media Independent Interface defined by the IEEE 802.3 standard for 10/100 Mbit/s operation.
The MAC-PHY interface may be configured to operate in MII mode by asserting RCR[MII_MODE].

The speed of operation is determined by the ETXCLK and ERXCLK pins which are driven by the external
transceiver. The transceiver will either autonegotiate the speed or it may be controlled by software via the
serial management interface (EMDC/EMDIO pins) to the transceiver. Refer to the MMFR and MSCR
register descriptions as well as the section on the MII for a description of how to read and write registers
in the transceiver via this interface.

30.2.2.2 10 Mbit/s 7-Wire Interface Operation

The FEC supports a 7-wire interface as used by many 10 Mbit/s ethernet transceivers. The
RCR[MII_MODE] bit controls this functionality. If this bit is deasserted, the MII mode is disabled and the
10 Mbit/s, 7-wire mode is enabled.

30.2.3 Address Recognition Options

The address options supported are promiscuous, broadcast reject, individual address (hash or exact match),
and multicast hash match. Address recognition options are discussed in detail in Section 30.4.8, Ethernet
Address Recognition.

30.2.4 Internal Loopback

Internal loopback mode is selected via RCR[LOOP]. Loopback mode is discussed in detail in
Section 30.4.13, Internal and External Loopback.

30.3 FEC Top-Level Functional Diagram
The block diagram of the FEC is shown below. The FEC is implemented with a combination of hardware
and microcode. The off-chip (Ethernet) interfaces are compliant with industry and IEEE 802.3 standards.

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 957

Figure 30-1. FEC Block Diagram

The descriptor controller is a RISC-based controller that provides the following functions in the FEC:

• Initialization (those internal registers not initialized by the user or hardware)

• High level control of the DMA channels (initiating DMA transfers)

• Interpreting buffer descriptors

• Address recognition for receive frames

• Random number generation for transmit collision backoff timer

NOTE

DMA references in this section refer to the FEC’s DMA engine. This DMA
engine is for the transfer of FEC data only, and is not related to the DMA
controller nor to the DMA timers.

SIF

CSR
FIFO DMA

Descriptor
Controller

MII ReceiveTransmit

Bus

Controller

Controller

EMDCEMDIO

ERXCLK
ERXDV
ERXD[3:0]
ERXER

ETCLKETXEN
ETXD[3:0]
ETXER

ECRS,ECOL

MIB

(RISC +
microcode)

I/O
PAD

MDO
MDEN MDI

Counters

MII/7-WIRE DATA
OPTION

RAM

RAM I/F

FEC Bus

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

958 Freescale Semiconductor

The RAM is the focal point of all data flow in the Fast Ethernet Controller and is divided into transmit and
receive FIFOs. The FIFO boundaries are programmable using the FRSR register. User data flows to/from
the DMA block from/to the receive/transmit FIFOs. Transmit data flows from the transmit FIFO into the
transmit block and receive data flows from the receive block into the receive FIFO.

The user controls the FEC by writing, through the SIF (Slave Interface) module, into control registers
located in each block. The CSR (Control and Status Register) block provides global control (e.g. Ethernet
reset and enable) and interrupt handling registers.

The MII block provides a serial channel for control/status communication with the external physical layer
device (transceiver). This serial channel consists of the EMDC (Management Data Clock) and EMDIO
(Management Data Input/Output) lines of the MII interface.

The DMA block provides multiple channels allowing transmit data, transmit descriptor, receive data and
receive descriptor accesses to run independently.

The Transmit and Receive blocks provide the Ethernet MAC functionality (with some assist from
microcode).

The Message Information Block (MIB) maintains counters for a variety of network events and statistics.
It is not necessary for operation of the FEC but provides valuable counters for network management. The
counters supported are the RMON (RFC 1757) Ethernet Statistics group and some of the IEEE 802.3
counters. See Section 30.5.3, MIB Block Counters Memory Map, for more information.

30.4 Functional Description
This section describes the operation of the FEC, beginning with the hardware and software initialization
sequence, then the software (Ethernet driver) interface for transmitting and receiving frames.

Following the software initialization and operation sections are sections providing a detailed description
of the functions of the FEC.

30.4.1 Initialization Sequence

This section describes which registers are reset due to hardware reset, which are reset by the FEC RISC,
and what locations the user must initialize prior to enabling the FEC.

30.4.1.1 Hardware Controlled Initialization

In the FEC, registers and control logic that generate interrupts are reset by hardware. A hardware reset
deasserts output signals and resets general configuration bits.

Other registers reset when the ECR[ETHER_EN] bit is cleared. ECR[ETHER_EN] is deasserted by a hard
reset or may be deasserted by software to halt operation. By deasserting ECR[ETHER_EN], the
configuration control registers such as the TCR and RCR will not be reset, but the entire data path will be
reset.

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 959

30.4.2 User Initialization (Prior to Asserting ECR[ETHER_EN])

The user needs to initialize portions the FEC prior to setting the ECR[ETHER_EN] bit. The exact values
will depend on the particular application. The sequence is not important.

Ethernet MAC registers requiring initialization are defined in Table 30-2.

FEC FIFO/DMA registers that require initialization are defined in Table 30-3.

Table 30-1. ECR[ETHER_EN] De-Assertion Effect on FEC

Register/Machine Reset Value

XMIT block Transmission is aborted (bad CRC
appended)

RECV block Receive activity is aborted

DMA block All DMA activity is terminated

RDAR Cleared

TDAR Cleared

Descriptor Controller block Halt operation

Table 30-2. User Initialization (Before ENCTRL[ETHER_EN])

Description

Initialize EIMR

Clear EIR (write 0xFFFF_FFFF)

TFWR (optional)

IALR / IAUR

GAUR / GALR

PALR / PAUR (only needed for full duplex flow control)

OPD (only needed for full duplex flow control)

RCR

TCR

MSCR (optional)

Clear MIB_RAM (locations IPSBAR + 0x1200-0x12FC)

Table 30-3. FEC User Initialization (Before ECR[ETHER_EN])

Description

Initialize FRSR (optional)

Initialize EMRBR

Initialize ERDSR

Initialize ETDSR

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

960 Freescale Semiconductor

30.4.3 Microcontroller Initialization

In the FEC, the descriptor control RISC initializes some registers after ECR[ETHER_EN] is asserted.
After the microcontroller initialization sequence is complete, the hardware is ready for operation.

Table 30-4 shows microcontroller initialization operations.

30.4.4 User Initialization (After Asserting ECR[ETHER_EN])

After asserting ECR[ETHER_EN], the user can set up the buffer/frame descriptors and write to the TDAR
and RDAR. Refer to Section 30.6, Buffer Descriptors, for more details.

30.4.5 Network Interface Options

The FEC supports both an MII interface for 10/100 Mbit/s Ethernet and a 7-wire serial interface for 10
Mbit/s Ethernet. The interface mode is selected by the RCR[MII_MODE] bit. In MII mode
(RCR[MII_MODE] = 1), there are 18 signals defined by the IEEE 802.3 standard and supported by the
EMAC. These signals are shown in Table 30-5 below.

Initialize (Empty) Transmit Descriptor ring

Initialize (Empty) Receive Descriptor ring

Table 30-4. Microcontroller Initialization

Description

Initialize BackOff Random Number Seed

Activate Receiver

Activate Transmitter

Clear Transmit FIFO

Clear Receive FIFO

Initialize Transmit Ring Pointer

Initialize Receive Ring Pointer

Initialize FIFO Count Registers

Table 30-5. MII Mode

Signal Description EMAC pin

Transmit Clock ETXCLK

Transmit Enable ETXEN

Transmit Data ETXD[3:0]

Transmit Error ETXER

Table 30-3. FEC User Initialization (Before ECR[ETHER_EN]) (continued)

Description

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 961

The 7-wire serial mode interface (RCR[MII_MODE] = 0) operates in what is generally referred to as the
“AMD” mode. 7-wire mode connections to the external transceiver are shown in Table 30-6.

30.4.6 FEC Frame Transmission

The Ethernet transmitter is designed to work with almost no intervention from software. Once
ECR[ETHER_EN] is asserted and data appears in the transmit FIFO, the Ethernet MAC is able to transmit
onto the network.

When the transmit FIFO fills to the watermark (defined by the TFWR), the MAC transmit logic will assert
ETXEN and start transmitting the preamble (PA) sequence, the start frame delimiter (SFD), and then the
frame information from the FIFO. However, the controller defers the transmission if the network is busy
(ECRS asserts). Before transmitting, the controller waits for carrier sense to become inactive, then
determines if carrier sense stays inactive for 60 bit times. If so, the transmission begins after waiting an
additional 36 bit times (96 bit times after carrier sense originally became inactive). See Section 30.4.14.1,
Transmission Errors, for more details.

Collision ECOL

Carrier Sense ECRS

Receive Clock ERXCLK

Receive Data Valid ERXDV

Receive Data ERXD[3:0]

Receive Error ERXER

Management Data Clock EMDC

Management Data
Input/Output

EMDIO

Table 30-6. 7-Wire Mode Configuration

SIGNAL DESCRIPTION EMAC PIN

Transmit Clock TX_CLK

Transmit Enable ETXEN

Transmit Data ETXD[0]

Collision ECOL

Receive Clock ERXCLK

Receive Data Valid ERXDV

Receive Data ERXD[0]

Table 30-5. MII Mode (continued)

Signal Description EMAC pin

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

962 Freescale Semiconductor

If a collision occurs during transmission of the frame (half duplex mode), the Ethernet controller follows
the specified backoff procedures and attempts to retransmit the frame until the retry limit is reached. The
transmit FIFO stores at least the first 64 bytes of the transmit frame, so that they do not have to be retrieved
from system memory in case of a collision. This improves bus utilization and latency in case immediate
retransmission is necessary.

When all the frame data has been transmitted, the FCS (Frame Check Sequence or 32-bit Cyclic
Redundancy Check, CRC) bytes are appended if the TC bit is set in the transmit frame control word. If the
ABC bit is set in the transmit frame control word, a bad CRC will be appended to the frame data regardless
of the TC bit value. Following the transmission of the CRC, the Ethernet controller writes the frame status
information to the MIB block. Short frames are automatically padded by the transmit logic (if the TC bit
in the transmit buffer descriptor for the end of frame buffer = 1).

Both buffer (TXB) and frame (TFINT) interrupts may be generated as determined by the settings in the
EIMR.

The transmit error interrupts are HBERR, BABT, LATE_COL, COL_RETRY_LIM, and XFIFO_UN. If
the transmit frame length exceeds MAX_FL bytes the BABT interrupt will be asserted, however the entire
frame will be transmitted (no truncation).

To pause transmission, set the GTS (graceful transmit stop) bit in the TCR register. When the TCR[GTS]
is set, the FEC transmitter stops immediately if transmission is not in progress; otherwise, it continues
transmission until the current frame either finishes or terminates with a collision. After the transmitter has
stopped the GRA (graceful stop complete) interrupt is asserted. If TCR[GTS] is cleared, the FEC resumes
transmission with the next frame.

The Ethernet controller transmits bytes least significant bit first.

30.4.7 FEC Frame Reception

The FEC receiver is designed to work with almost no intervention from the host and can perform address
recognition, CRC checking, short frame checking, and maximum frame length checking.

When the driver enables the FEC receiver by asserting ECR[ETHER_EN], it will immediately start
processing receive frames. When ERXDV asserts, the receiver will first check for a valid PA/SFD header.
If the PA/SFD is valid, it will be stripped and the frame will be processed by the receiver. If a valid PA/SFD
is not found, the frame will be ignored.

In serial mode, the first 16 bit times of RX_D0 following assertion of ERXDV are ignored. Following the
first 16 bit times the data sequence is checked for alternating 1/0s. If a 11 or 00 data sequence is detected
during bit times 17 to 21, the remainder of the frame is ignored. After bit time 21, the data sequence is
monitored for a valid SFD (11). If a 00 is detected, the frame is rejected. When a 11 is detected, the PA/SFD
sequence is complete.

In MII mode, the receiver checks for at least one byte matching the SFD. Zero or more PA bytes may occur,
but if a 00 bit sequence is detected prior to the SFD byte, the frame is ignored.

After the first 6 bytes of the frame have been received, the FEC performs address recognition on the frame.

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 963

Once a collision window (64 bytes) of data has been received and if address recognition has not rejected
the frame, the receive FIFO is signalled that the frame is “accepted” and may be passed on to the DMA.
If the frame is a runt (due to collision) or is rejected by address recognition, the receive FIFO is notified
to “reject” the frame. Thus, no collision fragments are presented to the user except late collisions, which
indicate serious LAN problems.

During reception, the Ethernet controller checks for various error conditions and once the entire frame is
written into the FIFO, a 32-bit frame status word is written into the FIFO. This status word contains the
M, BC, MC, LG, NO, CR, OV and TR status bits, and the frame length. See Section 30.4.14.2, Reception
Errors, for more details.

Receive Buffer (RXB) and Frame Interrupts (RFINT) may be generated if enabled by the EIMR register.
A receive error interrupt is babbling receiver error (BABR). Receive frames are not truncated if they
exceed the max frame length (MAX_FL); however, the BABR interrupt will occur and the LG bit in the
Receive Buffer Descriptor (RxBD) will be set. See Section 30.6.2, Ethernet Receive Buffer Descriptor
(RxBD), for more details.

When the receive frame is complete, the FEC sets the L-bit in the RxBD, writes the other frame status bits
into the RxBD, and clears the E-bit. The Ethernet controller next generates a maskable interrupt (RFINT
bit in EIR, maskable by RFIEN bit in EIMR), indicating that a frame has been received and is in memory.
The Ethernet controller then waits for a new frame.

The Ethernet controller receives serial data LSB first.

30.4.8 Ethernet Address Recognition

The FEC filters the received frames based on destination address (DA) type — individual (unicast), group
(multicast), or broadcast (all-ones group address). The difference between an individual address and a
group address is determined by the I/G bit in the destination address field. A flowchart for address
recognition on received frames is illustrated in the figures below.

Address recognition is accomplished through the use of the receive block and microcode running on the
microcontroller. The flowchart shown in Figure 30-2 illustrates the address recognition decisions made by
the receive block, while Figure 30-3 illustrates the decisions made by the microcontroller.

If the DA is a broadcast address and broadcast reject (RCR[BC_REJ]) is deasserted, then the frame will
be accepted unconditionally, as shown in Figure 30-2. Otherwise, if the DA is not a broadcast address, then
the microcontroller runs the address recognition subroutine, as shown in Figure 30-3.

If the DA is a group (multicast) address and flow control is disabled, then the microcontroller will perform
a group hash table lookup using the 64-entry hash table programmed in GAUR and GALR. If a hash match
occurs, the receiver accepts the frame.

If flow control is enabled, the microcontroller will do an exact address match check between the DA and
the designated PAUSE DA (01:80:C2:00:00:01). If the receive block determines that the received frame
is a valid PAUSE frame, then the frame will be rejected. Note the receiver will detect a PAUSE frame with
the DA field set to either the designated PAUSE DA or the unicast physical address.

If the DA is the individual (unicast) address, the microcontroller performs an individual exact match
comparison between the DA and 48-bit physical address that the user programs in the PALR and PAUR

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

964 Freescale Semiconductor

registers. If an exact match occurs, the frame is accepted; otherwise, the microcontroller does an individual
hash table lookup using the 64-entry hash table programmed in registers, IAUR and IALR. In the case of
an individual hash match, the frame is accepted. Again, the receiver will accept or reject the frame based
on PAUSE frame detection, shown in Figure 30-2.

If neither a hash match (group or individual), nor an exact match (group or individual) occur, then if
promiscuous mode is enabled (RCR[PROM] = 1), then the frame will be accepted and the MISS bit in the
receive buffer descriptor is set; otherwise, the frame will be rejected.

Similarly, if the DA is a broadcast address, broadcast reject (RCR[BC_REJ]) is asserted, and promiscuous
mode is enabled, then the frame will be accepted and the MISS bit in the receive buffer descriptor is set;
otherwise, the frame will be rejected.

In general, when a frame is rejected, it is flushed from the FIFO.

Figure 30-2. Ethernet Address Recognition—Receive Block Decisions

Accept/Reject

Broadcast Addr
?

?

PROM = 1
?

Receive
Address

True

NOTES:
BC_REJ - field in RCR register (BroadCast REJect)

FalseTrue

 False BC_REJ = 1
?

Frame

Hash Match

?
Exact Match

?
Pause Frame

False

False

False

False

True

True

True

True

Receive Frame Receive Frame

Receive Frame Receive Frame

Reject Frame

Reject Frame

PROM - field in RCR register (PROMiscous mode)
Pause Frame - valid PAUSE frame received

Set BC bit in RCV BD Set MC bit in RCV BD if multicast

Set M (Miss) bit in Rcv BD
Set MC bit in Rcv BD if multicast
Set BC bit in Rcv BD if broadcast

Flush from FIFO

Flush from FIFO

Recognition

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 965

Figure 30-3. Ethernet Address Recognition—Microcode Decisions

30.4.9 Hash Algorithm

The hash table algorithm used in the group and individual hash filtering operates as follows. The 48-bit
destination address is mapped into one of 64 bits, which are represented by 64 bits stored in GAUR, GALR
(group address hash match) or IAUR, IALR (individual address hash match). This mapping is performed
by passing the 48-bit address through the on-chip 32-bit CRC generator and selecting the 6 most
significant bits of the CRC-encoded result to generate a number between 0 and 63. The MSB of the CRC
result selects GAUR (MSB = 1) or GALR (MSB = 0). The least significant 5 bits of the hash result select
the bit within the selected register. If the CRC generator selects a bit that is set in the hash table, the frame
is accepted; otherwise, it is rejected.

For example, if eight group addresses are stored in the hash table and random group addresses are received,
the hash table prevents roughly 56/64 (or 87.5%) of the group address frames from reaching memory.
Those that do reach memory must be further filtered by the processor to determine if they truly contain
one of the eight desired addresses.

The effectiveness of the hash table declines as the number of addresses increases.

Receive Address

I/G Address
?

Exact Match
?

Hash Search
Group Table

Match
?

Hash Search
Individual Table

False

Match
?

False False

True True

True

NOTES:
FCE - field in RCR register (Flow Control Enable)
I/G - Individual/Group bit in Destination Address (least significant bit in first byte received in MAC frame)

IndividualGroup

TrueFalse

True

False

?
Pause Address

FCE
?

Recognition

Reject Frame
Flush from FIFO

Reject Frame
Flush from FIFO

Receive Frame

Receive Frame

Receive Frame

Receive Frame

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

966 Freescale Semiconductor

The hash table registers must be initialized by the user. The CRC32 polynomial to use in computing the
hash is:

A table of example Destination Addresses and corresponding hash values is included below for reference.

Table 30-7. Destination Address to 6-Bit Hash

48-bit DA
6-bit Hash (in

hex)
Hash Decimal

Value

65:ff:ff:ff:ff:ff 0x0 0

55:ff:ff:ff:ff:ff 0x1 1

15:ff:ff:ff:ff:ff 0x2 2

35:ff:ff:ff:ff:ff 0x3 3

b5:ff:ff:ff:ff:ff 0x4 4

95:ff:ff:ff:ff:ff 0x5 5

d5:ff:ff:ff:ff:ff 0x6 6

f5:ff:ff:ff:ff:ff 0x7 7

db:ff:ff:ff:ff:ff 0x8 8

fb:ff:ff:ff:ff:ff 0x9 9

bb:ff:ff:ff:ff:ff 0xa 10

8b:ff:ff:ff:ff:ff 0xb 11

0b:ff:ff:ff:ff:ff 0xc 12

3b:ff:ff:ff:ff:ff 0xd 13

7b:ff:ff:ff:ff:ff 0xe 14

5b:ff:ff:ff:ff:ff 0xf 15

27:ff:ff:ff:ff:ff 0x10 16

07:ff:ff:ff:ff:ff 0x11 17

57:ff:ff:ff:ff:ff 0x12 18

77:ff:ff:ff:ff:ff 0x13 19

f7:ff:ff:ff:ff:ff 0x14 20

c7:ff:ff:ff:ff:ff 0x15 21

97:ff:ff:ff:ff:ff 0x16 22

a7:ff:ff:ff:ff:ff 0x17 23

99:ff:ff:ff:ff:ff 0x18 24

b9:ff:ff:ff:ff:ff 0x19 25

X32 X26 X23 X22 X16 X12 X11 X10 X8 X7 X5 X4 X2 X 1+ + + + + + + + + + + + + +

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 967

f9:ff:ff:ff:ff:ff 0x1a 26

c9:ff:ff:ff:ff:ff 0x1b 27

59:ff:ff:ff:ff:ff 0x1c 28

79:ff:ff:ff:ff:ff 0x1d 29

29:ff:ff:ff:ff:ff 0x1e 30

19:ff:ff:ff:ff:ff 0x1f 31

d1:ff:ff:ff:ff:ff 0x20 32

f1:ff:ff:ff:ff:ff 0x21 33

b1:ff:ff:ff:ff:ff 0x22 34

91:ff:ff:ff:ff:ff 0x23 35

11:ff:ff:ff:ff:ff 0x24 36

31:ff:ff:ff:ff:ff 0x25 37

71:ff:ff:ff:ff:ff 0x26 38

51:ff:ff:ff:ff:ff 0x27 39

7f:ff:ff:ff:ff:ff 0x28 40

4f:ff:ff:ff:ff:ff 0x29 41

1f:ff:ff:ff:ff:ff 0x2a 42

3f:ff:ff:ff:ff:ff 0x2b 43

bf:ff:ff:ff:ff:ff 0x2c 44

9f:ff:ff:ff:ff:ff 0x2d 45

df:ff:ff:ff:ff:ff 0x2e 46

ef:ff:ff:ff:ff:ff 0x2f 47

93:ff:ff:ff:ff:ff 0x30 48

b3:ff:ff:ff:ff:ff 0x31 49

f3:ff:ff:ff:ff:ff 0x32 50

d3:ff:ff:ff:ff:ff 0x33 51

53:ff:ff:ff:ff:ff 0x34 52

73:ff:ff:ff:ff:ff 0x35 53

23:ff:ff:ff:ff:ff 0x36 54

13:ff:ff:ff:ff:ff 0x37 55

3d:ff:ff:ff:ff:ff 0x38 56

0d:ff:ff:ff:ff:ff 0x39 57

Table 30-7. Destination Address to 6-Bit Hash (continued)

48-bit DA
6-bit Hash (in

hex)
Hash Decimal

Value

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

968 Freescale Semiconductor

30.4.10 Full Duplex Flow Control

Full-duplex flow control allows the user to transmit pause frames and to detect received pause frames.
Upon detection of a pause frame, MAC data frame transmission stops for a given pause duration.

To enable pause frame detection, the FEC must operate in full-duplex mode (TCR[FDEN] asserted) and
flow control enable (RCR[FCE]) must be asserted. The FEC detects a pause frame when the fields of the
incoming frame match the pause frame specifications, as shown in the table below. In addition, the receive
status associated with the frame should indicate that the frame is valid.

Pause frame detection is performed by the receiver and microcontroller modules. The microcontroller runs
an address recognition subroutine to detect the specified pause frame destination address, while the
receiver detects the type and opcode pause frame fields. On detection of a pause frame, TCR[GTS] is
asserted by the FEC internally. When transmission has paused, the EIR[GRA] interrupt is asserted and the
pause timer begins to increment. Note that the pause timer makes use of the transmit backoff timer
hardware, which is used for tracking the appropriate collision backoff time in half-duplex mode. The pause
timer increments once every slot time, until OPD[PAUSE_DUR] slot times have expired. On
OPD[PAUSE_DUR] expiration, TCR[GTS] is deasserted allowing MAC data frame transmission to
resume. Note that the receive flow control pause (TCR[RFC_PAUSE]) status bit is asserted while the
transmitter is paused due to reception of a pause frame.

To transmit a pause frame, the FEC must operate in full-duplex mode and the user must assert flow control
pause (TCR[TFC_PAUSE]). On assertion of transmit flow control pause (TCR[TFC_PAUSE]), the
transmitter asserts TCR[GTS] internally. When the transmission of data frames stops, the EIR[GRA]
(graceful stop complete) interrupt asserts. Following EIR[GRA] assertion, the pause frame is transmitted.
On completion of pause frame transmission, flow control pause (TCR[TFC_PAUSE]) and TCR[GTS] are
deasserted internally.

5d:ff:ff:ff:ff:ff 0x3a 58

7d:ff:ff:ff:ff:ff 0x3b 59

fd:ff:ff:ff:ff:ff 0x3c 60

dd:ff:ff:ff:ff:ff 0x3d 61

9d:ff:ff:ff:ff:ff 0x3e 62

bd:ff:ff:ff:ff:ff 0x3f 63

Table 30-8. PAUSE Frame Field Specification

48-bit Destination Address 0x0180_c200_0001 or Physical Address

48-bit Source Address Any
16-bit Type 0x8808

16-bit Opcode 0x0001

16-bit PAUSE Duration 0x0000 to 0xFFFF

Table 30-7. Destination Address to 6-Bit Hash (continued)

48-bit DA
6-bit Hash (in

hex)
Hash Decimal

Value

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 969

The user must specify the desired pause duration in the OPD register.

Note that when the transmitter is paused due to receiver/microcontroller pause frame detection, transmit
flow control pause (TCR[TFC_PAUSE]) still may be asserted and will cause the transmission of a single
pause frame. In this case, the EIR[GRA] interrupt will not be asserted.

30.4.11 Inter-Packet Gap (IPG) Time

The minimum inter-packet gap time for back-to-back transmission is 96 bit times. After completing a
transmission or after the backoff algorithm completes, the transmitter waits for carrier sense to be negated
before starting its 96 bit time IPG counter. Frame transmission may begin 96 bit times after carrier sense
is negated if it stays negated for at least 60 bit times. If carrier sense asserts during the last 36 bit times, it
will be ignored and a collision will occur.

The receiver receives back-to-back frames with a minimum spacing of at least 28 bit times. If an
inter-packet gap between receive frames is less than 28 bit times, the following frame may be discarded
by the receiver.

30.4.12 Collision Handling

If a collision occurs during frame transmission, the Ethernet controller will continue the transmission for
at least 32 bit times, transmitting a JAM pattern consisting of 32 ones. If the collision occurs during the
preamble sequence, the JAM pattern will be sent after the end of the preamble sequence.

If a collision occurs within 512 bit times, the retry process is initiated. The transmitter waits a random
number of slot times. A slot time is 512 bit times. If a collision occurs after 512 bit times, then no
retransmission is performed and the end of frame buffer is closed with a Late Collision (LC) error
indication.

30.4.13 Internal and External Loopback

Both internal and external loopback are supported by the Ethernet controller. In loopback mode, both of
the FIFOs are used and the FEC actually operates in a full-duplex fashion. Both internal and external
loopback are configured using combinations of the LOOP and DRT bits in the RCR register and the FDEN
bit in the TCR register.

For both internal and external loopback set FDEN = 1.

For internal loopback set RCR[LOOP] = 1 and RCR[DRT] = 0. ETXEN and ETXER will not assert during
internal loopback. During internal loopback, the transmit/receive data rate is higher than in normal
operation because the internal system clock is used by the transmit and receive blocks instead of the clocks
from the external transceiver. This will cause an increase in the required system bus bandwidth for transmit
and receive data being DMA’d to/from external memory. It may be necessary to pace the frames on the
transmit side and/or limit the size of the frames to prevent transmit FIFO underrun and receive FIFO
overflow.

For external loopback set RCR[LOOP] = 0, RCR[DRT] = 0 and configure the external transceiver for
loopback.

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

970 Freescale Semiconductor

30.4.14 Ethernet Error-Handling Procedure

The Ethernet controller reports frame reception and transmission error conditions using the FEC RxBDs,
the EIR register, and the MIB block counters.

30.4.14.1 Transmission Errors

30.4.14.1.1 Transmitter Underrun

If this error occurs, the FEC sends 32 bits that ensure a CRC error and stops transmitting. All remaining
buffers for that frame are then flushed and closed. The UN bit is set in the EIR. The FEC will then continue
to the next transmit buffer descriptor and begin transmitting the next frame.

The “UN” interrupt will be asserted if enabled in the EIMR register.

30.4.14.1.2 Retransmission Attempts Limit Expired

When this error occurs, the FEC terminates transmission. All remaining buffers for that frame are flushed
and closed, and the RL bit is set in the EIR. The FEC will then continue to the next transmit buffer
descriptor and begin transmitting the next frame.

The “RL” interrupt will be asserted if enabled in the EIMR register.

30.4.14.1.3 Late Collision

When a collision occurs after the slot time (512 bits starting at the Preamble), the FEC terminates
transmission. All remaining buffers for that frame are flushed and closed, and the LC bit is set in the EIR
register. The FEC will then continue to the next transmit buffer descriptor and begin transmitting the next
frame.

The “LC” interrupt will be asserted if enabled in the EIMR register.

30.4.14.1.4 Heartbeat

Some transceivers have a self-test feature called “heartbeat” or “signal quality error.” To signify a good
self-test, the transceiver indicates a collision to the FEC within 4 microseconds after completion of a frame
transmitted by the Ethernet controller. This indication of a collision does not imply a real collision error
on the network, but is rather an indication that the transceiver still seems to be functioning properly. This
is called the heartbeat condition.

If the HBC bit is set in the TCR register and the heartbeat condition is not detected by the FEC after a
frame transmission, then a heartbeat error occurs. When this error occurs, the FEC closes the buffer, sets
the HB bit in the EIR register, and generates the HBERR interrupt if it is enabled.

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 971

30.4.14.2 Reception Errors

30.4.14.2.1 Overrun Error

If the receive block has data to put into the receive FIFO and the receive FIFO is full, the FEC sets the OV
bit in the RxBD. All subsequent data in the frame will be discarded and subsequent frames may also be
discarded until the receive FIFO is serviced by the DMA and space is made available. At this point the
receive frame/status word is written into the FIFO with the OV bit set. This frame must be discarded by
the driver.

30.4.14.2.2 Non-Octet Error (Dribbling Bits)

The Ethernet controller handles up to seven dribbling bits when the receive frame terminates past an
non-octet aligned boundary. Dribbling bits are not used in the CRC calculation. If there is a CRC error,
then the frame non-octet aligned (NO) error is reported in the RxBD. If there is no CRC error, then no error
is reported.

30.4.14.2.3 CRC Error

When a CRC error occurs with no dribble bits, the FEC closes the buffer and sets the CR bit in the RxBD.
CRC checking cannot be disabled, but the CRC error can be ignored if checking is not required.

30.4.14.2.4 Frame Length Violation

When the receive frame length exceeds MAX_FL bytes the BABR interrupt will be generated, and the LG
bit in the end of frame RxBD will be set. The frame is not truncated unless the frame length exceeds 2047
bytes).

30.4.14.2.5 Truncation

When the receive frame length exceeds 2047 bytes the frame is truncated and the TR bit is set in the receive
BD.

30.5 Programming Model
This section gives an overview of the registers, followed by a description of the buffers.

The FEC is programmed by a combination of control/status registers (CSRs) and buffer descriptors. The
CSRs are used for mode control and to extract global status information. The descriptors are used to pass
data buffers and related buffer information between the hardware and software.

30.5.1 Top Level Module Memory Map

The FEC implementation requires a 1-Kbyte memory map space. This is divided into 2 sections of 512
bytes each. The first is used for control/status registers. The second contains event/statistic counters held
in the MIB block. Table 30-9 defines the top level memory map.

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

972 Freescale Semiconductor

30.5.2 Register map

Table 30-10 shows the FEC register map. All offsets not explicitly mentioned are reserved.

Table 30-9. Module Memory Map

Address Function

IPSBAR + 0x1000-11FF Control/Status Registers

IPSBAR + 0x1200-13FF MIB Block Counters

Table 30-10. FEC register map

Base address: 0xFFF4_C000

Address offset Register Location

0x1004 Ethernet Interrupt Event Register (EIR) on page 975

0x1008 Interrupt Mask Register (EIMR) on page 976

0x1010 Receive Descriptor Active Register (RDAR) on page 977

0x1014 Transmit Descriptor Active Register (TDAR) on page 978

0x1024 Ethernet Control Register (ECR) on page 978

0x1040 MII Management Frame Register (MMFR) on page 979

0x1044 MII Speed Control Register (MSCR) on page 980

0x1064 MIB Control Register (MIBC) on page 981

0x1084 Receive Control Register (RCR) on page 982

0x10C4 Transmit Control Register (TCR) on page 983

0x10E4 Physical Address Low Register (PALR) on page 984

0x10E8 Physical Address High Register (PAUR) on page 985

0x10EC Opcode + Pause Duration Register (OPD) on page 985

0x1118 Descriptor Individual Upper Address Register (IAUR) on page 986

0x111C Descriptor Individual Lower Address Register (IALR) on page 986

0x1120 Descriptor Group Upper Address Register (GAUR) on page 986

0x1124 Descriptor Group Lower Address Register (GALR) on page 987

0x1144 FIFO Transmit FIFO Watermark Register (TFWR) on page 987

0x114C FIFO Receive Bound Register (FRBR) on page 988

0x1150 FIFO Receive Start Register (FRSR) on page 989

0x1180 Receive Descriptor Ring Start Register (ERDSR) on page 989

0x1184 Transmit Buffer Descriptor Ring Start (ETDSR) on page 990

0x1188 Receive Buffer Size Register (EMRBR) on page 990

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 973

30.5.3 MIB Block Counters Memory Map

Table 30-11 defines the MIB Counters memory map which defines the locations in the MIB RAM space
where hardware maintained counters reside. These fall in the 0x1200-0x13FF address offset range. The
counters are divided into two groups.

RMON counters are included which cover the Ethernet Statistics counters defined in RFC 1757. In
addition to the counters defined in the Ethernet Statistics group, a counter is included to count truncated
frames as the FEC only supports frame lengths up to 2047 bytes. The RMON counters are implemented
independently for transmit and receive to insure accurate network statistics when operating in full duplex
mode.

IEEE counters are included which support the Mandatory and Recommended counter packages defined in
section 5 of ANSI/IEEE Std. 802.3 (1998 edition). The IEEE Basic Package objects are supported by the
FEC but do not require counters in the MIB block. In addition, some of the recommended package objects
which are supported do not require MIB counters. Counters for transmit and receive full duplex flow
control frames are included as well.

Table 30-11. MIB Counters Memory Map

Address
Offset

Mnemonic Description

0x1200 RMON_T_DROP Count of frames not counted correctly

0x1204 RMON_T_PACKETS RMON Tx packet count

0x1208 RMON_T_BC_PKT RMON Tx Broadcast Packets

0x120C RMON_T_MC_PKT RMON Tx Multicast Packets

0x1210 RMON_T_CRC_ALIGN RMON Tx Packets w CRC/Align error

0x1214 RMON_T_UNDERSIZE RMON Tx Packets < 64 bytes, good crc

0x1218 RMON_T_OVERSIZE RMON Tx Packets > MAX_FL bytes, good crc

0x121C RMON_T_FRAG RMON Tx Packets < 64 bytes, bad crc

0x1220 RMON_T_JAB RMON Tx Packets > MAX_FL bytes, bad crc

0x1224 RMON_T_COL RMON Tx collision count

0x1228 RMON_T_P64 RMON Tx 64 byte packets

0x122C RMON_T_P65TO127 RMON Tx 65 to 127 byte packets

0x1230 RMON_T_P128TO255 RMON Tx 128 to 255 byte packets

0x1234 RMON_T_P256TO511 RMON Tx 256 to 511 byte packets

0x1238 RMON_T_P512TO1023 RMON Tx 512 to 1023 byte packets

0x123C RMON_T_P1024TO2047 RMON Tx 1024 to 2047 byte packets

0x1240 RMON_T_P_GTE2048 RMON Tx packets w > 2048 bytes

0x1244 RMON_T_OCTETS RMON Tx Octets

0x1248 IEEE_T_DROP Count of frames not counted correctly

0x124C IEEE_T_FRAME_OK Frames Transmitted OK

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

974 Freescale Semiconductor

0x1250 IEEE_T_1COL Frames Transmitted with Single Collision

0x1254 IEEE_T_MCOL Frames Transmitted with Multiple Collisions

0x1258 IEEE_T_DEF Frames Transmitted after Deferral Delay

0x125c IEEE_T_LCOL Frames Transmitted with Late Collision

0x1260 IEEE_T_EXCOL Frames Transmitted with Excessive Collisions

0x1264 IEEE_T_MACERR Frames Transmitted with Tx FIFO Underrun

0x1268 IEEE_T_CSERR Frames Transmitted with Carrier Sense Error

0x126C IEEE_T_SQE Frames Transmitted with SQE Error

0x1270 IEEE_T_FDXFC Flow Control Pause frames transmitted

0x1274 IEEE_T_OCTETS_OK Octet count for Frames Transmitted w/o Error

0x1284 RMON_R_PACKETS RMON Rx packet count

0x1288 RMON_R_BC_PKT RMON Rx Broadcast Packets

0x128C RMON_R_MC_PKT RMON Rx Multicast Packets

0x1290 RMON_R_CRC_ALIGN RMON Rx Packets w CRC/Align error

0x1294 RMON_R_UNDERSIZE RMON Rx Packets < 64 bytes, good crc

0x1298 RMON_R_OVERSIZE RMON Rx Packets > MAX_FL bytes, good crc

0x129C RMON_R_FRAG RMON Rx Packets < 64 bytes, bad crc

0x12A0 RMON_R_JAB RMON Rx Packets > MAX_FL bytes, bad crc

0x12A4 RMON_R_RESVD_0

0x12A8 RMON_R_P64 RMON Rx 64 byte packets

0x12AC RMON_R_P65TO127 RMON Rx 65 to 127 byte packets

0x12B0 RMON_R_P128TO255 RMON Rx 128 to 255 byte packets

0x12B4 RMON_R_P256TO511 RMON Rx 256 to 511 byte packets

0x12B8 RMON_R_P512TO1023 RMON Rx 512 to 1023 byte packets

0x12BC RMON_R_P1024TO2047 RMON Rx 1024 to 2047 byte packets

0x12C0 RMON_R_P_GTE2048 RMON Rx packets w > 2048 bytes

0x12C4 RMON_R_OCTETS RMON Rx Octets

0x12C8 IEEE_R_DROP Count of frames not counted correctly

0x12CC IEEE_R_FRAME_OK Frames Received OK

0x12D0 IEEE_R_CRC Frames Received with CRC Error

0x12D4 IEEE_R_ALIGN Frames Received with Alignment Error

0x12D8 IEEE_R_MACERR Receive Fifo Overflow count

Table 30-11. MIB Counters Memory Map (continued)

Address
Offset

Mnemonic Description

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 975

30.5.4 Registers

The following sections describe each register in detail.

30.5.4.1 Ethernet Interrupt Event Register (EIR)

When an event occurs that sets a bit in the EIR register, an interrupt will be generated if the corresponding
bit in the interrupt mask register (EIMR) is also set. The bit in the EIR register is cleared if a one is written
to that bit position; writing zero has no effect. This register is cleared upon hardware reset.

These interrupts can be divided into operational interrupts, transceiver/network error interrupts, and
internal error interrupts. Interrupts which may occur in normal operation are GRA, TXF, TXB, RXF, RXB,
and MII. Interrupts resulting from errors/problems detected in the network or transceiver are HBERR,
BABR, BABT, LC and RL. Interrupts resulting from internal errors are HBERR and UN.

Some of the error interrupts are independently counted in the MIB block counters. Software may choose
to mask off these interrupts since these errors will be visible to network management via the MIB counters.

• HBERR - IEEE_T_SQE

• BABR - RMON_R_OVERSIZE (good CRC), RMON_R_JAB (bad CRC)

• BABT - RMON_T_OVERSIZE (good CRC), RMON_T_JAB (bad CRC)

• LATE_COL - IEEE_T_LCOL

• COL_RETRY_LIM - IEEE_T_EXCOL

• XFIFO_UN - IEEE_T_MACERR

0x12DC IEEE_R_FDXFC Flow Control Pause frames received

0x12E0 IEEE_R_OCTETS_OK Octet count for Frames Rcvd w/o Error

Offset: 0x004 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

H
B

E
R

R

B
A

B
R

B
A

B
T

GRA TXF TXB RXF RXB MII

E
B

E
R

R

LC RL UN 0 0 0

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-4. Ethernet Interrupt Event Register (EIR)

Table 30-11. MIB Counters Memory Map (continued)

Address
Offset

Mnemonic Description

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

976 Freescale Semiconductor

30.5.4.2 Interrupt Mask Register (EIMR)

The EIMR register controls which interrupt events are allowed to generate actual interrupts. All
implemented bits in this CSR are read/write. This register is cleared upon a hardware reset. If the
corresponding bits in both the EIR and EIMR registers are set, the interrupt will be signalled to the CPU.

Table 30-12. EIR field descriptions

Field Description

HBERR Heartbeat error. This interrupt indicates that HBC is set in the TCR register and that the COL
input was not asserted within the Heartbeat window following a transmission.

BABR Babbling receive error. This bit indicates a frame was received with length in excess of
RCR[MAX_FL] bytes.

BABT Babbling transmit error. This bit indicates that the transmitted frame length has exceeded
RCR[MAX_FL] bytes. This condition is usually caused by a frame that is too long being placed
into the transmit data buffer(s). Truncation does not occur.

GRA Graceful stop complete. This interrupt will be asserted for one of three reasons. Graceful stop
means that the transmitter is put into a pause state after completion of the frame currently being
transmitted.
1) A graceful stop, which was initiated by the setting of the TCR[GTS] bit is now complete.
2) A graceful stop, which was initiated by the setting of the TCR[TFC_PAUSE] bit is now

complete.
3) A graceful stop, which was initiated by the reception of a valid full duplex flow control “pause”

frame is now complete. Refer to the “Full Duplex Flow Control” section of the Functional
Description chapter.

TXF Transmit frame interrupt. This bit indicates that a frame has been transmitted and that the last
corresponding buffer descriptor has been updated.

TXB Transmit buffer interrupt. This bit indicates that a transmit buffer descriptor has been updated.

RXF Receive frame interrupt. This bit indicates that a frame has been received and that the last
corresponding buffer descriptor has been updated.

RXB Receive buffer interrupt. This bit indicates that a receive buffer descriptor has been updated that
was not the last in the frame.

MII MII interrupt. This bit indicates that the MII has completed the data transfer requested.

EBERR Ethernet bus error. This bit indicates that a system bus error occurred when a DMA transaction
was underway. When the EBERR bit is set, ECR[ETHER_EN] will be cleared, halting frame
processing by the FEC. When this occurs software will need to insure that the FIFO controller
and DMA are also soft reset.

LC Late collison. This bit indicates that a collision occurred beyond the collision window (slot time)
in half duplex mode. The frame is truncated with a bad CRC and the remainder of the frame is
discarded.

RL Collision retry limit. This bit indicates that a collision occurred on each of 16 successive
attempts to transmit the frame. The frame is discarded without being transmitted and
transmission of the next frame will commence. Can only occur in half duplex mode.

UN Transmit FIFO underrun. This bit indicates that the transmit FIFO became empty before the
complete frame was transmitted. A bad CRC is appended to the frame fragment and the
remainder of the frame is discarded.

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 977

The interrupt signal will remain asserted until a 1 is written to the EIR bit (write 1 to clear) or a 0 is written
to the EIMR bit.

30.5.4.3 Receive Descriptor Active Register (RDAR)

RDAR is a command register, written by the user, that indicates that the receive descriptor ring has been
updated (empty receive buffers have been produced by the driver with the empty bit set).

Whenever the register is written, the RDAR bit is set. This is independent of the data actually written by
the user. When set, the FEC will poll the receive descriptor ring and process receive frames (provided
ECR[ETHER_EN] is also set). Once the FEC polls a receive descriptor whose empty bit is not set, then
the FEC will clear the RDAR bit and cease receive descriptor ring polling until the user sets the bit again,
signifying that additional descriptors have been placed into the receive descriptor ring.

The RDAR register is cleared at reset and when ECR[ETHER_EN] is cleared.

Offset: 0x008 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
H

B
E

R
R

B
A

B
R

B
A

B
T

GRA TXF TXB RXF RXB MII

E
B

E
R

R

LC RL UN
0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-5. Ethernet Interrupt Mask Register (EIMR)

Table 30-13. EIMR field descriptions

Name Description

See Figure 30-4
and Table 30-12.

Interrupt Mask. Each bit corresponds to an interrupt source defined by the EIR register. The
corresponding EIMR bit determines whether an interrupt condition can generate an interrupt.
At every clock, the EIR samples the signal generated by the interrupting source. The
corresponding EIR bit reflects the state of the interrupt signal even if the corresponding EIMR
bit is set.
0 The corresponding interrupt source is masked.
1 The corresponding interrupt source is not masked.

Offset: 0x010 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0

R
_D

E
S

_A
C

T
IV

E 0

W

Reset 0

Figure 30-6. Receive Descriptor Active Register (RDAR)

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

978 Freescale Semiconductor

30.5.4.4 Transmit Descriptor Active Register (TDAR)

The TDAR is a command register which should be written by the user to indicate that the transmit
descriptor ring has been updated (transmit buffers have been produced by the driver with the ready bit set
in the buffer descriptor).

Whenever the register is written, the TDAR bit is set. This value is independent of the data actually written
by the user. When set, the FEC will poll the transmit descriptor ring and process transmit frames (provided
ECR[ETHER_EN] is also set). Once the FEC polls a transmit descriptor whose ready bit is not set, then
the FEC will clear the TDAR bit and cease transmit descriptor ring polling until the user sets the bit again,
signifying additional descriptors have been placed into the transmit descriptor ring.

The TDAR register is cleared at reset, when ECR[ETHER_EN] is cleared, or when ECR[RESET] is set.

30.5.4.5 Ethernet Control Register (ECR)

ECR is a read/write user register, though both fields in this register may be altered by hardware as well.
The ECR is used to enable/disable the FEC.

Table 30-14. RDAR field descriptions

Field Description

R_DES_ACTIVE Set to one when this register is written, regardless of the value written. Cleared by the FEC
device whenever no additional “empty” descriptors remain in the receive ring. Also cleared when
ECR[ETHER_EN] is cleared.

Offset: 0x014 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0

X
_D

E
S

_A
C

T
IV

E 0

W

Reset 0

Figure 30-7. Transmit Descriptor Active Register (TDAR)

Table 30-15. TDAR Field Descriptions

Name Description

X_DES_ACTIVE Set to one when this register is written, regardless of the value written. Cleared by the FEC
device whenever no additional “ready” descriptors remain in the transmit ring. Also cleared when
ECR[ETHER_EN] is cleared.

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 979

30.5.4.6 MII Management Frame Register (MMFR)

The MMFR register is accessed by the user and does not reset to a defined value. The MMFR register is
used to communicate with the attached MII compatible PHY device(s), providing read/write access to their
MII registers. Performing a write to the MMFR register will cause a management frame to be sourced
unless the MSCR register has been programmed to 0. In the case of writing to MMFR when MSCR = 0,
if the MSCR register is then written to a non-zero value, an MII frame will be generated with the data
previously written to the MMFR register. This allows MMFR and MSCR to be programmed in either order
if MSCR is currently zero.

To perform a read or write operation on the MII Management Interface, the MMFR register must be
written by the user. To generate a valid read or write management frame, the ST field must be written with
a 01 pattern, and the TA field must be written with a 10. If other patterns are written to these fields, a frame
will be generated but will not comply with the IEEE 802.3 MII definition.

To generate an IEEE 802.3-compliant MII Management Interface write frame (write to a PHY register),
the user must write {01 01 PHYAD REGAD 10 DATA} to the MMFR register. Writing this pattern will
cause the control logic to shift out the data in the MMFR register following a preamble generated by the

Offset: 0x024 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E
T

H
E

R
_E

N

R
E

S
E

T

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-8. Ethernet Control Register (ECR)

Table 30-16. ECR field descriptions

Field Description

ETHER_EN When this bit is set, the FEC is enabled, and reception and transmission are possible. When this
bit is cleared, reception is immediately stopped and transmission is stopped after a bad CRC is
appended to any currently transmitted frame. The buffer descriptor(s) for an aborted transmit
frame are not updated after clearing this bit. When ETHER_EN is deasserted, the DMA, buffer
descriptor, and FIFO control logic are reset, including the buffer descriptor and FIFO pointers. The
ETHER_EN bit is altered by hardware under the following conditions:
 • ECR[RESET] is set by software, in which case ETHER_EN will be cleared
 • an error condition causes the EIR[EBERR] bit to set, in which case ETHER_EN will be cleared

RESET When this bit is set, the equivalent of a hardware reset is performed but it is local to the FEC.
ETHER_EN is cleared and all other FEC registers take their reset values. Also, any
transmission/reception currently in progress is abruptly aborted. This bit is automatically cleared
by hardware during the reset sequence. The reset sequence takes approximately 8 clock cycles
after RESET is written with a 1.

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

980 Freescale Semiconductor

control state machine. During this time the contents of the MMFR register will be altered as the contents
are serially shifted and will be unpredictable if read by the user. Once the write management frame
operation has completed, the MII interrupt will be generated. At this time the contents of the MMFR
register will match the original value written.

To generate an MII Management Interface read frame (read a PHY register) the user must write {01 10
PHYAD REGAD 10 XXXX} to the MMFR register (the content of the DATA field is a don’t care). Writing
this pattern will cause the control logic to shift out the data in the MMFR register following a preamble
generated by the control state machine. During this time the contents of the MMFR register will be altered
as the contents are serially shifted, and will be unpredictable if read by the user. Once the read management
frame operation has completed, the MII interrupt will be generated. At this time the contents of the MMFR
register will match the original value written except for the DATA field whose contents have been replaced
by the value read from the PHY register.

If the MMFR register is written while frame generation is in progress, the frame contents will be altered.
Software should use the MII_STATUS register and/or the MII interrupt to avoid writing to the MMFR
register while frame generation is in progress.

30.5.4.7 MII Speed Control Register (MSCR)

The MSCR register provides control of the MII clock (EMDC pin) frequency, allows a preamble drop on
the MII management frame, and provides observability (intended for manufacturing test) of an internal
counter used in generating the EMDC clock signal.

The MII_SPEED field must be programmed with a value to provide an EMDC frequency of less than or
equal to 2.5 MHz to be compliant with the IEEE 802.3 MII specification. The MII_SPEED must be set to
a non-zero value in order to source a read or write management frame. After the management frame is

Offset: 0x040 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
ST OP PA RA TA DATA

W

Reset —

Figure 30-9. MII Management Frame Register (MMFR)

Table 30-17. MMFR field descriptions

Field Description

ST Start of frame delimiter. These bits must be programmed to 01 for a valid MII management frame.

OP Operation code. This field must be programmed to 10 (read) or 01 (write) to generate a valid MII
management frame. A value of 11 will produce “read” frame operation while a value of 00 will
produce “write” frame operation, but these frames will not be MII compliant.

PA PHY address. This field specifies one of up to 32 attached PHY devices.

RA Register address. This field specifies one of up to 32 registers within the specified PHY device.

TA Turn around. This field must be programmed to 10 to generate a valid MII management frame.

DATA Management frame data. This is the field for data to be written to or read from the PHY register.

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 981

complete the MSCR register may optionally be set to zero to turn off the EMDC. The EMDC generated
will have a 50% duty cycle except when MII_SPEED is changed during operation (change will take effect
following either a rising or falling edge of EMDC).

If the system clock is 25 MHz, programming this register to 0x0000_0005 will result in an EMDC
frequency of 25 MHz * 1/10 = 2.5 MHz. Table 30-19 shows the optimum values for MII_SPEED as a
function of system clock frequency.

30.5.4.8 MIB Control Register (MIBC)

The MIB control register is a read/write register used to provide control of and to observe the state of the
MIB block. This register is accessed by user software if there is a need to disable the MIB block operation.
For example, in order to clear all MIB counters in RAM the user should disable the MIB block, then clear
all the MIB RAM locations, then enable the MIB block. The MIB_DISABLE bit is reset to 1. See
Table 30-11 for the locations of the MIB counters.

Offset: 0x044 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0

D
IS

_P
R

E

MII_SPEED

0

W

Reset 0

Figure 30-10. MII Speed Control Register (MSCR)

Table 30-18. MSCR field descriptions

Field Description

DIS_PREAMBLE Asserting this bit will cause preamble (32 1’s) not to be prepended to the MII management frame.
The MII standard allows the preamble to be dropped if the attached PHY device(s) does not
require it.

MII_SPEED MII_SPEED controls the frequency of the MII management interface clock (EMDC) relative to
system clock. A value of 0 in this field will “turn off” the EMDC and leave it in low voltage state.
Any non-zero value will result in the EMDC frequency of 1/(MII_SPEED*2) of the system clock
frequency.

Table 30-19. Programming examples for MSCR

System clock frequency MII_SPEED (field in reg) EMDC frequency

25 MHz 0x5 2.5 MHz

33 MHz 0x7 2.36 MHz

40 MHz 0x8 2.5 MHz

50 MHz 0xA 2.5 MHz

66 MHz 0xD 2.5 MHz

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

982 Freescale Semiconductor

30.5.4.9 Receive Control Register (RCR)

The RCR is programmed by the user. The RCR controls the operational mode of the receive block and
should be written only when ECR[ETHER_EN] = 0 (initialization time).

Offset: 0x064 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

M
IB

_D
IS

M
IB

_I
D

LE

0 0

W

Reset 1 1 0

Figure 30-11. MIB Control Register (MIBC)

Table 30-20. MIBC field descriptions

Field Description

MIB_DISABLE A read/write control bit. If set, the MIB logic will halt and not update any MIB counters.

MIB_IDLE A read-only status bit. If set the MIB block is not currently updating any MIB counters.

Offset: 0x084 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
MAX_FL

W

Reset 0 0 0 0 0 1 0 1 1 1 1 0 1 1 1 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0

FCE

B
C

_R
E

J

P
R

O
M

M
II_

M
O

D
E

DRT

LO
O

P

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 30-12. Receive Control Register (RCR)

Table 30-21. RCR field descriptions

Field Description

MAX_FL Maximum frame length. Resets to decimal 1518. Length is measured starting at DA and includes
the CRC at the end of the frame. Transmit frames longer than MAX_FL will cause the BABT
interrupt to occur. Receive Frames longer than MAX_FL will cause the BABR interrupt to occur
and will set the LG bit in the end of frame receive buffer descriptor. The recommended default
value to be programmed by the user is 1518 or 1522 (if VLAN Tags are supported).

FCE Flow control enable. If asserted, the receiver will detect PAUSE frames. Upon PAUSE frame
detection, the transmitter will stop transmitting data frames for a given duration.

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 983

30.5.4.10 Transmit Control Register (TCR)

This register is read/write and is written by the user to configure the transmit block. This register is cleared
at system reset. The FDEN and HBC bits should be modified only when ECR[ETHER_EN] = 0.

BC_REJ Broadcast frame reject. If asserted, frames with DA (destination address) =
FF_FF_FF_FF_FF_FF will be rejected unless the PROM bit is set. If both BC_REJ and PROM
= 1, then frames with broadcast DA will be accepted and the M (MISS) bit will be set in the receive
buffer descriptor.

PROM Promiscuous mode. All frames are accepted regardless of address matching.

MII_MODE Media independent interface mode. Selects external interface mode. Setting this bit to one
selects MII mode, setting this bit equal to zero selects 7-wire mode (used only for serial 10
Mbit/s). This bit controls the interface mode for both transmit and receive blocks.

DRT Disable receive on transmit.
0 Receive path operates independently of transmit (use for full duplex or to monitor transmit

activity in half duplex mode).
1 Disable reception of frames while transmitting (normally used for half duplex mode).

LOOP Internal loopback. If set, transmitted frames are looped back internal to the device and the
transmit output signals are not asserted. The system clock is substituted for the ETXCLK when
LOOP is asserted. DRT must be set to zero when asserting LOOP.

Offset: 0x0C4 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

0 0

R
F

C
_P

A
U

S
E

T
F

C
_P

A
U

S
E

F
D

E
N

H
B

C
G

T
S

W

Reset 0

Figure 30-13. Transmit Control Register (TCR)

Table 30-21. RCR field descriptions (continued)

Field Description

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

984 Freescale Semiconductor

30.5.4.11 Physical Address Lower Register (PALR)

The PALR register is written by the user. This register contains the lower 32 bits (bytes 0,1,2,3) of the
48-bit address used in the address recognition process to compare with the DA (Destination Address) field
of receive frames with an individual DA. In addition, this register is used in bytes 0 through 3 of the 6-byte
Source Address field when transmitting PAUSE frames. This register is not reset and must be initialized
by the user.

Table 30-22. TCR field descriptions

Field Description

RFC_PAUSE Receive frame control pause. This read-only status bit will be asserted when a full duplex flow
control pause frame has been received and the transmitter is paused for the duration defined in
this pause frame. This bit will automatically clear when the pause duration is complete.

TFC_PAUSE Transmit frame control pause. Transmits a PAUSE frame when asserted. When this bit is set, the
MAC will stop transmission of data frames after the current transmission is complete. At this time,
the GRA interrupt in the EIR register will be asserted. With transmission of data frames stopped,
the MAC will transmit a MAC Control PAUSE frame. Next, the MAC will clear the TFC_PAUSE bit
and resume transmitting data frames. Note that if the transmitter is paused due to user assertion
of GTS or reception of a PAUSE frame, the MAC may still transmit a MAC Control PAUSE frame.

FDEN Full duplex enable. If set, frames are transmitted independent of carrier sense and collision inputs.
This bit should only be modified when ETHER_EN is deasserted.

HBC Heartbeat control. If set, the heartbeat check is performed following end of transmission and the
HB bit in the status register will be set if the collision input does not assert within the heartbeat
window. This bit should only be modified when ETHER_EN is deasserted.

GTS Graceful transmit stop. When this bit is set, the MAC will stop transmission after any frame that is
currently being transmitted is complete and the GRA interrupt in the EIR register will be asserted.
If frame transmission is not currently underway, the GRA interrupt will be asserted immediately.
Once transmission has completed, a “restart” can be accomplished by clearing the GTS bit. The
next frame in the transmit FIFO will then be transmitted. If an early collision occurs during
transmission when GTS = 1, transmission will stop after the collision. The frame will be transmitted
again once GTS is cleared. Note that there may be old frames in the transmit FIFO that will be
transmitted when GTS is reasserted. To avoid this deassert ECR[ETHER_EN] following the GRA
interrupt.

Offset: 0x0E4 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PADDR1

W

Reset —

Figure 30-14. Physical Address Lower Register (PALR)

Table 30-23. PALR field descriptions

Field Description

PADDR1 Bytes 0 (bits 31:24), 1 (bits 23:16), 2 (bits 15:8) and 3 (bits 7:0) of the 6-byte individual address
to be used for exact match, and the Source Address field in PAUSE frames.

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 985

30.5.4.12 Physical Address Upper Register (PAUR)

The PAUR register is written by the user. This register contains the upper 16 bits (bytes 4 and 5) of the
48-bit address used in the address recognition process to compare with the DA (Destination Address) field
of receive frames with an individual DA. In addition, this register is used in bytes 4 and 5 of the 6-byte
Source Address field when transmitting PAUSE frames. Bits 15:0 of PAUR contain a constant type field
(0x8808) used for transmission of PAUSE frames. This register is not reset and bits 31:16 must be
initialized by the user.

30.5.4.13 Opcode/Pause Duration Register (OPD)

The OPD register is read/write accessible. This register contains the 16-bit Opcode, and 16-bit pause
duration fields used in transmission of a PAUSE frame. The Opcode field is a constant value, 0x0001.
When another node detects a PAUSE frame, that node will pause transmission for the duration specified
in the pause duration field. This register is not reset and must be initialized by the user.

Offset: 0x0E8 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PADDR2

TYPE

W

Reset — — — — — — — — — — — — — — — — 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

Figure 30-15. Physical Address Upper Register (PAUR)

Table 30-24. PAUR field descriptions

Field Description

PADDR2 Bytes 4 (bits 31:24) and 5 (bits 23:16) of the 6-byte individual address to be used for exact
match, and the Source Address field in PAUSE frames.

TYPE Type field in PAUSE frames. These 16-bits are a constant value of 0x8808.

Offset: 0x0EC Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R OPCODE
PAUSE_DUR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 — — — — — — — — — — — — — — — —

Figure 30-16. Opcode/Pause Duration Register (OPD)

Table 30-25. OPD field descriptions

Field Description

OPCODE Opcode field used in PAUSE frames.
These bits are a constant, 0x0001.

PAUSE_DUR Pause Duration field used in PAUSE frames.

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

986 Freescale Semiconductor

30.5.4.14 Descriptor Individual Upper Address Register (IAUR)

The IAUR register is written by the user. This register contains the upper 32 bits of the 64-bit individual
address hash table used in the address recognition process to check for possible match with the DA field
of receive frames with an individual DA. This register is not reset and must be initialized by the user.

30.5.4.15 Descriptor Individual Lower Address Register (IALR)

The IALR register is written by the user. This register contains the lower 32 bits of the 64-bit individual
address hash table used in the address recognition process to check for possible match with the DA field
of receive frames with an individual DA. This register is not reset and must be initialized by the user.

30.5.4.16 Descriptor Group Upper Address (GAUR)

The GAUR register is written by the user. This register contains the upper 32 bits of the 64-bit hash table
used in the address recognition process for receive frames with a multicast address. This register must be
initialized by the user.

Offset: 0x118 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
IADDR1

W

Reset —

Figure 30-17. Descriptor Individual Upper Address Register (IAUR)

Table 30-26. IAUR field descriptions

Field Descriptions

IADDR1 The upper 32 bits of the 64-bit hash table used in the address recognition process for receive
frames with a unicast address. Bit 31 of IADDR1 contains hash index bit 63. Bit 0 of IADDR1
contains hash index bit 32.

Offset: 0x11C Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
IADDR2

W

Reset —

Figure 30-18. Descriptor Individual Lower Address Register (IALR)

Table 30-27. IALR field descriptions

Field Description

IADDR2 The lower 32 bits of the 64-bit hash table used in the address recognition process for receive
frames with a unicast address. Bit 31 of IADDR2 contains hash index bit 31. Bit 0 of IADDR2
contains hash index bit 0.

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 987

30.5.4.17 Descriptor Group Lower Address (GALR)

The GALR register is written by the user. This register contains the lower 32 bits of the 64-bit hash table
used in the address recognition process for receive frames with a multicast address. This register must be
initialized by the user.

30.5.4.18 FIFO Transmit FIFO Watermark Register (TFWR)

The TFWR register contains a 2-bit field programmed by the user to control the amount of data required
in the transmit FIFO before transmission of a frame can begin. This allows the user to minimize transmit
latency (TFWR = 0x) or allow for larger bus access latency (TFWR = 11) due to contention for the system
bus. Setting the watermark to a high value will minimize the risk of transmit FIFO underrun due to
contention for the system bus. The byte counts associated with the TFWR field may need to be modified
to match a given system requirement (worst case bus access latency by the transmit data DMA channel).

Offset: 0x120 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
GADDR1

W

Reset —

Figure 30-19. Descriptor Group Upper Address Register (GAUR)

Table 30-28. GAUR field descriptions

Field Description

GADDR1 The GADDR1 register contains the upper 32 bits of the 64-bit hash table used in the address
recognition process for receive frames with a multicast address. Bit 31 of GADDR1 contains
hash index bit 63. Bit 0 of GADDR1 contains hash index bit 32.

Offset: 0x124 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
GADDR2

W

Reset —

Figure 30-20. Descriptor Group Lower Address Register (GALR)

Table 30-29. GALR field descriptions

Field Description

GADDR2 The GADDR2 register contains the lower 32 bits of the 64-bit hash table used in the address
recognition process for receive frames with a multicast address. Bit 31 of GADDR2 contains
hash index bit 31. Bit 0 of GADDR2 contains hash index bit 0.

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

988 Freescale Semiconductor

30.5.4.19 FIFO Receive Bound Register (FRBR)

The FRBR register is a eight bit register that the user can read to determine the upper address bound of the
FIFO RAM. Drivers can use this value, along with the FRSR register to appropriately divide the available
FIFO RAM between the transmit and receive data paths.

Offset: 0x144 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0

X
_W

M
R

K

W

Reset 0

Figure 30-21. Transmit FIFO Watermark Register (TFWR)

Table 30-30. TFWR field descriptions

Field Descriptions

X_WMRK Number of bytes written to transmit FIFO before transmission of a frame begins
0x 64 bytes written
10 128 bytes written
11 192 bytes written

Offset: 0x14C Access: User read

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 1 R_BOUND 0 0

W

Reset 0 1 1 0 0 0 0 0 0 0 0 0

Figure 30-22. FIFO Receive Bound Register (FRBR)

31 16

Field —

Reset 0000_0000_0000_0000

R/W Read Only

15 10 9 2 1 0

Field — R_BOUND —

Reset 0000_0110_0000_0000

R/W Read Only

Address IPSBAR + 0x114C

Figure 30-23. FIFO Receive Bound Register (FRBR)

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 989

30.5.4.20 FIFO Receive Start Register (FRSR)

The FRSR register is a eight bit register programmed by the user to indicate the starting address of the
receive FIFO. FRSR marks the boundary between the transmit and receive FIFOs. The transmit FIFO uses
addresses from the start of the FIFO to FRSR-4. The receive FIFO uses addresses from FRSR to FRBR
inclusive.

The FRSR register is initialized by hardware at reset. FRSR only needs to be written to change the default
value.

30.5.4.21 Receive Descriptor Ring Start Register (ERDSR)

The ERDSR register is written by the user.

This register provides a pointer to the start of the circular receive buffer descriptor queue in external
memory. This pointer must be 32-bit aligned; however, it is recommended it be made 128-bit aligned
(evenly divisible by 16).

This register is not reset and must be initialized by the user prior to operation.

Table 30-31. FRBR field descriptions

Name Descriptions

R_BOUND Highest valid FIFO RAM address.

Offset: 0x150 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 1
R_FSTART

0 0

W

Reset 0 1 0 1 0 0 0 0 0 0 0 0

Figure 30-24. FIFO Receive Start Register (FRSR)

Table 30-32. FRSR field descriptions

Field Descriptions

R_FSTART Address of first receive FIFO location. Acts as delimiter between receive and transmit FIFOs.

Offset: 0x180 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
R_DES_START

0 0

W

Reset —

Figure 30-25. Receive Descriptor Ring Start Register (ERDSR)

Table 30-33. ERDSR field descriptions

Field Descriptions

R_DES_START Pointer to start of receive buffer descriptor queue.

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

990 Freescale Semiconductor

30.5.4.22 Transmit Buffer Descriptor Ring Start (ETSDR)

The ETSDR register is written by the user.

This register provides a pointer to the start of the circular transmit buffer descriptor queue in external
memory. This pointer must be 32-bit aligned; however, it is recommended it be made 128-bit aligned
(evenly divisible by 16). Bits 1 and 0 should be written to 0 by the user. Non-zero values in these two bit
positions are ignored by the hardware.

This register is not reset and must be initialized by the user prior to operation.

30.5.4.23 Receive Buffer Size Register (EMRBR)

The EMRBR register is a 9-bit register programmed by the user. The EMRBR register dictates the
maximum size of all receive buffers. Note that because receive frames will be truncated at 2k-1 bytes, only
bits 10–4 are used. This value should take into consideration that the receive CRC is always written into
the last receive buffer. To allow one maximum size frame per buffer, EMRBR must be set to
RCR[MAX_FL] or larger. The EMRBR must be evenly divisible by 16. To insure this, bits 3-0 are forced
low. To minimize bus utilization (descriptor fetches) it is recommended that EMRBR be greater than or
equal to 256 bytes.

The EMRBR register does not reset, and must be initialized by the user.

Offset: 0x184 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
X_DES_START

0 0

W

Reset —

Figure 30-26. Transmit Buffer Descriptor Ring Start Register (ETDSR)

Table 30-34. ETDSR field descriptions

Field Descriptions

X_DES_START Pointer to start of transmit buffer descriptor queue.

Offset: 0x188 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0
R_BUF_SIZE

0 0 0 0

W

Reset —

Figure 30-27. Receive Buffer Size Register (EMRBR)

Table 30-35. EMRBR field descriptions

Field Descriptions

R_BUF_SIZE Receive buffer size.

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 991

30.6 Buffer Descriptors
This section provides a description of the operation of the driver/DMA via the buffer descriptors. It is
followed by a detailed description of the receive and transmit descriptor fields.

30.6.1 Driver/DMA Operation with Buffer Descriptors

The data for the FEC frames must reside in memory external to the FEC. The data for a frame is placed in
one or more buffers. Associated with each buffer is a buffer descriptor (BD) which contains a starting
address (pointer), data length, and status/control information (which contains the current state for the
buffer). To permit maximum user flexibility, the BDs are also located in external memory and are read in
by the FEC DMA engine.

Software “produces” buffers by allocating/initializing memory and initializing buffer descriptors. Setting
the RxBD[E] or TxBD[R] bit “produces” the buffer. Software writing to either the TDAR or RDAR tells
the FEC that a buffer has been placed in external memory for the transmit or receive data traffic,
respectively. The hardware reads the BDs and “consumes” the buffers after they have been produced. After
the data DMA is complete and the buffer descriptor status bits have been written by the DMA engine, the
RxBD[E] or TxBD[R] bit will be cleared by hardware to signal the buffer has been “consumed.” Software
may poll the BDs to detect when the buffers have been consumed or may rely on the buffer/frame
interrupts. These buffers may then be processed by the driver and returned to the free list.

The ECR[ETHER_EN] signal operates as a reset to the BD/DMA logic. When ECR[ETHER_EN] is
deasserted the DMA engine BD pointers are reset to point to the starting transmit and receive BDs. The
buffer descriptors are not initialized by hardware during reset. At least one transmit and receive buffer
descriptor must be initialized by software before the ECR[ETHER_EN] bit is set.

The buffer descriptors operate as two separate rings. ERDSR defines the starting address for receive BDs
and ETDSR defines the starting address for transmit BDs. The last buffer descriptor in each ring is defined
by the Wrap (W) bit. When set, W indicates that the next descriptor in the ring is at the location pointed to
by ERDSR and ETDSR for the receive and transmit rings, respectively. Buffer descriptor rings must start
on a 32-bit boundary; however, it is recommended they are made 128-bit aligned.

30.6.1.1 Driver/DMA Operation with Transmit BDs

Typically a transmit frame will be divided between multiple buffers. An example is to have an application
payload in one buffer, TCP header in a 2nd buffer, IP header in a 3rd buffer, Ethernet/IEEE 802.3 header
in a 4th buffer. The Ethernet MAC does not prepend the Ethernet header (Destination Address, Source
Address, Length/Type field(s)), so this must be provided by the driver in one of the transmit buffers. The
Ethernet MAC can append the Ethernet CRC to the frame. Whether the CRC is appended by the MAC or
by the driver is determined by the TC bit in the transmit BD which must be set by the driver.

The driver (TxBD software producer) should set up Tx BDs in such a way that a complete transmit frame
is given to the hardware at once. If a transmit frame consists of three buffers, the BDs should be initialized
with pointer, length and control (W, L, TC, ABC) and then the TxBD[R] bits should be set = 1 in reverse
order (3rd, 2nd, 1st BD) to insure that the complete frame is ready in memory before the DMA begins. If
the TxBDs are set up in order, the DMA Controller could DMA the first BD before the 2nd was made
available, potentially causing a transmit FIFO underrun.

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

992 Freescale Semiconductor

In the FEC, the DMA is notified by the driver that new transmit frame(s) are available by writing to the
TDAR register. When this register is written to (data value is not significant) the FEC RISC will tell the
DMA to read the next transmit BD in the ring. Once started, the RISC + DMA will continue to read and
interpret transmit BDs in order and DMA the associated buffers, until a transmit BD is encountered with
the R bit = 0. At this point the FEC will poll this BD one more time. If the R bit = 0 the second time, then
the RISC will stop the transmit descriptor read process until software sets up another transmit frame and
writes to TDAR.

When the DMA of each transmit buffer is complete, the DMA writes back to the BD to clear the R bit,
indicating that the hardware consumer is finished with the buffer.

30.6.1.2 Driver/DMA Operation with Receive BDs

Unlike transmit, the length of the receive frame is unknown by the driver ahead of time. Therefore the
driver must set a variable to define the length of all receive buffers. In the FEC, this variable is written to
the EMRBR register.

The driver (RxBD software producer) should set up some number of “empty” buffers for the Ethernet by
initializing the address field and the E and W bits of the associated receive BDs. The hardware (receive
DMA) will consume these buffers by filling them with data as frames are received and clearing the E bit
and writing to the L (1 indicates last buffer in frame) bit, the frame status bits (if L = 1) and the length field.

If a receive frame spans multiple receive buffers, the L bit is only set for the last buffer in the frame. For
non-last buffers, the length field in the receive BD will be written by the DMA (at the same time the E bit
is cleared) with the default receive buffer length value. For end of frame buffers the receive BD will be
written with L = 1 and information written to the status bits (M, BC, MC, LG, NO, CR, OV, TR). Some of
the status bits are error indicators which, if set, indicate the receive frame should be discarded and not
given to higher layers. The frame status/length information is written into the receive FIFO following the
end of the frame (as a single 32-bit word) by the receive logic. The length field for the end of frame buffer
will be written with the length of the entire frame, not just the length of the last buffer.

For simplicity the driver may assign the default receive buffer length to be large enough to contain an entire
frame, keeping in mind that a malfunction on the network or out of spec implementation could result in
giant frames. Frames of 2k (2048) bytes or larger are truncated by the FEC at 2047 bytes so software is
guaranteed never to see a receive frame larger than 2047 bytes.

Similar to transmit, the FEC will poll the receive descriptor ring after the driver sets up receive BDs and
writes to the RDAR register. As frames are received the FEC will fill receive buffers and update the
associated BDs, then read the next BD in the receive descriptor ring. If the FEC reads a receive BD and
finds the E bit = 0, it will poll this BD once more. If the BD = 0 a second time the FEC will stop reading
receive BDs until the driver writes to RDAR.

30.6.2 Ethernet Receive Buffer Descriptor (RxBD)

In the RxBD, the user initializes the E and W bits in the first longword and the pointer in second longword.
When the buffer has been DMA’d, the Ethernet controller will modify the E, L, M, BC, MC, LG, NO, CR,
OV, and TR bits and write the length of the used portion of the buffer in the first longword. The M, BC,

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 993

MC, LG, NO, CR, OV and TR bits in the first longword of the buffer descriptor are only modified by the
Ethernet controller when the L bit is set.

Figure 30-28. Receive Buffer Descriptor (RxBD)

Table 30-36. Receive Buffer Descriptor Field Definitions

Word Location Field Name Description

Offset + 0 Bit 15 E Empty. Written by the FEC (=0) and user (=1).
0 The data buffer associated with this BD has been filled with

received data, or data reception has been aborted due to an
error condition. The status and length fields have been
updated as required.

1 The data buffer associated with this BD is empty, or
reception is currently in progress.

Offset + 0 Bit 14 RO1 Receive software ownership.
This field is reserved for use by software. This read/write bit will
not be modified by hardware, nor will its value affect hardware.

Offset + 0 Bit 13 W Wrap. Written by user.
0 The next buffer descriptor is found in the consecutive

location
1 The next buffer descriptor is found at the location defined in

ERDSR.

Offset + 0 Bit 12 RO2 Receive software ownership.
This field is reserved for use by software. This read/write bit will
not be modified by hardware, nor will its value affect hardware.

Offset + 0 Bit 11 L Last in frame. Written by the FEC.
0 The buffer is not the last in a frame.
1 The buffer is the last in a frame.

Offset + 0 Bits 10–9 — Reserved.

Offset + 0 Bit 8 M Miss. Written by the FEC. This bit is set by the FEC for frames
that were accepted in promiscuous mode, but were flagged as
a “miss” by the internal address recognition. Thus, while in
promiscuous mode, the user can use the M-bit to quickly
determine whether the frame was destined to this station. This
bit is valid only if the L-bit is set and the PROM bit is set.
0 The frame was received because of an address recognition

hit.
1 The frame was received because of promiscuous mode.

Offset + 0

Offset + 2

Offset + 4

Offset + 6 Rx Data Buffer Pointer - A[15:0]

Data Length

TROVCR—NOLGMCBCM——LRO2WRO1E

0123456789101112131415

Rx Data Buffer Pointer - A[31:16]

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

994 Freescale Semiconductor

NOTE

Whenever the software driver sets an E bit in one or more receive
descriptors, the driver should follow that with a write to RDAR.

30.6.3 Ethernet Transmit Buffer Descriptor (TxBD)

Data is presented to the FEC for transmission by arranging it in buffers referenced by the channel’s TxBDs.
The Ethernet controller confirms transmission by clearing the ready bit (R bit) when DMA of the buffer is
complete. In the TxBD the user initializes the R, W, L, and TC bits and the length (in bytes) in the first
longword, and the buffer pointer in the second longword.

The FEC will set the R bit = 0 in the first longword of the BD when the buffer has been DMA’d. Status
bits for the buffer/frame are not included in the transmit buffer descriptors. Transmit frame status is

Offset + 0 Bit 7 BC Will be set if the DA is broadcast (FF-FF-FF-FF-FF-FF).

Offset + 0 Bit 6 MC Will be set if the DA is multicast and not BC.

Offset + 0 Bit 5 LG Rx frame length violation. Written by the FEC. A frame length
greater than RCR[MAX_FL] was recognized. This bit is valid
only if the L-bit is set. The receive data is not altered in any way
unless the length exceeds 2047 bytes.

Offset + 0 Bit 4 NO Receive non-octet aligned frame. Written by the FEC. A frame
that contained a number of bits not divisible by 8 was received,
and the CRC check that occurred at the preceding byte
boundary generated an error. This bit is valid only if the L-bit is
set. If this bit is set the CR bit will not be set.

Offset + 0 Bit 3 -- Reserved.

Offset + 0 Bit 2 CR Receive CRC error. Written by the FEC. This frame contains a
CRC error and is an integral number of octets in length. This bit
is valid only if the L-bit is set.

Offset + 0 Bit 1 OV Overrun. Written by the FEC. A receive FIFO overrun occurred
during frame reception. If this bit is set, the other status bits, M,
LG, NO, CR, and CL lose their normal meaning and will be
zero. This bit is valid only if the L-bit is set.

Offset + 0 Bit 0 TR Will be set if the receive frame is truncated (frame length >
2047 bytes). If the TR bit is set the frame should be discarded
and the other error bits should be ignored as they may be
incorrect.

Offset + 2 Bits [15:0] Data Length Data length. Written by the FEC. Data length is the number of
octets written by the FEC into this BD’s data buffer if L = 0 (the
value will be equal to EMRBR), or the length of the frame
including CRC if L = 1. It is written by the FEC once as the BD
is closed.

0ffset + 4 Bits [15:0] A[31:16] RX data buffer pointer, bits [31:16]

Offset + 6 Bits [15:0] A[15:0] RX data buffer pointer, bits [15:0]

Table 30-36. Receive Buffer Descriptor Field Definitions (continued)

Word Location Field Name Description

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 995

indicated via individual interrupt bits (error conditions) and in statistic counters in the MIB block. See
Section 30.5.3, MIB Block Counters Memory Map, for more details.

.

Figure 30-29. Transmit Buffer Descriptor (TxBD)

Table 30-37. Transmit Buffer Descriptor Field Definitions

Word Location Field Name Description

Offset + 0 Bit 15 R Ready. Written by the FEC and the user.
0 The data buffer associated with this BD is not ready for

transmission. The user is free to manipulate this BD or its
associated data buffer. The FEC clears this bit after the
buffer has been transmitted or after an error condition is
encountered.

1 The data buffer, which has been prepared for transmission
by the user, has not been transmitted or is currently being
transmitted. No fields of this BD may be written by the user
once this bit is set.

Offset + 0 Bit 14 TO1 Transmit software ownership. This field is reserved for software
use. This read/write bit will not be modified by hardware, nor
will its value affect hardware.

Offset + 0 Bit 13 W Wrap. Written by user.
0 The next buffer descriptor is found in the consecutive

location
1 The next buffer descriptor is found at the location defined in

ETDSR.

Offset + 0 BIt 12 TO2 Transmit software ownership. This field is reserved for use by
software. This read/write bit will not be modified by hardware,
nor will its value affect hardware.

Offset + 0 Bit 11 L Last in frame. Written by user.
0 The buffer is not the last in the transmit frame.
1 The buffer is the last in the transmit frame.

Offset + 0 Bit 10 TC Tx CRC. Written by user (only valid if L = 1).
0 End transmission immediately after the last data byte.
1 Transmit the CRC sequence after the last data byte.

Offset + 0 Bit 9 ABC Append bad CRC. Written by user (only valid if L = 1).
0 No effect
1 Transmit the CRC sequence inverted after the last data byte

(regardless of TC value).

Offset + 0 Bits [8:0] — Reserved.

Offset + 0

Offset + 2

Offset + 4

Offset + 6
Tx Data Buffer Pointer - A[15:0]

Data Length

TCLTO2WTO1R ABC

Tx Data Buffer Pointer - A[31:16]

0123456789101112131415

Chapter 30 Fast Ethernet Controller (FEC)

MPC5646C Microcontroller Reference Manual, Rev. 5

996 Freescale Semiconductor

NOTE

Once the software driver has set up the buffers for a frame, it should set up
the corresponding BDs. The last step in setting up the BDs for a transmit
frame should be to set the R bit in the first BD for the frame. The driver
should follow that with a write to TDAR which will trigger the FEC to poll
the next BD in the ring.

Offset + 2 Bits [15:0] Data Length Data Length, written by user.
Data length is the number of octets the FEC should transmit
from this BD’s data buffer. It is never modified by the FEC. Bits
[15:5] are used by the DMA engine, bits[4:0] are ignored.

Offset + 4 Bits [15:0] A[31:16] Tx data buffer pointer, bits [31:16]1

Offset + 6 Bits [15:0] A[15:0] Tx data buffer pointer, bits [15:0].

1 The transmit buffer pointer, which contains the address of the associated data buffer, may be even
or odd. The buffer must reside in memory external to the FEC. This value is never modified by the
Ethernet controller.

Table 30-37. Transmit Buffer Descriptor Field Definitions (continued)

Word Location Field Name Description

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 997

——— Timers ———

MPC5646C Microcontroller Reference Manual, Rev. 5

998 Freescale Semiconductor

THE PAGE IS INTENTIONALLY LEFT BLANK

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 999

Chapter 31
Timers

This chapter describes the timer modules implemented on the microcontroller:

• System Timer Module (STM)

• Enhanced Modular IO Subsystem (eMIOS)

• Periodic Interrupt Timer with Real-Time Interrupt (PIT_RTI)

The microcontroller also has a Real Time Clock / Autonomous Periodic Interrupt (RTC/API) module. The
main purpose of this is to provide a periodic device wakeup source.

31.1 Technical overview
This section gives a technical overview of each of the timers as well as detailing the pins that can be used
to access the timer peripherals if applicable.

Figure 31-1 details the interaction between the timers and the eDMA, INTC, CTU, and ADC.

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1000 Freescale Semiconductor

Figure 31-1. Interaction between timers and relevant peripherals

DMA / MUX

INTC

eMIOS 0 CTU
eMIOS0

CH[0..22, 24..31]

eMIOS 1

Trigger
[0..22, 24..31]

Trigger
[32..54, 56..63]

PIT_RTI

Trigger[23,55]
PIT_CH[3,7]

eMIOS1
CH[0..22, 24..31]

CH[0..31]

CH[0..31]

eMIOS0
CH[0,1,9,18,25,26] Mux[17..22]

Mux[23..28]
eMIOS1

CH[0,9,17,18,25,26]

PIT_CH[0,1,4,5] Trigger[1..4]

IRQ[141..156]
eMIOS0

CH[0..31]*

IRQ[157..172]
eMIOS1

CH[0..31]*

IRQ[58, 59..61,
127..131]

RTI, PIT[0..2, 3..7]

RTI, PIT[0..7]

ADC 0
(10-bit)

31

31

2

6

6

4

16

16

9

ADC 1
(12-bit)

PIT_CH[2]

PIT Trigger for INJECTED ADC Conversions

2

PIT_CH[6]

CTU triggers for
all ADC channels

Single ADC
conversion per
CTU channel

Note*

There are 16 interrupt requests from the eMIOS to the INTC. eMIOS
channels are routed to the interrupt controller in pairs for example
CH[0,1] CH[2,3]

STM

CH[0..3]

IRQ[30..33]
STM_CH[0..3]4

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1001

31.1.1 Overview of the STM

The STM is a 32-bit free running up-counter clocked by the system clock with a configurable 8-bit clock
pre-scaler (divide by 1 to 256). The counter is disabled out of reset and must therefore be enabled by
software prior to use. The counter value can be read at any time.

The STM has four 32-bit compare channels. Each channel can generate a unique interrupt on an exact
match event with the free running counter.

The STM is often used to analyze code execution times. By starting the STM and reading the timer before
and after a task or function, you can make an accurate measurement of the time taken in clock cycles to
perform the task.

The STM can be configured to stop (freeze) or continue to run in debug mode and is available for use in
all operating mode where the system clock is present (not STANDBY or certain STOP mode
configurations)

There are no external pins associated with the STM.

31.1.2 Overview of the eMIOS

There are two 32-channel eMIOS modules. Each eMIOS offers a combination of PWM, Output Capture
and Input Compare functions. There are different types of channel implemented and not every channel
supports every eMIOS function. The channel functionality also differs between each eMIOS module. See
Section 31.3, Enhanced Modular IO Subsystem (eMIOS), for more details.

Each channel has its own independent 16-bit counter. To allow synchronization between channels, there
are a number of shared counter busses that can be used as a common timing reference. These counter buses
can be used in combination with the individual channel counters to provide advanced features such as
centre aligned PWM with dead time insertion.

Once configured, the eMIOS needs very little CPU intervention. Interrupts, eDMA requests and CTU
trigger requests can be raised based on eMIOS flag and timeout events.

The eMIOS is clocked from the system clock via peripheral clock group 3 (with a maximum permitted
clock frequency of 64 MHz). The eMIOS can be used in all modes where the system clock is available
(which excludes STANDBY mode and STOP mode when the system clock is turned off). The eMIOS has
an option to allow the eMIOS counters to freeze or to continue running in debug mode.

On eMIOS_0, PWM signals can be automatically serialised over the DSPI. This not only saves on pins but
allows direct connection to a SPI based external lamp driver. Once configured, the eMIOS serialisation
feature works with no or little CPU intervention and DSPI packets are transmitted automatically, triggered
by eMIOS PWM flags.

The CTU allows an eMIOS event to trigger a single ADC conversion via the CTU without any CPU
intervention. Without the CTU, the eMIOS would have to trigger an interrupt request. The respective ISR
would then perform a software triggered ADC conversion. This not only uses CPU resource, but also
increases the latency between the eMIOS event and the ADC trigger.

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1002 Freescale Semiconductor

The eMIOS "Output Pulse Width Modulation with Trigger" mode (see Section 31.3.4.1.1.12, Output Pulse
Width Modulation with Trigger (OPWMT) mode) allows a customisable trigger point to be defined at any
point in the waveform period. This is extremely useful for LED lighting applications where the trigger can
be set to a point where the PWM output is high but after the initial inrush current to the LED has occurred.
The PWM trigger can then cause the CTU to perform a single ADC conversion which in turn measures
the operating conditions of the LED to ensure it is working within specification. A watchdog feature on
the ADC allows channels to be monitored and if the results fall out with a specific range an interrupt is
triggered. This means that all of the measurement is without CPU intervention if the results are within
range.

To make it easier to plan which pins to use for the eMIOS, Table 31-1 and Table 31-2 show the eMIOS
channel numbers that are available on each pin. The color shading matches the channel configuration
diagram in the eMIOS section.

Table 31-1. eMIOS_0 channel to pin mapping

Channel
Pin function

Channel
Pin function

ATL1 ALT2 ALT3 ATL1 ALT2 ALT3

UC[0] PA[0] PA[14] UC[16] PE[0]

UC[1] PA[1] PA[15] UC[17] PE[1]

UC[2] PA[2] UC[18] PE[2]

UC[3] PB[11] PC[8] UC[19] PE[3]

UC[4] PA[4], PB[12] UC[20] PE[4]

UC[5] PA[5], PB[13] UC[21] PE[5]

UC[6] PA[6], PB[14] UC[22] PE[6], PF[5] PE[8]

UC[7] PA[7], PB[15] PC[9] UC[23] PE[7], PF[6] PE[9]

UC[8] PA[8] UC[24] PE[11], PG[10] PD[12]

UC[9] PA[9] UC[25] PG[11], PD[13]

UC[10] PA[10], PF[0] UC[26] PG[12] PD[14]

UC[11] PA[11], PF[1] UC[27] PG[13] PD[15]

UC[12] PC[12], PF[2] UC[28] PI[0] PA[12]

UC[13] PC[13], PF[3] PA[0] UC[29] PI[1] PA[13]

UC[14] PC[14], PF[4] PA[8] UC[30] PI[2] PB[0] PB[2]

UC[15] PC[15] UC[31] PB[3], PI[3] PB[1]

Table 31-2. eMIOS_1 channel to pin mapping

Channel
Pin function

Channel
Pin function

ATL1 ALT2 ALT3 ATL1 ALT2 ALT3

UC[0] PG[14], PK[3] UC[16] PG[7]

UC[1] PG[15] PK[4] UC[17] PG[8] PH[15]

UC[2] PH[0] PF[10] UC[18] PG[9] PJ[4]

UC[3] PH[1] PF[11] UC[19] PE[12]

UC[4] PF[15], PH[2] UC[20] PE[13]

UC[5] PH[3] PH[11] UC[21] PE[14]

UC[6] PH[4] UC[22] PE[15]

UC[7] PH[5] UC[23] PG[0]

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1003

31.1.3 Overview of the PIT_RTI

The PIT_RTI module consists of:

• 8 Periodic Interrupt Timers (PITs) clocked from the system clock

• 1 Real Time Interrupt (RTI) block clocked from the FXOSC so that it can be used for system
wakeup

Out of reset, the PIT and RTI timers are disabled. There is a global disable control bit for all of the PIT
timers and a separate independent disable for the RTI. Before using the timers, software must clear the
appropriate disabled bit. Each of the PIT timers and the RTI are effectively standalone entities and each
have their own timer and control registers.

The PIT_RTI timers are 32-bit count down timers. To use them, you must first program an initial value
into the LDVAL register. The timer will then start to count down and can be read at any time. Once the
timer reaches 0x0000_0000, a flag is set and the previous value is automatically re-loaded into the LDVAL
register and the countdown starts again. The flag event can be routed to a dedicated INTC interrupt if
desired.

The PIT is also used to trigger other events:

• 4 of the PIT channels can be used as an eDMA trigger

• 2 PIT channel can be used to trigger a CTU ADC conversion (single)

• 2 PIT channels (1 per ADC module) can be used to directly trigger injected conversions on the
ADC

The timers can be configured to stop (freeze) or to continue to run in debug mode. The PIT and RTI are
both available in all modes where a system clock is generated. The RTI is also available in stop mode as a
wakeup source as long as the external FXOSC is enabled.

There are no external pins associated with the PIT_RTI.

UC[8] PH[6] UC[24] PG[1]

UC[9] PH[7] UC[25] PF[12] PH[12]

UC[10] PH[8] UC[26] PF[13] PH[13]

UC[11] PG[2] UC[27] PF[14] PH[14]

UC[12] PG[3] UC[28] PI[4] PC[6]

UC[13] PG[4] UC[29] PI[5] PC[7]

UC[14] PG[5] UC[30] PI[6] PG[7] PE[10]

UC[15] PG[6] UC[31] PC[4], PI[7] PG[10]

Table 31-2. eMIOS_1 channel to pin mapping (continued)

Channel
Pin function

Channel
Pin function

ATL1 ALT2 ALT3 ATL1 ALT2 ALT3

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1004 Freescale Semiconductor

31.2 System Timer Module (STM)

31.2.1 Introduction

31.2.1.1 Overview

The System Timer Module (STM) is a 32-bit timer designed to support commonly required system and
application software timing functions. The STM includes a 32-bit up counter and four 32-bit compare
channels with a separate interrupt source for each channel. The counter is driven by the system clock
divided by an 8-bit prescale value (1 to 256).

31.2.1.2 Features

The STM has the following features:

• One 32-bit up counter with 8-bit prescaler

• Four 32-bit compare channels

• Independent interrupt source for each channel

• Counter can be stopped in debug mode

31.2.1.3 Modes of operation

The STM supports two device modes of operation: normal and debug. When the STM is enabled in normal
mode, its counter runs continuously. In debug mode, operation of the counter is controlled by the FRZ bit
in the STM_CR register. If the FRZ bit is set, the counter is stopped in debug mode, otherwise it continues
to run.

31.2.2 External signal description

The STM does not have any external interface signals.

31.2.3 Memory map and register definition

The STM programming model has fourteen 32-bit registers. The STM registers can only be accessed using
32-bit (word) accesses. Attempted references using a different size or to a reserved address generates a bus
error termination.

31.2.3.1 Memory map

The STM memory map is shown in Table 31-3.

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1005

31.2.3.2 Register descriptions

The following sections detail the individual registers within the STM programming model.

31.2.3.2.1 STM Control Register (STM_CR)

The STM Control Register (STM_CR) includes the prescale value, freeze control and timer enable bits.

Table 31-3. STM memory map

Base address: 0xFFF3_C000

Address offset Register Location

0x0000 STM Control Register (STM_CR) on page 1005

0x0004 STM Counter Value (STM_CNT) on page 1006

0x0008–0x000C Reserved

0x0010 STM Channel 0 Control Register (STM_CCR0) on page 1007

0x0014 STM Channel 0 Interrupt Register (STM_CIR0) on page 1007

0x0018 STM Channel 0 Compare Register (STM_CMP0) on page 1008

0x001C Reserved

0x0020 STM Channel 1 Control Register (STM_CCR1) on page 1007

0x0024 STM Channel 1 Interrupt Register (STM_CIR1) on page 1007

0x0028 STM Channel 1 Compare Register (STM_CMP1) on page 1008

0x002C Reserved

0x0030 STM Channel 2 Control Register (STM_CCR2) on page 1007

0x0034 STM Channel 2 Interrupt Register (STM_CIR2) on page 1007

0x0038 STM Channel 2 Compare Register (STM_CMP2) on page 1008

0x003C Reserved

0x0040 STM Channel 3 Control Register (STM_CCR3) on page 1007

0x0044 STM Channel 3 Interrupt Register (STM_CIR3) on page 1007

0x0048 STM Channel 3 Compare Register (STM_CMP3) on page 1008

0x004C–0x3FFF Reserved

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1006 Freescale Semiconductor

31.2.3.2.2 STM Count Register (STM_CNT)

The STM Count Register (STM_CNT) holds the timer count value.

Offset: 0x000 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CPS

0 0 0 0 0 0
FRZ TEN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-2. STM Control Register (STM_CR)

Table 31-4. STM_CR field descriptions

Field Description

CPS Counter Prescaler. Selects the clock divide value for the prescaler (1 - 256).
0x00 = Divide system clock by 1
0x01 = Divide system clock by 2
...
0xFF = Divide system clock by 256

FRZ Freeze. Allows the timer counter to be stopped when the device enters debug mode.
0 = STM counter continues to run in debug mode.
1 = STM counter is stopped in debug mode.

TEN Timer Counter Enabled.
0 = Counter is disabled.
1 = Counter is enabled.

Offset: 0x004 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CNT

W

Reset 0

Figure 31-3. STM Count Register (STM_CNT)

Table 31-5. STM_CNT field descriptions

Field Description

CNT Timer count value used as the time base for all channels. When enabled, the counter increments at the
rate of the system clock divided by the prescale value.

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1007

31.2.3.2.3 STM Channel Control Register (STM_CCRn)

The STM Channel Control Register (STM_CCRn) has the enable bit for channel n of the timer.

31.2.3.2.4 STM Channel Interrupt Register (STM_CIRn)

The STM Channel Interrupt Register (STM_CIRn) has the interrupt flag for channel n of the timer.

Offset: 0x10+0x10*n Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CEN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-4. STM Channel Control Register (STM_CCRn)

Table 31-6. STM_CCRn field descriptions

Field Description

CEN Channel Enable.
0 = The channel is disabled.
1 = The channel is enabled.

Offset: 0x14+0x10*n Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CIF

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-5. STM Channel Interrupt Register (STM_CIRn)

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1008 Freescale Semiconductor

31.2.3.2.5 STM Channel Compare Register (STM_CMPn)

The STM channel compare register (STM_CMPn) holds the compare value for channel n.

31.2.4 Functional description

The System Timer Module (STM) is a 32-bit timer designed to support commonly required system and
application software timing functions. The STM includes a 32-bit up counter and four 32-bit compare
channels with a separate interrupt source for each channel.

The STM has one 32-bit up counter (STM_CNT) that is used as the time base for all channels. When
enabled, the counter increments at the system clock frequency divided by a prescale value. The
STM_CR[CPS] field sets the divider to any value in the range from 1 to 256. The counter is enabled with
the STM_CR[TEN] bit. When enabled in normal mode the counter continuously increments. When
enabled in debug mode the counter operation is controlled by the STM_CR[FRZ] bit. When the
STM_CR[FRZ] bit is set, the counter is stopped in debug mode, otherwise it continues to run in debug
mode. The counter rolls over at 0xFFFF_FFFF to 0x0000_0000 with no restrictions at this boundary.

The STM has four identical compare channels. Each channel includes a channel control register
(STM_CCRn), a channel interrupt register (STM_CIRn) and a channel compare register (STM_CMPn).
The channel is enabled by setting the STM_CCRn[CEN] bit. When enabled, the channel will set the
STM_CIR[CIF] bit and generate an interrupt request when the channel compare register matches the timer
counter. The interrupt request is cleared by writing a 1 to the STM_CIRn[CIF] bit. A write of 0 to the
STM_CIRn[CIF] bit has no effect.

NOTE
STM counter does not advance when the system clock is stopped.

Table 31-7. STM_CIRn field descriptions

Field Description

CIF Channel Interrupt Flag
0 = No interrupt request.
1 = Interrupt request due to a match on the channel.

Offset: 0x18+0x10*n Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CMP

W

Reset 0

Figure 31-6. STM Channel Compare Register (STM_CMPn)

Table 31-8. STM_CMPn field descriptions

Field Description

CMP Compare value for channel n. If the STM_CCRn[CEN] bit is set and the STM_CMPn register matches the
STM_CNT register, a channel interrupt request is generated and the STM_CIRn[CIF] bit is set.

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1009

31.3 Enhanced Modular IO Subsystem (eMIOS)

31.3.1 Introduction

31.3.1.1 Overview of the eMIOS module

The eMIOS provides functionality to generate or measure time events. The eMIOS uses timer channels
that are reduced versions of the unified channel (UC) module used on MPC555x devices. Each channel
provides a subset of the functionality available in the unified channel, at a resolution of 16 bits, and
provides a user interface that is consistent with previous eMIOS implementations.

31.3.1.2 Features of the eMIOS module

• 2 eMIOS blocks with 32 channels each

— All64 channels with OPWMT, which can be connected to the CTU

— Both eMIOS blocks can be synchronized

• One global prescaler

• 16-bit data registers

• 10 x 16-bit wide counter buses

— Counter buses B, C, D, and E can be driven by Unified Channel 0, 8, 16, and 24, respectively

— Counter bus A is driven by the Unified Channel #23

— Several channels have their own time base, alternative to the counter buses

— Shared timebases through the counter buses

— Synchronization among timebases

• Control and Status bits grouped in a single register

• Shadow FLAG register

• Flag outputs of channels 8-11 of both eMIOSs are used to disable the outputs of other channels.
They form the ODIS bits.

• State of the UC can be frozen for debug purposes

• Motor control capability

31.3.1.3 Modes of operation

The Unified Channels can be configured to operate in the following modes:

• General purpose input/output

• Single Action Input Capture

• Single Action Output Compare

• Input Pulse Width Measurement

• Input Period Measurement

• Double Action Output Compare

• Modulus Counter

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1010 Freescale Semiconductor

• Modulus Counter Buffered

• Output Pulse Width and Frequency Modulation Buffered

• Output Pulse Width Modulation Buffered

• Output Pulse Width Modulation with Trigger

• Center Aligned Output Pulse Width Modulation Buffered

These modes are described in Section 31.3.4.1.1, UC modes of operation.

Each channel can have a specific set of modes implemented, according to device requirements.

If an unimplemented mode (reserved) is selected, the results are unpredictable such as writing a reserved
value to MODE[0:6] in Section 31.3.3.2.8, eMIOS UC Control Register (EMIOSC[n]).

31.3.1.4 Channel implementation

Figure 31-7 shows the channel configuration of the eMIOS blocks.

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1011

Figure 31-7. Channel configuration

Key

DAOC Dual Action Output Compare

GPIO General Purpose Input Output

IPM Input Period Measurement

IPWM Input Pulse Width Measurement

MC Modulus Counter

MCB Buffered Modulus Counter

OPWMB Buffered Output Pulse Width Modulation

OPWMT Buffered Output Pulse Width Modulation with Trigger

OPWFMB Buffered Output Pulse Width and Frequency Modulation

OPWMCB Center Aligned Output PWM Buffered with Dead-Time

SAIC Single Action Input Capture

SAOC Single Action Output Compare

Ch0
Ch1
Ch2
Ch3
Ch4
Ch5
Ch6
Ch7

Ch8
Ch9

Ch10
Ch11
Ch12
Ch13
Ch14
Ch15

Ch16
Ch17
Ch18
Ch19

Ch24

Ch20
Ch21
Ch22
Ch23

Global
Prescaler

8-bit Counter
C

ou
nt

er
 B

us
_B

C
ou

nt
er

 B
us

_A C
ou

nt
er

 B
us

_C
C

ou
nt

er
 B

us
_D

C
ou

nt
er

B
us

_E

Bus
Clk

Channel
Functionality

TYPE X

TYPE Y

 • MC, MCB
 • OPWMT
 • OPWMB
 • OPWFMB
 • SAIC, SAOC
 • GPIO

TYPE H

 • OPWMT
 • OPWMB
 • IPWM, IPM
 • DAOC
 • SAIC, SAOC
 • GPIO

 • OPWMT
 • OPWMB
 • SAIC, SAOC
 • GPIO

eMIOS_0

Ch0
Ch1
Ch2
Ch3
Ch4
Ch5
Ch6
Ch7

Ch8
Ch9

Ch10
Ch11
Ch12
Ch13
Ch14
Ch15

Ch16
Ch17
Ch18
Ch19

Ch24
Ch25
Ch26
Ch27

Ch20
Ch21
Ch22
Ch23

Global
Prescaler

8-bit Counter

C
ou

nt
er

 B
us

_B

C
ou

nt
er

 B
us

_A C
ou

nt
er

 B
us

_C
C

ou
nt

er
 B

us
_D

C
ou

nt
er

B
us

_E

Bus
Clk

eMIOS_1

TYPE G

 • MCB
 • OPWMT
 • OPWMB
 • OPWFMB
 • OPWMCB
 • IPWM, IPM
 • DAOC
 • SAIC, SAOC
 • GPIO

Ch28
Ch29
Ch30
Ch31

Ch25
Ch26
Ch27
Ch28
Ch29
Ch30
Ch31

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1012 Freescale Semiconductor

31.3.1.4.1 Channel mode selection

Channel modes are selected using the mode selection bits MODE[0:6] in the eMIOS UC Control Register
(EMIOSC[n]). Table 31-21 provides the specific mode selection settings for the eMIOS implementation
on this device.

31.3.2 External signal description

For information on eMIOS external signals on this device, please refer to the signal description chapter of
the reference manual.

31.3.3 Memory map and register description

31.3.3.1 Memory maps

The overall address map organization is shown in Table 31-9.

31.3.3.1.1 Unified Channel memory map

Table 31-9. eMIOS memory map

Base addresses:
0xC3FA_0000 (eMIOS_0)
0xC3FA_4000 (eMIOS_1)

Address offset Description Location

0x000–0x003 eMIOS Module Configuration Register (EMIOSMCR) on page
1013

0x004–0x007 eMIOS Global FLAG (EMIOSGFLAG) Register on page
1015

0x008–0x00B eMIOS Output Update Disable (EMIOSOUDIS) Register on page
1016

0x00C–0x00F eMIOS Disable Channel (EMIOSUCDIS) Register on page
1016

0x010–0x01F Reserved —

0x020–0x11F Channel [0]
to

Channel [7]

—

0x120–0x21F Channel [8]
to

Channel [15]

—

0x220–0x31F Channel [16]
to

Channel [23]

—

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1013

Addresses of Unified Channel registers are specified as offsets from the channel’s base address; otherwise
the eMIOS base address is used as reference.

Table 31-10 describes the Unified Channel memory map.

31.3.3.2 Register description

All control registers are 32 bits wide. Data registers and counter registers are 16 bits wide.

31.3.3.2.1 eMIOS Module Configuration Register (EMIOSMCR)

The EMIOSMCR contains global control bits for the eMIOS block.

0x320–0x41F Channel [24]
to

Channel [31]

0x420–0xFFF Reserved

Table 31-10. Unified Channel memory map

UC[n] base address Description Location

0x00 eMIOS UC A Register (EMIOSA[n]) on page 1017

0x04 eMIOS UC B Register (EMIOSB[n]) on page 1017

0x08 eMIOS UC Counter Register (EMIOSCNT[n]) on page 1018

0x0C eMIOS UC Control Register (EMIOSC[n]) on page 1019

0x10 eMIOS UC Status Register (EMIOSS[n]) on page 1023

0x14 eMIOS UC Alternate A Register (EMIOSALTA[n]) on page 1024

0x18–0x1F Reserved —

Table 31-9. eMIOS memory map (continued)

Base addresses:
0xC3FA_0000 (eMIOS_0)
0xC3FA_4000 (eMIOS_1)

Address offset Description Location

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1014 Freescale Semiconductor

Address: eMIOS base address +0x00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
MDIS FRZ

G
T

B
E 0

G
P

R
E

N 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
GPRE

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-8. eMIOS Module Configuration Register (EMIOSMCR)

Table 31-11. EMIOSMCR field descriptions

Field Description

MDIS Module Disable
Puts the eMIOS in low power mode. The MDIS bit is used to stop the clock of the block, except the
access to registers EMIOSMCR, EMIOSOUDIS and EMIOSUCDIS.
1 = Enter low power mode
0 = Clock is running

FRZ Freeze
Enables the eMIOS to freeze the registers of the Unified Channels when Debug Mode is requested
at MCU level. Each Unified Channel should have FREN bit set in order to enter freeze state. While
in Freeze state, the eMIOS continues to operate to allow the MCU access to the Unified Channels
registers. The Unified Channel will remain frozen until the FRZ bit is written to ‘0’ or the MCU exits
Debug mode or the Unified Channel FREN bit is cleared.
1 = Stops Unified Channels operation when in Debug mode and the FREN bit is set in the
EMIOSC[n] register
0 = Exit freeze state

GTBE Global Time Base Enable
The GTBE bit is used to export a Global Time Base Enable from the module and provide a method
to start time bases of several blocks simultaneously.
1 = Global Time Base Enable Out signal asserted
0 = Global Time Base Enable Out signal negated
Note: The Global Time Base Enable input pin controls the internal counters. When asserted,

Internal counters are enabled. When negated, Internal counters disabled.

GPREN Global Prescaler Enable
The GPREN bit enables the prescaler counter.
1 = Prescaler enabled
0 = Prescaler disabled (no clock) and prescaler counter is cleared

GPRE Global Prescaler
The GPRE bits select the clock divider value for the global prescaler, as shown in Table 31-12.

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1015

31.3.3.2.2 eMIOS Global FLAG (EMIOSGFLAG) Register

The EMIOSGFLAG is a read-only register that groups the flag bits (F[31:0]) from all channels. This
organization improves interrupt handling on simpler devices. Each bit relates to one channel.

For Unified Channels these bits are mirrors of the FLAG bits in the EMIOSS[n] register.

Table 31-12. Global prescaler clock divider

GPRE Divide ratio

00000000 1

00000001 2

00000010 3

00000011 4

.

.

.

.

.

.

.

.

11111110 255

11111111 256

Address: eMIOS base address +0x04

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R F31 F30 F29 F28 F27 F26 F25 F24 F23 F22 F21 F20 F19 F18 F17 F16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R F15 F14 F13 F12 F11 F10 F9 F8 F7 F6 F5 F4 F3 F2 F1 F0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-9. eMIOS Global FLAG (EMIOSGFLAG) Register

Table 31-13. EMIOSGFLAG field descriptions

Field Description

Fn Channel [n] Flag bit

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1016 Freescale Semiconductor

31.3.3.2.3 eMIOS Output Update Disable (EMIOSOUDIS) Register

31.3.3.2.4 eMIOS Disable Channel (EMIOSUCDIS) Register

Address: eMIOS base address +0x08

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

O
U

31

O
U

30

O
U

29

O
U

28

O
U

27

O
U

26

O
U

25

O
U

24

O
U

23

O
U

22

O
U

21

O
U

20

O
U

19

O
U

18

O
U

17

O
U

16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

O
U

15

O
U

14

O
U

13

O
U

12

O
U

11

O
U

10 OU9 OU8 OU7 OU6 OU5 OU4 OU3 OU2 OU1 OU0
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-10. eMIOS Output Update Disable (EMIOSOUDIS) Register

Table 31-14. EMIOSOUDIS field descriptions

Field Description

OUn Channel [n] Output Update Disable bit
When running MC, MCB or an output mode, values are written to registers A2 and B2. OU[n] bits
are used to disable transfers from registers A2 to A1 and B2 to B1. Each bit controls one channel.
1 = Transfers disabled
0 = Transfer enabled. Depending on the operation mode, transfer may occur immediately or in the
next period. Unless stated otherwise, transfer occurs immediately.

Address: eMIOS base address +0x0C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

C
H

D
IS

31

C
H

D
IS

30

C
H

D
IS

29

C
H

D
IS

28

C
H

D
IS

27

C
H

D
IS

26

C
H

D
IS

25

C
H

D
IS

24

C
H

D
IS

23

C
H

D
IS

22

C
H

D
IS

21

C
H

D
IS

20

C
H

D
IS

19

C
H

D
IS

18

C
H

D
IS

17

C
H

D
IS

16

W

Reset 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

C
H

D
IS

15

C
H

D
IS

14

C
H

D
IS

13

C
H

D
IS

12

C
H

D
IS

11

C
H

D
IS

10

C
H

D
IS

9

C
H

D
IS

8

C
H

D
IS

7

C
H

D
IS

6

C
H

D
IS

5

C
H

D
IS

4

C
H

D
IS

3

C
H

D
IS

2

C
H

D
IS

1

C
H

D
IS

0

W

Reset 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

Figure 31-11. eMIOS Enable Channel (EMIOSUCDIS) Register

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1017

31.3.3.2.5 eMIOS UC A Register (EMIOSA[n])

Depending on the mode of operation, internal registers A1 or A2, used for matches and captures, can be
assigned to address EMIOSA[n]. Both A1 and A2 are cleared by reset. Figure 31-16 summarizes the
EMIOSA[n] writing and reading accesses for all operation modes. For more information see
Section 31.3.4.1.1, UC modes of operation.

31.3.3.2.6 eMIOS UC B Register (EMIOSB[n])

Table 31-15. EMIOSUCDIS field descriptions

Field Description

CHDISn Enable Channel [n] bit
The CHDIS[n] bit is used to disable each of the channels by stopping its respective clock.
1 = Channel [n] disabled
0 = Channel [n] enabled

Address: UC[n] base address + 0x00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
A

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-12. eMIOS UC A Register (EMIOSA[n])

Address: UC[n] base address + 0x04

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
B

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-13. eMIOS UC B Register (EMIOSB[n])

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1018 Freescale Semiconductor

Depending on the mode of operation, internal registers B1 or B2 can be assigned to address EMIOSB[n].
Both B1 and B2 are cleared by reset. Table 31-16 summarizes the EMIOSB[n] writing and reading
accesses for all operation modes. For more information see Section 31.3.4.1.1, UC modes of operation.

Depending on the channel configuration, it may have EMIOSB register or not. This means that, if at least
one mode that requires the register is implemented, then the register is present; otherwise it is absent.

31.3.3.2.7 eMIOS UC Counter Register (EMIOSCNT[n])

The EMIOSCNT[n] register contains the value of the internal counter. When GPIO mode is selected or the
channel is frozen, the EMIOSCNT[n] register is read/write. For all others modes, the EMIOSCNT[n] is a

Table 31-16. EMIOSA[n], EMIOSB[n] and EMIOSALTA[n] values assignment

Operation mode
Register access

write read write read alt write alt read

GPIO A1, A2 A1 B1,B2 B1 A2 A2

SAIC1 — A2 B2 B2 — —

SAOC1

1 In these modes, the register EMIOSB[n] is not used, but B2 can be accessed.

A2 A1 B2 B2 — —

IPWM — A2 — B1 — —

IPM — A2 — B1 — —

DAOC A2 A1 B2 B1 — —

MC1 A2 A1 B2 B2 — —

OPWMT A1 A1 B2 B1 A2 A2

MCB1 A2 A1 B2 B2 — —

OPWFMB A2 A1 B2 B1 — —

OPWMCB A2 A1 B2 B1 — —

OPWMB A2 A1 B2 B1 — —

Address: UC[n] base address + 0x08

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W1

1 In GPIO mode or Freeze action, this register is writable.

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R C

W1

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-14. eMIOS UC Counter Register (EMIOSCNT[n])

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1019

read-only register. When entering some operation modes, this register is automatically cleared (refer to
Section 31.3.4.1.1, UC modes of operation for details).

Depending on the channel configuration it may have an internal counter or not. It means that if at least one
mode that requires the counter is implemented, then the counter is present; otherwise it is absent.

Channels of type X and G have the internal counter enabled, so their timebase can be selected by channel's
BSL[1:0]=11:eMIOS_A - channels 0 to 8, 16, 23 and 24, eMIOS_B = channels 0, 8, 16, 23 and 24. Other
channels from the above list don't have internal counters.

31.3.3.2.8 eMIOS UC Control Register (EMIOSC[n])

The Control register gathers bits reflecting the status of the UC input/output signals and the overflow
condition of the internal counter, as well as several read/write control bits.

Address: UC[n] base address + 0x0C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

F
R

E
N 0 0 0

UCPRE

U
C

P
R

E
N

DMA
0

IF FCK FEN
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0

BSL

E
D

S
E

L

E
D

P
O

L

MODEW

F
O

R
C

M
A

F
O

R
C

M
B

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-15. eMIOS UC Control Register (EMIOSC[n])

Table 31-17. EMIOSC[n] field descriptions

Field Description

FREN Freeze Enable bit
The FREN bit, if set and validated by FRZ bit in EMIOSMCR register allows the channel to enter
freeze state, freezing all registers values when in debug mode and allowing the MCU to perform
debug functions.
1 = Freeze UC registers values
0 = Normal operation

UCPRE Prescaler bits
The UCPRE bits select the clock divider value for the internal prescaler of Unified Channel, as
shown in Table 31-18.

UCPREN Prescaler Enable bit
The UCPREN bit enables the prescaler counter.
1 = Prescaler enabled
0 = Prescaler disabled (no clock)

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1020 Freescale Semiconductor

DMA Direct Memory Access bit
The DMA bit selects if the FLAG generation will be used as an interrupt request, as a DMA request
or as a CTU trigger. The choice between a DMA request or a CTU trigger is determined by the value
of bit TM in the register CTU_EVTCFGRx (refer to the CTU chapter of the reference manual).
1 = Flag/overrun assigned toDMA request or CTU trigger
0 = Flag/overrun assigned to interrupt request

IF Input Filter
The IF field controls the programmable input filter, selecting the minimum input pulse width that can
pass through the filter, as shown in Table 31-19. For output modes, these bits have no meaning.

FCK Filter Clock select bit
The FCK bit selects the clock source for the programmable input filter.
1 = Main clock
0 = Prescaled clock

FEN FLAG Enable bit
The FEN bit allows the Unified Channel FLAG bit to generate an interrupt signal or a DMA request
signal or a CTU trigger signal (The type of signal to be generated is defined by the DMA bit).
1 = Enable (FLAG will generate an interrupt request or DMA requestor a CTU trigger)
0 = Disable (FLAG does not generate an interrupt request or DMA requestor a CTU trigger)

FORCMA Force Match A bit
For output modes, the FORCMA bit is equivalent to a successful comparison on comparator A
(except that the FLAG bit is not set). This bit is cleared by reset and is always read as zero. This bit
is valid for every output operation mode which uses comparator A, otherwise it has no effect.
1 = Force a match at comparator A
0 = Has no effect
Note: For input modes, the FORCMA bit is not used and writing to it has no effect.

FORCMB Force Match B bit
For output modes, the FORCMB bit is equivalent to a successful comparison on comparator B
(except that the FLAG bit is not set). This bit is cleared by reset and is always read as zero. This bit
is valid for every output operation mode which uses comparator B, otherwise it has no effect.
1 = Force a match at comparator B
0 = Has not effect
Note: For input modes, the FORCMB bit is not used and writing to it has no effect.

BSL Bus Select
The BSL field is used to select either one of the counter buses or the internal counter to be used by
the Unified Channel. Refer to Table 31-20 for details.

EDSEL Edge Selection bit
For input modes, the EDSEL bit selects whether the internal counter is triggered by both edges of a
pulse or just by a single edge as defined by the EDPOL bit. When not shown in the mode of
operation description, this bit has no effect.
1 = Both edges triggering
0 = Single edge triggering defined by the EDPOL bit

For GPIO in mode, the EDSEL bit selects if a FLAG can be generated.
1 = No FLAG is generated
0 = A FLAG is generated as defined by the EDPOL bit

For SAOC mode, the EDSEL bit selects the behavior of the output flip-flop at each match.
1 = The output flip-flop is toggled
0 = The EDPOL value is transferred to the output flip-flop

Table 31-17. EMIOSC[n] field descriptions (continued)

Field Description

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1021

EDPOL Edge Polarity bit
For input modes, the EDPOL bit asserts which edge triggers either the internal counter or an input
capture or a FLAG. When not shown in the mode of operation description, this bit has no effect.
1 = Trigger on a rising edge
0 = Trigger on a falling edge

For output modes, the EDPOL bit is used to select the logic level on the output pin.
1 = A match on comparator A sets the output flip-flop, while a match on comparator B clears it
0 = A match on comparator A clears the output flip-flop, while a match on comparator B sets it

MODE Mode selection
The MODE field selects the mode of operation of the Unified Channel, as shown in Table 31-21.
Note: If a reserved value is written to mode the results are unpredictable.

Table 31-18. UC internalprescaler clock divider

UCPRE Divide ratio

00 1

01 2

10 3

11 4

Table 31-19. UC input filter bits

IF1

1 Filter latency is 3 clock edges.

Minimum input pulse width [FLT_CLK periods]

0000 Bypassed2

2 The input signal is synchronized before arriving to the digital filter.

0001 02

0010 04

0100 08

1000 16

all others Reserved

Table 31-20. UC BSL bits

BSL Selected bus

00 All channels: counter bus[A]

01 Channels 0 to 7: counter bus[B]
Channels 8 to 15: counter bus[C]

Channels 16 to 23: counter bus[D]
Channels 24 to 27: counter bus[E]

Table 31-17. EMIOSC[n] field descriptions (continued)

Field Description

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1022 Freescale Semiconductor

10 Reserved

11 All channels: internal counter

Table 31-21. Channel mode selection

MODE1

1 b = adjust parameters for the mode of operation. Refer to Section 31.3.4.1.1, UC modes of operation for details.

Mode of operation

0000000 General purpose Input/Output mode (input)

0000001 General purpose Input/Output mode (output)

0000010 Single Action Input Capture

0000011 Single Action Output Compare

0000100 Input Pulse Width Measurement

0000101 Input Period Measurement

0000110 Double Action Output Compare (with FLAG set on B match)

0000111 Double Action Output Compare (with FLAG set on both match)

0001000 – 0001111 Reserved

001000b Modulus Counter (Up counter with clear on match start)

001001b Modulus Counter (Up counter with clear on match end)

00101bb Modulus Counter (Up/Down counter)

0011000 – 0100101 Reserved

0100110 Output Pulse Width Modulation with Trigger

0100111 – 1001111 Reserved

101000b Modulus Counter Buffered (Up counter)

101001b Reserved

10101bb Modulus Counter Buffered (Up/Down counter)

10110b0 Output Pulse Width and Frequency Modulation Buffered

10110b1 Reserved

10111b0 Center Aligned Output Pulse Width Modulation Buffered (with trail edge dead-time)

10111b1 Center Aligned Output Pulse Width Modulation Buffered (with lead edge dead-time)

11000b0 Output Pulse Width Modulation Buffered

1100001 – 1111111 Reserved

Table 31-20. UC BSL bits

BSL Selected bus

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1023

31.3.3.2.9 eMIOS UC Status Register (EMIOSS[n])

Address: UC[n] base address + 0x10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R OVR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

O
V

F
L

0 0 0 0 0 0 0 0 0 0 0 0 UCIN

U
C

O
U

T

F
LA

G

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-16. eMIOS UC Status Register (EMIOSS[n])

Table 31-22. EMIOSS[n] field descriptions

Field Description

OVR Overrun bit
The OVR bit indicates that FLAG generation occurred when the FLAG bit was already set.
1 = Overrun has occurred
0 = Overrun has not occurred

OVFL Overflow bit
The OVFL bit indicates that an overflow has occurred in the internal counter. OVFL must be cleared
by software writing a 1 to the OVFLC bit.
1 = An overflow had occurred
0 = No overflow

UCIN Unified Channel Input pin bit
The UCIN bit reflects the input pin state after being filtered and synchronized.

UCOUT UCOUT — Unified Channel Output pin bit
The UCOUT bit reflects the output pin state.

FLAG FLAG bit
The FLAG bit is set when an input capture or a match event in the comparators occurred.
1 = FLAG set event has occurred
0 = FLAG cleared
Note: When DMA bit is set, the FLAG bit can be cleared by the DMA controller or theCTU.

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1024 Freescale Semiconductor

31.3.3.2.10 eMIOS UC Alternate A Register (EMIOSALTA[n])

The EMIOSALTA[n] register provides an alternate address to access A2 channel registers in restricted
modes (GPIO, OPWMT) only. If EMIOSA[n] register is used along with EMIOSALTA[n], both A1 and
A2 registers can be accessed in these modes. Figure 31-16 summarizes the EMIOSALTA[n] writing and
reading accesses for all operation modes. Please, see Section 31.3.4.1.1.1, General purpose Input/Output
(GPIO) mode, Section 31.3.4.1.1.12, Output Pulse Width Modulation with Trigger (OPWMT) mode for a
more detailed description of the use of EMIOSALTA[n] register.

31.3.4 Functional description

The four types of channels of the eMIOS (types X, Y, G and H) can operate in the modes as listed in
Figure 31-7. The eMIOS provides independently operating unified channels (UC) that can be configured
and accessed by a host MCU. Up to three time bases1 can be shared by the channels through five counter
buses2 and each unified channel can generate its own time base3. The eMIOS block is reset at positive edge
of the clock (synchronous reset). All registers are cleared on reset.

31.3.4.1 Unified Channel (UC)

Each Unified Channel consists of:

• Counter bus selector, which selects the time base to be used by the channel for all timing functions

• A programmable clock prescaler

Address: UC[n] base address + 0x14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
ALTA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-17. eMIOS UC Alternate A register (EMIOSALTA[n])

1. Time bases can be supplied by:
a) channel 23 to all unified channels
b) channel 0 to channels 0 to 7, by channel 8 to channels 8 to 15, by channel 16 to channels 16 to 23, by channel 24 to channels
24 to 31
c) channel's internal counter when available.
2. Internal eMIOS architecture have one global counter bus A and four local counter buses B, C, D, and E, that distribute the time
bases described in Note 1 (a) and (b).
3. Channels of type X and G have the internal counter enabled, so their timebase can be selected by channel's BSL[1:0]=11:
eMIOS_A - channels 0 to 8, 16, 23 and 24 eMIOS_B = channels 0, 8, 16, 23 and 24.

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1025

• Two double buffered data registers A and B that allow up to two input capture and/or output
compare events to occur before software intervention is needed.

• Two comparators (equal only) A and B, which compares the selected counter bus with the value in
the data registers

• Internal counter, which can be used as a local time base or to count input events

• Programmable input filter, which ensures that only valid pin transitions are received by channel

• Programmable input edge detector, which detects the rising, falling or either edges

• An output flip-flop, which holds the logic level to be applied to the output pin

• eMIOS Status and Control register

31.3.4.1.1 UC modes of operation

The mode of operation of the Unified Channel is determined by the mode select bits MODE[0:6] in the
eMIOS UC Control Register (EMIOSC[n]) (see Figure 31-15 for details).

As the internal counter EMIOSCNT[n] continues to run in all modes (except for GPIO mode), it is possible
to use this as a time base if the resource is not used in the current mode.

In order to provide smooth waveform generation even if A and B registers are changed on the fly, it is
available the MCB, OPWFMB, OPWMB and OPWMCB modes. In these modes A and B registers are
double buffered.

31.3.4.1.1.1 General purpose Input/Output (GPIO) mode

In GPIO mode, all input capture and output compare functions of the UC are disabled, the internal counter
(EMIOSCNT[n] register) is cleared and disabled. All control bits remain accessible. In order to prepare
the UC for a new operation mode, writing to registers EMIOSA[n] or EMIOSB[n] stores the same value
in registers A1/A2 or B1/B2, respectively. Writing to register EMIOSALTA[n] stores a value only in
register A2.

MODE[6] bit selects between input (MODE[6] = 0) and output (MODE[6] = 1) modes.

It is required that when changing MODE[0:6], the application software goes to GPIO mode first in order
to reset the UC’s internal functions properly. Failure to do this could lead to invalid and unexpected output
compare or input capture results or the FLAGs being set incorrectly.

In GPIO input mode (MODE[0:6] = 0000000), the FLAG generation is determined according to EDPOL
and EDSEL bits and the input pin status can be determined by reading the UCIN bit.

In GPIO output mode (MODE[0:6] = 0000001), the Unified Channel is used as a single output port pin
and the value of the EDPOL bit is permanently transferred to the output flip-flop.

31.3.4.1.1.2 Single Action Input Capture (SAIC) mode

In SAIC mode (MODE[0:6] = 0000010), when a triggering event occurs on the input pin, the value on the
selected time base is captured into register A2. The FLAG bit is set along with the capture event to indicate
that an input capture has occurred. Register EMIOSA[n] returns the value of register A2. As soon as the
SAIC mode is entered coming out from GPIO mode the channel is ready to capture events. The events are

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1026 Freescale Semiconductor

captured as soon as they occur thus reading register A always returns the value of the latest captured event.
Subsequent captures are enabled with no need of further reads from EMIOSA[n] register. The FLAG is set
at any time a new event is captured.

The input capture is triggered by a rising, falling or either edges in the input pin, as configured by EDPOL
and EDSEL bits in EMIOSC[n] register.

Figure 31-18 and Figure 31-19 show how the Unified Channel can be used for input capture.

Figure 31-18. Single action input capture with rising edge triggering example

Figure 31-19. Single action input capture with both edges triggering example

31.3.4.1.1.3 Single Action Output Compare (SAOC) mode

In SAOC mode (MODE[0:6] = 0000011) a match value is loaded in register A2 and then immediately
transferred to register A1 to be compared with the selected time base. When a match occurs, the EDSEL
bit selects whether the output flip-flop is toggled or the value in EDPOL is transferred to it. Along with
the match the FLAG bit is set to indicate that the output compare match has occurred. Writing to register
EMIOSA[n] stores the value in register A2 and reading to register EMIOSA[n] returns the value of register
A1.

An output compare match can be simulated in software by setting the FORCMA bit in EMIOSC[n]
register. In this case, the FLAG bit is not set.

When SAOC mode is entered coming out from GPIO mode the output flip-flop is set to the complement
of the EDPOL bit in the EMIOSC[n] register.

selected counter bus 0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0

FLAG pin/register

A2 (captured) value2 0xxxxxxx 0x001000 0x001250 0x0016A0

input signal1

Edge detect Edge detect Edge detect

Notes: 1. After input filter
2. EMIOSA[n] <= A2

EDSEL = 0
EDPOL = 1

selected counter bus 0x001000 0x001102

FLAG set event

A2 (captured) value2 0xxxxxxx 0x001000

input signal1

Edge detect

Notes: 1. After input filter
2. EMIOSA[n] <= A2

0x001103 0x0011080x001104 0x001105 0x001106 0x0011070x001001

FLAG pin/register

Edge detect

FLAG clear

Edge detect

0x001103 0x001108

EDSEL = 1
EDPOL = x

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1027

Counter bus can be either internal or external and is selected through bits BSL[0:1].

Figure 31-20 and Figure 31-21 show how the Unified Channel can be used to perform a single output
compare with EDPOL value being transferred to the output flip-flop and toggling the output flip-flop at
each match, respectively. Note that once in SAOC mode the matches are enabled thus the desired match
value on register A1 must be written before the mode is entered. A1 register can be updated at any time
thus modifying the match value which will reflect in the output signal generated by the channel.
Subsequent matches are enabled with no need of further writes to EMIOSA[n] register. The FLAG is set
at the same time a match occurs (see Figure 31-22).

NOTE
The channel internal counter in SAOC mode is free-running. It starts
counting as soon as the SAOC mode is entered.

Figure 31-20. SAOC example with EDPOL value being transferred to the output flip-flop

Figure 31-21. SAOC example toggling the output flip-flop

selected counter bus 0x000500 0x001000 0x001100 0x001000 0x001100 0x001000

output flip-flop

Update to A1

A1 value1 0xxxxxxx 0x001000

FLAG pin/register

0x001000 0x001000 0x001000

A1 match A1 match A1 match

Notes: 1. EMIOSA[n] = A2

EDSEL = 0
EDPOL = 1

A2 = A1 according to OU[n] bit

selected counter bus 0x000500 0x001000 0x001100 0x001000 0x001100 0x001000

A1 value1 0xxxxxxx 0x001000

output flip-flop

Update to A1

FLAG pin/register

A1 match A1 match A1 match

0x001000 0x001000 0x001000

Notes: 1. EMIOSA[n] = A2

EDSEL = 1
EDPOL = x

A2 = A1 according to OU[n] bit

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1028 Freescale Semiconductor

Figure 31-22. SAOC example with flag behavior

31.3.4.1.1.4 Input Pulse Width Measurement (IPWM) Mode

The IPWM mode (MODE[0:6] = 0000100) allows the measurement of the width of a positive or negative
pulse by capturing the leading edge on register B1 and the trailing edge on register A2. Successive captures
are done on consecutive edges of opposite polarity. The leading edge sensitivity (that is, pulse polarity) is
selected by EDPOL bit in the EMIOSC[n] register. Registers EMIOSA[n] and EMIOSB[n] return the
values in register A2 and B1, respectively.

The capture function of register A2 remains disabled until the first leading edge triggers the first input
capture on register B2. When this leading edge is detected, the count value of the selected time base is
latched into register B2; the FLAG bit is not set. When the trailing edge is detected, the count value of the
selected time base is latched into register A2 and, at the same time, the FLAG bit is set and the content of
register B2 is transferred to register B1 and to register A1.

If subsequent input capture events occur while the corresponding FLAG bit is set, registers A2, B1 and A1
will be updated with the latest captured values and the FLAG will remain set. Registers EMIOSA[n] and
EMIOSB[n] return the value in registers A2 and B1, respectively.

In order to guarantee coherent access, reading EMIOSA[n] forces B1 be updated with the content of
register A1. At the same time transfers between B2 and B1 are disabled until the next read of EMIOSB[n]
register. Reading EMIOSB[n] register forces B1 be updated with A1 register content and re-enables
transfers from B2 to B1, to take effect at the next trailing edge capture. Transfers from B2 to A1 are not
blocked at any time.

The input pulse width is calculated by subtracting the value in B1 from A2.

Figure 31-23 shows how the Unified Channel can be used for input pulse width measurement.

selected counter bus 0x0 0x2

FLAG set event

A2 value1 0x1

output flip-flop

Note: 1. EMIOSA[n] <= A2

0x0 0x20x1 0x2 0x0 0x10x1

FLAG pin/register

FLAG clear

EDSEL = 1

System Clock

A1 match

EDPOL = x

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1029

Figure 31-23. Input pulse width measurement example

Figure 31-24 shows the A1 and B1 updates when EMIOSA[n] and EMIOSB[n] register reads occur. Note
that A1 register has always coherent data related to A2 register. Note also that when EMIOSA[n] read is
performed B1 register is loaded with A1 register content. This guarantee that the data in register B1 has
always the coherent data related to the last EMIOSA[n] read. The B1 register updates remains locked until
EMIOSB[n] read occurs. If EMIOSA[n] read is performed B1 is updated with A1 register content even if
B1 update is locked by a previous EMIOSA[n] read operation.

Figure 31-24. B1 and A1 updates at EMIOSA[n] and EMIOSB[n] reads

Reading EMIOSA[n] followed by EMIOSB[n] always provides coherent data. If not coherent data is
required for any reason, the sequence of reads should be inverted, therefore EMIOSB[n] should be read
prior to EMIOSA[n] register. Note that even in this case B1 register updates will be blocked after
EMIOSA[n] read, thus a second EMIOSB[n] is required in order to release B1 register updates.

 selected counter bus 0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0

A2(captured) value2

B2(captured) value

B1 value3

0xxxxxxx 0x001000 0x001250 0x0016A0

0xxxxxxx 0x001100 0x001525

0xxxxxxx 0x001000 0x001250

Input signal1

B A B A B

1. After input filterNotes:

FLAG pin/register

2. EMIOSA[n] = A2
3. EMIOSB[n] = B1

EDPOL = 1

A1 value3 0xxxxxxx 0x001000 0x001250

 selected counter bus 0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0

A2(captured) value2

B2(captured) value

B1 value3

0xxxxxxx 0x001000 0x001250 0x0016A0

0xxxxxxx 0x001100 0x001525

0xxxxxxx 0x001000

Input signal1

B A B A B

1. After input filterNotes:

FLAG pin/register

2. EMIOSA[n] = A2

EDPOL = 1

A1 value3 0xxxxxxx 0x001000 0x001250

0x001000 0x001250

Read EMIOSA[n] Read EMIOSB[n]

3. EMIOSB[n] = B1

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1030 Freescale Semiconductor

31.3.4.1.1.5 Input Period Measurement (IPM) mode

The IPM mode (MODE[0:6] = 0000101) allows the measurement of the period of an input signal by
capturing two consecutive rising edges or two consecutive falling edges. Successive input captures are
done on consecutive edges of the same polarity. The edge polarity is defined by the EDPOL bit in the
EMIOSC[n] register.

NOTE
The input signal must have at least four system clock cycles period in order
to be properly captured by the synchronization logic at the channel input
even if the input filter is in by-pass mode.

When the first edge of selected polarity is detected, the selected time base is latched into the registers A2
and B2, and the data previously held in register B2 is transferred to register B1. On this first capture the
FLAG line is not set, and the values in registers B1 is meaningless. On the second and subsequent captures,
the FLAG line is set and data in register B2 is transferred to register B1.

When the second edge of the same polarity is detected, the counter bus value is latched into registers A2
and B2, the data previously held in register B2 is transferred to data register B1 and to register A1. The
FLAG bit is set to indicate the start and end points of a complete period have been captured. This sequence
of events is repeated for each subsequent capture. Registers EMIOSA[n] and EMIOSB[n] return the values
in register A2 and B1, respectively.

In order to allow coherent data, reading EMIOSA[n] forces A1 content be transferred to B1 register and
disables transfers between B2 and B1. These transfers are disabled until the next read of the EMIOSB[n]
register. Reading EMIOSB[n] register forces A1 content to be transferred to B1 and re-enables transfers
from B2 to B1, to take effect at the next edge capture.

The input pulse period is calculated by subtracting the value in B1 from A2.

Figure 31-25 shows how the Unified Channel can be used for input period measurement.

Figure 31-25. Input period measurement example

Figure 31-26 describes the A1 and B1 register updates when EMIOSA[n] and EMIOSB[n] read operations
are performed. When EMIOSA[n] read occurs the content of A1 is transferred to B1 thus providing

selected counter bus 0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0

A2(captured) value2

A1 value

B2 (captured) value

0xxxxxxx 0x001000 0x001250

0xxxxxxx 0x001000 0x001250 0x0016A0

0xxxxxxx 0x001000 0x001250 0x0016A0

Input signal1

EDPOL = 1

FLAG pin register

Notes: 1. After input filter
2. EMIOSA[n] = A2
3. EMIOSB[n] = B1

A A A

B1 value3 0xxxxxxx 0x001000 0x001250

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1031

coherent data in A2 and B1 registers. Transfers from B2 to B1 are then blocked until EMIOSB[n] is read.
After EMIOSB[n] is read, register A1 content is transferred to register B1 and the transfers from B2 to B1
are re-enabled to occur at the transfer edges, which is the leading edge in the Figure 31-26 example.

Figure 31-26. A1 and B1 updates at EMIOSA[n] and EMIOSB[n] reads

31.3.4.1.1.6 Double Action Output Compare (DAOC) mode

In the DAOC mode the leading and trailing edges of the variable pulse width output are generated by
matches occurring on comparators A and B. There is no restriction concerning the order in which A and
B matches occur.

When the DAOC mode is entered, coming out from GPIO mode both comparators are disabled and the
output flip-flop is set to the complement of the EDPOL bit in the EMIOSC[n] register.

Data written to A2 and B2 are transferred to A1 and B1, respectively, on the next system clock cycle if bit
OU[n] of the EMIOSOUDIS register is cleared (see Figure 31-29). The transfer is blocked if bit OU[n] is
set. Comparator A is enabled only after the transfer to A1 register occurs and is disabled on the next A
match. Comparator B is enabled only after the transfer to B1 register occurs and is disabled on the next B
match. Comparators A and B are enabled and disabled independently.

The output flip-flop is set to the value of EDPOL when a match occurs on comparator A and to the
complement of EDPOL when a match occurs on comparator B.

MODE[6] controls if the FLAG is set on both matches (MODE[0:6] = 0000111) or just on the B match
(MODE[0:6] = 0000110). FLAG bit assertion depends on comparator enabling.

If subsequent enabled output compares occur on registers A1 and B1, pulses will continue to be generated,
regardless of the state of the FLAG bit.

At any time, the FORCMA and FORCMB bits allow the software to force the output flip-flop to the level
corresponding to a comparison event in comparator A or B, respectively. Note that the FLAG bit is not
affected by these forced operations.

 selected counter bus 0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0

A2(captured) value2

B2(captured) value

B1 value3

0xxxxxxx 0x001000 0x001250 0x0016A0

0xxxxxxx 0x001000

0xxxxxxx 0x001000

Input signal1

A A A

FLAG pin/register

EDPOL = 1

A1 value 0xxxxxxx 0x001000

0x001000

0x001250

0x001250

Read EMIOSA[n] Read EMIOSB[n]

0x001250

Notes: 1. After input filter
2. EMIOSA[n] = A2
3. EMIOSB[n] = B1

0x0016A0

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1032 Freescale Semiconductor

NOTE
If both registers (A1 and B1) are loaded with the same value, the B match
prevails concerning the output pin state (output flip-flop is set to the
complement of EDPOL), the FLAG bit is set and both comparators are
disabled.

Figure 31-27 and Figure 31-28 show how the Unified Channel can be used to generate a single output
pulse with FLAG bit being set on the second match or on both matches, respectively.

Figure 31-27. Double action output compare with FLAG set on the second match

Figure 31-28. Double action output compare with FLAG set on both matches

selected counter bus 0x000500 0x001000 0x001100 0x001000 0x001100

A1 value1

B1 value2 0xxxxxxx 0x001100 0x001100 0x001100

0xxxxxxx 0x001000 0x001000 0x001000

output flip-flop

A1 match B1 matchUpdate to
A1 and B1

FLAG pin/register

A1 match B1 match

Notes: 1. EMIOSA[n] = A1 (when reading)
2. EMIOSB[n] = B1 (when reading)

A2 = A1according to OU[n] bit
B2 = B1according to OU[n] bit

MODE[6] = 0

selected counter bus 0x000500 0x001000 0x001100 0x001000 0x001100

A1 value1

B1 value2 0xxxxxxx 0x001100 0x001100 0x001100

0xxxxxxx 0x001000 0x001000 0x001000

output flip-flop

A1 match B1 matchUpdate to
A1 and B1

FLAG pin/register

A1 match B1 match

Notes: 1. EMIOSA[n] = A1 (when reading)
2. EMIOSB[n] = B1 (when reading)

A2 = A1according to OU[n] bit
B2 = B1according to OU[n] bit

MODE[6] = 1

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1033

Figure 31-29. DAOC with transfer disabling example

31.3.4.1.1.7 Modulus Counter (MC) mode

The MC mode can be used to provide a time base for a counter bus or as a general purpose timer.

Bit MODE[6] selects internal or external clock source when cleared or set, respectively. When external
clock is selected, the input signal pin is used as the source and the triggering polarity edge is selected by
the EDPOL and EDSEL in the EMIOSC[n] register.

The internal counter counts up from the current value until it matches the value in register A1. Register B1
is cleared and is not accessible to the MCU. Bit MODE[4] selects up mode or up/down mode, when cleared
or set, respectively.

When in up count mode, a match between the internal counter and register A1 sets the FLAG and clears
the internal counter. The timing of those events varies according to the MC mode setup as follows:

• Internal counter clearing on match start (MODE[0:6] = 001000b)

— External clock is selected if MODE[6] is set. In this case the internal counter clears as soon as
the match signal occurs. The channel FLAG is set at the same time the match occurs. Note that
by having the internal counter cleared as soon as the match occurs and incremented at the next
input event a shorter zero count is generated. See Figure 31-52 and Figure 31-53.

— Internal clock source is selected if MODE[6] is cleared. In this case the counter clears as soon
as the match signal occurs. The channel FLAG is set at the same time the match occurs. At the
next prescaler tick after the match the internal counter remains at zero and only resumes
counting on the following tick. See Figure 31-52 and Figure 31-54.

• Internal counter clearing on match end (MODE[0:6] = 001001b)

selected counter bus 0x0 0x2

FLAG set event

A1 value2 0xx

output flip-flop

2. EMIOSA[n] = A1 (when reading)

0x0 0x20x1 0x2 0x0 0x10x1

FLAG pin/register

FLAG clear

EDSEL = 1

System Clock

enabled A1 match

EDPOL = x

B2 value5 0x2

B1 value4 0xx

A2 value3 0x1

OU1

enabled B1 match

0x1

0xx

0xx

0x2

0x1

write to A2

0x2

0x2

0x1

0x2

0x1

0x1

0x2

write to B2
write to A2

write to B2
write to A2

write to B2

MODE[0]=1

3. EMIOSA[n] = A2 (when writing)
4. EMIOSB[n] = B1 (when reading)
5. EMIOSB[n] = B2 (when writing)

Note: 1. OU[n] bit of EMIOSOUDIS register

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1034 Freescale Semiconductor

— External clock is selected if MODE[6] is set. In this case the internal counter clears when the
match signal is asserted and the input event occurs. The channel FLAG is set at the same time
the counter is cleared. See Figure 31-52 and Figure 31-55.

— Internal clock source is selected if MODE[6] is cleared. In this case the internal counter clears
when the match signal is asserted and the prescaler tick occurs. The channel FLAG is set at the
same time the counter is cleared. See Figure 31-52 and Figure 31-55.

NOTE
If the internal clock source is selected and the prescaler of the internal
counter is set to ‘1’, the MC mode behaves the same way even in Clear on
Match Start or Clear on Match End submodes.

When in up/down count mode (MODE[0:6] = 00101bb), a match between the internal counter and register
A1 sets the FLAG and changes the counter direction from increment to decrement. A match between
register B1 and the internal counter changes the counter direction from decrement to increment and sets
the FLAG only if MODE[5] bit is set.

Only values different than 0x0 must be written at A register. Loading 0x0 leads to unpredictable results.

Updates on A register or counter in MC mode may cause loss of match in the current cycle if the transfer
occurs near the match. In this case, the counter may rollover and resume operation in the next cycle.

Register B2 has no effect in MC mode. Nevertheless, register B2 can be accessed for reads and writes by
addressing EMIOSB.

Figure 31-30 and Figure 31-31 show how the Unified Channel can be used as modulus counter in up mode
and up/down mode, respectively.

Figure 31-30. Modulus Counter Up mode example

0xFFFFFF

0x000303

0x000000

EMIOSCNT[n]

Time

 Match A1

A1 value1 0x000303 0x000303 0x000200

 write to A2 Match A1 write to A2

0x000200

 Match A1 Match A1

0xxxxxxx

 FLAG pin/register

Notes: 1. EMIOSA[n] = A1

0x000303 0x000200

A2 = A1according to OU[n] bit

MODE[4] = 0

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1035

Figure 31-31. Modulus Counter Up/Down mode example

31.3.4.1.1.8 Modulus Counter Buffered (MCB) mode

The MCB mode provides a time base which can be shared with other channels through the internal counter
buses. Register A1 is double buffered thus allowing smooth transitions between cycles when changing A2
register value on the fly. A1 register is updated at the cycle boundary, which is defined as when the internal
counter transitions to 0x1.

The internal counter values operates within a range from 0x1 up to register A1 value. If when entering
MCB mode coming out from GPIO mode the internal counter value is not within that range then the A
match will not occur causing the channel internal counter to wrap at the maximum counter value which is
0xFFFF for a 16-bit counter. After the counter wrap occurs it returns to 0x1 and resume normal MCB mode
operation. Thus in order to avoid the counter wrap condition make sure its value is within the 0x1 to A1
register value range when the MCB mode is entered.

Bit MODE[6] selects internal clock source if cleared or external if set. When external clock is selected the
input channel pin is used as the channel clock source. The active edge of this clock is defined by EDPOL
and EDSEL bits in the EMIOSC[n] channel register.

When entering in MCB mode, if up counter is selected by MODE[4] = 0 (MODE[0:6] = 101000b), the
internal counter starts counting from its current value to up direction until A1 match occurs. The internal
counter is set to 0x1 when its value matches A1 value and a clock tick occurs (either prescaled clock or
input pin event).

If up/down counter is selected by setting MODE[4] = 1, the counter changes direction at A1 match and
counts down until it reaches the value 0x1. After it has reached 0x1 it is set to count in up direction again.
B1 register is used to generate a match in order to set the internal counter in up-count direction if up/down
mode is selected. Register B1 cannot be changed while this mode is selected.

Note that differently from the MC mode, the MCB mode counts between 0x1 and A1 register value. Only
values greater than 0x1 must be written at A1 register. Loading values other than those leads to
unpredictable results. The counter cycle period is equal to A1 value in up counter mode. If in up/down
counter mode the period is defined by the expression: (2*A1)-2.

Figure 31-32 describes the counter cycle for several A1 values. Register A1 is loaded with A2 register
value at the cycle boundary. Thus any value written to A2 register within cycle n will be updated to A1 at

0xFFFFFF

0x000303

0x000000

EMIOSCNT[n]

Time

 Match A1

A1 value1 0x000303 0x000303 0x000200

 write to A2 Match B1(=0) write to A2

0x000200

 Match A1 Match B1(=0)

0xxxxxxx

Notes: 1. EMIOSA[n] = A1

0x0002000x000200
 FLAG pin/register

A2 = A1according to OU[n] bit

MODE[6] = 1

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1036 Freescale Semiconductor

the next cycle boundary and therefore will be used on cycle n+1. The cycle boundary between cycle n and
cycle n+1 is defined as when the internal counter transitions from A1 value in cycle n to 0x1 in cycle n+1.
Note that the FLAG is generated at the cycle boundary and has a synchronous operation, meaning that it
is asserted one system clock cycle after the FLAG set event.

Figure 31-32. Modulus Counter Buffered (MCB) Up Count mode

Figure 31-33 describes the MCB in up/down counter mode (MODE[0:6] = 10101bb). A1 register is
updated at the cycle boundary. If A2 is written in cycle n, this new value will be used in cycle n+1 for A1
match. Flags are generated only at A1 match start if MODE[5] is 0. If MODE[5] is set to 1 flags are also
generated at the cycle boundary.

Figure 31-33. Modulus Counter Buffered (MCB) Up/Down mode

Figure 31-34 describes in more detail the A1 register update process in up counter mode. The A1 load
signal is generated at the last system clock period of a counter cycle. Thus, A1 is updated with A2 value
at the same time that the counter (EMIOSCNT[n]) is loaded with 0x1. The load signal pulse has the

EMIOSCNT[n]

TIME

write to A2 match A1 match A1 match A1write to A2

0x000001

0x000005
0x000006
0x000007

FLAG set event

A1 value 0x000006 0x000005 0x000007 0x000007
0x000005 0x000007A2 value

FLAG pin/register

Prescaler ratio = 1

cycle n cycle n+1 cycle n+2

FLAG clear

EMIOSCNT[n]

TIME

write to A2
match A1

match A1 write to A2

0x000001

0x000005
0x000006
0x000007

FLAG set event

A1 value 0x000006 0x000005 0x000007

0x000005 0x000007A2 value

FLAG pin/register

Prescaler ratio = 1

cycle n+1 cycle n+2cycle n

FLAG clear

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1037

duration of one system clock period. If A2 is written within cycle n its value is available at A1 at the first
clock of cycle n+1 and the new value is used for match at cycle n+1. The update disable bits OU[n] of
EMIOSOUDIS register can be used to control the update of this register, thus allowing to delay the A1
register update for synchronization purposes.

Figure 31-34. MCB Mode A1 Register Update in Up Counter mode

Figure 31-35 describes the A1 register update in up/down counter mode. Note that A2 can be written at
any time within cycle n in order to be used in cycle n+1. Thus A1 receives this new value at the next cycle
boundary. Note that the update disable bits OU[n] of EMIOSOUDIS register can be used to disable the
update of A1 register.

Figure 31-35. MCB Mode A1 Register Update in Up/Down Counter mode

31.3.4.1.1.9 Output Pulse Width and Frequency Modulation Buffered (OPWFMB) mode

This mode (MODE[0:6] = 10110b0) provides waveforms with variable duty cycle and frequency. The
internal channel counter is automatically selected as the time base when this mode is selected. A1 register
indicates the duty cycle and B1 register the frequency. Both A1 and B1 registers are double buffered to

A1 value 0x000008

0x000008

0x000001

internal counter

0x000004

0x000006

A2 value 0x000008 0x000004 0x000006

0x000002

0x000004 0x000006

 write to A2 write to A2

 Match A1 Match A1

A1 load signal

8

4

6

 Match A1

Counter = A1
Time

cycle n cycle n+1 cycle n+2

Prescaler ratio = 2

A1 value 0x000006

A2 value 0x000006 0x000005 0x000006

0x000005

A1 load signal

Counter = 2

EMIOSCNT[n]

TIME

write to A2
match A1

match A1
write to A2

0x000001

0x000005
0x000006

0x000006

cycle n cycle n+1 cycle n+2

Prescaler ratio = 2

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1038 Freescale Semiconductor

allow smooth signal generation when changing the registers values on the fly. 0% and 100% duty cycles
are supported.

At OPWFMB mode entry the output flip-flop is set to the value of the EDPOL bit in the EMIOSC[n]
register.

If when entering OPWFMB mode coming out from GPIO mode the internal counter value is not within
that range then the B match will not occur causing the channel internal counter to wrap at the maximum
counter value which is 0xFFFF for a 16-bit counter. After the counter wrap occurs it returns to 0x1 and
resume normal OPWFMB mode operation. Thus in order to avoid the counter wrap condition make sure
its value is within the 0x1 to B1 register value range when the OPWFMB mode is entered.

When a match on comparator A occurs the output register is set to the value of EDPOL. When a match on
comparator B occurs the output register is set to the complement of EDPOL. B1 match also causes the
internal counter to transition to 0x1, thus restarting the counter cycle.

Only values greater than 0x1 are allowed to be written to B1 register. Loading values other than those leads
to unpredictable results. If you want to configure the module for OPWFMB mode, ensure that the B1
register is modified before the mode is set.

Figure 31-36 describes the operation of the OPWFMB mode regarding output pin transitions and A1/B1
registers match events. Note that the output pin transition occurs when the A1 or B1 match signal is
deasserted which is indicated by the A1 match negedge detection signal. If register A1 is set to 0x4 the
output pin transitions 4 counter periods after the cycle had started, plus one system clock cycle. Note that
in the example shown in Figure 31-36 the internal counter prescaler has a ratio of two.

Figure 31-36. OPWFMB A1 and B1 match to Output Register Delay

Figure 31-37 describes the generated output signal if A1 is set to 0x0. Since the counter does not reach
zero in this mode, the channel internal logic infers a match as if A1 = 0x1 with the difference that in this
case, the posedge of the match signal is used to trigger the output pin transition instead of the negedge used
when A1 = 0x1. Note that A1 posedge match signal from cycle n+1 occurs at the same time as B1 negedge

8

1

4

match A1 negedge detection

5

A1 value 0x000004

A1 match

A1 match negedge detection

output pin
EDPOL = 0

EMIOSCNT

TIME

match B1 negedge detection
B1 match

B1 match negedge detection

B1 value 0x000008

system clock

prescaler

Prescaler ratio = 2

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1039

match signal from cycle n. This allows to use the A1 posedge match to mask the B1 negedge match when
they occur at the same time. The result is that no transition occurs on the output flip-flop and a 0% duty
cycle is generated.

Figure 31-37. OPWFMB Mode with A1 = 0 (0% duty cycle)

Figure 31-38 describes the timing for the A1 and B1 registers load. The A1 and B1 load use the same signal
which is generated at the last system clock period of a counter cycle. Thus, A1 and B1 are updated
respectively with A2 and B2 values at the same time that the counter (EMIOSCNT[n]) is loaded with 0x1.
This event is defined as the cycle boundary. The load signal pulse has the duration of one system clock
period. If A2 and B2 are written within cycle n their values are available at A1 and B1, respectively, at the
first clock of cycle n+1 and the new values are used for matches at cycle n+1. The update disable bits
OU[n] of EMIOSOUDIS register can be used to control the update of these registers, thus allowing to
delay the A1 and B1 registers update for synchronization purposes.

In Figure 31-38 it is assumed that both the channel and global prescalers are set to 0x1 (each divide ratio
is two), meaning that the channel internal counter transitions at every four system clock cycles. FLAGs
can be generated only on B1 matches when MODE[5] is cleared, or on both A1 and B1 matches when
MODE[5] is set. Since B1 flag occurs at the cycle boundary, this flag can be used to indicate that A2 or
B2 data written on cycle n were loaded to A1 or B1, respectively, thus generating matches in cycle n+1.
Note that the FLAG has a synchronous operation, meaning that it is asserted one system clock cycle after
the FLAG set event.

1

4

match A1 negedge detection

5

A1 value 0x000004

A1 match

A1 match negedge detection

output pin
EDPOL = 0

EMIOSCNT

TIME

match B1 negedge detection

B1 match

B1 match negedge detection

B1 value 0x000008

system clock

prescaler

A2 value 0x000000

 write to A2

0x000000

A1 match posedge detection match A1 posedge detection

no transition at this point

1

cycle n cycle n+1

Prescaler ratio = 2

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1040 Freescale Semiconductor

Figure 31-38. OPWFMB A1 and B1 registers update and flags

The FORCMA and FORCMB bits allow the software to force the output flip-flop to the level
corresponding to a match on comparators A or B respectively. Similarly to a B1 match FORCMB sets the
internal counter to 0x1. The FLAG bit is not set by the FORCMA or FORCMB bits being asserted.

Figure 31-39 describes the generation of 100% and 0% duty cycle signals. It is assumed EDPOL = 0 and
the resultant prescaler value is 1. Initially A1 = 0x8 and B1 = 0x8. In this case, B1 match has precedence
over A1 match, thus the output flip-flop is set to the complement of EDPOL bit. This cycle corresponds
to a 100% duty cycle signal. The same output signal can be generated for any A1 value greater or equal to
B1.

Figure 31-39. OPWFMB mode from 100% to 0% duty cycle

A 0% duty cycle signal is generated if A1 = 0x0 as shown in Figure 31-39 cycle 9. In this case B1 = 0x8
match from cycle 8 occurs at the same time as the A1 = 0x0 match from cycle 9. Please, refer to

EDPOL = 0

cycle n cycle n+1 cycle n+2

A1 value1

B1 value

B2 value

0x8

0x2

0x6

0x8

0x1

internal counter

0x4

0x6

A2 value1 0x2 0x4 0x6

0x2

0x4 0x6

0x8 0x6

Output pin

 write to B2

 write to A2 write to A2

 Match A1 Match A1 Match B1 Match B1 Match B1

A1/B1 load signal

due to B1 match cycle n-1

FLAG set event

FLAG pin/register

Prescaler ratio = 4

FLAG clear

MODE[6] = 1

0x000008 0x000007 0x000006 0x000005 0x000004 0x000003 0x000002 0x000001 0x000000

0%100%

EMIOSCNT

EDPOL = 0

A1 value

B1 value

Output pin

0x000008

Prescaler ratio = 1

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6 cycle 7 cycle 8 cycle 9

0x000007 0x000006 0x000005 0x000004 0x000003 0x000002 0x000001 0x000000A2 value

0x000008

0x000001

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1041

Figure 31-37 for a description of the A1 and B1 match generation. In this case A1 match has precedence
over B1 match and the output signal transitions to EDPOL.

31.3.4.1.1.10 Center Aligned Output PWM Buffered with Dead-Time (OPWMCB) mode

This operation mode generates a center aligned PWM with dead time insertion to the leading
(MODE[0:6] = 10111b1) or trailing edge (MODE[0:6] = 10111b0). A1 and B1 registers are double
buffered to allow smooth output signal generation when changing A2 or B2 registers values on the fly.

Bits BSL[0:1] select the time base. The time base selected for a channel configured to OPWMCB mode
should be a channel configured to MCB Up/Down mode, as shown in Figure 31-33. It is recommended to
start the MCB channel time base after the OPWMCB mode is entered in order to avoid missing A matches
at the very first duty cycle.

Register A1 contains the ideal duty cycle for the PWM signal and is compared with the selected time base.

Register B1 contains the dead time value and is compared against the internal counter. For a leading edge
dead time insertion, the output PWM duty cycle is equal to the difference between register A1 and register
B1, and for a trailing edge dead time insertion, the output PWM duty cycle is equal to the sum of register
A1 and register B1. Bit Mode[6] selects between trailing and leading dead time insertion, respectively.

NOTE
The internal counter runs in the internal prescaler ratio, while the selected
time base may be running in a different prescaler ratio.

When OPWMCB mode is entered, coming out from GPIO mode, the output flip-flop is set to the
complement of the EDPOL bit in the EMIOSC[n] register.

The following basic steps summarize proper OPWMCB startup, assuming the channels are initially in
GPIO mode:

1. [global] Disable Global Prescaler;

2. [MCB channel] Disable Channel Prescaler;

3. [MCB channel] Write 0x1 at internal counter;

4. [MCB channel] Set A register;

5. [MCB channel] Set channel to MCB Up mode;

6. [MCB channel] Set prescaler ratio;

7. [MCB channel] Enable Channel Prescaler;

8. [OPWMCB channel] Disable Channel Prescaler;

9. [OPWMCB channel] Set A register;

10. [OPWMCB channel] Set B register;

11. [OPWMCB channel] Select time base input through BSL[1:0] bits;

12. [OPWMCB channel] Enter OPWMCB mode;

13. [OPWMCB channel] Set prescaler ratio;

14. [OPWMCB channel] Enable Channel Prescaler;

15. [global] Enable Global Prescaler.

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1042 Freescale Semiconductor

Figure 31-40 describes the load of A1 and B1 registers which occurs when the selected counter bus
transitions from 0x2 to 0x1. This event defines the cycle boundary. Note that values written to A2 or B2
within cycle n are loaded into A1 or B1 registers, respectively, and used to generate matches in cycle n+1.

Figure 31-40. OPWMCB A1 and B1 registers load

Bit OU[n] of the EMIOSOUDIS register can be used to disable the A1 and B1 updates, thus allowing to
synchronize the load on these registers with the load of A1 or B1 registers in others channels. Note that
using the update disable bit A1 and B1 registers can be updated at the same counter cycle thus allowing to
change both registers at the same time.

In this mode A1 matches always sets the internal counter to 0x1. When operating with leading edge dead
time insertion the first A1 match sets the internal counter to 0x1. When a match occurs between register
B1 and the internal time base, the output flip-flop is set to the value of the EDPOL bit. In the following
match between register A1 and the selected time base, the output flip-flop is set to the complement of the
EDPOL bit. This sequence repeats continuously. The internal counter should not reach 0x0 as consequence
of a rollover. In order to avoid it the user should not write to the EMIOSB register a value greater than
twice the difference between external count up limit and EMIOSA value.

Figure 31-41 shows two cycles of a Center Aligned PWM signal. Note that both A1 and B1 register values
are changing within the same cycle which allows to vary at the same time the duty cycle and dead time
values.

A1 value 0x000020

A2 value 0x000020 0x000015 0x000016

0x000015

A1/B1 load signal

Selected Counter == 2

Selected

TIME

write to A2
write to B2

write to B2
write to A2

0x000001

0x000005
0x000006

0x000016

cycle n cycle n+1 cycle n+2
Counter Bus

B1 value 0x000004

B2 value 0x000004 0x000005 0x000006

0x000005 0x000006

Prescaler ratio = 2

System Clock

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1043

Figure 31-41. OPWMCB with lead dead time insertion

When operating with trailing edge dead time insertion, the first match between A1 and the selected time
base sets the output flip-flop to the value of the EDPOL bit and sets the internal counter to 0x1. In the
second match between register A1 and the selected time base, the internal counter is set to 0x1 and B1
matches are enabled. When the match between register B1 and the selected time base occurs the output
flip-flop is set to the complement of the EDPOL bit. This sequence repeats continuously.

EDPOL = 1

internal
time
base

internal counter is
set to 1 on A1 match

dead-time

A1 value

A2 value

B1 value

B2 value

write to B2selected
counter bus

0x000002 0x000004

0x000002 0x000004

0x000015

0x000015

write to A2

0x000013

0x000013

0x000001
0x000002
0x000004

0x000015
0x000013

0x000020

dead-time

output flip-flop

FLAG pin/register

0x000001

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1044 Freescale Semiconductor

Figure 31-42. OPWMCB with trail dead time insertion

FLAG can be generated in the trailing edge of the output PWM signal when MODE[5] is cleared, or in
both edges, when MODE[5] is set. If subsequent matches occur on comparators A and B, the PWM pulses
continue to be generated, regardless of the state of the FLAG bit.

NOTE
In OPWMCB mode, FORCMA and FORCMB do not have the same
behavior as a regular match. Instead, they force the output flip-flop to
constant value which depends upon the selected dead time insertion mode,
lead or trail, and the value of the EDPOL bit.

FORCMA has different behaviors depending upon the selected dead time insertion mode, lead or trail. In
lead dead time insertion FORCMA force a transition in the output flip-flop to the opposite of EDPOL. In
trail dead time insertion the output flip-flop is forced to the value of EDPOL bit.

If bit FORCMB is set, the output flip-flop value depends upon the selected dead time insertion mode. In
lead dead time insertion FORCMB forces the output flip-flop to transition to EDPOL bit value. In trail
dead time insertion the output flip-flop is forced to the opposite of EDPOL bit value.

NOTE
FORCMA bit set does not set the internal time-base to 0x1 as a regular A1
match.

The FLAG bit is not set either in case of a FORCMA or FORCMB or even if both forces are issued at the
same time.

EDPOL = 1

internal
time
base

internal counter is
set to 1 on A1 match

dead-time

A1 value

A2 value

B1 value

B2 value

write to B2selected
counter bus

0x000002 0x000004

0x000002 0x000004

0x000015

0x000015

write to A2

0x000013

0x000013

0x000001
0x000002
0x000004

0x000015
0x000013

0x000020

dead-time

output flip-flop

FLAG pin/register

0x000001

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1045

NOTE
FORCMA and FORCMB have the same behavior even in Freeze or normal
mode regarding the output pin transition.

When FORCMA is issued along with FORCMB the output flip-flop is set to the opposite of EDPOL bit
value. This is equivalent of saying that.FORCMA has precedence over FORCMB when lead dead time
insertion is selected and FORCMB has precedence over FORCMA when trail dead time insertion is
selected.

Duty cycle from 0% to 100% can be generated by setting appropriate values to A1 and B1 registers
relatively to the period of the external time base. Setting A1 = 1 generates a 100% duty cycle waveform.
Assuming EDPOL is set to ‘1’ and OPWMCB mode with trail dead time insertion, 100% duty cycle
signals can be generated if B1 occurs at or after the cycle boundary (external counter = 1). If A1 is greater
than the maximum value of the selected counter bus period, then a 0% duty cycle is produced, only if the
pin starts the current cycle in the opposite of EDPOL value. In case of 100% duty cycle, the transition from
EDPOL to the opposite of EDPOL may be obtained by forcing pin, using FORCMA or FORCMB, or both.

NOTE
If A1 is set to 0x1 at OPWMCB entry the 100% duty cycle may not be
obtained in the very first PWM cycle due to the pin condition at mode entry.

Only values different than 0x0 are allowed to be written to A1 register. If 0x0 is loaded to A1 the results
are unpredictable.

NOTE
A special case occurs when A1 is set to (external counter bus period)/2,
which is the maximum value of the external counter. In this case the output
flip-flop is constantly set to the EDPOL bit value.

The internal channel logic prevents matches from one cycle to propagate to the next cycle. In trail dead
time insertion B1 match from cycle n could eventually cross the cycle boundary and occur in cycle n+1.
In this case B1 match is masked out and does not cause the output flip-flop to transition. Therefore matches
in cycle n+1 are not affected by the late B1 matches from cycle n.

Figure 31-43 shows a 100% duty cycle output signal generated by setting A1 = 4 and B1 = 3. In this case
the trailing edge is positioned at the boundary of cycle n+1, which is actually considered to belong to cycle
n+2 and therefore does not cause the output flip-flip to transition.

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1046 Freescale Semiconductor

Figure 31-43. OPWMCB with 100% Duty Cycle (A1 = 4 and B1 = 3)

It is important to notice that, such as in OPWMB and OPWFMB modes, the match signal used to set or
clear the channel output flip-flop is generated on the deassertion of the channel combinational comparator
output signal which compares the selected time base with A1 or B1 register values. Please refer to
Figure 31-36 which describes the delay from matches to output flip-flop transition in OPWFMB mode.
The operation of OPWMCB mode is similar to OPWFMB regarding matches and output pin transition.

31.3.4.1.1.11 Output Pulse Width Modulation Buffered (OPWMB) Mode

OPWMB mode (MODE[0:6] = 11000b0) is used to generate pulses with programmable leading and
trailing edge placement. An external counter driven in MCB Up mode must be selected from one of the
counter buses. A1 register value defines the first edge and B1 the second edge. The output signal polarity
is defined by the EDPOL bit. If EDPOL is zero, a negative edge occurs when A1 matches the selected
counter bus and a positive edge occurs when B1 matches the selected counter bus.

The A1 and B1 registers are double buffered and updated from A2 and B2, respectively, at the cycle
boundary. The load operation is similar to the OPWFMB mode. Please refer to Figure 31-38 for more
information about A1 and B1 registers update.

FLAG can be generated at B1 matches, when MODE[5] is cleared, or in both A1 and B1 matches, when
MODE[5] is set. If subsequent matches occur on comparators A and B, the PWM pulses continue to be
generated, regardless of the state of the FLAG bit.

FORCMA and FORCMB bits allow the software to force the output flip-flop to the level corresponding
to a match on A1 or B1 respectively. FLAG bit is not set by the FORCMA and FORCMB operations.

At OPWMB mode entry the output flip-flop is set to the value of the EDPOL bit in the EMIOSC[n]
register.

0x000001

dead time

0x000020

dead time dead time

write to A2
selected
counter bus

internal
time
base

0x000004

A1 value

A2 value

B1 value

B2 value

0x000004

0x000001

output flip-flop

0x000003

0x000015

0x000003

0x000015

0x000003

cycle n cycle n+1 cycle n+2

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1047

Some rules applicable to the OPWMB mode are:

• B1 matches have precedence over A1 matches if they occur at the same time within the same
counter cycle

• A1 = 0 match from cycle n has precedence over B1 match from cycle n-1

• A1 matches are masked out if they occur after B1 match within the same cycle

• Any value written to A2 or B2 on cycle n is loaded to A1 and B1 registers at the following cycle
boundary (assuming OU[n] bit of EMIOSOUDIS register is not asserted). Thus the new values will
be used for A1 and B1 matches in cycle n+1

Figure 31-44 describes the operation of the OPWMB mode regarding A1 and B1 matches and the
transition of the channel output pin. In this example EDPOL is set to ‘0’.

Figure 31-44. OPWMB mode matches and flags

Note that the output pin transitions are based on the negedges of the A1 and B1 match signals.
Figure 31-44 shows in cycle n+1 the value of A1 register being set to ‘0’. In this case the match posedge
is used instead of the negedge to transition the output flip-flop.

Figure 31-45 describes the channel operation for 0% duty cycle. Note that the A1 match posedge signal
occurs at the same time as the B1 = 0x8 negedge signal. In this case A1 match has precedence over B1
match, causing the output pin to remain at EDPOL bit value, thus generating a 0% duty cycle signal.

1

4

match A1 negedge detection

6

A1 value 0x000004

A1 match

A1 match negedge detection

output pin
EDPOL = 0

TIME

match B1 negedge detection

B1 match

B1 match negedge detection

B1 value 0x000006

clock

prescaler

A2 value 0x000000

 write to A2

0x000000

A1 match posedge detection match A1 posedge detection

1

cycle n cycle n+1

86

FLAG set event

Selected
counter bus

FLAG pin/register

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1048 Freescale Semiconductor

Figure 31-45. OPWMB mode with 0% duty cycle

Figure 31-46 shows a waveform changing from 100% to 0% duty cycle. EDPOL in this case is zero. In
this example B1 is programmed to the same value as the period of the external selected time base.

Figure 31-46. OPWMB mode from 100% to 0% duty cycle

In Figure 31-46 if B1 is set to a value lower than 0x8 it is not possible to achieve 0% duty cycle by only
changing A1 register value. Since B1 matches have precedence over A1 matches the output pin transitions
to the opposite of EDPOL bit at B1 match. Note also that if B1 is set to 0x9, for instance, B1 match does
not occur, thus a 0% duty cycle signal is generated.

1

4

match A1 negedge detection

8

A1 value 0x000004

A1 match

A1 match negedge detection

output pin
EDPOL = 0

Selected

TIME

match B1 negedge detection

B1 match

B1 match negedge detection

B1 value 0x000008

clock

prescaler

A2 value 0x000000

 write to A2

0x000000

A1 match posedge detection match A1 posedge detection

1

cycle n cycle n+1

8

counter bus

FLAG set event

FLAG pin/register

0x000008 0x000007 0x000006 0x000005 0x000004 0x000003 0x000002 0x000001 0x000000

0%100%

Selected

EDPOL = 0

A1 value

B1 value

Output pin

0x000008

Prescaler = 1

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6 cycle 7 cycle 8 cycle 9
counter bus

0x000007 0x000006 0x000005 0x000004 0x000003 0x000002 0x000001 0x000000A2 value

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1049

31.3.4.1.1.12 Output Pulse Width Modulation with Trigger (OPWMT) mode

OPWMT mode (MODE[0:6] = 0100110) is intended to support the generation of pulse width modulation
signals where the period is not modified while the signal is being output, but where the duty cycle will be
varied and must not create glitches. The mode is intended to be used in conjunction with other channels
executing in the same mode and sharing a common timebase. It will support each channel with a fixed
PWM leading edge position with respect to the other channels and the ability to generate a trigger signal
at any point in the period that can be output from the module to initiate activity in other parts of the device
such as starting ADC conversions.

An external counter driven in either MC Up or MCB Up mode must be selected from one of the counter
buses.

Register A1 defines the leading edge of the PWM output pulse and as such the beginning of the PWM’s
period. This makes it possible to insure that the leading edge of multiple channels in OPWMT mode can
occur at a specific time with respect to the other channels when using a shared timebase. This can allow
the introduction of a fixed offset for each channel which can be particularly useful in the generation of
lighting PWM control signals where it is desirable that edges are not coincident with each other to help
eliminate noise generation. The value of register A1 represents the shift of the PWM channel with respect
to the selected timebase. A1 can be configured with any value within the range of the selected time base.
Note that registers loaded with 0x0 will not produce matches if the timebase is driven by a channel in MCB
mode.

A1 is not buffered as the shift of a PWM channel must not be modified while the PWM signal is being
generated. In case A1 is modified it is immediately updated and one PWM pulse could be lost.

EMIOSB[n] address gives access to B2 register for write and B1 register for read. Register B1 defines the
trailing edge of the PWM output pulse and as such the duty cycle of the PWM signal. To synchronize B1
update with the PWM signal and so ensure a correct output pulse generation the transfer from B2 to B1 is
done at every match of register A1.

EMIOSOUDIS register affects transfers between B2 and B1 only.

In order to account for the shift in the leading edge of the waveform defined by register A1 it will be
necessary that the trailing edge, held in register B1, can roll over into the next period. This means that a
match against the B1 register should not have to be qualified by a match in the A1 register. The impact of
this would mean that incorrectly setting register B1 to a value less that register A1 will result in the output
being held over a cycle boundary until the B1 value is encountered.

This mode provides a buffered update of the trailing edge by updating register B1 with register B2 contents
only at a match of register A1.

The value loaded in register A1 is compared with the value on the selected time base. When a match on
comparator A1 occurs, the output flip-flop is set to the value of the EDPOL bit. When a match occurs on
comparator B, the output flip-flop is set to the complement of the EDPOL bit.

Note that the output pin and flag transitions are based on the posedges of the A1, B1 and A2 match signals.
Please, refer to Figure 31-44 at Section 31.3.4.1.1.11, Output Pulse Width Modulation Buffered
(OPWMB) Mode for details on match posedge.

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1050 Freescale Semiconductor

Register A2 defines the generation of a trigger event within the PWM period and A2 should be configured
with any value within the range of the selected time base, otherwise no trigger will be generated. A match
on the comparator will generate the FLAG signal but it has no effect on the PWM output signal generation.
The typical setup to obtain a trigger with FLAG is to enable DMA and to drive the channel’s ipd_done
input high.

A2 is not buffered and therefore its update is immediate. If the channel is running when a change is made
this could cause either the loss of one trigger event or the generation of two trigger events within the same
period. Register A2 can be accessed by reading or writing the eMIOS UC Alternate A Register
(EMIOSALTA) at UC[n] base address +0x14.

FLAG signal is set only at match on the comparator with A2. A match on the comparator with A1 or B1
or B2 has no effect on FLAG.

At any time, the FORCMA and FORCMB bits allow the software to force the output flip-flop to the level
corresponding to a match on A or B respectively. Any FORCMA and/or FORCMB has priority over any
simultaneous match regarding to output pin transitions. Note that the load of B2 content on B1 register at
an A match is not inhibited due to a simultaneous FORCMA/FORCMB assertion. If both FORCMA and
FORCMB are asserted simultaneously the output pin goes to the opposite of EDPOL value such as if A1
and B1 registers had the same value. FORCMA assertion causes the transfer from register B2 to B1 such
as a regular A match, regardless of FORCMB assertion.

If subsequent matches occur on comparators A1 and B, the PWM pulses continue to be generated,
regardless of the state of the FLAG bit.

At OPWMT mode entry the output flip-flop is set to the complement of the EDPOL bit in the EMIOSC[n]
register.

In order to achieve 0% duty cycle both registers A1 and B must be set to the same value. When a
simultaneous match on comparators A and B occur, the output flip-flop is set at every period to the
complement value of EDPOL.

In order to achieve 100% duty cycle the register B1 must be set to a value greater than maximum value of
the selected time base. As a consequence, if 100% duty cycle must be implemented, the maximum counter
value for the time base is 0xFFFE for a 16-bit counter. When a match on comparator A1 occurs the output
flip-flop is set at every period to the value of EDPOL bit. The transfer from register B2 to B1 is still
triggered by the match at comparator A.

Figure 31-47 shows the Unified Channel running in OPWMT mode with Trigger Event Generation and
duty cycle update on next period update.

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1051

Figure 31-47. OPWMT example

Figure 31-48 shows the Unified Channel running in OPWMT mode with Trigger Event Generation and
0% duty.

Figure 31-48. OPWMT with 0% Duty Cycle

Figure 31-49 shows the Unified Channel running in OPWMT mode with Trigger Event Generation and
100% duty cycle.

0x0011FF
0x001000

0x000000

selected counter bus

Time

output flip-flop

A1 value1

 write to B2

0x000400

B1 value

B2 value2 0x000700

 Match B1
 write to A1

0xxxxxxx

0x000400

0x001000

0x000700

 and B2

0x001000

 Match A1

 Match B1 Match A1

Notes: 1. EMIOSA[n] = A1
2. EMIOSB[n] = B2 for write, B1 for read

0x000700

Notes:

A2 value 0x000500

0x000500

FLAG pin/register

 Match A2
 Match A2

0x0011FF
0x001000

0x000000

selected counter bus

Time

output flip-flop

A1 value1

 write to B2

0x000400

B1 value

B2 value2 0x000400

 Match B1
 write to A1

0xxxxxxx

0x000400

0x001000

 and B2

0x001000

 Match A1

 Match B1 Match A1

Notes: 1. EMIOSA[n] = A1
2. EMIOSB[n] = B2 for write, B1 for read

0x000400

Notes:

A2 value 0x000500

0x000500

FLAG pin/register

 Match A2
 Match A2

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1052 Freescale Semiconductor

Figure 31-49. OPWMT with 100% duty cycle

31.3.4.1.2 Input Programmable Filter (IPF)

The IPF ensures that only valid input pin transitions are received by the Unified Channel edge detector. A
block diagram of the IPF is shown in Figure 31-50.

The IPF is a 5-bit programmable up counter that is incremented by the selected clock source, according to
bits IF[0:3] in EMIOSC[n] register.

Figure 31-50. lnput programmable filter submodule diagram

The input signal is synchronized by system clock. When a state change occurs in this signal, the 5-bit
counter starts counting up. As long as the new state is stable on the pin, the counter remains incrementing.
If a counter overflows occurs, the new pin value is validated. In this case, it is transmitted as a pulse edge
to the edge detector. If the opposite edge appears on the pin before validation (overflow), the counter is
reset. At the next pin transition, the counter starts counting again. Any pulse that is shorter than a full range
of the masked counter is regarded as a glitch and it is not passed on to the edge detector. A timing diagram
of the input filter is shown in Figure 31-51.

0x0011FF
0x001000

0x000000

selected counter bus

Time

output flip-flop

A1 value1

 write to B2

0x000400

B1 value

B2 value2 0x001200

 Match B1 does not occur
 write to A1

0xxxxxxx

0x000400

0x001000

 and B2

0x001000

 Match A1

 Match B1 Match A1

Notes: 1. EMIOSA[n] = A1
2. EMIOSB[n] = B2 for write, B1 for read

0x001200

Notes:

A2 value 0x000500

0x000500

FLAG pin/register

 Match A2
 Match A2

IF3

filter out

ipg_clk

Prescaled Clock

IF2 IF1 IF0

clk

FCK

EMIOSI

5-bit up counter

sy
nc

hr
on

iz
er

clock

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1053

Figure 31-51. Input programmable filter example

The filter is not disabled during either freeze state or negated GTBE input.

31.3.4.1.3 Clock Prescaler (CP)

The CP divides the GCP output signal to generate a clock enable for the internal counter of the Unified
Channels. The GCP output signal is prescaled by the value defined in Figure 31-18 according to the
UCPRE[0:1] bits in EMIOSC[n] register. The prescaler is enabled by setting the UCPREN bit in the
EMIOSC[n] and can be stopped at any time by clearing this bit, thereby stopping the internal counter in
the Unified Channel.

In order to ensure safe working and avoid glitches the following steps must be performed whenever any
update in the prescaling rate is desired:

1. Write 0 at both GPREN bit in EMIOSMCR register and UCPREN bit in EMIOSC[n] register, thus
disabling prescalers;

2. Write the desired value for prescaling rate at UCPRE[0:1] bits in EMIOSC[n] register;

3. Enable channel prescaler by writing 1 at UCPREN bit in EMIOSC[n] register;

4. Enable global prescaler by writing 1 at GPREN bit in EMIOSMCR register.

The prescaler is not disabled during either freeze state or negated GTBE input.

31.3.4.1.4 Effect of Freeze on the Unified Channel

When in debug mode, bit FRZ in the EMIOSMCR and bit FREN in the EMIOSC[n] register are both set,
the internal counter and Unified Channel capture and compare functions are halted. The UC is frozen in
its current state.

During freeze, all registers are accessible. When the Unified Channel is operating in an output mode, the
force match functions remain available, allowing the software to force the output to the desired level.

Note that for input modes, any input events that may occur while the channel is frozen are ignored.

When exiting debug mode or freeze enable bit is cleared (FRZ in the EMIOSMCR or FREN in the
EMIOSC[n] register) the channel actions resume, but may be inconsistent until channel enters GPIO mode
again.

Time

selected clock

EMIOSI

5-bit counter

filter out

IF[0:3] = 0010

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1054 Freescale Semiconductor

31.3.4.2 IP Bus Interface Unit (BIU)

The BIU provides the interface between the Internal Interface Bus (IIB) and the Peripheral Bus, allowing
communication among all submodules and this IP interface.

The BIU allows 8, 16 and 32-bit access. They are performed over a 32-bit data bus in a single cycle clock.

31.3.4.2.1 Effect of Freeze on the BIU

When the FRZ bit in the EMIOSMCR is set and the module is in debug mode, the operation of BIU is not
affected.

31.3.4.3 Global Clock Prescaler Submodule (GCP)

The GCP divides the system clock to generate a clock for the CPs of the channels. The main clock signal
is prescaled by the value defined in Figure 31-12 according to bits GPRE[0:7] in the EMIOSMCR. The
global prescaler is enabled by setting the GPREN bit in the EMIOSMCR and can be stopped at any time
by clearing this bit, thereby stopping the internal counters in all the channels.

In order to ensure safe working and avoid glitches the following steps must be performed whenever any
update in the prescaling rate is desired:

1. Write ‘0’ at GPREN bit in EMIOSMCR, thus disabling global prescaler;

2. Write the desired value for prescaling rate at GPRE[0:7] bits in EMIOSMCR;

3. Enable global prescaler by writing ‘1’ at GPREN bit in EMIOSMCR.

The prescaler is not disabled during either freeze state or negated GTBE input.

31.3.4.3.1 Effect of Freeze on the GCP

When the FRZ bit in the EMIOSMCR is set and the module is in debug mode, the operation of GCP
submodule is not affected, that is, there is no freeze function in this submodule.

31.3.5 Initialization/Application information

On resetting the eMIOS the Unified Channels enter GPIO input mode.

31.3.5.1 Considerations

Before changing an operating mode, the UC must be programmed to GPIO mode and EMIOSA[n] and
EMIOSB[n] registers must be updated with the correct values for the next operating mode. Then the
EMIOSC[n] register can be written with the new operating mode. If a UC is changed from one mode to
another without performing this procedure, the first operation cycle of the selected time base can be
random, that is, matches can occur in random time if the contents of EMIOSA[n] or EMIOSB[n] were not
updated with the correct value before the time base matches the previous contents of EMIOSA[n] or
EMIOSB[n].

When interrupts are enabled, the software must clear the FLAG bits before exiting the interrupt service
routine.

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1055

31.3.5.2 Application information

Correlated output signals can be generated by all output operation modes. Bits OU[n] of the
EMIOSOUDIS register can be used to control the update of these output signals.

In order to guarantee that the internal counters of correlated channels are incremented in the same clock
cycle, the internal prescalers must be set up before enabling the global prescaler. If the internal prescalers
are set after enabling the global prescaler, the internal counters may increment in the same ratio, but at a
different clock cycle.

31.3.5.2.1 Time base generation

For MC with internal clock source operation modes, the internal counter rate can be modified by
configuring the clock prescaler ratio. Figure 31-52 shows an example of a time base with prescaler ratio
equal to one.

NOTE
MCB and OPWFMB modes have a different behavior.

Figure 31-52. Time base period when running in the fastest prescaler ratio

If the prescaler ratio is greater than one or external clock is selected, the counter may behave in three
different ways depending on the channel mode:

• If MC mode and Clear on Match Start and External Clock source are selected the internal counter
behaves as described in Figure 31-53.

• If MC mode and Clear on Match Start and Internal Clock source are selected the internal counter
behaves as described in Figure 31-54.

• If MC mode and Clear on Match End are selected the internal counter behaves as described in
Figure 31-55.

NOTE
MCB and OPWFMB modes have a different behavior.

system clock

input event/prescaler clock enable = 1

internal counter

match value = 3

1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

PRE SCALED CLOCK RATIO = 1 (bypassed)

see note 1

FLAG set event

Note 1: When a match occurs, the first clock cycle is used to
 clear the internal counter, starting another period.

FLAG pin/register

FLAG clear

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1056 Freescale Semiconductor

Figure 31-53. Time base generation with external clock and clear on match start

Figure 31-54. Time base generation with internal clock and clear on match start

Figure 31-55. Time base generation with clear on match end

system clock

input event

internal counter

match value = 3

1 23 0

see note 1

Note 1: When a match occurs, the first system clock cycle is used to clear the
 internal counter, and at the next edge of prescaler clock enable

1 2

 the counter will start counting.

1 23 0

FLAG set event

FLAG clear

FLAG pin/register

system clock

prescaler clock enable

internal counter

match value = 3

0 13 0 2 03 0

PRESCALED CLOCK RATIO = 3

see note 1

Note 1: When a match occurs, the first clock cycle is used to clear the
 internal counter, and only after a second edge of pre scaled clock

1 2

 the counter will start counting.

FLAG set event

FLAG clear

FLAG pin/register

system clock

input event/prescaler clock enable

internal counter

match value = 3

0 13 2 0

PRESCALED CLOCK RATIO = 3

see note 1

Note 1: The match occurs only when the input event/prescaler clock enable is active.
 Then, the internal counter is immediately cleared.

1 2 3

FLAG set event

FLAG clear

FLAG pin/register

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1057

31.3.5.2.2 Coherent accesses

It is highly recommended that the software waits for a new FLAG set event before start reading
EMIOSA[n] and EMIOSB[n] registers to get a new measurement. The FLAG indicates that new data has
been captured and it is the only way to assure data coherency.

The FLAG set event can be detected by polling the FLAG bit or by enabling the interrupt requestor DMA
request or CTU trigger generation.

Reading the EMIOSA[n] register again in the same period of the last read of EMIOSB[n] register may lead
to incoherent results. This will occur if the last read of EMIOSB[n] register occurred after a disabled B2
to B1 transfer.

31.3.5.2.3 Channel/Modes initialization

The following basic steps summarize basic output mode startup, assuming the channels are initially in
GPIO mode:

1. [global] Disable Global Prescaler.

2. [timebase channel] Disable Channel Prescaler.

3. [timebase channel] Write initial value at internal counter.

4. [timebase channel] Set A/B register.

5. [timebase channel] Set channel to MC(B) Up mode.

6. [timebase channel] Set prescaler ratio.

7. [timebase channel] Enable Channel Prescaler.

8. [output channel] Disable Channel Prescaler.

9. [output channel] Set A/B register.

10. [output channel] Select timebase input through bits BSL[1:0].

11. [output channel] Enter output mode.

12. [output channel] Set prescaler ratio (same ratio as timebase channel).

13. [output channel] Enable Channel Prescaler.

14. [global] Enable Global Prescaler.

15. [global] Enable Global Time Base.

The timebase channel and the output channel may be the same for some applications such as in
OPWFM(B) mode or whenever the output channel is intended to run the timebase itself.

The flags can be configured at any time.

31.4 Periodic Interrupt Timer with Real-Time Interrupt (PIT_RTI)

31.4.1 Introduction

The PIT_RTI is an array of timers that can be used to raise interrupts and trigger DMA channels. The
Real-Time Interrupt Timer (RTI) runs on a separate clock and can be used for system wakeup.

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1058 Freescale Semiconductor

Figure 31-56 shows the PIT_RTI block diagram.

Figure 31-56. PIT_RTI block diagram

31.4.2 Features

The main features of this block are:

• One RTI (Real-Time Interrupt) timer to wakeup the CPU in stop mode

• Timers can generate DMA trigger pulses

• Timers can generate interrupts

• All interrupts are maskable

• Independent timeout periods for each timer

31.4.3 Modes of operation

This subsection describes briefly all operating modes supported by the PIT_RTI.

• Run Mode

RTI

Timer 7

Timer 0

.

.

.

PIT_RTI
registers

Peripheral

interrupts

timeout

load_value

Peripheral

PIT_RTI

.

.

.

triggers

Independent
RTI Oscillator

Bus

Clock

Bus Clock

System Clock Selector
(sys_clk)

(FXOSC_clk)

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1059

All functional parts of the PIT_RTI are running during normal Run Mode.

• Stop Mode

The PIT_RTI can continue to run in STOP mode.

31.4.4 Signal description

The PIT_RTI module has no external pins.

31.4.5 Memory map and register description

This section provides a detailed description of all registers accessible in the PIT_RTI module.

31.4.5.1 Memory map

Table 31-23 gives an overview of the PIT_RTI registers. See the chip memory map for the PIT_RTI base
address.

Table 31-23. PIT_RTI memory map

Base address: 0xC3FF_0000

Address offset Use Location

0x000 PIT_RTI Module Control Register (PITMCR) on page 1060

0x004–0x0EC Reserved

0x0F0–0x0FC RTI Channel —

0x100–0x10C Timer Channel 0 See Table 31-24

0x110–0x11C Timer Channel 1 See Table 31-24

0x120–0x12C Timer Channel 2 See Table 31-24

0x130–0x13C Timer Channel 3 See Table 31-24

0x140–0x14C Timer Channel 4 See Table 31-24

0x150–0x15C Timer Channel 5 See Table 31-24

0x160–0x16C Timer Channel 6 See Table 31-24

0x170–0x17C Timer Channel 7 See Table 31-24

Table 31-24. Timer channel n / RTI channel

Address offset Use Location

channel + 0x00 Timer Load Value Register (LDVAL) on page 1061

channel + 0x04 Current Timer Value Register (CVAL) on page 1061

channel + 0x08 Timer Control Register (TCTRL) on page 1062

channel + 0x0C Timer Flag Register (TFLG) on page 1062

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1060 Freescale Semiconductor

NOTE
Register Address = Base Address + Address Offset, where the Base Address
is defined at the MCU level and the Address Offset is defined at the module
level.

NOTE
Reserved registers will read as 0, writes will have no effect.

NOTE
The RTI registers should be programmed only when the PIT_RTI clock is
running.

31.4.5.2 PIT_RTI Module Control Register (PITMCR)

This register controls whether the timer clocks should be enabled and whether the timers should run in
debug mode.

Offset: 0x000 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0

M
D

IS
_R

T
I

MDIS FRZW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

Figure 31-57. PIT_RTI Module Control Register (PITMCR)

Table 31-25. PITMCR field descriptions

Field Description

MDIS_RTI Module Disable - RTI section. This is used to disable the RTI timer. This bit should be enabled before any
RTI setup is done.
0 Clock for RTI is enabled
1 Clock for RTI disabled(default)

MDIS Module Disable - (PIT section). This is used to disable the standard timers. The RTI timer is not affected
by this bit. This bit should be enabled before any other setup is done.
0 Clock for PIT Timers is enabled
1 Clock for PIT Timers is disabled (default)

FRZ Freeze
Allows the timers to be stopped when the device enters debug mode.
0 = Timers continue to run in debug mode.
1 = Timers are stopped in debug mode.

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1061

31.4.5.3 Timer Load Value Register (LDVAL)

This register selects the timeout period for the timer interrupts. In the case of the RTI, it will take several
cycles until this value is synchronized into the RTI clock domain. For all other timers the value change is
visible immediately. The synchronization mechanism allows 0 wait states in this case.

31.4.5.4 Current Timer Value Register (CVAL)

This register indicates the current timer position. In the case of the RTI, this will show a value which is
several cycles old, since it originates from a potentially different clock domain.

Offset: channel_base + 0x00 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
TSV[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
TSV[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-58. Timer Load Value Register (LDVAL)

Table 31-26. LDVAL field descriptions

Field Description

TSV Time Start Value
This field sets the timer start value. The timer counts down until it reaches 0, then it generates an interrupt
and loads this register value again. Writing a new value to this register does not restart the timer, instead
the value is loaded once the timer expires. To abort the current cycle and start a timer period with the new
value, the timer must be disabled and enabled again (see Figure 31-63).

Offset: channel_base + 0x04 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R TVL[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TVL[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-59. Current Timer Value Register (CVAL)

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1062 Freescale Semiconductor

31.4.5.5 Timer Control Register (TCTRL)

This register contains the control bits for each timer.

31.4.5.6 Timer Flag Register (TFLG)

This register holds the PIT_RTI interrupt flags.

Table 31-27. CVAL field descriptions

Field Description

TVL Current Timer Value
This field represents the current timer value. Note that the timer uses a downcounter.

Note: The timer values will be frozen in Debug mode if the FRZ bit is set in the PIT_RTI Module Control
Register (see Figure 31-2).

Offset: channel_base + 0x08 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TIE TEN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-60. Timer Control Register (TCTRL)

Table 31-28. TCTRL field descriptions

Field Description

TIE Timer Interrupt Enable Bit
0 Interrupt requests from Timer x are disabled
1 Interrupt will be requested whenever TIF is set
When an interrupt is pending (TIF set), enabling the interrupt will immediately cause an interrupt event.
To avoid this, the associated TIF flag must be cleared first.

TEN Timer Enable Bit
0 Timer will be disabled
1 Timer will be active

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1063

31.4.6 Functional description

31.4.6.1 General

This section gives detailed information on the internal operation of the module. Each timer can be used to
generate trigger pulses as well as to generate interrupts, each interrupt will be available on a separate
interrupt line.

31.4.6.1.1 Timers

The timers generate triggers at periodic intervals, when enabled. They load their start values, as specified
in their LDVAL registers, then count down until they reach 0. Then they load their respective start value
again. Each time a timer reaches 0, it will generate a trigger pulse and set the interrupt flag.

All interrupts can be enabled or masked (by setting the TIE bits in the TCTRL registers). A new interrupt
can be generated only after the previous one is cleared.

If desired, the current counter value of the timer can be read via the CVAL registers.

The counter period can be restarted, by first disabling, then enabling the timer with the TEN bit (see
Figure 31-62).

The counter period of a running timer can be modified, by first disabling the timer, setting a new load value
and then enabling the timer again (see Figure 31-63).

It is also possible to change the counter period without restarting the timer by writing the LDVAL register
with the new load value. This value will then be loaded after the next trigger event (see Figure 31-64).

Offset: channel_base + 0x0C Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TIF

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-61. Timer Flag Register (TFLG)

Table 31-29. TFLG field descriptions

Field Description

TIF Time Interrupt Flag
TIF is set to 1 at the end of the timer period. This flag can be cleared only by writing it with a 1. Writing a
0 has no effect. If enabled (TIE = 1), TIF causes an interrupt request.
0 Time-out has not yet occurred
1 Time-out has occurred

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1064 Freescale Semiconductor

Figure 31-62. Stopping and starting a timer

Figure 31-63. Modifying running timer period

Figure 31-64. Dynamically setting a new load value

31.4.6.1.2 Debug mode

In Debug mode the timers will be frozen. This is intended to aid software development, allowing the
developer to halt the processor, investigate the current state of the system (for example, the timer values)
and then continue the operation.

31.4.6.2 Interrupts

All of the timers support interrupt generation. See the INTC chapter of the reference manual for related
vector addresses and priorities.

Timer interrupts can be disabled by setting the TIE bits to zero. The timer interrupt flags (TIF) are set to 1
when a timeout occurs on the associated timer, and are cleared to 0 by writing a 1 to that TIF bit.

31.4.7 Initialization and application information

31.4.7.1 Example configuration

In the example configuration:

• The PIT_RTI clock has a frequency of 50 MHz

p1p1

Timer Enabled Disable
Timer

p1

Start Value = p1

Trigger
Event

p1

Re-Enable
Timer

p1

Timer Enabled Disable
Timer, Start Value = p1

Trigger
Event

Re-Enable
Timer

p1

Set new
Load Value

p2 p2 p2

p1p1

Timer Enabled New Start
Value p2 set

p1 p2

Start Value = p1

p2

Trigger
Event

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1065

• Timer 1 creates an interrupt every 5.12 ms

• Timer 3 creates a trigger event every 30 ms

First the PIT_RTI module needs to be activated by programming PIT_MCR[MDIS] = 0.

The 50 MHz clock frequency equates to a clock period of 20 ns. Timer 1 needs to trigger every
5.12 ms/20 ns = 256000 cycles and Timer 3 every 30 ms/20 ns = 1500000 cycles. The value for the
LDVAL register trigger would be calculated as (period / clock period) – 1.

The LDVAL registers must be set as follows:

• LDVAL for Timer 1 is set to 0x0003E7FF

• LDVAL for Timer 3 is set to 0x0016E35F

The interrupt for Timer 1 is enabled by setting TIE in the TCTRL1 register. The timer is started by writing
a 1 to bit TEN in the TCTRL1 register.

Timer 3 shall be used only for triggering. Therefore Timer 3 is started by writing a 1 to bit TEN in the
TCTRL3 register; bit TIE stays at 0.

The following example code matches the described setup:
// turn on PIT_RTI
PIT_RTI_CTRL = 0x00;
// RTI
PIT_RTI_LDVAL = 0x004C4B3F; // setup RTI for 5000000 cycles
PIT_RTI_TCTRL = PIT_TIE; // let RTI generate interrupts
PIT_RTI_TCTRL |= PIT_TEN; // start RTI

// Timer 1
PIT_RTI_LDVAL1 = 0x0003E7FF; // setup timer 1 for 256000 cycles
PIT_RTI_TCTRL1 = TIE; // enable Timer 1 interrupts
PIT_RTI_TCTRL1 |= TEN; // start timer 1

// Timer 3
PIT_RTI_LDVAL3 = 0x0016E35F; // setup timer 3 for 1500000 cycles
PIT_RTI_TCTRL3 = TEN; // start timer 3

Chapter 31 Timers

MPC5646C Microcontroller Reference Manual, Rev. 5

1066 Freescale Semiconductor

THE PAGE IS INTENTIONALLY LEFT BLANK

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1067

——— ADC system ———

MPC5646C Microcontroller Reference Manual, Rev. 5

1068 Freescale Semiconductor

THE PAGE IS INTENTIONALLY LEFT BLANK

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1069

Chapter 32
Analog-to-Digital Converter (ADC)

32.1 Overview

32.1.1 Device-specific pin configuration features

The device comprises two ADC modules:

• ADC_0 with 10-bit resolution

• ADC_1 with 12-bit resolution

• Common mode conversion range

— For ADC_0: 0 to VDD_HV_ADC0

— For ADC_1: 0 to VDD_HV_ADC1

• Independent reference supplies for each ADC

• 62 single-ended input channels (depending on package type), expandable to 90 channels via
external multiplexing

— Internally multiplexed channels

– 16 precision channels shared between 10-bit and 12-bit ADCs

– 3 standard channels1 shared between 10-bit and 12-bit ADCs

– 10 dedicated standard channels on 12-bit ADC

– Up to 292 dedicated standard channels on 10-bit ADC

— Externally multiplexed channels are dedicated to 10-bit ADC

– Internal control to support generation of external analog multiplexer selection

– 4 internal channels optionally used to support externally multiplexed inputs, providing
transparent control for additional ADC channels

– Each of the 4 channels supports as many as 8 externally multiplexed inputs

• 3 independently configurable sample and conversion times for high precision channels, standard
precision channels and externally multiplexed channels

• Dedicated result registers available for every channel. Conversion information, such as mode of
operation (normal, injected or CTU), is associated to data value.

• One Shot/Scan Modes

• Chain Injection Mode

• Conversion triggering sources:

— Software

1. Standard channels are mapped on PB8, PB9, and PB10.
2. There are 29 standard channels dedicated to ADC 10-bit, and there are 4 dedicated channels on ADC 10 bit that

"support external mux" option. If they are NOT used with external mux, they can be used as standard channel and
hence the total number of standard channels dedicated to 10 bit ADC is 33. If they are muxed, then there are 29
standard channels and 4 extended channels.

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1070 Freescale Semiconductor

— CTU

— PIT_RTI channel 2 and 6 (for injected conversion)

• Conversion triggering support — Internal conversion triggering from PIT_RTI or timed I/O
module (eMIOS)

• Power-down mode for analog portion of ADC

• Supports DMA transfer of results based on the end of conversion

• 6 + 3 analog watchdogs (6 on 10-bit ADC, 3 on 12-bit ADC) with interrupt capability for
continuous hardware monitoring

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1071

32.1.2 Device-specific implementation

Figure 32-1. Implementation of ADC_0 and ADC_1

Up to 33 standard channels
(3 pins shared with ADC 12b)

16 precision channels
(same pins as ADC 12b)

ADC0_S[28] (Ch 60)

ADC0_S[0] (Ch 32)

ADC0_P[15] (Ch 15)

ADC0_P[0] (Ch 0)

eMIOS0_0

eMIOS0_22

eMIOS0_24

eMIOS0_31

PIT7

ADC control

ADC trigger

ADC done

2 interrupts
ADC_EOC & ADC_WD

CTU Digital
Interface Analog

switch

eMIOS

PIT_RTI

INTC

D

A
M

U
X

 3
2

M
U

X
 1

6

ADC_0 (10-bit)

Ch0 trig

Ch22 trig

Ch24 trig

Ch31 trig

...

...

PIT3

16 precision channels
(same pins as ADC 10b)

ADC1_P[15] (Ch 15)

ADC1_P[0] (Ch 0)

2 interrupts
ADC_EOC & ADC_WD

Digital
Interface Analog

switch

INTC

D

A M
U

X
 1

6

ADC_1 (12-bit)

...

eMIOS1_0

eMIOS1_22

eMIOS1_24

eMIOS1_31

Ch32 trig

Ch54 trig

Ch56 trig

Ch63 trig

Ch23 trig

Ch55 trig

PIT6

PIT2

ADC control

ADC trigger

ADC done

Injection
Trigger

Injection
Trigger

ADC1_S[12] (Ch 44)

ADC1_S[0] (Ch 32)

...

M
U

X
 8 Up to 13 standard channels

(3 pins shared with ADC 10b)

...
...

...
...

...
...

...
...

Up to 32 extended channels
through external MUX

ADC0_X[3]

ADC0_X[0]

MA[2:0]

MUX 8 MUX 8

3

ADC0_X[2]
ADC0_X[1]

MUX 8 MUX 8

(C
h

88
–9

5)

(C
h

64
–7

1)

(C
h

80
–8

7)

(C
h

72
–7

9)

1

1: There are 29 standard channels dedicated to ADC 10-bit, and thereare 4 dedicated channels on ADC 10 bit that "support external mux" option. If they
are NOT used with external mux, they can be used as standard channel and hence the total number of standard channels dedicated to 10 bit ADC is 33 .
If they are muxed, then there are 29 standard channels and 4 extended channels.

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1072 Freescale Semiconductor

Table 32-1. ADC channel mapping

Pad
ADC_0 (10-bit) ADC_1 (12-bit)

Description
 Function Channel # Function Channel #

PB[4] ADC0_P[0] CH0 ADC1_P[0] CH0 16 precision channels
shared between

ADC_0 and ADC_1PB[5] ADC0_P[1] CH1 ADC1_P[1] CH1

PB[6] ADC0_P[2] CH2 ADC1_P[2] CH2

PB[7] ADC0_P[3] CH3 ADC1_P[3] CH3

PD[0] ADC0_P[4] CH4 ADC1_P[4] CH4

PD[1] ADC0_P[5] CH5 ADC1_P[5] CH5

PD[2] ADC0_P[6] CH6 ADC1_P[6] CH6

PD[3] ADC0_P[7] CH7 ADC1_P[7] CH7

PD[4] ADC0_P[8] CH8 ADC1_P[8] CH8

PD[5] ADC0_P[9] CH9 ADC1_P[9] CH9

PD[6] ADC0_P[10] CH10 ADC1_P[10] CH10

PD[7] ADC0_P[11] CH11 ADC1_P[11] CH11

PD[8] ADC0_P[12] CH12 ADC1_P[12] CH12

PD[9] ADC0_P[13] CH13 ADC1_P[13] CH13

PD[10] ADC0_P[14] CH14 ADC1_P[14] CH14

PD[11] ADC0_P[15] CH15 ADC1_P[15] CH15

PB[8] ADC0_S[0] CH32 ADC1_S[4] CH36 3 standard channels
shared between

ADC_0 and ADC_1PB[9] ADC0_S[1] CH33 ADC1_S[5] CH37

PB[10] ADC0_S[2] CH34 ADC1_S[6] CH38

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1073

PB[11] ADC0_S[3] CH35 29 standard channels dedicated
to ADC_0

PD[12] ADC0_S[4] CH36

PD[13] ADC0_S[5] CH37

PD[14] ADC0_S[6] CH38

PD[15] ADC0_S[7] CH39

PF[0] ADC0_S[8] CH40

PF[1] ADC0_S[9] CH41

PF[2] ADC0_S[10] CH42

PF[3] ADC0_S[11] CH43

PF[4] ADC0_S[12] CH44

PF[5] ADC0_S[13] CH45

PF[6] ADC0_S[14] CH46

PF[7] ADC0_S[15] CH47

PI[8] ADC0_S[16] CH48

PI[9]1 ADC0_S[17] CH49

PI[10]1 ADC0_S[18] CH50

PI[11] ADC0_S[19] CH51

PI[12] ADC0_S[20] CH52

PI[13] ADC0_S[21] CH53

PI[14] ADC0_S[22] CH54

PI[15] ADC0_S[23] CH55

PJ[0] ADC0_S[24] CH56

PJ[1] ADC0_S[25] CH57

PJ[2] ADC0_S[26] CH58

PJ[3] ADC0_S[27] CH59

PJ[5]1 ADC0_S[28] CH60

PJ[6]1 ADC0_S[29] CH61

PJ[7]1 ADC0_S[30] CH62

PJ[8]1 ADC0_S[31] CH63

Table 32-1. ADC channel mapping (continued)

Pad
ADC_0 (10-bit) ADC_1 (12-bit)

Description
 Function Channel # Function Channel #

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1074 Freescale Semiconductor

32.2 Introduction
The analog-to-digital converter (ADC) block provides accurate and fast conversions for a wide range of
applications. An ADC module has a corresponding digital interface.

The ADC digital interface contains advanced features for normal or injected conversion. It provides
support for eDMA (direct memory access) mode operation. A conversion can be triggered by software or
hardware (Cross Triggering Unit or PIT_RTI).

There three types of input channels:

• Internal precision, ADCx_P[n] (internally multiplexed high accuracy precision channels)

• Internal standard, ADCx_S[n] (internally multiplexed standard accuracy channels)

• External ADCx_X[n] (externally multiplexed standard accuracy channels)

PA[3] ADC1_S[0] CH32 10 standard channels dedicated
to ADC_1

PA[7] ADC1_S[1] CH33

PA[10] ADC1_S[2] CH34

PA[11] ADC1_S[3] CH35

PE[12] ADC1_S[7] CH39

PJ[9]1 ADC1_S[8] CH40

PJ[10]1 ADC1_S[9] CH41

PJ[11]1 ADC1_S[10] CH42

PJ[12]1 ADC1_S[11] CH43

PJ[13]1 ADC1_S[12] CH44

PB[12] ADC0_X[0] CH[64..71] 4 muxed channels dedicated to
ADC_0

PB[13] ADC0_X[1] CH[72..79]

PB[14] ADC0_X[2] CH[80..87]

PB[15] ADC0_X[3] CH[88..95]

1 This pin is not available in the 176 LQFP package

Table 32-2. ADC_0 mux control signal availability

Control signal Pads

MA[0] PC[3], PE[7], PH[8]

MA[1] PC[10], PE[6], PH[7]

MA[2] PA[2], PE[5], PH[6]

Table 32-1. ADC channel mapping (continued)

Pad
ADC_0 (10-bit) ADC_1 (12-bit)

Description
 Function Channel # Function Channel #

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1075

The mask registers present within the ADCDig can be programmed to configure which channel has to be
converted.

Three external decode signals MA[2:0] (multiplexer address) are provided for external channel selection
and are available as alternate functions on GPIO.

The MA[0:2] are controlled by the ADC itself and are set automatically by the hardware.

A conversion timing register for configuring different sampling and conversion times is associated to each
channel type. Analog watchdogs allow continuous hardware monitoring.

NOTE
Configure all the GPIOs in a known state during 12-bit ADC conversion for
better performance.

32.3 Register descriptions

32.3.1 Introduction

MPC5646C has two ADCs (10-bit ADC_0 and 12-bit ADC_1) and each has specific registers.

Table 32-3 lists the ADC_0 registers with their address offsets and reset values.

Table 32-3. 10-bit ADC_0 digital registers

Base address: 0xFFE0_0000

Register name Address offset Location

Main Configuration Register (MCR) 0x0000 on page 1083

Main Status Register (MSR) 0x0004 on page 1085

Reserved 0x0008 .. 0x000F

Interrupt Status Register (ISR) 0x0010 on page 1086

Channel Pending Register (CEOCFR0) 0x0014 on page 1087

Channel Pending Register (CEOCFR1) 0x0018 on page 1087

Channel Pending Register (CEOCFR2) 0x001C on page 1087

Interrupt Mask Register (IMR) 0x0020 on page 1090

Channel Interrupt Mask Register (CIMR0) 0x0024 on page 1091

Channel Interrupt Mask Register (CIMR1) 0x0028 on page 1091

Channel Interrupt Mask Register (CIMR2) 0x002C on page 1091

Watchdog Threshold Interrupt Status Register (WTISR) 0x0030 on page 1093

Watchdog Threshold Interrupt Mask Register (WTIMR) 0x0034 on page 1094

Reserved 0x0038 .. 0x003F

DMA Enable Register (DMAE) 0x0040 on page 1095

DMA Channel Select Register 0 (DMAR0) 0x0044 on page 1096

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1076 Freescale Semiconductor

DMA Channel Select Register 1 (DMAR1) 0x0048 on page 1096

DMA Channel Select Register 2 (DMAR2) 0x004C on page 1096

Reserved 0x0050 .. 0x005F

Threshold Register 0 (THRHLR0) 0x0060 on page 1098

Threshold Register 1 (THRHLR1) 0x0064 on page 1098

Threshold Register 2 (THRHLR2) 0x0068 on page 1098

Threshold Register 3 (THRHLR3) 0x006C on page 1098

Reserved 0x0070 .. 0x007F

Presampling Control Register (PSCR) 0x0080 on page 1100

Presampling Register 0 (PSR0) 0x0084 on page 1101

Presampling Register 1 (PSR1) 0x0088 on page 1101

Presampling Register 2 (PSR2) 0x008C on page 1101

Reserved 0x0090 .. 0x0093

Conversion Timing Register 0 (CTR0) 0x0094 on page 1103

Conversion Timing Register 1 (CTR1) 0x0098 on page 1103

Conversion Timing Register 2 (CTR2) 0x009C on page 1103

Reserved 0x00A0 .. 0x00A3

Normal Conversion Mask Register 0 (NCMR0) 0x00A4 on page 1104

Normal Conversion Mask Register 1 (NCMR1) 0x00A8 on page 1104

Normal Conversion Mask Register 2 (NCMR2) 0x00AC on page 1104

Reserved 0x00B0 .. 0x00B3

Injected Conversion Mask Register 0 (JCMR0) 0x00B4 on page 1106

Injected Conversion Mask Register 1 (JCMR1) 0x00B8 on page 1106

Injected Conversion Mask Register 2 (JCMR2) 0x00BC on page 1106

Reserved 0x00C0 .. 0x00C3

Decode Signal Delay Register (DSDR) 0x00C4 on page 1108

Power-down Exit Delay Register (PDEDR) 0x00C8 on page 1109

Reserved 0x00CC .. 0x00FF

Channel 0 Data Register (CDR0) 0x0100 on page 1110

Channel 1 Data Register (CDR1) 0x0104 on page 1110

Channel 2 Data Register (CDR2) 0x0108 on page 1110

Table 32-3. 10-bit ADC_0 digital registers (continued)

Base address: 0xFFE0_0000

Register name Address offset Location

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1077

Channel 3 Data Register (CDR3) 0x010C on page 1110

Channel 4 Data Register (CDR4) 0x0110 on page 1110

Channel 5 Data Register (CDR5) 0x0114 on page 1110

Channel 6 Data Register (CDR6) 0x0118 on page 1110

Channel 7 Data Register (CDR7) 0x011C on page 1110

Channel 8 Data Register (CDR8) 0x0120 on page 1110

Channel 9 Data Register (CDR9) 0x0124 on page 1110

Channel 10 Data Register (CDR10) 0x0128 on page 1110

Channel 11 Data Register (CDR11) 0x012C on page 1110

Channel 12 Data Register (CDR12) 0x0130 on page 1110

Channel 13 Data Register (CDR13) 0x0134 on page 1110

Channel 14 Data Register (CDR14) 0x0138 on page 1110

Channel 15 Data Register (CDR15) 0x013C on page 1110

Reserved 0x0140 .. 0x017F

Channel 32 Data Register (CDR32) 0x0180 on page 1110

Channel 33 Data Register (CDR33) 0x0184 on page 1110

Channel 34 Data Register (CDR34) 0x0188 on page 1110

Channel 35 Data Register (CDR35) 0x018C on page 1110

Channel 36 Data Register (CDR36) 0x0190 on page 1110

Channel 37 Data Register (CDR37) 0x0194 on page 1110

Channel 38 Data Register (CDR38) 0x0198 on page 1110

Channel 39 Data Register (CDR39) 0x019C on page 1110

Channel 40 Data Register (CDR40) 0x01A0 on page 1110

Channel 41 Data Register (CDR41) 0x01A4 on page 1110

Channel 42 Data Register (CDR42) 0x01A8 on page 1110

Channel 43 Data Register (CDR43) 0x01AC on page 1110

Channel 44 Data Register (CDR44) 0x01B0 on page 1110

Channel 45 Data Register (CDR45) 0x01B4 on page 1110

Channel 46 Data Register (CDR46) 0x01B8 on page 1110

Channel 47 Data Register (CDR47) 0x01BC on page 1110

Channel 48 Data Register (CDR48) 0x01C0 on page 1110

Table 32-3. 10-bit ADC_0 digital registers (continued)

Base address: 0xFFE0_0000

Register name Address offset Location

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1078 Freescale Semiconductor

Channel 49 Data Register (CDR49) 0x01C4 on page 1110

Channel 50 Data Register (CDR50) 0x01C8 on page 1110

Channel 51 Data Register (CDR51) 0x01CC on page 1110

Channel 52 Data Register (CDR52) 0x01D0 on page 1110

Channel 53 Data Register (CDR53) 0x01D4 on page 1110

Channel 54 Data Register (CDR54) 0x01D8 on page 1110

Channel 55 Data Register (CDR55) 0x01DC on page 1110

Channel 56 Data Register (CDR56) 0x01E0 on page 1110

Channel 57 Data Register (CDR57) 0x01E4 on page 1110

Channel 58 Data Register (CDR58) 0x01E8 on page 1110

Channel 59 Data Register (CDR59) 0x01EC on page 1110

Channel 60 Data Register (CDR60) 0x01F0 on page 1110

Channel 61 Data Register (CDR61) 0x01F4 on page 1110

Channel 62 Data Register (CDR62) 0x01F8 on page 1110

Channel 63 Data Register (CDR63) 0x01FC on page 1110

Channel 64 Data Register (CDR64) 0x0200 on page 1110

Channel 65 Data Register (CDR65) 0x0204 on page 1110

Channel 66 Data Register (CDR66) 0x0208 on page 1110

Channel 67 Data Register (CDR67) 0x020C on page 1110

Channel 68 Data Register (CDR68) 0x0210 on page 1110

Channel 69 Data Register (CDR69) 0x0214 on page 1110

Channel 70 Data Register (CDR70) 0x0218 on page 1110

Channel 71 Data Register (CDR71) 0x021C on page 1110

Channel 72 Data Register (CDR72) 0x0220 on page 1110

Channel 73 Data Register (CDR73) 0x0224 on page 1110

Channel 74 Data Register (CDR74) 0x0228 on page 1110

Channel 75 Data Register (CDR75) 0x022C on page 1110

Channel 76 Data Register (CDR76) 0x0230 on page 1110

Channel 77 Data Register (CDR77) 0x0234 on page 1110

Channel 78 Data Register (CDR78) 0x0238 on page 1110

Channel 79 Data Register (CDR79) 0x023C on page 1110

Table 32-3. 10-bit ADC_0 digital registers (continued)

Base address: 0xFFE0_0000

Register name Address offset Location

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1079

Channel 80 Data Register (CDR80) 0x0240 on page 1110

Channel 81 Data Register (CDR81) 0x0244 on page 1110

Channel 82 Data Register (CDR82) 0x0248 on page 1110

Channel 83 Data Register (CDR83) 0x024C on page 1110

Channel 84 Data Register (CDR84) 0x0250 on page 1110

Channel 85 Data Register (CDR85) 0x0254 on page 1110

Channel 86 Data Register (CDR86) 0x0258 on page 1110

Channel 87 Data Register (CDR87) 0x025C on page 1110

Channel 88 Data Register (CDR88) 0x0260 on page 1110

Channel 89 Data Register (CDR89) 0x0264 on page 1110

Channel 90 Data Register (CDR90) 0x0268 on page 1110

Channel 91 Data Register (CDR91) 0x026C on page 1110

Channel 92 Data Register (CDR92) 0x0270 on page 1110

Channel 93 Data Register (CDR93) 0x0274 on page 1110

Channel 94 Data Register (CDR94) 0x0278 on page 1110

Channel 95 Data Register (CDR95) 0x027C on page 1110

Threshold Register 4 (THRHLR4) 0x0280 on page 1098

Threshold Register 5 (THRHLR5) 0x0284 on page 1098

Reserved 0x0288 .. 0x02AF

Channel Watchdog Selection Register 0 (CWSELR0) 0x02B0 on page 1111

Channel Watchdog Selection Register 1 (CWSELR1) 0x02B4 on page 1111

Reserved 0x02B8 .. 0x02BF

Channel Watchdog Selection Register 4 (CWSELR4) 0x02C0 on page 1111

Channel Watchdog Selection Register 5 (CWSELR5) 0x02C4 on page 1111

Channel Watchdog Selection Register 6 (CWSELR6) 0x02C8 on page 1111

Channel Watchdog Selection Register 7 (CWSELR7) 0x02CC on page 1111

Channel Watchdog Selection Register 8 (CWSELR8) 0x02D0 on page 1111

Channel Watchdog Selection Register 9 (CWSELR9) 0x02D4 on page 1111

Channel Watchdog Selection Register 10 (CWSELR10) 0x02D8 on page 1111

Channel Watchdog Selection Register 11 (CWSELR11) 0x02DC on page 1111

Channel Watchdog Enable Register 0 (CWENR0) 0x02E0 on page 1119

Table 32-3. 10-bit ADC_0 digital registers (continued)

Base address: 0xFFE0_0000

Register name Address offset Location

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1080 Freescale Semiconductor

Table 32-4 lists the ADC_1 registers with their address offsets and reset values.

Channel Watchdog Enable Register 1 (CWENR1) 0x02E4 on page 1119

Channel Watchdog Enable Register 2 (CWENR2) 0x02E8 on page 1119

Reserved 0x02EC .. 0x02EF

Analog Watchdog Out of Range register 0 (AWORR0) 0x02F0 on page 1121

Analog Watchdog Out of Range register 1 (AWORR1) 0x02F4 on page 1121

Analog Watchdog Out of Range register 2 (AWORR2) 0x02F8 on page 1121

Reserved 0x2FC .. 0x02FF

Table 32-4. 12-bit ADC_1 digital registers

Base address: 0xFFE0_4000

Register name Address offset Location

Main Configuration Register (MCR) 0x0000 on page 1083

Main Status Register (MSR)) 0x0004 on page 1085

Reserved 0x0008 .. 0x000F

Interrupt Status Register (ISR) 0x0010 on page 1086

Channel Pending Register (CEOCFR0) 0x0014 on page 1087

Channel Pending Register (CEOCFR1) 0x0018 on page 1087

Reserved 0x001C

Interrupt Mask Register (IMR) 0x0020 on page 1090

Channel Interrupt Mask Register (CIMR0) 0x0024 on page 1091

Channel Interrupt Mask Register (CIMR1) 0x0028 on page 1091

Reserved 0x002C

Watchdog Threshold Interrupt Status Register (WTISR) 0x0030 on page 1093

Watchdog Threshold Interrupt Mask Register (WTIMR) 0x0034 on page 1094

Reserved 0x0038 .. 0x003F

DMA Enable Register (DMAE) 0x0040 on page 1095

DMA Channel Select Register 0 (DMAR0) 0x0044 on page 1096

DMA Channel Select Register 0 (DMAR1) 0x0048 on page 1096

Reserved 0x004C.. 0x005F

Threshold Register 0 (THRHLR0) 0x0060 on page 1098

Table 32-3. 10-bit ADC_0 digital registers (continued)

Base address: 0xFFE0_0000

Register name Address offset Location

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1081

Threshold Register 1 (THRHLR1) 0x0064 on page 1098

Threshold Register 2 (THRHLR2) 0x0068 on page 1098

Reserved 0x0070...0x007C

Presampling Control Register (PSCR) 0x0080 on page 1100

Presampling Register 0 (PSR0) 0x0084 on page 1101

Presampling Register 1 (PSR1) 0x0088 on page 1101

Reserved 0x008C .. 0x0093

Conversion Timing Register 0 (CTR0) 0x0094 on page 1103

Conversion Timing Register 1 (CTR1) 0x0098 on page 1103

Reserved 0x009C .. 0x00A3

Normal Conversion Mask Register 0 (NCMR0) 0x00A4 on page 1104

Normal Conversion Mask Register 1 (NCMR1) 0x00A8 on page 1104

Reserved 0x00AC .. 0x00B3

Injected Conversion Mask Register 0 (JCMR0) 0x00B4 on page 1106

Injected Conversion Mask Register 1 (JCMR1) 0x00B8 on page 1106

Reserved 0x00BC .. 0x00FF

Channel 0 Data Register (CDR0) 0x0100 on page 1110

Channel 1 Data Register (CDR1) 0x0104 on page 1110

Channel 2 Data Register (CDR2) 0x0108 on page 1110

Channel 3 Data Register (CDR3) 0x010C on page 1110

Channel 4 Data Register (CDR4) 0x0110 on page 1110

Channel 5 Data Register (CDR5) 0x0114 on page 1110

Channel 6 Data Register (CDR6) 0x0118 on page 1110

Channel 7 Data Register (CDR7) 0x011C on page 1110

Channel 8 Data Register (CDR8) 0x0120 on page 1110

Channel 9 Data Register (CDR9) 0x0124 on page 1110

Channel 10 Data Register (CDR10) 0x0128 on page 1110

Channel 11 Data Register (CDR11) 0x012C on page 1110

Channel 12 Data Register (CDR12) 0x0130 on page 1110

Channel 13 Data Register (CDR13) 0x0134 on page 1110

Channel 14 Data Register (CDR14) 0x0138 on page 1110

Table 32-4. 12-bit ADC_1 digital registers (continued)

Base address: 0xFFE0_4000

Register name Address offset Location

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1082 Freescale Semiconductor

Channel 15 Data Register (CDR15) 0x013C on page 1110

Reserved 0x0140 .. 0x017F

Channel 32 Data Register (CDR32) 0x0180 on page 1110

Channel 33 Data Register (CDR33) 0x0184 on page 1110

Channel 34 Data Register (CDR34) 0x0188 on page 1110

Channel 35 Data Register (CDR35) 0x018C on page 1110

Channel 36 Data Register (CDR36) 0x0190 on page 1110

Channel 37 Data Register (CDR37) 0x0194 on page 1110

Channel 38 Data Register (CDR38) 0x0198 on page 1110

Channel 39 Data Register (CDR39) 0x019C on page 1110

Channel 40 Data Register (CDR40) 0x01A0 on page 1110

Channel 41 Data Register (CDR41) 0x01A4 on page 1110

Channel 42 Data Register (CDR42) 0x01A8 on page 1110

Channel 43 Data Register (CDR43) 0x01AC on page 1110

Channel 44 Data Register (CDR44) 0x01B0 on page 1110

Reserved 0x01B4 .. 0x02AC

Channel Watchdog Selection Register 0 (CWSEL0) 0x02B0 on page 1111

Channel Watchdog Selection Register 1 (CWSEL1) 0x02B4 on page 1111

Reserved 0x02B8 .. 0x02BF

Channel Watchdog Selection Register 4 (CWSEL4) 0x02C0 on page 1111

Channel Watchdog Selection Register 5 (CWSEL5) 0x02C4 on page 1111

Reserved 0x02C8 .. 0x02DF

Channel Watchdog Enable Register 0 (CWENR0) 0x02E0 on page 1119

Channel Watchdog Enable Register 1 (CWENR1) 0x02E4 on page 1119

Reserved 0x02E8 .. 0x02EF

Analog Watchdog Out of Range register 0 (AWORR0) 0x02F0 on page 1095

Analog Watchdog Out of Range register 0 (AWORR1) 0x02F4 on page 1095

Reserved 0x02F8 .. 0x02FF

Table 32-4. 12-bit ADC_1 digital registers (continued)

Base address: 0xFFE0_4000

Register name Address offset Location

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1083

32.3.2 Control logic registers

32.3.2.1 Main Configuration Register (MCR)

The Main Configuration Register (MCR) provides configuration settings for the ADC.

Offset: 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

O
W

R
E

N

W
LS

ID
E

M
O

D
E

E
D

G
LE

V

T
R

G
E

N

E
D

G
E

X
S

T
R

T
E

N

N
S

TA
R

T

0

JT
R

G
E

N

JE
D

G
E

JS
TA

R
T 0 0

C
T

U
E

N

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 01

1 This field is reserved but write of 0 is only allowed, value out of reset is zero. Write of 1 to this bit is prohibited.

A
B

O
R

T
C

H
A

IN

A
B

O
R

T

A
C

K
O 0 0 0 0

P
W

D
N

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 32-2. Main Configuration Register (MCR) – ADC_0

Offset: 0x0000: Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

O
W

R
E

N

W
LS

ID
E

M
O

D
E 0 0 0 0

N
S

TA
R

T

0

JT
R

G
E

N

JE
D

G
E

JS
TA

R
T 0 0

C
T

U
E

N

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 01

1 This field is reserved but write of 0 is only allowed, value out of reset is zero. Write of 1 to this bit is prohibited.

A
B

O
R

T
C

H
A

IN

A
B

O
R

T

A
C

K
O 0 0 0 0

P
W

D
N

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 32-3. Main Configuration Register (MCR) – ADC_1

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1084 Freescale Semiconductor

Table 32-5. Main Configuration Register (MCR) field descriptions

Bit Description

OWREN Overwrite enable
This bit enables or disables the functionality to overwrite unread converted data.
0 Prevents overwrite of unread converted data; new result is discarded
1 Enables converted data to be overwritten by a new conversion

WLSIDE Write left/right-aligned
0 The conversion data is written right-aligned.
1 Data is left-aligned (from 15 to (15 – resolution + 1)).

MODE One Shot/Scan
0 One Shot Mode—Configures the normal conversion of one chain.
1 Scan Mode—Configures continuous chain conversion mode; when the programmed chain

conversion is finished it restarts immediately.

EDGLEV1 Edge or level selection for external start trigger
0 Edge configuration for external trigger usage.
1 Level configuration for external trigger usage.

TRGEN1 External trigger enable. This bit must be set to use external triggering to start a conversion.
0 An external trigger cannot be used to start a conversion.
1 An external trigger can start a conversion.

EDGE1 Start trigger edge/ level detection. The following table shows the interaction between the EDGE bit
and the TRGEN and EDGLEV bits.

XSTRTEN1 External Start enable
If this bit is set, a Normal conversion starts when an external start signal is detected. This can be
used to synchronize the start conversion events of two ADCs.
0 START signal is disabled.
1 START signal is asserted when external START is detected.

NSTART Normal Start conversion
Setting this bit starts the chain or scan conversion. Resetting this bit during scan mode causes the
current chain conversion to finish, then stops the operation.
This bit stays high while the conversion is ongoing (or pending during injection mode).
0 Causes the current chain conversion to finish and stops the operation
1 Starts the chain or scan conversion

JTRGEN Injection external trigger enable
0 External trigger disabled for channel injection
1 External trigger enabled for channel injection

JEDGE Injection trigger edge selection
Edge selection for external trigger, if JTRGEN = 1.
0 Selects falling edge for the external trigger
1 Selects rising edge for the external trigger

TRGEN EDGLEV EDGE Trigger Detection

0 n n External triggering disabled

1 0 0 External trigger on falling edge of trigger

1 0 1 External trigger on rising edge of trigger

1 1 0 External trigger on low edge of trigger

1 1 1 External trigger on high edge of trigger

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1085

32.3.2.2 Main Status Register (MSR)

The Main Status Register (MSR) provides status bits for the ADC.

JSTART Injection start
Setting this bit will start the configured injected analog channels to be converted by software.
Resetting this bit has no effect, as the injected chain conversion cannot be interrupted.

CTUEN Cross Trigger Unit Enable
0 CTU triggered conversions disabled
1 CTU triggered conversions enabled

ABORTCHAIN Abort Chain
When this bit is set, the ongoing Chain Conversion is aborted. This bit is reset by hardware as soon
as a new conversion is requested.
0 Conversion is not affected
1 Aborts the ongoing chain conversion

ABORT Abort Conversion
When this bit is set, the ongoing conversion is aborted and a new conversion is invoked. This bit is
reset by hardware as soon as a new conversion is invoked.
0 Conversion is not affected
1 Aborts the ongoing conversion

ACKO Auto-clock-off enable
If set, this bit enables the Auto clock off feature.
0 Auto clock off disabled
1 Auto clock off enabled

OFFREFRESH Offset phase selection

OFFCANC Offset phase cancellation selection

PWDN Power-down enable
When this bit is set, the analog module is requested to enter Power Down mode. When ADC status
is PWDN, resetting this bit starts ADC transition to IDLE mode.
0 ADC is in normal mode
1 ADC has been requested to power down

1 This bit is reserved for ADC_1 as ADC_1 does not have external channel.

Table 32-5. Main Configuration Register (MCR) field descriptions (continued)

Bit Description

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1086 Freescale Semiconductor

32.3.3 Interrupt registers

32.3.3.1 Interrupt Status Register (ISR)

The Interrupt Status Register (ISR) contains interrupt status bits for the ADC.

Offset: 0x0004 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

0 0 0 0 0 0 0

N
S

TA
R

T

JA
B

O
R

T

0 0

JS
TA

R
T

0 0 0

C
T

U
S

TA
R

T

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CHADDR 0 0 0

ACK
0

0 0 ADCSTATUS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 32-4. Main Status Register (MSR)

Table 32-6. Main Status Register (MSR) field descriptions

Field Description

NSTART This status bit is used to signal that a Normal conversion is ongoing.

JABORT This status bit is used to signal that an Injected conversion has been aborted. This bit is reset when
a new injected conversion starts.

JSTART This status bit is used to signal that an Injected conversion is ongoing.

CTUSTART This status bit is used to signal that a CTU conversion is ongoing.

CHADDR This status bit field indicates Current Conversion Channel Address.

ACKO Auto-clock-off enable. This status bit is used to signal if the Auto-clock-off feature is enabled.

ADCSTATUS The value of this parameter depends on ADC status:
000 IDLE
001 Power-down
010 Wait state
011 Reserved
100 Sample
101 Reserved
110 Conversion
111 Reserved
Note: WAIT state indicates the delay between switching of external decode (extch channels) signals

and the actual start of sampling phase (issue of start pulse). It is used to take into account the
settling time of the external mux. This decode delay is programmable by DSD register.

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1087

32.3.3.2 Channel Pending Registers (CEOCFR[0..2])

Table 32-8 shows the exact number of available channels.

Offset: 0x0010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0 0 0 0 0 0 0 0 0

E
O

C
T

U

JE
O

C

JE
C

H

E
O

C

E
C

H

W w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-5. Interrupt Status Register (ISR)

Table 32-7. Interrupt Status Register (ISR) field descriptions

Field Description

EOCTU1

1 Corresponding interrupt can be generated independently by option: 1) eoctu status bit (if enabled by IMR[mskeoctu]
bit) or option. 2) channel specific eoc status bits ceocfr0-2[eoc_ch0-95] bit (if enabled by CIMR0-2 registers). Hence
both these status bits should be cleared individually on servicing ISR if both the above options are enabled.
Preferably only one option should be enabled at a time.

End of CTU Conversion interrupt (EOCTU) flag
When this bit is set, an EOCTU interrupt has occurred.

JEOC1 End of Injected Channel Conversion interrupt (JEOC) flag
When this bit is set, a JEOC interrupt has occurred.

JECH End of Injected Chain Conversion interrupt (JECH) flag
When this bit is set, a JECH interrupt has occurred.

EOC1 End of Channel Conversion interrupt (EOC) flag
When this bit is set, an EOC interrupt has occurred.

ECH End of Chain Conversion interrupt (ECH) flag
When this bit is set, an ECH interrupt has occurred.

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1088 Freescale Semiconductor

Table 32-8. CEOCFR[0..2] register description

Register Description ADC

CEOCFR0 End of conversion pending interrupt for channel 0 to 15 (precision channels) ADC_0

ADC_1

CEOCFR1 End of conversion pending interrupt for channel 32 to 63 (standard channels) ADC_0

End of conversion pending interrupt for channel 32 to 44 (standard channels) ADC_1

CEOCFR2 End of conversion pending interrupt for channel 64 to 95 (external multiplexed channels) ADC_0

Offset: 0x0014 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

E
O

C
_C

H
15

E
O

C
_C

H
14

E
O

C
_C

H
13

E
O

C
_C

H
12

E
O

C
_C

H
11

E
O

C
_C

H
10

E
O

C
_C

H
9

E
O

C
_C

H
8

E
O

C
_C

H
7

E
O

C
_C

H
6

E
O

C
_C

H
5

E
O

C
_C

H
4

E
O

C
_C

H
3

E
O

C
_C

H
2

E
O

C
_C

H
1

E
O

C
_C

H
0

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-6. Channel Pending Register 0 (CEOCFR0) — ADC_0 and ADC_1

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1089

Offset: 0x0018 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

0 0 0

E
O

C
_C

H
60

E
O

C
_C

H
59

E
O

C
_C

H
58

E
O

C
_C

H
57

E
O

C
_C

H
56

E
O

C
_C

H
55

E
O

C
_C

H
54

E
O

C
_C

H
53

E
O

C
_C

H
52

E
O

C
_C

H
51

E
O

C
_C

H
50

E
O

C
_C

H
49

E
O

C
_C

H
48

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

E
O

C
_C

H
47

E
O

C
_C

H
46

E
O

C
_C

H
45

E
O

C
_C

H
44

E
O

C
_C

H
43

E
O

C
_C

H
42

E
O

C
_C

H
41

E
O

C
_C

H
40

E
O

C
_C

H
39

E
O

C
_C

H
38

E
O

C
_C

H
37

E
O

C
_C

H
36

E
O

C
_C

H
35

E
O

C
_C

H
34

E
O

C
_C

H
33

E
O

C
_C

H
32

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-7. Channel Pending Register 1 (CEOCFR1) – ADC_0

Offset: 0x0018 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

0 0 0

E
O

C
_C

H
44

E
O

C
_C

H
43

E
O

C
_C

H
42

E
O

C
_C

H
41

E
O

C
_C

H
40

E
O

C
_C

H
39

E
O

C
_C

H
38

E
O

C
_C

H
37

E
O

C
_C

H
36

E
O

C
_C

H
35

E
O

C
_C

H
34

E
O

C
_C

H
33

E
O

C
_C

H
32

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-8. Channel Pending Register 1 (CEOCFR1) – ADC_1

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1090 Freescale Semiconductor

32.3.3.3 Interrupt Mask Register (IMR)

The Interrupt Mask Register (IMR) contains the interrupt enable bits for the ADC.

Address: Base + 0x001C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

E
O

C
_C

H
95

E
O

C
_C

H
94

E
O

C
_C

H
93

E
O

C
_C

H
92

E
O

C
_C

H
91

E
O

C
_C

H
90

E
O

C
_C

H
89

E
O

C
_C

H
88

E
O

C
_C

H
87

E
O

C
_C

H
86

E
O

C
_C

H
85

E
O

C
_C

H
84

E
O

C
_C

H
83

E
O

C
_C

H
82

E
O

C
_C

H
81

E
O

C
_C

H
80

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

E
O

C
_C

H
79

E
O

C
_C

H
78

E
O

C
_C

H
77

E
O

C
_C

H
76

E
O

C
_C

H
75

E
O

C
_C

H
74

E
O

C
_C

H
73

E
O

C
_C

H
72

E
O

C
_C

H
71

E
O

C
_C

H
70

E
O

C
_C

H
69

E
O

C
_C

H
68

E
O

C
_C

H
67

E
O

C
_C

H
66

E
O

C
_C

H
65

E
O

C
_C

H
64

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-9. Channel Pending Register 2 (CEOCFR2) — ADC_0

Table 32-9. Channel Pending Registers (CEOCFR[0..2]) field descriptions

Field Description

EOC_CH
0

When set, the measure of channel 0 is completed.

EOC_CH
n

When set, the measure of channel n is completed.

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1091

32.3.3.4 Channel Interrupt Mask Register (CIMR[0..2])

Table 32-11 shows the exact number of available channels.

Offset: 0x0020 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0

M
S

K
E

O
C

T
U

M
S

K
JE

O
C

M
S

K
JE

C
H

M
S

K
E

O
C

M
S

K
E

C
H

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-10. Interrupt Mask Register (IMR)

Table 32-10. Interrupt Mask Register (IMR) field descriptions

Field Description

MSKEOCTU Mask for End of CTU Conversion (EOCTU) Interrupt
When set, the EOCTU interrupt is enabled.

MSKJEOC Mask for End of Injected Channel Conversion (JEOC) Interrupt
When set, the JEOC interrupt is enabled.

MSKJECH Mask for end of injected chain conversion (JECH) interrupt
When set, the JECH interrupt is enabled.

MSKEOC Mask for end of channel conversion (EOC) interrupt
When set, the EOC interrupt is enabled.

MSKECH Mask for end of chain conversion (ECH) interrupt
When set, the ECH interrupt is enabled.

Table 32-11. CIMR[0..2] register description

Register Description ADC

CIMR0 Enable bit for channel 0 to 15 (precision channels) ADC_0

ADC_1

CIMR1 Enable bit for channel 32 to 63 (standard channels) ADC_0

Enable bit for channel 32 to 44 (standard channels) ADC_1

CIMR2 Enable bit for channel 64 to 95 (external multiplexed channels) ADC_0

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1092 Freescale Semiconductor

Offset: 0x0024 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

C
IM

15

C
IM

14

C
IM

13

C
IM

12

C
IM

11

C
IM

10

C
IM

9

C
IM

8

C
IM

7

C
IM

6

C
IM

5

C
IM

4

C
IM

3

C
IM

2

C
IM

1

C
IM

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-11. Channel Interrupt Mask Register 0 (CIMR0) — ADC_0 and ADC_1

Offset: 0x0028 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

C
IM

63

C
IM

62

C
IM

61

C
IM

60

C
IM

59

C
IM

58

C
IM

57

C
IM

56

C
IM

55

C
IM

54

C
IM

53

C
IM

52

C
IM

51

C
IM

50

C
IM

49

C
IM

48

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

C
IM

47

C
IM

46

C
IM

45

C
IM

44

C
IM

43

C
IM

42

C
IM

41

C
IM

40

C
IM

39

C
IM

38

C
IM

37

C
IM

36

C
IM

35

C
IM

34

C
IM

33

C
IM

32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-12. Channel Interrupt Mask Register 1 (CIMR1) – ADC_0

Offset: 0x0028 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0

C
IM

44

C
IM

43

C
IM

42

C
IM

41

C
IM

40

C
IM

39

C
IM

38

C
IM

37

C
IM

36

C
IM

35

C
IM

34

C
IM

33

C
IM

32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-13. Channel Interrupt Mask Register 1 (CIMR1) – ADC_1

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1093

32.3.3.5 Watchdog Threshold Interrupt Status Register (WTISR)

For ADC_0 (10-bit)

Reset value: 0x0000_0000

For ADC_1 (12-bit)

Offset: 0x002C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
C

IM
95

C
IM

94

C
IM

93

C
IM

92

C
IM

91

C
IM

90

C
IM

89

C
IM

88

C
IM

87

C
IM

86

C
IM

85

C
IM

84

C
IM

83

C
IM

82

C
IM

81

C
IM

80

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

C
IM

79

C
IM

78

C
IM

77

C
IM

76

C
IM

75

C
IM

74

C
IM

73

C
IM

72

C
IM

71

C
IM

70

C
IM

69

C
IM

68

C
IM

67

C
IM

66

C
IM

65

C
IM

64

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-14. Channel Interrupt Mask Register 2 (CIMR2) — ADC_0

Table 32-12. Channel Interrupt Mask Register (CIMR[0..2]) field descriptions

Field Description

CIM0 Interrupt enable
When set (CIM0 = 1), interrupt for channel 0 is enabled.

CIMn Interrupt enable
When set (CIMn = 1), interrupt for channel n is enabled.

Offset: 0x0030 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0 0

W
D

G
5H

W
D

G
5L

W
D

G
4H

W
D

G
4L

W
D

G
3H

W
D

G
3L

W
D

G
2H

W
D

G
2L

W
D

G
1H

W
D

G
1L

W
D

G
0H

W
D

G
0L

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-15. Watchdog Threshold Interrupt Status Register (WTISR) – ADC_0

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1094 Freescale Semiconductor

Reset value: 0x0000_0000

32.3.3.6 Watchdog Threshold Interrupt Mask Register (WTIMR)

For ADC_0 (10-bit):

Offset: 0x0030 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0 0 0 0 0 0 0 0

W
D

G
2H

W
D

G
2L

W
D

G
1H

W
D

G
1L

W
D

G
0H

W
D

G
0L

W w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-16. Watchdog Threshold Interrupt Status Register (WTISR) – ADC_1

Table 32-13. Watchdog Threshold Interrupt Status Register (WTISR) field descriptions – ADC_1

Field Description

WDGxH
[x = 0..2]

This corresponds to the interrupt generated on the converted value being higher than the programmed
higher threshold.

WDGxL
[x = 0..2]

This corresponds to the interrupt generated on the converted value being lower than the programmed
lower threshold.

Offset: 0x0034 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0

M
S

K
W

D
G

5H

M
S

K
W

D
G

5L

M
S

K
W

D
G

4H

M
S

K
W

D
G

4L

M
S

K
W

D
G

3H

M
S

K
W

D
G

3L

M
S

K
W

D
G

2H

M
S

K
W

D
G

2L

M
S

K
W

D
G

1H

M
S

K
W

D
G

1L

M
S

K
W

D
G

0H

M
S

K
W

D
G

0L

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-17. Watchdog Threshold Interrupt Mask Register (WTIMR) – ADC_0

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1095

For ADC_1 (12-bit)

32.3.4 DMA registers

32.3.4.1 DMA Enable Register (DMAE)

The DMA Enable (DMAE) register sets up the DMA for use with the ADC.

Table 32-14. Watchdog Threshold Interrupt Mask Register (WTIMR) field descriptions – ADC_0

Field Description

MSKWDGx
H [x = 0..5]

This corresponds to the mask bit for the interrupt generated on the converted value being higher than
the programmed higher threshold. When set the interrupt is enabled.

MSKWDGx
L [x = 0..5]

This corresponds to the mask bit for the interrupt generated on the converted value being lower than
the programmed lower threshold. When set the interrupt is enabled.

Offset: 0x0034 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0

M
S

K
W

D
G

2H

M
S

K
W

D
G

2L

M
S

K
W

D
G

1H

M
S

K
W

D
G

1L

M
S

K
W

D
G

0H

M
S

K
W

D
G

0L

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-18. Watchdog Threshold Interrupt Mask Register (WTIMR) – ADC_1

Table 32-15. Watchdog Threshold Interrupt Mask Register (WTIMR) field descriptions – ADC_1

Field Description

MSKWDGxH
[x = 0..2]

This corresponds to the mask bit for the interrupt generated on the converted value being higher than
the programmed higher threshold. When set the interrupt is enabled.

MSKWDGxL
[x = 0..2]

This corresponds to the mask bit for the interrupt generated on the converted value being lower than
the programmed lower threshold. When set the interrupt is enabled.

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1096 Freescale Semiconductor

32.3.4.2 DMA Channel Select Register (DMAR[0..2])

Table 32-17 shows the exact number of available channels.

Offset: 0x0040 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D
C

LR

D
M

A
E

N

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-19. DMA Enable Register (DMAE)

Table 32-16. DMA Enable Register (DMAE) field descriptions

Field Description

DCLR DMA clear sequence enable
0 DMA request cleared by Acknowledge from DMA controller
1 DMA request cleared on read of data registers

DMAEN DMA global enable
0 DMA feature disabled
1 DMA feature enabled

Table 32-17. DMAR[0..2] register description

Register Description ADC

DMAR0 Enable bits for channel 0 to 15 (precision channels) ADC_0

ADC_1

DMAR1 Enable bits for channel 32 to 63 (standard channels) ADC_0

Enable bits for channel 32 to 44 (standard channels) ADC_1

DMAR2 Enable bits for channel 64 to 95 (external multiplexed channels) ADC_0

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1097

Offset: 0x0044 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

D
M

A
15

D
M

A
14

D
M

A
13

D
M

A
12

D
M

A
11

D
M

A
10

D
M

A
9

D
M

A
8

D
M

A
7

D
M

A
6

D
M

A
5

D
M

A
4

D
M

A
3

D
M

A
2

D
M

A
1

D
M

A
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-20. DMA Channel Select Register 0 (DMAR0) — ADC_0 and ADC_1

Offset: 0x0048 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

D
M

A
63

D
M

A
62

D
M

A
61

D
M

A
60

D
M

A
59

D
M

A
58

D
M

A
57

D
M

A
56

D
M

A
55

D
M

A
54

D
M

A
53

D
M

A
52

D
M

A
51

D
M

A
50

D
M

A
49

D
M

A
48

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

D
M

A
47

D
M

A
46

D
M

A
45

D
M

A
44

D
M

A
43

D
M

A
42

D
M

A
41

D
M

A
40

D
M

A
39

D
M

A
38

D
M

A
37

D
M

A
36

D
M

A
35

D
M

A
34

D
M

A
33

D
M

A
32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-21. DMA Channel Select Register 1 (DMAR1) – ADC_0

Offset: 0x0048 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0

D
M

A
44

D
M

A
43

D
M

A
42

D
M

A
41

D
M

A
40

D
M

A
39

D
M

A
38

D
M

A
37

D
M

A
36

D
M

A
35

D
M

A
34

D
M

A
33

D
M

A
32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-22. DMA Channel Select Register 1 (DMAR1) – ADC_1

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1098 Freescale Semiconductor

32.3.5 Threshold Register

The six THRHLRn registers are used to store the user-programmable thresholds’ values.

For 10-bit ADC:

Offset: 0x004C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
D

M
A

95

D
M

A
4

D
M

A
93

D
M

A
92

D
M

A
91

D
M

A
90

D
M

A
89

D
M

A
88

D
M

A
87

D
M

A
86

D
M

A
85

D
M

A
84

D
M

A
83

D
M

A
82

D
M

A
81

D
M

A
80

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

D
M

A
79

D
M

A
78

D
M

A
77

D
M

A
76

D
M

A
75

D
M

A
74

D
M

A
73

D
M

A
72

D
M

A
71

D
M

A
70

D
M

A
69

D
M

A
68

D
M

A
67

D
M

A
66

D
M

A
65

D
M

A
64

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-23. DMA Channel Select Register 2 (DMAR2) — ADC_0

Table 32-18. DMA Channel Select Register (DMAR[0..2]) field descriptions

Field Description

31 DMA0: DMA enable
When set (DMA0 = 1), channel 0 is enabled to transfer data in DMA mode.

n DMAn: DMA enable
When set (DMAn = 1), channel n is enabled to transfer data in DMA mode.

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1099

For ADC_1 (12-bit): THRHLR[0..2]

Offset: 0x0060 (THRHLR0)
Offset: 0x0064 (THRHLR1)
Offset: 0x0068 (THRHLR2)
Offset: 0x006C (THRHLR3)
Offset: 0x0280 (THRHLR4)
Offset:0x0284 (THRHLR5)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0
THRH

W

Reset 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0
THRL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-24. Threshold Register – ADC_0

Table 32-19. Threshold Register field descriptions

Field Description

THRH High threshold value for channel n.

THRL Low threshold value for channel n.

Table 32-20. ADC_0 Threshold Register (THRHLR) field descriptions

Field Description

THRH High threshold value for channel n.

THRL Low threshold value for channel n.

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1100 Freescale Semiconductor

32.3.6 Presampling registers

32.3.6.1 Presampling Control Register (PSCR)

Offset: 0x0060 (THRHLR0)
Offset: 0x0064 (THRHLR1)
Offset: 0x0068 (THRHLR2) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
THRH

W

Reset 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
THRL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-25. ADC_1 Threshold Register THRHLR – ADC_1

Table 32-21. ADC_1 Threshold Register (THRHLR) field descriptions

Field Description

THRH High threshold value for channel n.

THRL Low threshold value for channel n.

Offset: 0x0080 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0
PREVAL2 PREVAL1 PREVAL0

PRE
CON

VW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-26. Presampling Control Register (PSCR)

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1101

32.3.6.2 Presampling Register (PSR[0..2])

Table 32-23 shows the exact number of available channels.

Table 32-22. Presampling Control Register (PSCR) field descriptions

Field Description

PREVAL2 Internal voltage selection for presampling
Selects analog input voltage for presampling from the available two internal voltages (external
channels). See Table 32-53.

PREVAL1 Internal voltage selection for presampling
Selects analog input voltage for presampling from the available two internal voltages (internal extended
channels).

PREVAL0 Internal voltage selection for presampling
Selects analog input voltage for presampling from the available two internal voltages (internal precision
channels).

PRECONV Convert presampled value
If bit PRECONV is set, presampling is followed by the conversion. Sampling will be bypassed and
conversion of presampled data will be done.

Table 32-23. PSR[0..2] register description

Register Description ADC

PSR0 Enable bits of presampling for channel 0 to 15 (precision channels) ADC_0

ADC_1

PSR1 Enable bits of presampling for channel 32 to 63 (standard channels) ADC_0

Enable bits of presampling for channel 32 to 44 (standard channels) ADC_1

PSR2 Enable bits of presampling for channel 64 to 95 (external multiplexed channels) ADC_0

Offset: 0x0084 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

P
R

E
S

15

P
R

E
S

14

P
R

E
S

13

P
R

E
S

12

P
R

E
S

11

P
R

E
S

10

P
R

E
S

9

P
R

E
S

8

P
R

E
S

7

P
R

E
S

6

P
R

E
S

5

P
R

E
S

4

P
R

E
S

3

P
R

E
S

2

P
R

E
S

1

P
R

E
S

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-27. Presampling Register 0 (PSR0) — ADC_0 and ADC_1

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1102 Freescale Semiconductor

Offset: 0x0088 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
P

R
E

S
63

P
R

E
S

62

P
R

E
S

61

P
R

E
S

60

P
R

E
S

59

P
R

E
S

58

P
R

E
S

57

P
R

E
S

56

P
R

E
S

55

P
R

E
S

54

P
R

E
S

53

P
R

E
S

52

P
R

E
S

51

P
R

E
S

50

P
R

E
S

49

P
R

E
S

48

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

P
R

E
S

47

P
R

E
S

46

P
R

E
S

45

P
R

E
S

44

P
R

E
S

43

P
R

E
S

42

P
R

E
S

41

P
R

E
S

40

P
R

E
S

39

P
R

E
S

38

P
R

E
S

37

P
R

E
S

36

P
R

E
S

35

P
R

E
S

34

P
R

E
S

33

P
R

E
S

32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-28. Presampling Register 1 (PSR1) – ADC_0

Offset: 0x0088 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

P
R

E
S

44

P
R

E
S

43

P
R

E
S

42

P
R

E
S

41

P
R

E
S

40

P
R

E
S

39

P
R

E
S

38

P
R

E
S

37

P
R

E
S

36

P
R

E
S

35

P
R

E
S

34

P
R

E
S

33

P
R

E
S

32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-29. Presampling Register 1 (PSR1) – ADC_1

Offset: 0x008C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

P
R

E
S

95

P
R

E
S

94

P
R

E
S

93

P
R

E
S

92

P
R

E
S

91

P
R

E
S

90

P
R

E
S

89

P
R

E
S

88

P
R

E
S

87

P
R

E
S

86

P
R

E
S

85

P
R

E
S

84

P
R

E
S

83

P
R

E
S

82

P
R

E
S

81

P
R

E
S

80

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

P
R

E
S

79

P
R

E
S

78

P
R

E
S

77

P
R

E
S

76

P
R

E
S

75

P
R

E
S

74

P
R

E
S

73

P
R

E
S

72

P
R

E
S

71

P
R

E
S

70

P
R

E
S

69

P
R

E
S

68

P
R

E
S

67

P
R

E
S

66

P
R

E
S

65

P
R

E
S

64

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-30. Presampling Register 2 (PSR2) — ADC_0

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1103

32.3.6.3 Conversion timing register

Table 32-25 shows the exact number of available channels.

Table 32-24. Presampling Register (PSR[0..2]) field descriptions

Field Description

PRES0 Presampling enable
When set (PRES0 = 1), presampling is enabled for channel 0.

PRESn Presampling enable
When set (PRESn = 1), presampling is enabled for channel n.

Table 32-25. CTR[0..2] register description

Register Description ADC

CTR0 Associated to internal precision channels (from 0 to 15) ADC_0

ADC_1

CTR1 Associated to internal standard channels (from 32 to 63) ADC_0

Associated to internal standard channels (from 32 to 44) ADC_1

CTR2 Associated to external multiplexed channels (from 64 to 95) ADC_0

Offset: 0x0094 (CTR0) — ADC_0 and ADC_1
Offset: 0x0098 (CTR1) — ADC_0 and ADC_1
Offset: 0x009C (CTR2) — ADC_0

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

IN
P

LA
T

C
H 0

OFFSHIFT

0

INPCMP

0

INPSAMPW

Reset 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1

Figure 32-31. Conversion timing register

Table 32-26. Conversion timing register field descriptions

Field Description

INPLATCH Configuration bit for latching phase duration

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1104 Freescale Semiconductor

32.3.7 Mask registers

32.3.7.1 Introduction

These registers are used to program which of the 96 input channels must be converted during Normal and
Injected conversion.

32.3.7.2 Normal Conversion Mask Registers (NCMR[0..2])

Table 32-27 shows the exact number of available channels.

NOTE
The implicit channel conversion priority in the case in which all channels
are selected is the following: ADCn_P[0:x], ADCn_S[0:y],
ADCn_X[0:z].The channels always start with 0, the lowest index.

OFFSHIFT Configuration for offset shift characteristic
00 No shift (that is the transition between codes 000h and 001h) is reached when the AVIN (analog input

voltage) is equal to 1 LSB.
01 Transition between code 000h and 001h is reached when the AVIN is equal to1/2 LSB
10 Transition between code 00h and 001h is reached when the AVIN is equal to 0
11 Not used

INPCMP Configuration bits for comparison phase duration
00 4 ADC clock cycles
01 1 ADC clock cycle
10 2 ADC clock cycles
11 3 ADC clock cycles

INPSAMP Configuration bits for sampling phase duration

Register Description ADC

NCMR0 Enable bits of normal sampling for channel 0 to 15 (precision channels) ADC_0

ADC_1

NCMR1 Enable bits of normal sampling for channel 32 to 63 (standard channels) ADC_0

Enable bits of normal sampling for channel 32 to 44 (standard channels) ADC_1

NCMR2 Enable bits of normal sampling for channel 64 to 95 (external multiplexed channels) ADC_0

Table 32-27. NCMR[0..2] register description

Table 32-26. Conversion timing register field descriptions (continued)

Field Description

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1105

Offset: 0x00A4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

C
H

15

C
H

14

C
H

13

C
H

12

C
H

11

C
H

10

C
H

9

C
H

8

C
H

7

C
H

6

C
H

5

C
H

4

C
H

3

C
H

2

C
H

1

C
H

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-32. Normal Conversion Mask Register 0 (NCMR0) — ADC_0 and ADC_1

Offset: 0x00A8: Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

C
H

63

C
H

62

C
H

61

C
H

60

C
H

59

C
H

58

C
H

57

C
H

56

C
H

55

C
H

54

C
H

53

C
H

52

C
H

51

C
H

50

C
H

49

C
H

48

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

C
H

47

C
H

46

C
H

45

C
H

44

C
H

43

C
H

42

C
H

41

C
H

40

C
H

39

C
H

38

C
H

37

C
H

36

C
H

35

C
H

34

C
H

33

C
H

32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-33. Normal Conversion Mask Register 1 (NCMR1) – ADC_0

Offset: 0x00A8 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0

C
H

44

C
H

43

C
H

42

C
H

41

C
H

40

C
H

39

C
H

38

C
H

37

C
H

36

C
H

35

C
H

34

C
H

33

C
H

32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-34. Normal Conversion Mask Register 1 (NCMR1) – ADC_1

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1106 Freescale Semiconductor

32.3.7.3 Injected Conversion Mask Registers (JCMR[0..2])

Table 32-29 shows the exact number of available channels.

Offset: 0x00AC Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

C
H

95

C
H

94

C
H

93

C
H

92

C
H

91

C
H

90

C
H

89

C
H

88

C
H

87

C
H

86

C
H

85

C
H

84

C
H

83

C
H

82

C
H

81

C
H

80

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

C
H

79

C
H

78

C
H

77

C
H

76

C
H

75

C
H

74

C
H

73

C
H

72

C
H

71

C
H

70

C
H

69

C
H

68

C
H

67

C
H

66

C
H

65

C
H

64

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-35. Normal Conversion Mask Register 2 (NCMR2) — ADC_0

Table 32-28. Normal Conversion Mask Registers (NCMR[0..2]) field descriptions

Field Description

CH0 Sampling enable
When set Sampling is enabled for channel 0.

CHn Sampling enable
When set Sampling is enabled for channel n.

Table 32-29. JCMR[0..2] register description

Register Description ADC

JCMR0 Enable bits of injected sampling for channel 0 to 15 (precision channels) ADC_0

ADC_1

JCMR1 Enable bits of injected sampling for channel 32 to 63 (standard channels) ADC_0

Enable bits of injected sampling for channel 32 to 44 (standard channels) ADC_1

JCMR2 Enable bits of injected sampling for channel 64 to 95 (external multiplexed channels) ADC_0

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1107

Offset: 0x00B4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

C
H

15

C
H

14

C
H

13

C
H

12

C
H

11

C
H

10

C
H

9

C
H

8

C
H

7

C
H

6

C
H

5

C
H

4

C
H

3

C
H

2

C
H

1

C
H

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-36. Injected Conversion Mask Register 0 (JCMR0) — ADC_0 and ADC_1

Offset 0x00B8 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

C
H

63

C
H

62

C
H

61

C
H

60

C
H

59

C
H

58

C
H

57

C
H

56

C
H

55

C
H

54

C
H

53

C
H

52

C
H

51

C
H

50

C
H

49

C
H

48

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

C
H

47

C
H

46

C
H

45

C
H

44

C
H

43

C
H

42

C
H

41

C
H

40

C
H

39

C
H

38

C
H

37

C
H

36

C
H

35

C
H

34

C
H

33

C
H

32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-37. Injected Conversion Mask Register 1 (JCMR1) – ADC_0

Offset : 0x00B8 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0

C
H

44

C
H

43

C
H

42

C
H

41

C
H

40

C
H

39

C
H

38

C
H

37

C
H

36

C
H

35

C
H

34

C
H

33

C
H

32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-38. Injected Conversion Mask Register 1 (JCMR1) — ADC_1

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1108 Freescale Semiconductor

32.3.8 Delay registers

32.3.8.1 Decode Signals Delay Register (DSDR)

DSDR is implemented in ADC_0 only.

Offset: 0x00BC Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
C

H
95

C
H

94

C
H

93

C
H

92

C
H

91

C
H

90

C
H

89

C
H

88

C
H

87

C
H

86

C
H

85

C
H

84

C
H

83

C
H

82

C
H

81

C
H

80

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

C
H

79

C
H

78

C
H

77

C
H

76

C
H

75

C
H

74

C
H

73

C
H

72

C
H

71

C
H

70

C
H

69

C
H

68

C
H

67

C
H

66

C
H

65

C
H

64

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-39. Injected Conversion Mask Register 2 (JCMR2) — ADC_0

Table 32-30. Injected Conversion Mask Registers (JCMR[0..2]) field descriptions

Field Description

CH0 Sampling enable
When set, sampling is enabled for channel 0.

CHn Sampling enable
When set, sampling is enabled for channel n.

Offset: 0x00C4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
DSD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-40. Decode Signals Delay Register (DSDR)

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1109

32.3.8.2 Power-down Exit Delay Register (PDEDR)

PDEDR is implemented in ADC_0 only.

32.3.9 Data registers

32.3.9.1 Introduction

Table 32-33 shows the exact number of available channels.

Table 32-31. DSDR field descriptions

Field Description

DSD Delay between the external decode signals and the start of the sampling phase
It is used to take into account the settling time of the external multiplexer.
The decode signal delay is calculated as: DSD × 1/frequency of ADC clock
Note: when ADC clock = Peripheral Clock/2 the DSD has to be incremented by 2 to see an additional

ADC clock cycle delay on the decode signal. For example:

ADC_DSDR = 0; 0 ADC clock cycle delay
ADC_DSDR = 2; 1 ADC clock cycle delay
ADC_DSDR = 4; 2 ADC clock cycles delay

Offset: 0x00C8 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
PDED

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-41. Power-down Exit Delay Register (PDEDR)

Table 32-32. Power-down Exit Delay Register (PDEDR) field descriptions

Field Description

PDED Delay between the power-down bit reset and the start of conversion
The power down delay is calculated as: PDED x 1/frequency of ADC clock.

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1110 Freescale Semiconductor

32.3.9.2 Channel Data Register (CDR[0..95])

For ADC_0 10-bit:

Table 32-33. CDR[0..95] register description

Register Description ADC

CDR0 Enable bits of injected sampling for channel 0 to 15 (precision channels) ADC_0

ADC_1

CDR1 Enable bits of injected sampling for channel 32 to 63 (standard channels) ADC_0

Enable bits of injected sampling for channel 32 to 44 (standard channels) ADC_1

CDR2 Enable bits of injected sampling for channel 64 to 95 (external multiplexed channels) ADC_0

Address: See Table 32-3 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
0 0 0 0 0 0 0 0 0 0 0 0

V
A

LI
D

O
V

E
R

W

RESULT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 CDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-42. Channel Data Register (CDR[0..95]) — ADC_0

Table 32-34. Channel Data Register (CDR[0..95]) field descriptions

Field Description

VALID Used to notify when the data is valid (a new value has been written). It is automatically cleared when
data is read.

OVERW Overwrite data
This bit signals that the previous converted data has been overwritten by a new conversion. This
functionality depends on the value of MCR[OWREN]:
– When OWREN = 0, then OVERW is frozen to 0 and CDATA field is protected against being overwritten
until being read.
– When OWREN = 1, then OVERW flags the CDATA field overwrite status.
0 Converted data has not been overwritten
1 Previous converted data has been overwritten before having been read

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1111

For ADC_1 12-bit:

32.3.9.3 Channel Watchdog Select Register (CWSELR[0..11])

Register WSEL_CHn[3:0] = Selects the threshold register which provides the values to be used for upper
and lower bounds for channel n. Table 32-35 shows the exact number of available channels.

RESULT
This bit reflects the mode of conversion for the corresponding channel.
00 Data is a result of Normal conversion mode
01 Data is a result of Injected conversion mode
10 Data is a result of CTU conversion mode
11 Reserved

CDATA Channel 0-95 converted data

Address: See Table 32-3 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
0 0 0 0 0 0 0 0 0 0 0 0

V
A

LI
D

O
V

E
R

W

RESULT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
CDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-43. Channel Data Register (CDR[0..95]) — ADC_1

Table 32-35. CWSELR[0..11] register description

Register Description ADC

CWSELR[0..1] Channel watchdog select register for channel 0 to 15 (precision channels) ADC_0

ADC_1

CWSELR[4..7] Channel watchdog select register for channel 32 to 63 (standard channels) ADC_0

CWSELR[4..5] Channel watchdog select register for channel 32 to 44 (standard channels) ADC_1

CWSELR[8..11] Channel watchdog select register for channel 64 to 95 (external multiplexed channels) ADC_0

Table 32-34. Channel Data Register (CDR[0..95]) field descriptions (continued)

Field Description

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1112 Freescale Semiconductor

Offset: 0x02B0 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
WSEL_CH7

0
WSEL_CH6

0
WSEL_CH5

0
WSEL_CH4

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0
WSEL_CH3

0
WSEL_CH2

0
WSEL_CH1

0
WSEL_CH0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-44. Channel Watchdog Select Register 0 (CWSELR0) – ADC_0

Table 32-36. CWSELR field descriptions – ADC_0

Field Description

WSEL_CHn Channel Watchdog select for channel n
000: THRHLR0 register is selected
001: THRHLR1 register is selected
010: THRHLR2 register is selected
011: THRHLR3 register is selected
100: THRHLR4 register is selected
101: THRHLR5 register is selected
110: RESERVED
111: RESERVED

Offset: 0x02B4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
WSEL_CH15

0
WSEL_CH14

0
WSEL_CH13

0
WSEL_CH12

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0
WSEL_CH11

0
WSEL_CH10

0
WSEL_CH9

0
WSEL_CH8

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-45. Channel Watchdog Select Register 1 (CWSELR1) – ADC_0

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1113

Table 32-37. CWSELR1 field descriptions – ADC_0

Field Description

WSEL_CHn See Table 32-36.

Offset: 0x02C0 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
WSEL_CH39

0
WSEL_CH38

0
WSEL_CH37

0
WSEL_CH36

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0
WSEL_CH35

0
WSEL_CH34

0
WSEL_CH33

0
WSEL_CH32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-46. Channel Watchdog Select Register 4 (CWSELR4) – ADC_0

Table 32-38. CWSELR4 field descriptions – ADC_0

Field Description

WSEL_CHn See Table 32-36.

Offset: 0x02C4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
WSEL_CH47

0
WSEL_CH46

0
WSEL_CH45

0
WSEL_CH44

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0
WSEL_CH43

0
WSEL_CH42

0
WSEL_CH41

0
WSEL_CH40

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-47. Channel Watchdog Select Register 5 (CWSELR5) – ADC_0

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1114 Freescale Semiconductor

Table 32-39. CWSELR5 field descriptions – ADC_0

Field Description

WSEL_CHn See Table 32-36.

Offset: 0x02C8 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
WSEL_CH55

0
WSEL_CH54

0
WSEL_CH53

0
WSEL_CH52

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0
WSEL_CH51

0
WSEL_CH50

0
WSEL_CH49

0
WSEL_CH48

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-48. Channel Watchdog Select Register 6 (CWSELR6) – ADC_0

Table 32-40. CWSELR6 field descriptions – ADC_0

Field Description

WSEL_CHn See Table 32-36.

Offset: 0x02CC Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
WSEL_CH63

0
WSEL_CH62

0
WSEL_CH61

0
WSEL_CH60

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0
WSEL_CH59

0
WSEL_CH58

0
WSEL_CH57

0
WSEL_CH56

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-49. Channel Watchdog Select Register 7 (CWSELR7) – ADC_0

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1115

Table 32-41. CWSELR7 field descriptions – ADC_0

Field Description

WSEL_CHn See Table 32-36.

Offset: 0x02D0 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
WSEL_CH71

0
WSEL_CH70

0
WSEL_CH69

0
WSEL_CH68

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0
WSEL_CH67

0
WSEL_CH66

0
WSEL_CH65

0
WSEL_CH64

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-50. Channel Watchdog Select Register 8 (CWSELR8) – ADC_0

Table 32-42. CWSELR field descriptions – ADC_0

Field Description

WSEL_CHn See Table 32-36.

Offset: 0x02D4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
WSEL_CH79

0
WSEL_CH78

0
WSEL_CH77

0
WSEL_CH76

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0
WSEL_CH75

0
WSEL_CH74

0
WSEL_CH73

0
WSEL_CH72

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-51. Channel Watchdog Select Register 9 (CWSELR9) – ADC_0

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1116 Freescale Semiconductor

Table 32-43. CWSELR9 field descriptions – ADC_0

Field Description

WSEL_CHn See Table 32-36.

Offset: 0x02D8 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
WSEL_CH87

0
WSEL_CH86

0
WSEL_CH85

0
WSEL_CH84

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0
WSEL_CH83

0
WSEL_CH82

0
WSEL_CH81

0
WSEL_CH80

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-52. Channel Watchdog Select Register 10 (CWSELR10) – ADC_0

Table 32-44. CWSELR10 field descriptions – ADC_0

Field Description

WSEL_CHn See Table 32-36.

Offset: 0x02DC Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
WSEL_CH95

0
WSEL_CH94

0
WSEL_CH93

0
WSEL_CH92

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0
WSEL_CH91

0
WSEL_CH90

0
WSEL_CH89

0
WSEL_CH88

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-53. Channel Watchdog Select Register 11 (CWSELR11) – ADC_0

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1117

ADC_1

Table 32-45. CWSELR11 field descriptions – ADC_0

Field Description

WSEL_CHn See Table 32-36.

Offset: 0x02B0 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
WSEL_CH7

0 0
WSEL_CH6

0 0
WSEL_CH5

0 0
WSEL_CH4

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0
WSEL_CH3

0 0
WSEL_CH2

0 0
WSEL_CH1

0 0
WSEL_CH0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-54. Channel Watchdog Select Register 0 (CWSELR0) – ADC_1

Table 32-46. CWSELR0 field descriptions – ADC_1

Field Description

WSEL_CHn Channel Watchdog select for channel n
00: THRHLR0 register is selected
01: THRHLR1 register is selected
10: THRHLR2 register is selected
11: RESERVED

Offset: 0x02B4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
WSEL_CH15

0 0
WSEL_CH14

0 0
WSEL_CH13

0 0
WSEL_CH12

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0
WSEL_CH11

0 0
WSEL_CH10

0 0
WSEL_CH9

0 0
WSEL_CH8

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-55. Channel Watchdog Select Register 1 (CWSELR1) – ADC_1

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1118 Freescale Semiconductor

Table 32-47. CWSELR1 field descriptions – ADC_1

Field Description

WSEL_CHn: See Table 32-46.

Offset: 0x02C0 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
WSEL_CH39

0 0
WSEL_CH38

0 0
WSEL_CH37

0 0
WSEL_CH36

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0
WSEL_CH35

0 0
WSEL_CH34

0 0
WSEL_CH33

0 0
WSEL_CH32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-56. Channel Watchdog Select Register 4 (CWSELR4) – ADC_1

Table 32-48. CWSELR4 field descriptions – ADC_1

Field Description

WSEL_CHn See Table 32-46.

Offset: 0x02C4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
WSEL_CH47

0 0
WSEL_CH46

0 0
WSEL_CH45

0 0
WSEL_CH44

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0
WSEL_CH43

0 0
WSEL_CH42

0 0
WSEL_CH41

0 0
WSEL_CH40

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-57. Channel Watchdog Select Register 5 (CWSELR5) – ADC_1

Table 32-49. CWSELR5 field descriptions – ADC_1

Field Description

WSEL_CHn See Table 32-46.

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1119

32.3.9.4 Channel Watchdog Enable Register (CWENRx, x = [0..2])

Table 32-50 shows the exact number of available channels.

Table 32-50. CWENR[0..2] register description

Register Description ADC

CWENR0 Watchdog enable bits for channel 0 to 15 (precision channels) ADC_0

ADC_1

CWENR1 Watchdog enable bits for channel 32 to 63 (standard channels) ADC_0

Watchdog enable bits for channel 32 to 44 (standard channels) ADC_1

CWENR2 Watchdog enable bits for channel 64 to 95 (external multiplexed channels) ADC_0

Offset: 0x02E0 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CWEN
15

CWEN
14

CWEN
13

CWEN
12

CWEN
11

CWEN
10

CWEN
9

CWEN
8

CWEN
7

CWEN
6

CWEN
5

CWEN
4

CWEN
3

CWEN
2

CWEN
1

CWEN
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-58. Channel Watchdog Enable Register 0 (CWENR0) — ADC_0 and ADC_1

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1120 Freescale Semiconductor

Offset: 0x02E4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
C

W
EN

63

C
W

EN
62

C
W

EN
61

C
W

EN
60

C
W

EN
59

C
W

EN
58

C
W

EN
57

C
W

EN
56

C
W

EN
55

C
W

EN
54

C
W

EN
53

C
W

EN
52

C
W

EN
51

C
W

EN
50

C
W

EN
49

C
W

EN
48

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

C
W

EN
47

C
W

EN
46

C
W

EN
45

C
W

EN
44

C
W

EN
43

C
W

EN
42

C
W

EN
41

C
W

EN
40

C
W

EN
39

C
W

EN
38

C
W

EN
37

C
W

EN
36

C
W

EN
35

C
W

EN
34

C
W

EN
33

C
W

EN
32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-59. Channel Watchdog Enable Register 1 (CWENR1) – ADC_0

Offset: 0x02E4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0

C
W

EN
44

C
W

EN
43

C
W

EN
42

C
W

EN
41

C
W

EN
40

C
W

EN
39

C
W

EN
38

C
W

EN
37

C
W

EN
36

C
W

EN
35

W
EN

33
4

C
W

EN
33

C
W

EN
32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-60. Channel Watchdog Enable Register 1 (CWENR1) – ADC_1

Offset: 0x02E8 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

C
W

EN
95

C
W

EN
94

C
W

EN
93

C
W

EN
92

C
W

EN
91

C
W

EN
90

C
W

EN
89

C
W

EN
88

C
W

EN
87

C
W

EN
86

C
W

EN
85

C
W

EN
84

C
W

EN
83

C
W

EN
82

C
W

EN
81

C
W

EN
80

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

C
W

EN
79

C
W

EN
78

C
W

EN
77

C
W

EN
76

C
W

EN
75

C
W

EN
74

C
W

EN
73

C
W

EN
72

C
W

EN
71

C
W

EN
70

C
W

EN
69

C
W

EN
68

C
W

EN
67

C
W

EN
66

C
W

EN
65

C
W

EN
64

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-61. Channel Watchdog Enable Register 2 (CWENR2) — ADC_0

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1121

32.3.9.5 Analog Watchdog Out of Range Register (AWORRx, x = [0..2])

Table 32-51. Channel Watchdog Enable Register (CWENRx, x = [0..2]) field descriptions

Field Description

CWENn Channel Watchdog enable
When set (CWENn = 1) Watchdog feature is enabled for channel n.

Register Description ADC

AWORR0 Analog watchdog out of range register for channel 0 to 15 (precision channels) ADC_0

ADC_1

AWORR1 Analog watchdog out of range register for channel 32 to 63 (standard channels) ADC_0

Analog watchdog out of range register for channel 32 to 44 (standard channels) ADC_1

AWORR2 Analog watchdog out of range register for channel 64 to 95 (external multiplexed channels) ADC_0

Offset: 0x02F0 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

A
W

O
R

_C
H

15

A
W

O
R

_C
H

14

A
W

O
R

_C
H

13

A
W

O
R

_C
H

12

A
W

O
R

_C
H

11

A
W

O
R

_C
H

10

A
W

O
R

_C
H

9

A
W

O
R

_C
H

8

A
W

O
R

_C
H

7

A
W

O
R

_C
H

6

A
W

O
R

_C
H

5

A
W

O
R

_C
H

4

A
W

O
R

_C
H

3

A
W

O
R

_C
H

2

A
W

O
R

_C
H

1

A
W

O
R

_C
H

0
W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-62. Analog Watchdog Out of Range Register 0 (AWORR0) — ADC_0 and ADC_1

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1122 Freescale Semiconductor

Offset: 0x02F4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
A

W
O

R
_C

H
63

A
W

O
R

_C
H

62

A
W

O
R

_C
H

61

A
W

O
R

_C
H

60

A
W

O
R

_C
H

59

A
W

O
R

_C
H

58

A
W

O
R

_C
H

57

A
W

O
R

_C
H

56

A
W

O
R

_C
H

55

A
W

O
R

_C
H

54

A
W

O
R

_C
H

53

A
W

O
R

_C
H

52

A
W

O
R

_C
H

51

A
W

O
R

_C
H

50

A
W

O
R

_C
H

49

A
W

O
R

_C
H

48

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

A
W

O
R

_C
H

47

A
W

O
R

_C
H

46

A
W

O
R

_C
H

45

A
W

O
R

_C
H

44

A
W

O
R

_C
H

43

A
W

O
R

_C
H

42

A
W

O
R

_C
H

41

A
W

O
R

_C
H

40

A
W

O
R

_C
H

39

A
W

O
R

_C
H

38

A
W

O
R

_C
H

37

A
W

O
R

_C
H

36

A
W

O
R

_C
H

35

A
W

O
R

_C
H

34

A
W

O
R

_C
H

33

A
W

O
R

_C
H

32

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-63. Analog Watchdog Out of Range Register 1 (AWORR1) – ADC_0

Offset: 0x02F4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

0 0 0

A
W

O
R

_C
H

44

A
W

O
R

_C
H

43

A
W

O
R

_C
H

42

A
W

O
R

_C
H

41

A
W

O
R

_C
H

40

A
W

O
R

_C
H

39

A
W

O
R

_C
H

38

A
W

O
R

_C
H

37

A
W

O
R

_C
H

36

A
W

O
R

_C
H

35

A
W

O
R

_C
H

34

A
W

O
R

_C
H

33

A
W

O
R

_C
H

32

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-64. Analog Watchdog Out of Range Register 1 (AWORR1) – ADC_1

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1123

32.4 Functional description

32.4.1 Analog channel conversion

ADC digital interface supports three conversion modes:

• Normal conversion

• Injected conversion

• CTU triggered conversion

32.4.1.1 Normal conversion

This is the normal conversion that the user programs by configuring the normal conversion mask registers
(NCMR). Each channel can be individually enabled by setting ‘1’ in the corresponding field of NCMR
registers. Mask registers must be programmed before starting the conversion and cannot be changed until
the conversion of all the selected channels ends (NSTART bit in the Main Status Register (MSR) is reset).

32.4.1.2 Start of normal conversion

The conversion chain starts when the NSTART bit in the Main Configuration Register (MCR) is set.

By programming the configuration bits in the Main Configuration Register (MCR), the normal conversion
can be started in two ways:

• By software – The conversion chain starts when the NSTART bit in the MCR is set.

Offset: 0x02F8 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
A

W
O

R
_C

H
95

A
W

O
R

_C
H

94

A
W

O
R

_C
H

93

A
W

O
R

_C
H

92

A
W

O
R

_C
H

91

A
W

O
R

_C
H

90

A
W

O
R

_C
H

89

A
W

O
R

_C
H

88

A
W

O
R

_C
H

87

A
W

O
R

_C
H

86

A
W

O
R

_C
H

85

A
W

O
R

_C
H

84

A
W

O
R

_C
H

83

A
W

O
R

_C
H

82

A
W

O
R

_C
H

81

A
W

O
R

_C
H

80

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

A
W

O
R

_C
H

79

A
W

O
R

_C
H

78

A
W

O
R

_C
H

77

A
W

O
R

_C
H

76

A
W

O
R

_C
H

75

A
W

O
R

_C
H

74

A
W

O
R

_C
H

73

A
W

O
R

_C
H

72

A
W

O
R

_C
H

71

A
W

O
R

_C
H

70

A
W

O
R

_C
H

69

A
W

O
R

_C
H

68

A
W

O
R

_C
H

67

A
W

O
R

_C
H

66

A
W

O
R

_C
H

65

A
W

O
R

_C
H

64

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 32-65. Analog Watchdog Out of Range Register 2 (AWORR2) — ADC_0

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1124 Freescale Semiconductor

• By trigger – An on-chip internal signal triggers an ADC conversion. The settings in the MCR select
how conversions are triggered based on these internal signals:

— If the EDGLEV (edge/level selection) bit in the MCR is cleared, then a rising/falling edge
(depending on the EDGE bit in MCR) detected in the signal sets the NSTART bit in the MSR
and starts the programmed conversion. EDGE = 0 selects a falling edge. EDGE = 1 selects a
rising edge.

— If the EDGLEV bit in the MCR is set, the conversion is started if and only if the NSTART bit
in the MCR is set and the programmed level on the trigger signal is detected. The level is
selected using the EDGE bit in the MCR. EDGE = 0 means that the start of conversion is
enabled if the signal is low. If EDGE = 1, the start of conversion is enabled when the signal is
high.

The NSTART status bit in the MSR is automatically set when the normal conversion starts. At the same
time the NSTART bit in the MCR is reset, allowing the software to program a new start of conversion. In
that case the new requested conversion starts after the running conversion is completed.

If the content of all the normal conversion mask registers is zero (that is, no channel is selected) the
conversion operation is considered completed and the interrupt ECH is immediately issued after the start
of conversion.

32.4.1.3 Normal conversion operating modes

Two operating modes are available for the normal conversion:

• One Shot

• Scan

To enter one of these modes, it is necessary to program the MODE bit in the MCR. The first phase of the
conversion process involves sampling the analog channel and the next phase involves the conversion phase
when the sampled analog value is converted to digital as shown in Figure 32-66.

Figure 32-66. Normal conversion flow

In One Shot Mode (MODE = 0) a sequential conversion specified in the NCMR registers is performed
only once. At the end of each conversion, the digital result of the conversion is stored in the corresponding
data register.

Example 32-1. One Shot Mode (MODE = 0)

Channels A-B-C-D-E-F-G-H are present in the device where channels B-D-E are to be converted
in the One Shot Mode. MODE = 0 is set for One Shot mode. Conversion starts from the channel B
followed by conversion of channels D-E. At the end of conversion of channel E the scanning of
channels stops.

Sample B Convert B Sample C Sample D Convert D Sample E Convert EConvert C

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1125

The NSTART status bit in the MSR is automatically set when the Normal conversion starts. At the same
time the NSTART bit in the MCR is reset, allowing the software to program a new start of conversion. In
that case the new requested conversion starts after the running conversion is completed.

In Scan Mode (MODE = 1), a sequential conversion of N channels specified in the NCMR registers is
continuously performed. As in the previous case, at the end of each conversion the digital result of the
conversion is stored into the corresponding data register.

The NSTART status bit in the MSR is automatically set when the Normal conversion starts. Unlike One
Shot Mode, the NSTART bit in the MCR is not reset. It can be reset by software when the user needs to
stop scan mode. In that case, the ADC completes the current scan conversion and, after the last conversion,
also resets the NSTART bit in the MSR. But, if NSTART is reset during last channel conversion of current
chain then one more chain would execute before conversion actually stops.

Example 32-2. Scan Mode (MODE = 1)

Channels A-B-C-D-E-F-G-H are present in the device where channels B-D-E are to be converted
in the Scan Mode. MODE = 1 is set for Scan Mode. Conversion starts from the channel B followed
by conversion of the channels D-E. At the end of conversion of channel E the scanning of channel
B starts followed by conversion of the channels D-E. This sequence repeats itself till the NSTART
bit in the MCR is cleared by software.

If the conversion is started by an external trigger and EDGLEV is ‘0’, the NSTART bit in the MCR is not
set. As a consequence, once started the only way to stop scan mode conversion is to set the MODE bit to
‘0’. At the end of each conversion an End Of Conversion interrupt is issued (if enabled by the
corresponding mask bit) and at the end of the conversion sequence an End Of Chain interrupt is issued (if
enabled by the corresponding mask bit in the IMR register).

32.4.1.4 Injected channel conversion

A conversion chain can be injected into the ongoing Normal conversion by configuring the Injected
Conversion Mask Registers (JCMR). As Normal conversion, each channel can be individually selected.

This injected conversion (which can only occur in One Shot mode) interrupts the normal conversion
(which can be in One Shot or Scan Mode). When an injected conversion is inserted, ongoing normal
channel conversion is aborted and the injected channel request is processed. After the last channel in the
injected chain is converted, normal conversion resumes from the channel at which the normal conversion
was aborted as shown in Figure 32-67.

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1126 Freescale Semiconductor

Figure 32-67. Injected sample/conversion sequence

The injected conversion can be started using two options:

• By software setting the MCR[JSTART]; the current conversion is suspended and the injected chain
is converted. At the end of the chain, the JSTART bit in the MSR is reset and the normal chain
conversion is resumed.

• By an internal trigger signal, setting the MCR[JTRGEN]; a programmed event (rising/falling edge
depending on MCR[JTRGEN]) on the signal coming from PIT_RTI or CTU starts the injected
conversion by setting the JSTART bit in the MSR. At the end of the chain, the JSTART bit in the
MSR is cleared and the normal conversion chain is resumed.

The JSTART status bit in the MSR is automatically set when the Injected conversion starts. At the same
time the JSTART bit in the MCR is reset, allowing the software to program a new start of conversion. In
that case the new requested conversion starts after the running injected conversion is completed.

At the end of each injected conversion, an End Of Injected Conversion (JEOC) interrupt is issued (if
enabled by IMR[MSKJEOC]) and at the end of the sequence an End Of Injected Chain (JECH) interrupt
is issued (if enabled by IMR[MSKJECH]).

If the content of all the injected conversion mask registers (JCMR) is zero (that is, no channel is selected)
the JECH interrupt is immediately issued after the start of conversion.

32.4.1.5 Abort conversion

Two different abort functions are provided.

• The user can abort the ongoing conversion by setting the ABORT bit in the MCR. The current
conversion is aborted and the conversion of the next channel of the chain is immediately started.
In the case of an abort operation, the NSTART/JSTART bit remains set and the ABORT bit is reset
after the conversion of the next channel starts. The EOC interrupt corresponding to the aborted
channel is not generated. This behavior is true for normal or Injected conversion modes. If the last
channel of a chain is aborted, the end of chain is reported generating an ECH interrupt.

• It is also possible to abort the current chain conversion by setting the MCR[ABORTCHAIN] bit.
In that case, the behavior of the ADC depends on the MODE bit. If scan mode is disabled, the
NSTART bit is automatically reset together with the MCR[ABORTCHAIN] bit. Otherwise, if the

The ongoing channel conversion is interrupted and the injected
conversion chain is processed first. After the injected chain is
converted the normal chain conversion resumes from the channel at
which normal conversion was aborted.

Injected conversion of channels I and J

Normal conversion resumes from
the last aborted channel.

Sample B Convert B Sample C Sample D Convert D Sample E Convert EConvert C

Sample C Abort C Sample I Sample J Convert J Sample C Convert CConvert I

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1127

scan mode is enabled, a new chain conversion is started. The EOC interrupt of the current aborted
conversion is not generated but an ECH interrupt is generated to signal the end of the chain. When
a chain conversion abort is requested (ABORTCHAIN bit is set) while an injected conversion is
running over a suspended Normal conversion, both injected chain and Normal conversion chain
are aborted (both the NSTART and JSTART bits are also reset).

NOTE
ABORT or ABORTCHAIN should be set only when the conversion is
actually ongoing i.e. when either of the MSR[NSTART or JSTART or
CTUSTART] status bits is set.

32.4.2 Analog clock generator and conversion timings

The analog ADC clock is always half of the digital ADC clock. MPC5646C supports clock stretching as
shown in Figure 32-68.

Figure 32-68. Prescaler simplified block diagram

32.4.3 ADC sampling and conversion timing

In order to support different loading and switching times, several different Conversion Timing registers
(CTR) are present. There is one register per channel type. For only the 10-bit ADC INPLATCH and
INPCMP configurations are limited when the system clock frequency is greater than 20 MHz.

When a conversion is started, the ADC connects the internal sampling capacitor to the respective analog
input pin, allowing the capacitance to charge up to the input voltage value. The time to load the capacitor
is referred to as sampling time. After completion of the sampling phase, the evaluation phase starts and all
the bits corresponding to the resolution of the ADC are estimated to provide the conversion result.

CTU trigger signal

ADCClk
Clock

Prescaler

CTU trigger signal

ipg_clk

ADCClk

ipg_clk

ADCClk

CTU trigger signal

(Digital ADC clock)/2

Clock stretched

ACKO

Digital ADC clock

ADCClk is analog ADC clock.

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1128 Freescale Semiconductor

The conversion times are programmed via the bit fields of the CTR. Bit fields INPLATCH, INPCMP and
INPSAMPLE are used to define the total conversion duration (Tconv) and in particular the partition
between sampling phase duration (Tsample) and total evaluation phase duration (Teval).

32.4.3.1 ADC_0 sampling and conversion timing

The sampling phase duration of ADC_0 is

where ndelay is equal to 0.5 if INPSAMPLE is less than or equal to 06h, otherwise it is 1. INPSAMPLE
must be greater than or equal to 3 (hardware requirement). See Figure 32-31.

The total evaluation phase duration for ADC_0 is:

INPCMP must be greater than or equal to 1 and INPLATCH must be less than INCMP (hardware
requirements).

The total conversion duration is (not including external multiplexing):

The timings refer to the unit Tck, where fck = (1/2 x ADC peripheral set clock).

Table 32-52. ADC sampling and conversion timing at 5 V / 3.3 V for ADC_0

Clock
(MHz)

Tck
(s)

INPSAMPLE1

1 Where: INPSAMPLE  3

Ndelay2

2 Where: INPSAMP  6, N = 0.5; INPSAMP > 6, N = 1

Tsample
3

3 Where: Tsample = (INPSAMP-N)Tck; Must be  500 ns

Tsample/Tck INPCMP
Teval
(s)

INPLATCH
Tconv
(s)

Tconv/
Tck

6 0.167 4 0.5 0.583 3.500 1 1.667 0 2.333 14.000

7 0.143 4 0.5 0.500 3.500 1 1.429 0 2.000 14.000

8 0.125 5 0.5 0.563 4.500 1 1.250 0 1.875 15.000

16 0.063 9 1 0.500 8.000 1 0.625 0 1.188 19.000

32 0.031 17 1 0.500 16.000 2 0.625 1 1.156 37.000

Tsample INPSAMPLE ndelay–  Tck=

INPSAMPLE 3

Teval 10 Tbiteval 10 INPCMP Tck = =

 INPCMP 1  and INPLATCH INPCMP 

Tconv Tsample Teval ndelay Tck + +=

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1129

32.4.3.2 ADC_1 sampling and conversion timing

The sampling phase duration is:

The total evaluation phase duration for ADC_1 is:

INPCMP must be greater than or equal to 1 and INPLATCH must be less than INCMP (hardware
requirements).

The total conversion duration is (not including external multiplexing):

The timings refer to the unit Tck, where fck = (1/2 x ADC peripheral set clock).

32.4.4 ADC CTU (Cross Triggering Unit)

32.4.4.1 Overview

The ADC cross triggering unit (CTU) is added to enhance the injected conversion capability of the ADC.
The CTU is triggered by multiple input events (eMIOS and PIT_RTI) and can be used to select the
channels to be converted from the appropriate event configuration register. A single channel is converted
for each request.

The CTU can be enabled by setting MCR[CTUEN].

The CTU and ADC are synchronous with the peripheral set 3 clock in both cases.

32.4.4.2 CTU in trigger mode

In CTU trigger mode, normal and injected conversions triggered by the CPU are still enabled.

Once the CTU event configuration register (CTU_EVTCFGRx) is configured and the corresponding
trigger from the eMIOS or PIT_RTI is received, the conversion starts. The MSR[CTUSTART] is set
automatically at this point and it is also automatically reset when the CTU triggered conversion is
completed.

If an injected conversion (programmed by the user by setting the JSTART bit) is ongoing and CTU
conversion is triggered, then the injected channel conversion chain is aborted and only the CTU triggered
conversion proceeds. By aborting the injected conversion, the MSR[JSTART] is reset. That abort is
signalled through the status bit MSR[JABORT].

Tsample INPSAMPLE 1–  Tck=

INPSAMPLE 8

Teval 12 Tbiteval 12 INPCMP Tck = =

 INPCMP 1  and INPLATCH INPCMP 

Tconv Tsample Teval Tck+ +=

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1130 Freescale Semiconductor

If a normal conversion is ongoing and a CTU conversion is triggered, then any ongoing channel conversion
is aborted and the CTU triggered conversion is processed. When it is finished, the normal conversion
resumes from the channel at which the normal conversion was aborted. If another CTU conversion is
triggered before the end of the conversion, that request is discarded.

NOTE
If CTU trigger arrives in the evolution phase of the ongoing conversion, the
conversion after the ctu channel will be the next queued normal conversion
channel.

When a normal conversion is requested during CTU conversion (CTUSTART bit = ‘1’), the normal
conversion starts when CTU conversion is completed (CTUSTART = ‘0’). Otherwise, when an Injected
conversion is requested during CTU conversion, the injected conversion is discarded and the
MCR[JSTART] is immediately reset.

However, it is recommended not to initiate software injected conversion while in CTU trigger mode.

32.4.5 Presampling

32.4.5.1 Introduction

Presampling is used to precharge or discharge the ADC internal capacitor before it starts sampling of the
analog input coming from the input pins. This is useful for resetting information regarding the last
converted data or to have more accurate control of conversion speed. During presampling, ADC samples
the internally generated voltage.

Presampling can be enabled/disabled on a channel basis by setting the corresponding bits in the PSR
registers.

After enabling the presampling for a channel, the normal sequence of operation will be
Presampling + Sampling + Conversion for that channel. Sampling of the channel can be bypassed by
setting the PRECONV bit in the PSCR. When sampling of a channel is bypassed, the sampled data of
internal voltage in the presampling state is converted (Figure 32-69, Figure 32-70).

Figure 32-69. Presampling sequence

Figure 32-70. Presampling sequence with PRECONV = 1

Presampling is enabled in the channel C and D. For channel B total conversion clock cycles = (S) + (C).

For channel C and D total conversion clock cycles = (P) + (S) + (C).

Sample B Convert B Presample C Convert C Presample D Sample D Convert DSample C Sample E

Sample B Convert B Presample C Presample D Convert D Sample E Convert EConvert C

Presampling enabled in channel C and D but sampling is bypassed in these channels by setting PRECONV = 1 in the PSCR.

For channel C and D total conversion clock cycles = (P) + (C).

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1131

32.4.5.2 Presampling channel enable signals

It is possible to select between two internally generated voltages V0 and V1 depending on the value of the
PREVAL fields in the PSCR as shown in Table 32-53.

Several presampling value fields, one per channel type, in the PSCR make it possible to select different
presampling values for each type.

32.4.6 Programmable analog watchdog

32.4.6.1 Introduction

The analog watchdogs are used for determining whether the result of a channel conversion lies within a
given guarded area (as shown in Figure 32-71) specified by an upper and a lower threshold value named
THRH and THRL respectively.

Figure 32-71. Guarded area

After the conversion of the selected channel, a comparison is performed between the converted value and
the threshold values. If the converted value lies outside that guarded area then corresponding threshold
violation interrupts are generated. The comparison result is stored as WTISR[WDGxH] and
WTISR[WDGxL] as explained in Table 32-54. Depending on the mask bits WTIMR[MSKWDGxL] and
WTIMR[MSKWDGxH], an interrupt is generated on threshold violation.

Table 32-53. Presampling voltage selection based on PREVALx fields

PSCR[PREVALx] Presampling voltage

00 V0 = VSS_HV_ADC0 or VSS_HV_ADC1

01 V1 = VDD_HV_ADC0 or VDD_HV_ADC1

10 Reserved

11 Reserved

Table 32-54. Values of WDGxH and WDGxL fields

WDGxH WDGxL Converted data

1 0 converted data > THRH

THRH

THRL

Analog voltage

Upper threshold

Lower threshold
Guarded area

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1132 Freescale Semiconductor

Each channel can be enabled independently from the CWENR registers and can select the watchdog
threshold registers (THRHLRx) to be used by programming the CWSELR registers. The threshold
registers selected by the WSEL_CHx field of the CWSELR will provide the threshold values.

For example, if channel number 15 is to be monitored with the threshold values in THRHLR1, then
WSEL_CH15 in the CWSELR is programmed to select THRHLR1 to provide the threshold values. The
channel monitoring is enabled by setting the bit corresponding to channel 15 in the CWENR.

If a converted value for a particular channel lies outside the range specified by threshold values, then the
corresponding bit is set in the Analog Watchdog Out of Range Register (AWORR).

A set of threshold registers (THRHLRx) can be linked to several ADC channels. The threshold values to
be selected for a channel need be programmed only once in the CWSELRx.

NOTE

If the higher threshold for the analog watchdog is programmed lower than
the lower threshold and the converted value is less than the lower threshold,
then the WDGxL interrupt for the low threshold violation is set, else if the
converted value is greater than the lower threshold (consequently also
greater than the higher threshold) then the interrupt WDGxH for high
threshold violation is set. Thus, the user should avoid that situation as it
could lead to misinterpretation of the watchdog interrupts.

32.4.7 DMA functionality

A DMA request can be programmed after the conversion of every channel by setting the respective
masking bit in the DMAR registers. The DMAR masking registers must be programmed before starting
any conversion. There is one DMAR per channel type and each ADC module has one DMA request
associated with it.

The DMA transfers can be enabled using the DMAEN bit of DMAE register. When the DCLR bit of
DMAE register is set then the DMA request is cleared on the reading of the register for which DMA
transfer has been enabled.

32.4.8 Interrupts

The ADC generates the following two maskable interrupt signals:

• ADC_EOC interrupt requests

— EOC (end of conversion)

— ECH (end of chain)

— JEOC (end of injected conversion)

— JECH (end of injected chain)

0 1 converted data < THRL

0 0 THRL <= converted data <= THRH

Table 32-54. Values of WDGxH and WDGxL fields

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1133

— EOCTU (end of CTU conversion)

• WDGxL and WDGxH (watchdog threshold) interrupt requests

Interrupts are generated during the conversion process to signal events such as End Of Conversion as
explained in register description for CEOCFR. Two 7-bit registers named CEOCFR (Channel Pending
Registers) and IMR (Interrupt Mask Register) are provided in order to check and enable the interrupt
request to INTC module.

Interrupts can be individually enabled on a channel by channel base by programming the CIMR (Channel
Interrupt Mask Register).

Several Channel Pending Registers (CEOCFR[0..2]) are also provided to signal which of the channels’
measurement has been completed.

The analog watchdog interrupts are handled by two registers WTISR (Watchdog Threshold Interrupt
Status Register) and WTIMR (Watchdog Threshold Interrupt Mask Register) in order to check and enable
the interrupt request to the INTC module. The Watchdog interrupt source sets the corresponding pending
bits WDGxH and WDGxL in the WTISR for each of the channels being monitored.

The CEOCFR contains the interrupt pending request status. If the user wants to clear a particular interrupt
event status, then writing a ‘1’ to the corresponding status bit clears the pending interrupt flag (at this write
operation all the other bits of the CEOCFR must be maintained at ‘0’).

32.4.9 External decode signals delay

The ADC provides several external decode signals to select which external channel has to be converted.
In order to take into account the control switching time of the external analog multiplexer, a Decode
Signals Delay register (DSDR) is provided. The delay between the decoding signal selection and the actual
start of conversion can be programmed by writing the field DSD[0:11].

After having selected the channel to be converted, the MA[0:2] control lines are automatically reset. For
instance, in the event of normal scan conversion on ANP[0] followed by ANX[0,7] (ADC ch 71) all the
MA[0:2] bits are set and subsequently reset.

32.4.10 Power-down mode

The analog part of the ADC can be put in low power mode by setting the MCR[PWDN]. After releasing
the reset signal the ADC analog module is kept in power-down mode by default, so this state must be exited
before starting any operation by resetting the appropriate bit in the MCR.

The power-down mode can be requested at any time by setting the MCR[PWDN]. If a conversion is
ongoing, the ADC must complete the conversion before entering the power down mode. In fact, the ADC
enters power-down mode only after completing the ongoing conversion. Otherwise, the ongoing operation
should be aborted manually by resetting the NSTART bit and using the ABORTCHAIN bit.

MSR[ADCSTATUS] bit is set only when ADC enters power-down mode.

After the power-down phase is completed, the process ongoing before the power-down phase must be
restarted manually by setting the appropriate MCR[START] bit.

Chapter 32 Analog-to-Digital Converter (ADC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1134 Freescale Semiconductor

Resetting MCR[PWDN] bit and setting MCR[NSTART] or MCR[JSTART] bit during the same cycle is
forbidden.

If a CTU trigger pulse is received during power-down, it is discarded.

If the CTU is enabled and the CSR[CTUSTART] bit is ‘1’, then the MCR[PWDN] bit cannot be set. When
CTU trigger mode is enabled, the application has to wait for the end of conversion (CTUSTART bit
automatically reset).

32.4.11 Auto-clock-off mode

To reduce power consumption during the IDLE mode of operation (without going into power-down mode),
an “auto-clock-off” feature can be enabled by setting the ACKO bit in the MCR. When enabled, the analog
clock is automatically switched off when no operation is ongoing, that is, no conversion is programmed
by the user.

Chapter 33 Cross Triggering Unit (CTU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1135

Chapter 33
Cross Triggering Unit (CTU)

33.1 Introduction
The Cross Triggering Unit (CTU) allows to synchronize an ADC conversion with a timer event from
eMIOS (every mode which can generate a DMA request can trigger CTU) or PIT_RTI. To select which
ADC channel must be converted on a particular timer event, the CTU provides the ADC with a 7-bit
channel number. This channel number can be configured for each timer channel event by the application.

33.2 Main features
• Single cycle delayed trigger output. The trigger output is a combination of 64 (generic value) input

flags/events connected to different timers in the system.

• One event configuration register dedicated to each timer event allows to define the corresponding
ADC channel.

• Acknowledgment signal to eMIOS/PIT_RTI for clearing the flag

• Synchronization with ADC to avoid collision

33.3 Block diagram
The CTU block diagram is shown in Figure 33-1.

Figure 33-1. Cross Triggering Unit block diagram

33.4 Memory map and register descriptions
The CTU registers are listed in Table 33-1. Every register can have 32-bit access. The base address of the
CTU is 0xFFE6_4000.

Event
Gen

Event
Gen

Event
Gen

FLAG_ACK

NEXT_CMD

Channel value select

Trig0

Trig1

Trig63

Channel value

Event
Arbitration

&
Masking

Event Configuration Register 0

Event Configuration Register 1

Event Configuration Register 63

.

.

.

.

.

.

.

.

.

.

Chapter 33 Cross Triggering Unit (CTU)

MPC5646C Microcontroller Reference Manual, Rev. 5

1136 Freescale Semiconductor

33.4.1 Event Configuration Registers (CTU_EVTCFGRx) (x = 0...63)

These registers contain the ADC channel number to be converted when the timer event occurs.

Table 33-1. CTU memory map

Base address: 0xFFE6_4000

Address offset Register Location

0x000–0x02F Reserved

0x030–0x12C Event Configuration Registers 0..63 (CTU_EVTCFGR0..63) on page 1136

Offsets: 0x030–0x12C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

TM

C
LR

_F
LA

G
1

1 This bit implementation is generic based and implemented only for inputs mapped to PIT_RTI event flags.

0 0 0 0 0

A
D

C
_S

E
L 0

CHANNEL_VALUEW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-2. Event Configuration Registers (CTU_EVTCFGRx) (x = 0...63)

Table 33-2. CTU_EVTCFGRx field descriptions

Field Description

TM Trigger Mask
0: Trigger masked
1: Trigger enabled

CLR_FLAG To provide flag_ack through software
1: Flag_ack is forced to ‘1’ for the particular event
0: Flag_ack is dependent on flag servicing

ADC_SEL This bit selects the ADC number.
0: 10-bit ADC0 is selected
1: 12-bit ADC1 is selected

CHANNEL_
VALUE These bits provide the ADC channel number to be converted. Valid values are 0b0 to 0b1011111

(decimal 95).

Chapter 33 Cross Triggering Unit (CTU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1137

When CLR_FLAG is set, CTU ignores any event from PIT_RTI if some triggered conversion is going on
in ADC (conversion from CTU to ADC). But if CTU is not busy in sending any trigger to ADC, then it
will send the trigger to ADC for conversion of configured channel in CTU_EVTCFGR register. In that
case, setting CLR_FLAG bit would not provide flag_ack through software.

The CLR_FLAG bit has to be used cautiously as setting this bit may result in a loss of events.

The event input can be masked by writing ‘0’ to bit TM of the CTU_EVTCFGR register. Writing ‘1’ to
bit TM enables the CTU triggering and automatically disables the DMA connection for the corresponding
eMIOS channel.

NOTE
The CTU tracks issued conversion requests to the ADC. When the ADC is
being triggered by the CTU and there is a need to shut down the ADC, the
ADC must be allowed to complete conversions before being shut down.
This ensures that the CTU is notified of completion; if the ADC is shut down
while performing a CTU-triggered conversion, the CTU is not notified and
will not be able to trigger further conversions until the device is reset.

33.5 Functional description
This peripheral is used to synchronize ADC conversions with timer events (from eMIOS or PIT_RTI).
When a timer event occurs, the CTU triggers an ADC conversion providing the ADC channel number to
be converted. In case concurrent events occur the priority is managed according to the index of the timer
event. The trigger output is a single cycle pulse used to trigger ADC conversion of the channel number
provided by the CTU.

Each trigger input from the CTU is connected to the Event Trigger signal of an eMIOS channel. The
assignment between eMIOS outputs and CTU trigger inputs is defined in Table 33-3.

Table 33-3. Trigger source

CTU trigger No. Module Source

0 eMIOS 0 Channel_0

1 eMIOS 0 Channel_1

2 eMIOS 0 Channel_2

3 eMIOS 0 Channel_3

4 eMIOS 0 Channel_4

5 eMIOS 0 Channel_5

6 eMIOS 0 Channel_6

7 eMIOS 0 Channel_7

8 eMIOS 0 Channel_8

9 eMIOS 0 Channel_9

10 eMIOS 0 Channel_10

Chapter 33 Cross Triggering Unit (CTU)

MPC5646C Microcontroller Reference Manual, Rev. 5

1138 Freescale Semiconductor

11 eMIOS 0 Channel_11

12 eMIOS 0 Channel_12

13 eMIOS 0 Channel_13

14 eMIOS 0 Channel_14

15 eMIOS 0 Channel_15

16 eMIOS 0 Channel_16

17 eMIOS 0 Channel_17

18 eMIOS 0 Channel_18

19 eMIOS 0 Channel_19

20 eMIOS 0 Channel_20

21 eMIOS 0 Channel_21

22 eMIOS 0 Channel_22

23 PIT_RTI PIT_3

24 eMIOS 0 Channel_24

25 eMIOS 0 Channel_25

26 eMIOS 0 Channel_26

27 eMIOS 0 Channel_27

28 eMIOS 0 Channel_28

29 eMIOS 0 Channel_29

30 eMIOS 0 Channel_30

31 eMIOS 0 Channel_31

32 eMIOS 1 Channel_0

33 eMIOS 1 Channel_1

34 eMIOS 1 Channel_2

35 eMIOS 1 Channel_3

36 eMIOS 1 Channel_4

37 eMIOS 1 Channel_5

38 eMIOS 1 Channel_6

39 eMIOS 1 Channel_7

40 eMIOS 1 Channel_8

41 eMIOS 1 Channel_9

42 eMIOS 1 Channel_10

43 eMIOS 1 Channel_11

Table 33-3. Trigger source (continued)

CTU trigger No. Module Source

Chapter 33 Cross Triggering Unit (CTU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1139

Each event has a dedicated configuration register (CTU_EVTCFGR). These registers store a channel
number which is used to communicate which channel needs to be converted.

In case several events are pending for ADC request, the priority is managed according to the timer event
index. The lowest index has the highest priority. Once an event has been serviced (conversion requested
to ADC) the eMIOS flag is cleared by the CTU and next prior event is handled.

The acknowledgment signal can be forced to ‘1’ by setting the CLR_FLAG bit of the CTU_EVTCFGR
register. These bits are implemented for only those input flags to which PIT_RTI flags are connected.
Providing these bits offers the option of clearing PIT_RTI flags by software.

33.5.1 Channel value

The channel value stored in an event configuration register is demultiplexed to 7 bits and then provided to
the ADC.

44 eMIOS 1 Channel_12

45 eMIOS 1 Channel_13

46 eMIOS 1 Channel_14

47 eMIOS 1 Channel_15

48 eMIOS 1 Channel_16

49 eMIOS 1 Channel_17

50 eMIOS 1 Channel_18

51 eMIOS 1 Channel_19

52 eMIOS 1 Channel_20

53 eMIOS 1 Channel_21

54 eMIOS 1 Channel_22

55 PIT_RTI PIT_7

56 eMIOS 1 Channel_24

57 eMIOS 1 Channel_25

58 eMIOS 1 Channel_26

59 eMIOS 1 Channel_27

60 eMIOS 1 Channel_28

61 eMIOS 1 Channel_29

62 eMIOS 1 Channel_30

63 eMIOS 1 Channel_31

Table 33-3. Trigger source (continued)

CTU trigger No. Module Source

Chapter 33 Cross Triggering Unit (CTU)

MPC5646C Microcontroller Reference Manual, Rev. 5

1140 Freescale Semiconductor

Table 33-4. CTU-to-ADC Channel Assignment

10-bit ADC 12-bit ADC

10-bit ADC_0
Signal name

10-bit ADC_0
channel #

Channel # in
CTU_EVTCFGR

x

12-bit ADC_1
Signal name

12-bit ADC_1
channel #

Channel # in
CTU_EVTCFGRx

ADC0_P[0] CH0 0 ADC1_P[0] CH0 0

ADC0_P[1] CH1 1 ADC1_P[1] CH1 1

ADC0_P[2] CH2 2 ADC1_P[2] CH2 2

ADC0_P[3] CH3 3 ADC1_P[3] CH3 3

ADC0_P[4] CH4 4 ADC1_P[4] CH4 4

ADC0_P[5] CH5 5 ADC1_P[5] CH5 5

ADC0_P[6] CH6 6 ADC1_P[6] CH6 6

ADC0_P[7] CH7 7 ADC1_P[7] CH7 7

ADC0_P[8] CH8 8 ADC1_P[8] CH8 8

ADC0_P[9] CH9 9 ADC1_P[9] CH9 9

ADC0_P[10] CH10 10 ADC1_P[10] CH10 10

ADC0_P[11] CH11 11 ADC1_P[11] CH11 11

ADC0_P[12] CH12 12 ADC1_P[12] CH12 12

ADC0_P[13] CH13 13 ADC1_P[13] CH13 13

ADC0_P[14] CH14 14 ADC1_P[14] CH14 14

ADC0_P[15] CH15 15 ADC1_P[15] CH15 15

ADC0_S[0] CH32 32 ADC1_S[0] CH32 32

ADC0_S[1] CH33 33 ADC1_S[1] CH33 33

ADC0_S[2] CH34 34 ADC1_S[2] CH34 34

ADC0_S[3] CH35 35 ADC1_S[3] CH35 35

ADC0_S[4] CH36 36 ADC1_S[4] CH36 36

ADC0_S[5] CH37 37 ADC1_S[5] CH37 37

ADC0_S[6] CH38 38 ADC1_S[6] CH38 38

ADC0_S[7] CH39 39 ADC1_S[7] CH39 39

ADC0_S[8] CH40 40 ADC1_S[8] CH40 40

ADC0_S[9] CH41 41 ADC1_S[9] CH41 41

ADC0_S[10] CH42 42 ADC1_S[10] CH42 42

ADC0_S[11] CH43 43 ADC1_S[11] CH43 43

ADC0_S[12] CH44 44 ADC1_S[12] CH44 44

ADC0_S[13] CH45 45

Chapter 33 Cross Triggering Unit (CTU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1141

ADC0_S[14] CH46 46

ADC0_S[15] CH47 47

ADC0_S[16] CH48 48

ADC0_S[17] CH49 49

ADC0_S[18] CH50 50

ADC0_S[19] CH51 51

ADC0_S[20] CH52 52

ADC0_S[21] CH53 53

ADC0_S[22] CH54 54

ADC0_S[23] CH55 55

ADC0_S[24] CH56 56

ADC0_S[25] CH57 57

ADC0_S[26] CH58 58

ADC0_S[27] CH59 59

ADC0_S[28] CH60 60

ADC0_S[29] CH61 61

ADC0_S[30] CH62 62

ADC0_S[31] CH63 63

ADC0_X[0] CH64 : CH71 64:71

ADC0_X[1] CH72 : CH79 72:79

ADC0_X[2] CH80 : CH87 80:87

ADC0_X[3] CH88 : CH95 88:95

Table 33-4. CTU-to-ADC Channel Assignment (continued)

10-bit ADC 12-bit ADC

10-bit ADC_0
Signal name

10-bit ADC_0
channel #

Channel # in
CTU_EVTCFGR

x

12-bit ADC_1
Signal name

12-bit ADC_1
channel #

Channel # in
CTU_EVTCFGRx

Chapter 33 Cross Triggering Unit (CTU)

MPC5646C Microcontroller Reference Manual, Rev. 5

1142 Freescale Semiconductor

THIS PAGE IS INTENTIONALLY LEFT BLANK.

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1143

——— Memory ———

MPC5646C Microcontroller Reference Manual, Rev. 5

1144 Freescale Semiconductor

THE PAGE IS INTENTIONALLY LEFT BLANK

Chapter 34 Static RAM (SRAM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1145

Chapter 34
Static RAM (SRAM)

34.1 Introduction
This device has up to 256 KB of general-purpose static RAM (SRAM).

The SRAM provides the following features:

• SRAM can be read/written from any bus master

• Byte, halfword and word addressable

• ECC (error correction code) protected with single-bit correction and double-bit detection

Except in standby mode, the SRAM is always powered on. In standby mode, the user can decide to retain
8 KB, 40 KB, 64 KB or 96 KB.

34.2 SRAM operating mode
In order to reduce leakage a portion of the SRAM can be switched off/unpowered during standby mode.

34.3 Register memory map

The L2SRAM occupies 256 KB of memory starting at the base address as shown in Table 34-2.

The internal SRAM has no registers. Registers for the SRAM ECC are located in the ECSM (see the Error
Correction Status Module (ECSM) chapter of the reference manual for more information).

34.4 SRAM ECC mechanism
The SRAM ECC detects the following conditions and produces the following results:

• Detects and corrects all 1-bit errors

• Detects and flags all 2-bit errors as non-correctable errors

Table 34-1. Low power configuration

Mode Configuration

RUN, TEST, SAFE and
STOP

The entire SRAM is powered and operational.

STANDBY In the standby mode, 8 KB, 64 KB, or 96 KB of the SRAM remains powered. This option
is software-selectable.

PD

Table 34-2. SRAM memory map

Address Register name Register description Size

0x4000_0000 (Base) — SRA up to 256 KB

Chapter 34 Static RAM (SRAM)

MPC5646C Microcontroller Reference Manual, Rev. 5

1146 Freescale Semiconductor

• Detects 39-bit reads (32-bit data bus plus the 7-bit ECC) that return all zeros or all ones, asserts an
error indicator on the bus cycle, and sets the error flag

SRAM does not detect all errors greater than 2 bits.

Internal SRAM write operations are performed on the following byte boundaries:

• 1 byte (0:7 bits)

• 2 bytes (0:15 bits)

• 4 bytes or 1 word (0:31 bits)

If the entire 32 data bits are written to SRAM, no read operation is performed and the ECC is calculated
across the 32-bit data bus. The 7-bit ECC is appended to the data segment and written to SRAM.

If the write operation is less than the entire 32-bit data width (1 or 2-byte segment), the following occurs:

1. The ECC mechanism checks the entire 32-bit data bus for errors, detecting and either correcting or
flagging errors.

2. The write data bytes (1 or 2-byte segment) are merged with the corrected 32 bits on the data bus.

3. The ECC is then calculated on the resulting 32 bits formed in the previous step.

4. The 7-bit ECC result is appended to the 32 bits from the data bus, and the 39-bit value is then
written to SRAM.

34.4.1 Access timing

The system bus is a two-stage pipelined bus, which makes the timing of any access dependent on the access
during the previous clock cycle. Table 34-3 lists the various combinations of read and write operations to
SRAM and the number of wait states used for the each operation. The table columns contain the following
information:

• Current operation — Lists the type of SRAM operation currently executing

• Previous operation — Lists the valid types of SRAM operations that can precede the current
SRAM operation (valid operation during the preceding clock)

• Wait states — Lists the number of wait states (bus clocks) the operation requires which depends on
the combination of the current and previous operation

Table 34-3. Number of wait states required for SRAM operations

Operation type Current operation Previous operation Number of wait states required

Read Read Idle 1

Pipelined read

8, 16 or 32-bit write 0
(read from the same address)

1
(read from a different address)

Pipelined read Read 0

Chapter 34 Static RAM (SRAM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1147

NOTE
Above 64 MHz + 4%, additional RAM wait states need to be added. See the
MUDCR register description in this reference manual.

34.4.2 Reset effects on SRAM accesses

Asynchronous reset will possibly corrupt SRAM if it asserts during a read or write operation to SRAM.
The completion of that access depends on the cycle at which the reset occurs. Data read from or written to
SRAM before the reset event occurred is retained, and no other address locations are accessed or changed.
In case of no access ongoing when reset occurs, the SRAM corruption does not happen.

Instead, synchronous reset (SW reset) should be used in controlled function (without SRAM accesses) in
case an initialization procedure without SRAM initialization is needed.

34.5 Functional description
ECC checks are performed during the read portion of an SRAM ECC read/write (R/W) operation, and
ECC calculations are performed during the write portion of a R/W operation. Because the ECC bits can
contain random data after the device is powered on, the SRAM must be initialized by executing 32-bit
write operations prior to any read accesses. This is also true for implicit read accesses caused by any write
accesses of less than 32 bits as discussed in Section 34.4, SRAM ECC mechanism.

34.6 Initialization and application information
To use the SRAM, the ECC must check all bits that require initialization after power on. All writes must
specify an even number of registers performed on 32-bit word-aligned boundaries. If the write is not the
entire 32 bits (8 or 16 bits), a read / modify / write operation is generated that checks the ECC value upon
the read. See Section 34.4, SRAM ECC mechanism.

Write 8 or 16-bit write Idle 1

Read

Pipelined 8 or 16-bit write 2

32-bit write

8 or 16-bit write 0
(write to the same address)

Pipelined 8, 16 or 32-bit write 8, 16 or 32-bit write 0

32-bit write Idle 0

32-bit write

Read

Table 34-3. Number of wait states required for SRAM operations (continued)

Operation type Current operation Previous operation Number of wait states required

Chapter 34 Static RAM (SRAM)

MPC5646C Microcontroller Reference Manual, Rev. 5

1148 Freescale Semiconductor

THE PAGE IS INTENTIONALLY LEFT BLANK

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1149

——— Integrity ———

MPC5646C Microcontroller Reference Manual, Rev. 5

1150 Freescale Semiconductor

THE PAGE IS INTENTIONALLY LEFT BLANK

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1151

Chapter 35
Flash Memory

35.1 Introduction
The flash memory comprises a platform Flash controller (PFlash) interface and seven flash memory
arrays: six arrays of 512 KB for code (CFlash) and one array of 64 KB for data (DFlash). The flash
memory architecture of this device is illustrated in Figure 35-1.

Figure 35-1. Flash memory architecture

35.2 Code flash memory

35.2.1 Introduction

The primary function of the code flash module is to serve as electrically programmable and erasable
nonvolatile memory.

Nonvolatile memory may be used for instruction and/or data storage.

AHB Crossbar Switch

AHB ports 64

Array 2

4x128 Page Buffer (Bank0)

PFlash Controller

512K Flash

Array 1

Bank0 (CFlash)

512K Flash

Array 0

Bank0 (CFlash)

512K Flash

Array 1

Bank0 (CFlash)

512K Flash

Array 2

Bank2 (CFlash)

512K Flash

Array 1

Bank2 (CFlash)

512K Flash

Array 2

Bank2 (CFlash)

512K Flash

Array 0

Bank1 (DFlash)

Data Flash

Array 0

(for EEPROM
emulation)

4x128 Page Buffer (Bank2)

1x64 Page Buffer (Bank1)

64128 64128 32

64

4x128 Page Buffer (Bank0)

4x128 Page Buffer (Bank2)

1x64 Page Buffer (Bank1)

Bank 0 Bank 2 Bank 1

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1152 Freescale Semiconductor

The module is a nonvolatile solid-state silicon memory device consisting of blocks (also called “sectors”)
of single transistor storage elements, an electrical means for selectively adding (programming) and
removing (erasing) charge from these elements, and a means of selectively sensing (reading) the charge
stored in these elements.

The flash memory module is arranged as two functional units: the flash memory core and the memory
interface.

The flash memory core is composed of arrayed nonvolatile storage elements, sense amplifiers, row
decoders, column decoders and charge pumps. The arrayed storage elements in the flash memory core are
subdivided into physically separate units referred to as blocks (or sectors).

The memory interface contains the registers and logic which control the operation of the flash memory
core. The memory interface is also the interface between the flash memory module and a Bus Interface
Unit (BIU) and contains the ECC logic and redundancy logic.

A BIU connects the flash memory module to a system bus, and contains all system level customization
required for the device application.

35.2.2 Main features
• High Read parallelism (128 bits)

• Error Correction Code (SEC-DED) to enhance Data Retention

• Double Word Program (64 bits)

• Sector erase

• RWW is supported between two code flash memory modules whereas within single bank RWW is
not available. Examples of supported RWW below:

— CF0 (or CF1) and DFlash

— CF0 and CF1

• Erase Suspend available (Program Suspend not available)

• Software programmable program/erase protection to avoid unwanted writings

• Censored Mode against piracy

• Shadow Sector available

• One-Time Programmable (OTP) area in test flash memory block

35.2.3 Block diagram

The flash memory module contains three Matrix Modules, composed of a three banks: Bank 0, Bank 1,
Bank 2, normally used for code storage.

Modify operations are managed by an embedded flash memory program/erase controller (FPEC).
Commands to the FPEC are given through a User Registers Interface.

The read data bus is 3 x128 bits wide, while the flash memory registers are on a separate bus 32 bits wide
addressed in the user memory map.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1153

The high voltages needed for program/erase operations are generated internally.

Figure 35-2. Flash memory module structure

35.2.4 Functional description

35.2.4.1 Module structure

The flash memory module is addressable by Double Word (64 bits) for program, and page (128 bits) for
read. Reads to the flash memory always return 128 bits, although read page buffering may be done in the
platform BIU.

Each read of the flash memory module retrieves a page, or four consecutive words (128 bits) of
information. The address for each word retrieved within a page differs from the other addresses in the page
only by address bits (3:2).

The flash memory module supports fault tolerance through Error Correction Code (ECC) or error
detection, or both. The ECC implemented within the flash memory module will correct single bit failures
and detect double bit failures.

The flash memory module uses an embedded hardware algorithm implemented in the Memory Interface
to program and erase the flash memory core.

The embedded hardware algorithm includes control logic that works with software block enables and
software lock mechanisms to guard against accidental program/erase.

The hardware algorithm performs the steps necessary to ensure that the storage elements are programmed
and erased with sufficient margin to guarantee data integrity and reliability.

In the flash memory module, logic levels are defined as follows:

• A programmed bit reads as logic level 0 (or low).

• An erased bit reads as logic level 1 (or high).

Flash

Matrix
Registers

Registers

Interface
Interface

512 KB:
4 x 128 KB

Module 1 512 KB:
Module 0

+ 16 KB Shadow

2 x 16 KB
3 x 32 KB

3 x 128 KB

512 KB:
4 x 128 KB

Module 2

CODE FLASH 0

512 KB:
4 x 128 KB

Module 2

CODE FLASH 1

512 KB:
4 x 128 KB

Module 1 512 KB:

 16 KB TestFlash

Module 0

2 x 16 KB
3 x 32 KB

3 x 128 KB

Flash

Controller

Program
/Erase

HV generator

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1154 Freescale Semiconductor

Program and erase of the flash memory module requires multiple system clock cycles to complete. The
erase sequence may be suspended. The program and erase sequences may be aborted.

35.2.4.2 Flash memory module sectorization

The code flash memory module supports 2  1.5 MB of user memory. User can program shadow sector
(16 KB). All 16 KB can be programmed by the user.

The flash memory Multi-module is composed of 2  1.5 MB Multi-modules, each comprising of the three
modules (0, 1 and 2). Read-While-Write is not supported.

The flash memory Multi-Module is divided in 18 sectors including a reserved sector, named TestFlash, in
which some One-Time Programmable (OTP) user data are stored in the Code Flash1, as well as a Shadow
Sector in which user erasable configuration values can be stored.

The matrix module sectorization is shown in Table 35-1.

Table 35-1. Flash memory multi module sectorization

Sector Module Addresses Size Address Space

B0F0 0 0x000000 to 0x007FFF 32 KB Low Address Space

B0F1 0 0x008000 to 0x00BFFF 16 KB Low Address Space

B0F2 0 0x00C000 to 0x00FFFF 16 KB Low Address Space

B0F3 0 0x010000 to 0x017FFF 32 KB Low Address Space

B0F4 0 0x018000 to 0x01FFFF 32 KB Low Address Space

B0F5 0 0x020000 to 0x03FFFF 128 KB Low Address Space

B0F6 0 0x040000 to 0x05FFFF 128 KB Mid Address Space

B0F7 0 0x060000 to 0x07FFFF 128 KB Mid Address Space

B0F8 1 0x080000 to 0x09FFFF 128 KB High Address Space

B0F9 1 0x0A0000 to 0x0BFFFF 128 KB High Address Space

B0FA 1 0x0C0000 to 0x0DFFFF 128 KB High Address Space

B0FB 1 0x0E0000 to 0x0FFFFF 128 KB High Address Space

B0FC 2 0x100000 to 0x11FFFF 128 KB High Address Space

B0FD 2 0x120000 to 0x13FFFF 128 KB High Address Space

B0FE 2 0x140000 to 0x15FFFF 128 KB High Address Space

B0FF 2 0x160000 to 0x17FFFF 128 KB High Address Space

B2F8 1 0x180000 to 0x19FFFF 128 KB High Address Space

B2F9 1 0x1A0000 to 0x1BFFFF 128 KB High Address Space

B2FA 1 0x1C0000 to 0x1DFFFF 128 KB High Address Space

B2FB 1 0x1E0000 to 0x1FFFFF 128 KB High Address Space

B2FC 2 0x200000 to 0x21FFFF 128 KB High Address Space

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1155

B2FD 2 0x220000 to 0x23FFFF 128 KB High Address Space

B2FE 2 0x240000 to 0x25FFFF 128 KB High Address Space

B2FF 2 0x260000 to 0x27FFFF 128 KB High Address Space

B2F0 0 0x280000 to 0x287FFF 32 KB Low Address Space

B2F1 0 0x288000 to 0x28BFFF 16 KB Low Address Space

B2F2 0 0x28C000 to 0x28FFFF 16 KB Low Address Space

B2F3 0 0x290000 to 0x297FFF 32 KB Low Address Space

B2F4 0 0x298000 to 0x29FFFF 32 KB Low Address Space

B2F5 0 0x2A0000 to 0x2BFFFF 128 KB Low Address Space

B2F6 0 0x2C0000 to 0x2DFFFF 128 KB Mid Address Space

B2F7 0 0x2E0000 to 0x2FFFFF 128 KB Mid Address Space

Reserved — 0x300000 to 0x3FFFFF 1024 KB High Address Space

Reserved — 0x400000 to 0x403FFF 16 KB High Address Space

Reserved — 0x404000 to 0x57FFFF 1520 KB High Address Space

Reserved — 0x580000 to 0x583FFF 16 KB High Address Space

Reserved — 0x584000 to 0x7FFFFF 2544 KB High Address Space

Reserved — 0x818000 to 0xBFFFFF 4000 KB High Address Space

Reserved — 0x00C000 to 0x00C01FFF 8 KB High Address Space

Reserved — 0xC02000 to 0xDFFFFF 2040 KB High Address Space

Reserved — 0xE00000 to 0xE03FFF 16 KB High Address Space

Reserved — 0xE04000 to 0xE07FFF 16 KB High Address Space

B2TF 0 0xE08000 to 0xE0BFFF 16 KB Test Address Space

Reserved — 0xE0C000 to 0xE0FFFF 16 KB High Address Space

Reserved — 0xE10000 to 0xE13FFF 16 KB High Address Space

Reserved — 0xE14000 to 0xE17FFF 16 KB High Address Space

Reserved — 0xE18000 to 0xE1BFFF 16 KB High Address Space

Reserved — 0xE1C000 to 0xE7BFFF 384 KB High Address Space

Reserved — 0xE7C000 to 0xE7FFFF 16 KB High Address Space

Reserved — 0xE80000 to 0xEFBFFF 496 KB High Address Space

Reserved — 0xEFC000 to 0xEFFFFF 16 KB High Address Space

Reserved — 0xF00000 to 0xF7BFFF 507 KB High Address Space

Reserved — 0xF7C000 to 0xF7FFFF 16 KB High Address Space

Reserved — 0xF80000 to 0xFFBFFF 507 KB High Address Space

Table 35-1. Flash memory multi module sectorization (continued)

Sector Module Addresses Size Address Space

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1156 Freescale Semiconductor

The division into blocks of the flash memory module is also used to implement independent erase/program
protection. A software mechanism is provided to independently lock/unlock each block in low, mid and
high address space (as reported in Table 35-1) against program and erase.

35.2.4.2.1 TestFlash block

The TestFlash block exists outside the normal address space and is programmed and read independently
of the other blocks. The independent TestFlash block is included to also support systems which require
nonvolatile memory for security or to store system initialization information, or both.

A section of the TestFlash is reserved to store the nonvolatile information related to Redundancy,
Configuration and Protection.

The ECC is also applied to TestFlash.

The structure of the TestFlash sector is detailed in Table 35-2.

Erase of the Test flash memory block is always locked.

Programming of the TestFlash block has similar restrictions as the array in terms of how ECC is calculated.
Only one programming operation is allowed per 64-bit ECC segment.

The first 8 KB of TestFlash block may be used for user defined functions (possibly to store serial numbers,
other configuration words or factory process codes). Locations of the TestFlash other than the first 8 KB
of OTP area cannot be programmed by the user application.

B0SH 0 0xFFC000 to 0xFFFFFF 16 KB Shadow Address Space

Table 35-2. TestFlash structure

Name Description Address Offset1

1 See device memory map table for base address information of test flash.

Size

— User OTP area 0x000000–0x001FFF 8192 byte

— Reserved 0x002000–0x003CFF 7424 byte

— User reserved 0x003D00–0x003DE7 232 byte

NVLML Nonvolatile Low/Mid address space block Locking register 0x003DE8–0x003DEF 8 byte

NVHBL Nonvolatile High address space Block Locking register 0x003DF0–0x003DF7 8 byte

NVSLL Nonvolatile Secondary Low/mid address space block Lock
register

0x003DF8–0x003DFF 8 byte

— User reserved 0x003E00–0x003EFF 256 byte

— Reserved 0x003F00–0x003FFF 256 byte

Table 35-1. Flash memory multi module sectorization (continued)

Sector Module Addresses Size Address Space

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1157

35.2.4.2.2 Shadow block

A Shadow block is present in the 544 KB flash memory module.

The Shadow block can be enabled by the BIU.

When the Shadow space is enabled, all the operations are mapped to the Shadow block.

User Mode program and erase of the shadow block are enabled only when MCR.PEAS is high.

The Shadow block may be locked/unlocked against program or erase by using the LML.TSLK and
SLL.STSLK registers.

Programming of the Shadow block has similar restrictions as the array in terms of how ECC is calculated.
Only one programming operation is allowed per 64-bit ECC segment between erases.

Erase of the Shadow block is done similarly to a sector erase.

The Shadow block contains specified data that are needed for user features.

The user area of Shadow block may be used for user defined functions (possibly to store boot code, other
configuration words or factory process codes).

The structure of the Shadow sector is detailed in Table 35-3.

Table 35-3. Shadow sector structure

Name Description Address Offset1

1 See device memory map table for base address information of shadow flash.

Size

— User area 0x0000–0x00F

— DCF record Start Fields 0x0010 - 0x001F

— NVUSRO_1 Fields 0x0020-0x002F

— DCF Record Config Fieldsnvusr_ 0x0030-0x00CF

— User area 0x00D0-

— Reserved 0x003DD0–0x003DD7 8 byte

NVPWD0–
1

 Nonvolatile Private Censorship PassWord 0–1 registers 0x003DD8–0x003DDF 8 byte

NVSCC0–1 Nonvolatile System Censorship Control 0–1 registers 0x003DE0–0x003DE7 8 byte

— Reserved 0x003DE8–0x003DFF 24 byte

NVBIU2–3 Nonvolatile Bus Interface Unit 2–3 registers 0x003E00–0x003E0F 16 byte

— Reserved 0x003E10–0x003E17 8 byte

NVUSRO Nonvolatile User Options register 0x003E18–0x003E1F 8 byte

— Reserved 0x003E20–0x003FFF 480 byte

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1158 Freescale Semiconductor

35.2.4.3 User mode operation

In User Mode the flash memory module may be read and written (register writes and interlock writes),
programmed or erased.

The default state of the flash memory module is read.

The main, shadow and test address space can be read only in the read state.

The flash memory registers are always available for read, also when the module is in power-down mode
(except few documented registers). Most of the flash memory registers are mapped on Flip-Flops and can
be read on IPS bus also when the flash memory module is forced in disable mode.

Few flash memory registers (bits MRE, MRV, AIS, EIE and DSI7-0 of UT0, whole UT1 and UT2) are
mapped in flash memory SRAM and cannot be read when the flash memory is in disable mode (reading
returns indeterminate data)

The flash memory module enters the read state on reset.

The module is in the read state under two sets of conditions:

• The read state is active when the module is enabled (User Mode Read).

• The read state is active when MCR.ERS and MCR.ESUS are high and MCR.PGM is low (Erase
Suspend).

Notice that Read-While-Write is not available. flash memory core reads return 128 bits (1 Page = 2 Double
Words). Registers reads return 32 bits (1 Word). flash memory core reads are done through the Bus
Interface Unit.

Registers reads to unmapped register address space will return all 0’s. Registers writes to unmapped
register address space will have no effect. Attempted array reads to invalid locations will result in
indeterminate data. Invalid locations occur when blocks that do not exist in non 2n array sizes are
addressed. Attempted interlock writes to invalid locations will result in an interlock occurring, but attempts
to program these blocks will not occur since they are forced to be locked. Erase will occur to selected and
unlocked blocks even if the interlock write is to an invalid location.

Simultaneous Read cycle on the flash memory Matrix and Read/Write cycles on the registers are possible.
On the contrary, registers read/write accesses simultaneous to a flash memory Matrix interlock write are
forbidden.

35.2.4.4 Reset

A reset is the highest priority operation for the flash memory module and terminates all other operations.

The flash memory module uses reset to initialize register and status bits to their default reset values. If the
flash memory module is executing a Program or Erase operation (MCR.PGM = 1 or MCR.ERS =1) and a
reset is issued, the operation will be suddenly terminated and the module will disable the high voltage logic
without damage to the high voltage circuits. Reset terminates all operations and forces the flash memory
module into User Mode ready to receive accesses. Reset and power-off must not be used as a systematic
way to terminate a Program or Erase operation.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1159

After reset is negated, read register access may be done, although it should be noted that registers that
require updating from shadow information, or other inputs, may not read updated values until
MCR.DONE transitions. MCR.DONE may be polled to determine if the flash memory module has
transitioned out of reset. Notice that the registers cannot be written until MCR.DONE is high.

35.2.4.5 Power-down mode

All flash memory DC current sources can be turned off in power-down mode, so that all power dissipation
is due only to leakage in this mode.

Reads from or writes to the module are not possible in power-down mode.

The user may not read some registers (UMISR0–4, UT1–2 and part of UT0) until the power-down mode
is exited.

When enabled the flash memory module returns to its pre-disable state in all cases unless in the process of
executing an erase high voltage operation at the time of disable.

If the flash memory module is disabled during an erase operation, MCR.ESUS bit is set to ‘1’. The user
may resume the erase operation at the time the module is enabled by clearing MCR.ESUS bit. MCR.EHV
must be high to resume the erase operation.

If the flash memory module is disabled during a program operation, the operation will in any case be
completed and the power-down mode will be entered only after the programming ends.

The user should realize that, if the flash memory module is put in power-down mode and the interrupt
vectors remain mapped in the flash memory address space, the flash memory module will greatly increase
the interrupt response time by adding several wait-states.

It is forbidden to enter in low power mode when the power-down mode is active.

35.2.4.6 Low power mode

The low power mode turns off most of the DC current sources within the flash memory module.

The module (flash memory core and registers) is not accessible for read or write once it enters low power
mode.

Wake-up time from low power mode is faster than wake-up time from power-down mode.

The user may not read some registers (UMISR0–4, UT1–2 and part of UT0) until the low power mode is
exited.

When exiting from low power mode the flash memory module returns to its pre-sleep state in all cases
unless it is executing an erase high voltage operation at the time low power mode is entered.

If the flash memory module enters low power mode during an erase operation, bit MCR.ESUS is set to ‘1’.
The user may resume the erase operation at the time the module exits low power mode by clearing bit
MCR.ESUS. MCR.EHV must be high to resume the erase operation.

If the flash memory module enters low power mode during a program operation, the operation will be in
any case completed and the low power mode will be entered only after the programming end.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1160 Freescale Semiconductor

It is forbidden to enter power-down mode when the low power mode is active.

35.2.5 Register description

The flash memory user registers mapping is shown in Table 35-4.

Table 35-4. Code flash memory user registers

Address
offset1

Register Location

0x0000 Module Configuration Register (MCR) on page
1161

0x0004 Low/Mid address space block Locking reg (LML) on page
1167

0x0008 High address space Block Locking reg (HBL) on page
1169

0x000C Secondary Low/mid address space block Lock reg (SLL) on page
1171

0x0010 Low/Mid address space block Select reg (LMS) on page
1173

0x0014 High address space Block Select reg (HBS) on page
1174

0x0018 Address Register (ADR) on page
1175

0x001C Bus Interface Unit reg 0 (BIU0) on page
1176

0x0020 Bus Interface Unit reg 1 (BIU1) on page
1177

0x0024 Bus Interface Unit reg 2 (BIU2) on page
1178

0x0028 Bus Interface Unit reg 3 (BIU3) on page
1179

0x0028–0x0038 Reserved

0x003C User Test reg 0 (UT0) on page
1180

0x0040 User Test reg 1 (UT1) on page
1182

0x0044 User Test reg 2 (UT2) on page
1183

0x0048 User Multiple Input Signature Reg 0 (UMISR0) on page
1184

0x004C User Multiple Input Signature Reg 1 (UMISR1) on page
1184

0x0050 User Multiple Input Signature Reg 2 (UMISR2) on page
1185

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1161

In the following some nonvolatile registers are described. Please notice that such entities are not
Flip-Flops, but locations of TestFlash or Shadow sectors with a special meaning.

During the flash memory initialization phase, the FPEC reads these nonvolatile registers and updates the
corresponding volatile registers. When the FPEC detects ECC double errors in these special locations, it
behaves in the following way:

• In case of a failing system locations (configurations, device options, redundancy, embedded
firmware), the initialization phase is interrupted and a Fatal Error is flagged.

• In case of failing user locations (protections, censorship, BIU, ...), the volatile registers are filled
with all ‘1’s and the flash memory initialization ends setting low the PEG bit of MCR.

CAUTION
Software executing from flash must not write to registers that control flash
behavior, e.g., wait state settings or prefetch enable/disable. Doing so can
cause data corruption. On MPC5646C, these registers include BIU0, BIU1,
BIU2.

35.2.5.1 Module Configuration Register (MCR)

0x0054 User Multiple Input Signature Reg 3 (UMISR3) on page
1186

0x0058 User Multiple Input Signature Reg 4 (UMISR4) on page
1187

1 See device memory map table for base address information of code flash0 configuration.

Offset: 0x0000 Access: Read / Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EDC
1 0 0 0 0 SIZE 0 LAS 0 0 0 MAS

W w1c

Reset 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
EER1

R
W

E
1

0 0

P
E

A
S

D
O

N
E

PEG 0 0 0 0
PGM

P
S

U
S

ERS

E
S

U
S

EHV

W w1c w1c

Reset 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

Figure 35-3. Module Configuration Register (MCR)

Table 35-4. Code flash memory user registers (continued)

Address
offset1

Register Location

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1162 Freescale Semiconductor

The Module Configuration Register is used to enable and monitor all modify operations of the flash
memory module.

1 This bit is cleared by writing it to a “0”. Writing a “1” to this bit has no effect.

Table 35-5. MCR field descriptions

Field Description

 EDC Ecc Data Correction
EDC provides information on previous reads. If an ECC Single Error detection and correction
occurred, the EDC bit is set to ‘1’. The EDC bit will remain set until cleared by software or a reset
occurs. This bit may not be set to ‘1’ by the user.
In the event of an ECC Double Error detection, this bit will not be set.
If EDC is not set, or remains 0, then all previous reads (from the last reset, or clearing of EDC)
were not corrected through ECC.
0: Reads are occurring normally.
1: An ECC Single Error occurred and was corrected during a previous read.

SIZE Array Space SIZE
The value of SIZE field is dependent upon the size of the flash memory module; see Table 35-6.

LAS Low Address Space
The value of the LAS field corresponds to the configuration of the Low Address Space; see
Table 35-7.

MAS Mid Address Space
The value of the MAS field corresponds to the configuration of the Mid Address Space; see
Table 35-8.

EER Ecc event ERror
EER provides information on previous reads. If an ECC Double Error detection occurred, the EER
bit is set to ‘1’.
The EER bit will remain set until cleared by software or a reset occurs. This bit may not be set to
‘1’ by the user.
In the event of an ECC Single Error detection and correction, this bit will not be set.
If EER is not set, or remains 0, then all previous reads (from the last reset, or clearing of EER)
were correct.
0: Reads are occurring normally.
1: An ECC Double Error occurred during a previous read.

RWE Read-while-Write event Error
RWE provides information on previous reads when a Modify operation is on going. If a RWW Error
occurs, the RWE bit is set to ‘1’. Read-While-Write Error means that a read access to the flash
memory Matrix has occurred while the FPEC was performing a program or erase operation or an
Array Integrity Check.
The RWE bit will remain set until cleared by software or a reset occurs.
This bit may not be set to ‘1’ by the user.
If RWE is not set, or remains 0, then all previous RWW reads (from the last reset, or clearing of
RWE) were correct.
Since this bit is an error flag, it must be cleared to ‘0’ by writing 1 to the register location. A write
of 0 will have no effect.
0: Reads are occurring normally.
1: A RWW Error occurred during a previous read.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1163

PEAS Program/Erase Access Space
PEAS is used to indicate which space is valid for program and erase operations: main array space
or shadow/test space.
PEAS = 0 indicates that the main address space is active for all flash memory module program
and erase operations.
PEAS = 1 indicates that the test or shadow address space is active for program and erase.
The value in PEAS is captured and held with the first interlock write done for Modify operations.
The value of PEAS is retained between sampling events (that is, subsequent first interlock writes).
0: Shadow/Test address space is disabled for program/erase and main address space enabled.
1: Shadow/Test address space is enabled for program/erase and main address space disabled.

DONE modify operation DONE
DONE indicates if the flash memory module is performing a high voltage operation.
DONE is set to 1 on termination of the flash memory module reset.
DONE is cleared to 0 just after a 0 to 1 transition of EHV, which initiates a high voltage operation,
or after resuming a suspended operation.
DONE is set to 1 at the end of program and erase high voltage sequences.
DONE is set to 1 (within tPABT or tEABT, equal to P/E Abort Latency) after a 1 to 0 transition of EHV,
which aborts a high voltage Program/Erase operation.
DONE is set to 1 (within tESUS, time equals to Erase Suspend Latency) after a 0 to 1 transition of
ESUS, which suspends an erase operation.
0: Flash memory is executing a high voltage operation.
1: Flash memory is not executing a high voltage operation.

PEG Program/Erase Good
The PEG bit indicates the completion status of the last flash memory Program or Erase sequence
for which high voltage operations were initiated. The value of PEG is updated automatically during
the Program and Erase high voltage operations. Aborting a Program/Erase high voltage operation
will cause PEG to be cleared to 0, indicating the sequence failed. PEG is set to 1 when the flash
memory module is reset, unless a flash memory initialization error has been detected. The value
of PEG is valid only when PGM=1 and/or ERS=1 and after DONE transitions from 0 to 1 due to
an abort or the completion of a Program/Erase operation. PEG is valid until PGM/ERS makes a
1 to 0 transition or EHV makes a 0 to 1 transition. The value in PEG is not valid after a 0 to 1
transition of DONE caused by ESUS being set to logic 1. If Program or Erase are attempted on
blocks that are locked, the response will be PEG=1, indicating that the operation was successful,
and the content of the block was properly protected from the Program or Erase operation. If a
program operation tries to program a bit which is already at a logic 0 from a logic 1 to a logic 0,
the program operation is correctly executed on the new bits to be programmed at ‘0’, but PEG is
cleared, indicating that the requested operation has failed. In Array Integrity Check or Margin read
PEG is set to 1 when the operation is completed, regardless the occurrence of any error. The
presence of errors can be detected only comparing checksum value stored in UMIRS0-1.
Aborting an Array Integrity Check or a Margin read operation will cause PEG to be cleared to 0,
indicating the sequence failed.
0: Program, Erase operation failed or Program, Erase, Array Integrity Check or Maring Mode
aborted.
1: Program or Erase operation successful or Array Integrity Check or Maring Mode completed.

Table 35-5. MCR field descriptions (continued)

Field Description

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1164 Freescale Semiconductor

PGM ProGraM
PGM is used to set up the flash memory module for a Program operation.
A 0 to 1 transition of PGM initiates a Program sequence.
A 1 to 0 transition of PGM ends the Program sequence.
PGM can be set only under User Mode Read (ERS is low and UT0.AIE is low).
PGM can be cleared by the user only when EHV is low and DONE is high.
PGM is cleared on reset.
0: Flash memory is not executing a Program sequence.
1: Flash memory is executing a Program sequence.

PSUS Program SUSpend)
Writing this bit has no effect, but the written data can be read back.

ERS ERaSe
ERS is used to set up the flash memory module for an erase operation.
A 0 to 1 transition of ERS initiates an erase sequence.
A 1 to 0 transition of ERS ends the erase sequence.
ERS can be set only under User Mode Read (PGM is low and UT0.AIE is low).
ERS can be cleared by the user only when ESUS and EHV are low and DONE is high.
ERS is cleared on reset.
0: Flash memory is not executing an erase sequence.
1: Flash memory is executing an erase sequence.

ESUS Erase SUSpend
ESUS is used to indicate that the flash memory module is in Erase Suspend or in the process of
entering a Suspend state. The flash memory module is in Erase Suspend when ESUS = 1 and
DONE = 1.
ESUS can be set high only when ERS and EHV are high and PGM is low.
A 0 to 1 transition of ESUS starts the sequence which sets DONE and places the flash memory
in Erase Suspend. The flash memory module enters Suspend within tESUS of this transition.
ESUS can be cleared only when DONE and EHV are high and PGM is low.
A 1 to 0 transition of ESUS with EHV = 1 starts the sequence which clears DONE and returns the
module to Erase.
The flash memory module cannot exit Erase Suspend and clear DONE while EHV is low.
ESUS is cleared on reset.
0: Erase sequence is not suspended.
1: Erase sequence is suspended.

Table 35-5. MCR field descriptions (continued)

Field Description

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1165

EHV Enable High Voltage
The EHV bit enables the flash memory module for a high voltage program/erase operation.
EHV is cleared on reset.
EHV must be set after an interlock write to start a program/erase sequence. EHV may be set
under one of the following conditions:
Erase (ERS = 1, ESUS = 0, UT0.AIE = 0)
Program (ERS = 0, ESUS = 0, PGM = 1, UT0.AIE = 0)
In normal operation, a 1 to 0 transition of EHV with DONE high and ESUS low terminates the
current program/erase high voltage operation.
When an operation is aborted, there is a 1 to 0 transition of EHV with DONE low and the eventual
Suspend bit low. An abort causes the value of PEG to be cleared, indicating a failing
program/erase; address locations being operated on by the aborted operation contain
indeterminate data after an abort. A suspended operation cannot be aborted.
Aborting a high voltage operation will leave the flash memory module addresses in an
indeterminate data state. This may be recovered by executing an erase on the affected blocks.
EHV may be written during Suspend. EHV must be high to exit Suspend. EHV may not be written
after ESUS is set and before DONE transitions high. EHV may not be cleared after ESUS is
cleared and before DONE transitions low.
0: Flash memory is not enabled to perform a high voltage operation.
1: Flash memory is enabled to perform a high voltage operation.

Table 35-6. Array space size

SIZE[2:0] Array space size

000 128 KB

001 256 KB

010 512 KB

011 Reserved (1024 KB)

100 1536 KB

101 Reserved (2048 KB)

110 64 KB

111 Reserved

Table 35-7. Low address space configuration

LAS[2:0] Low address space sectorization

000 0 KB

001 2 x 128 KB

010 32 KB + 2 x 16 KB + 2 x 32 KB + 128 KB

011 Reserved

100 Reserved

101 Reserved

Table 35-5. MCR field descriptions (continued)

Field Description

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1166 Freescale Semiconductor

A number of MCR bits are protected against write when another bit, or set of bits, is in a specific state.
These write locks are covered on a bit by bit basis in the preceding description, but those locks do not
consider the effects of trying to write two or more bits simultaneously.

The flash memory module does not allow the user to write bits simultaneously which would put the device
into an illegal state. This is implemented through a priority mechanism among the bits. The bit changing
priorities are detailed in the Table 35-9.

If the user attempts to write two or more MCR bits simultaneously then only the bit with the lowest priority
level is written.

If Stall/Abort-While-Write is enabled and an erase operation is started on one sector while fetching code
from another, then the following sequence is executed:

1. CPU is stalled when flash is unavailable

2. PEG flag set (stall case) or reset (abort case)

3. Interrupt triggered if enabled

If Stall/Abort-While-Write is used then application software should ignore the setting of the RWE flag.

The RWE flag should be cleared after each HV operation.

If Stall/Abort-While-Write is not used the application software should handle RWE error.

110 4 x 16 KB

111 2 x 16 KB + 2 x 32 KB + 2 x 16 KB + 2 x 64 KB

Table 35-8. Mid address space configuration

MAS Mid address space sectorization

0 2 x 128 KB or 0 KB

1 Reserved

Table 35-9. MCR bits set/clear priority levels

Priority level MCR bits

1 ERS

2 PGM

3 EHV

4 ESUS

Table 35-7. Low address space configuration (continued)

LAS[2:0] Low address space sectorization

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1167

35.2.5.2 Low/Mid address space block Locking register (LML)

35.2.5.3 Nonvolatile Low/Mid address space block Locking register (LML)

The Low/Mid Address Space Block Locking register provides a means to protect blocks from being
modified. These bits, along with bits in the SLL register, determine if the block is locked from Program or
Erase. An “OR” of LML and SLL determine the final lock status.

The LML register has a related Nonvolatile Low/Mid Address Space Block Locking register located in
TestFlash that contains the default reset value for LML. During the reset phase of the flash memory
module, the NVLML register content is read and loaded into the LML.

The NVLML register is a 64-bit register, of which the 32 most significant bits 63:32 are ‘don’t care’ and
eventually used to manage ECC codes.

Offset: 0x0004 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R LME 0 0 0 0 0 0 0 0 0 0
TSLK

0 0
MLK

W

Reset1

1 Reset values labeled “X” are loaded from the NVLML value which is preprogrammed at the factory. The default
value from the factory for this register is 0xFFFF FFFF. The default value can be reprogrammed by the user.

0 0 0 0 0 0 0 0 0 0 0 X 0 0 X X

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
LLK

W

Reset X X X X X X X X X X X X X X X X

Figure 35-4. Low/Mid address space block Locking register (LML)

Table 35-10. LML field descriptions

Field Description

LME Low/Mid address space block Enable
This bit is used to enable the Lock registers (TSLK, MLK1-0 and LLK15-0) to be set or cleared by
registers writes.
This bit is a status bit only. The method to set the LME bit is to write a predefined password to the LML
register. The predefined password to set the LME bit is 0xA1A11111. Once set, the LME bit will remain
set, indicating a status of ENABLED, until a reset operation occurs.
0: Low Address Locks are disabled: TSLK, MLK1-0 and LLK15-0 cannot be written.
1: Low Address Locks are enabled: TSLK, MLK1-0 and LLK15-0 can be written.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1168 Freescale Semiconductor

TSLK Test/Shadow address space block Lock
This bit is used to lock the block of Test and Shadow Address Space from Program and Erase (erasing
the Test block is forbidden).
A value of 1 in the TSLK register signifies that the Test/Shadow block is locked for Program and Erase.
A value of 0 in the TSLK register signifies that the Test/Shadow block is available to receive program and
erase pulses.
The TSLK register is not writable once an interlock write is completed until MCR.DONE is set at the
completion of the requested operation. Likewise, the TSLK register is not writable if a high voltage
operation is suspended.
Upon reset, information from the TestFlash block is loaded into the TSLK register. The TSLK bit may be
written as a register. Reset will cause the bit to go back to its TestFlash block value. The default value of
the TSLK bit (assuming erased fuses) would be locked.
TSLK is not writable unless LME is high.
0: Test/Shadow Address Space Block is unlocked and can be modified (also if SLL.STSLK = 0).
1: Test/Shadow Address Space Block is locked and cannot be modified.

MLK Mid address space block LocK 1-0 (Read/Write)
These bits are used to lock the blocks of Mid Address Space from Program and Erase.
MLK[1:0] are related to sectors B0F7-6, respectively. A value of 1 in a bit of the MLK register signifies
that the corresponding block is locked for Program and Erase.
A value of 0 in a bit of the MLK register signifies that the corresponding block is available to receive
program and erase pulses.
The MLK register is not writable once an interlock write is completed until MCR.DONE is set at the
completion of the requested operation. Likewise, the MLK register is not writable if a high voltage
operation is suspended.
Upon reset, information from the TestFlash block is loaded into the MLK registers. The MLK bits may be
written as a register. Reset will cause the bits to go back to their TestFlash block value. The default value
of the MLK bits (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the MLK bits will
default to locked, and will not be writable. The reset value will always be 1 (independent of the TestFlash
block), and register writes will have no effect.
MLK is not writable unless LME is high.
0: Mid Address Space Block is unlocked and can be modified (also if SLL.SMLK = 0).
1: Mid Address Space Block is locked and cannot be modified.

Table 35-10. LML field descriptions (continued)

Field Description

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1169

35.2.5.4 High address space Block Locking register (HBL)

35.2.5.5 Nonvolatile High address space Block Locking register (NVHBL)

The High Address Space Block Locking register provides a means to protect blocks from being modified.
The HBL register has a related Nonvolatile High Address Space Block Locking register located in
TestFlash that contains the default reset value for HBL. During the reset phase of the flash memory
module, the NVHBL register content is read and loaded into the HBL.

LLK Low address space block LocK
These bits are used to lock the blocks of Low Address Space from Program and Erase.
LLK[5:0] are related to sectors B0F5-0, respectively. LLK[15:6] are not used for this memory cut.
A value of 1 in a bit of the LLK register signifies that the corresponding block is locked for Program and
Erase.
A value of 0 in a bit of the LLK register signifies that the corresponding block is available to receive
program and erase pulses.
The LLK register is not writable once an interlock write is completed until MCR.DONE is set at the
completion of the requested operation. Likewise, the LLK register is not writable if a high voltage
operation is suspended.
Upon reset, information from the TestFlash block is loaded into the LLK registers. The LLK bits may be
written as a register. Reset will cause the bits to go back to their TestFlash block value. The default value
of the LLK bits (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the LLK bits will
default to locked, and will not be writable. The reset value will always be 1 (independent of the TestFlash
block), and register writes will have no effect.
In the 544 KB flash memory module bits LLK[15:6] are read-only and locked at ‘1’.
LLK is not writable unless LME is high.
0: Low Address Space Block is unlocked and can be modified (also if SLL.SLK = 0).
1: Low Address Space Block is locked and cannot be modified.

Offset: 0x0008 Access: Read / Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R HBE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset1

1 Reset values labeled “X” are loaded from the NVLML value which is preprogrammed at the factory. The default
value from the factory for this register is 0xFFFF FFFF. The default value can be reprogrammed by the user.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0

H
LK

11

H
LK

10

HLK9 HLK8 HLK7 HLK6 HLK5 HLK4 HLK3 HLK2 HLK1 HLK0
W

Reset 0 0 0 0 X X X X X X X X X X X X

Figure 35-5. High address space Block Locking register (HBL)

Table 35-10. LML field descriptions (continued)

Field Description

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1170 Freescale Semiconductor

The NVHBL register is a 64-bit register, of which the 32 most significant bits 63:32 are ‘don’t care’ and
eventually used to manage ECC codes.

Table 35-11. HBL field descriptions

Field Description

HBE High address space Block Enable (Read Only)
This bit is used to enable the Lock registers (HLK5-0) to be set or cleared by registers writes.
This bit is a status bit only. The method to set this bit is to write a password, and if the password matches,
the HBE bit will be set to reflect the status of enabled, and is enabled until a reset operation occurs. For
HBE the password 0xB2B22222 must be written to the HBL register.
0: High Address Locks are disabled: HLK5-0 cannot be written.
1: High Address Locks are enabled: HLK5-0 can be written.

HLK11-0 HLK11-0: High address space block lock 11-0 (Read/Write)
These bits are used to lock the blocks of High Address Space from Program and Erase.
HLK11-8 are not used for this memory cut.
A value of 1 in a bit of the HLK register signifies that the corresponding block is locked for Program and
Erase.
A value of 0 in a bit of the HLK register signifies that the corresponding block is available to receive
Program and Erase pulses.
The HLK register is not writable once an interlock write is completed until MCR.DONE is set at the
completion of the requested operation. Likewise, the HLK register is not writable if a high voltage
operation is suspended.
Upon reset, information from the TestFlash block is loaded into the HLK registers. The HLK bits may be
written as a register. Reset will cause the bits to go back to their TestFlash block value. The default value
of the HLK bits (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the HLK bits will
default to locked, and will not be writable. The reset value will always be 1 (independent of the TestFlash
block), and register writes will have no effect.
In the 544 KB flash memory module bits HLK11-8 are read-only and locked at 1.
HLK is not writable unless HBE is high.
0: High Address Space Block is unlocked and can be modified.
1: High Address Space Block is locked and cannot be modified.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1171

35.2.5.6 Secondary Low/mid address space block Locking register (SLL)

35.2.5.7 Nonvolatile Secondary Low/mid address space block Locking register
(SLL)

The Secondary Low/Mid Address Space Block Locking register provides an alternative means to protect
blocks from being modified. These bits, along with bits in the LML register, determine if the block is
locked from Program or Erase. An “OR” of LML and SLL determine the final lock status.

The SLL register has a related Nonvolatile Secondary Low/Mid Address Space Block Locking register
located in TestFlash that contains the default reset value for SLL. During the reset phase of the flash
memory module, the NVSLL register content is read and loaded into the SLL.

The NVSLL register is a 64-bit register, of which the 32 most significant bits 63:32 are ‘don’t care’ and
eventually used to manage ECC codes.

Offset: 0x000C Access: Read / Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SLE 0 0 0 0 0 0 0 0 0 0

S
T

S
LK 0 0 SMK

1
SMK

0W

Reset1

1 Reset values labeled “X” are loaded from the NVLML value which is preprogrammed at the factory. The default
value from the factory for this register is 0xFFFF FFFF. The default value can be reprogrammed by the user.

0 0 0 0 0 0 0 0 0 0 0 X 0 0 X X

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

S
LK

15

S
LK

14

S
LK

13

S
LK

12

S
LK

11

S
LK

10
SLK9 SLK8 SLK7 SLK6 SLK5 SLK4 SLK3 SLK2 SLK1 SLK0

W

Reset X X X X X X X X X X X X X X X X

Figure 35-6. Secondary Low/mid address space block Locking register (SLL)

Table 35-12. SLL field descriptions

Field Description

SLE Secondary Low/mid address space block Enable (Read Only)
This bit is used to enable the Lock registers (STSLK, SMK1-0 and SLK15-0) to be set or cleared by
registers writes.
This bit is a status bit only. The method to set this bit is to write a password, and if the password
matches, the SLE bit will be set to reflect the status of enabled, and is enabled until a reset operation
occurs. For SLE the password 0xC3C33333 must be written to the SLL register.
0: Secondary Low/Mid Address Locks are disabled: STSLK, SMK1-0 and SLK15-0 cannot be written.
1: Secondary Low/Mid Address Locks are enabled: STSLK, SMK1-0 and SLK15-0 can be written.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1172 Freescale Semiconductor

STSLK Secondary Test/Shadow address space block LocK (Read/Write)
This bit is used as an alternate means to lock the block of Test and Shadow Address Space from
Program and Erase (erasing the Test block is forbidden).
A value of 1 in the STSLK register signifies that the Test/Shadow block is locked for Program and Erase.
A value of 0 in the STSLK register signifies that the Test/Shadow block is available to receive program
and erase pulses.
The STSLK register is not writable once an interlock write is completed until MCR.DONE is set at the
completion of the requested operation. Likewise, the STSLK register is not writable if a high voltage
operation is suspended.
Upon reset, information from the TestFlash block is loaded into the STSLK register. The STSLK bit may
be written as a register. Reset will cause the bit to go back to its TestFlash block value. The default value
of the STSLK bit (assuming erased fuses) would be locked.
STSLK is not writable unless SLE is high.
0: Test/Shadow Address Space Block is unlocked and can be modified (also if LML.TSLK = 0).
1: Test/Shadow Address Space Block is locked and cannot be modified.

SMK[1:0] Secondary Mid address space block locK 1-0 (Read/Write)
These bits are used as an alternate means to lock the blocks of Mid Address Space from Program and
Erase.
SMK[1:0] are related to sectors B0F7-6, respectively. A value of 1 in a bit of the SMK register signifies
that the corresponding block is locked for Program and Erase.
When an SMK bit is 0, it signifies that the corresponding block is available to receive program and erase
pulses.
The SMK register is not writable once an interlock write is completed until MCR.DONE is set at the
completion of the requested operation. Likewise, the SMK register is not writable if a high voltage
operation is suspended.
Upon reset, information from the TestFlash block is loaded into the SMK registers. The SMK bits may
be written as a register. Reset will cause the bits to go back to their TestFlash block value. The default
value of the SMK bits (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the SMK bits will
default to locked, and will not be writable. The reset value will always be 1 (independent of the TestFlash
block), and register writes will have no effect.

SMK is not writable unless SLE is high.
0: Mid Address Space Block is unlocked and can be modified (also if LML.MLK = 0).
1: Mid Address Space Block is locked and cannot be modified.

Table 35-12. SLL field descriptions (continued)

Field Description

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1173

35.2.5.8 Low/Mid address space block Select register (LMS)

The Low/Mid Address Space Block Select register provides a means to select blocks to be operated on
during erase.

SLK[15:0] Secondary Low address space block locK 15-0 (Read/Write)
These bits are used as an alternate means to lock the blocks of Low Address Space from Program and
Erase.
SLK[5:0] are related to sectors B0F5-0, respectively. SLK[15:6] are not used for this memory cut.
A value of 1 in a bit of the SLK register signifies that the corresponding block is locked for Program and
Erase.
A value of 0 in a bit of the SLK register signifies that the corresponding block is available to receive
program and erase pulses.
The SLK register is not writable once an interlock write is completed until MCR.DONE is set at the
completion of the requested operation. Likewise, the SLK register is not writable if a high voltage
operation is suspended.
Upon reset, information from the TestFlash block is loaded into the SLK registers. The SLK bits may be
written as a register. Reset will cause the bits to go back to their TestFlash block value. The default
value of the SLK bits (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the SLK bits will
default to locked, and will not be writable. The reset value will always be 1 (independent of the TestFlash
block), and register writes will have no effect.
In the 544 KB flash memory module bits SLK[15:6] are read-only and locked at ‘1’.
SLK is not writable unless SLE is high.
0: Low Address Space Block is unlocked and can be modified (also if LML.LLK = 0).
1: Low Address Space Block is locked and cannot be modified.

Offset: 0x0010 Access: Read / Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSL1 MSL0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

LS
L1

5

LS
L1

4

LS
L1

3

LS
L1

2

LS
L1

1

LS
L1

0

LSL9 LSL8 LSL7 LSL6 LSL5 LSL4 LSL3 LSL2 LSL1 LSL0
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-7. Low/Mid address space block Select register (LMS)

Table 35-12. SLL field descriptions (continued)

Field Description

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1174 Freescale Semiconductor

35.2.5.9 High address space Block Select register (HBS)

The High Address Space Block Select register provides a means to select blocks to be operated on during
erase.

Table 35-13. LMS field descriptions

Field Description

MSL[1:0] Mid address space block SeLect 1-0 (Read/Write)
A value of 1 in the select register signifies that the block is selected for erase.
A value of 0 in the select register signifies that the block is not selected for erase. The reset value for the
select register is 0, or unselected.
MSL[1:0] are related to sectors B0F7-6, respectively.The blocks must be selected (or unselected) before
doing an erase interlock write as part of the erase sequence. The select register is not writable once an
interlock write is completed or if a high voltage operation is suspended.
In the event that blocks are not present (due to configuration or total memory size), the corresponding
MSL bits will default to unselected, and will not be writable. The reset value will always be 0, and register
writes will have no effect.

0: Mid Address Space Block is unselected for erase.
1: Mid Address Space Block is selected for erase.

LSL[15:0] Low address space block SeLect 15-0 (Read/Write)
A value of 1 in the select register signifies that the block is selected for erase.
A value of 0 in the select register signifies that the block is not selected for erase. The reset value for the
select register is 0, or unselected.
LSL[5:0] are related to sectors B0F5-0, respectively. LSL[15:6] are not used for this memory cut.
The blocks must be selected (or unselected) before doing an erase interlock write as part of the erase
sequence. The select register is not writable once an interlock write is completed or if a high voltage
operation is suspended.
In the event that blocks are not present (due to configuration or total memory size), the corresponding
LSL bits will default to unselected, and will not be writable. The reset value will always be 0, and register
writes will have no effect.
In the 544 KB flash memory module bits LSL[15:6] are read-only and locked at ‘0’.
0: Low Address Space Block is unselected for erase.
1: Low Address Space Block is selected for erase.

Offset: 0x0014 Access: Read / Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0

H
S

L1
1

H
S

L1
0

HSL9 HSL8 HSL7 HSL6 HSL5 HSL4 HSL3 HSL2 HSL1 HSL0
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-8. High address space Block Select register (HBS)

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1175

35.2.5.10 Address Register (ADR)

The Address Register provides the first failing address in the event module failures (ECC, RWW or FPEC)
occur or the first address at which an ECC single error correction occurs.

Table 35-14. HBS field descriptions

Field Description

HSL11-0 High address space block SeLect 11-0 (Read/Write)
A value of 1 in the select register signifies that the block is selected for erase.
A value of 0 in the select register signifies that the block is not selected for erase. The reset value for the
select register is 0, or unselected.
HSL11-8 are not used for this memory cut.
The blocks must be selected (or unselected) before doing an erase interlock write as part of the Erase
sequence. The select register is not writable once an interlock write is completed or if a high voltage
operation is suspended.
In the event that blocks are not present (due to configuration or total memory size), the corresponding
HSL bits will default to unselected, and will not be writable. The reset value will always be 0, and register
writes will have no effect.
In the 544 KB Flash module bits HSL11-8 are read-only and locked at 0.
0: High Address Space Block is unselected for Erase.
1: High Address Space Block is selected for Erase.

Offset: 0x0018 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 AD22 AD21 AD20 AD19 AD18 AD17 AD16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8 AD7 AD6 AD5 AD4 AD3 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-9. Address Register (ADR)

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1176 Freescale Semiconductor

35.2.5.11 Bus Interface Unit 0 register (BIU0)

Table 35-15. ADR field descriptions

Field Description

AD[22:3] ADdress 22-3 (Read Only)
The Address Register provides the first failing address in the event of ECC error (MCR.EER set) or the
first failing address in the event of RWW error (MCR.RWE set), or the address of a failure that may have
occurred in a FPEC operation (MCR.PEG cleared). The Address Register also provides the first address
at which an ECC single error correction occurs (MCR.EDC set).
The ECC double error detection takes the highest priority, followed by the RWW error, the FPEC error
and the ECC single error correction. When accessed ADR will provide the address related to the first
event occurred with the highest priority. The priorities between these four possible events is summarized
in the Table 35-16.
This address is always a Double Word address that selects 64 bits.
In case of a simultaneous ECC Double Error Detection on both Double Words of the same page, bit AD3
will output 0. The same is valid for a simultaneous ECC Single Error Correction on both Double Words
of the same page.
In User Mode the Address Register is read only.

Bits 29:31 Reserved (Read Only).
Writing these bits has no effect and read these bits always outputs 0.

Table 35-16. ADR content: priority list

Priority level Error flag ADR content

1 MCR.EER = 1 Address of first ECC Double Error

2 MCR.RWE = 1 Address of first RWW Error

3 MCR.PEG = 0 Address of first FPEC Error

4 MCR.EDC = 1 Address of first ECC Single Error Correction

Offset: 0x001C Access: Read / Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
BI031 BI030 BI029 BI028 BI027 BI026 BI025 BI024 BI023 BI022 BI021 BI020 BI019 BI018 BI017 BI016

W

Reset
1

1 Reset values labeled “X” are loaded from the NVLML value which is preprogrammed at the factory. The default value from
the factory for this register is 0xXXXX XXXX. The default value can be reprogrammed by the user.

X X X X X X X X X X X X X X X X

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
BI015 BI014 BI013 BI012 BI011 BI010 BI009 BI008 BI007 BI006 BI005 BI004 BI003 BI002 BI001 BI000

W

Reset X X X X X X X X X X X X X X X X

Figure 35-10. Bus Interface Unit 0 register (BIU0)

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1177

The Bus Interface Unit 0 Register provides a means for BIU specific information or BIU configuration
information to be stored. Please refer to Section 35.4.3.1, Platform Flash Configuration Register 0
(PFCR0), for more information about register description.

35.2.5.12 Bus Interface Unit 1 register (BIU1)

The Bus Interface Unit 1 Register provides a means for BIU specific information or BIU configuration
information to be stored. Please refer to Section 35.4.3.2, Platform Flash Configuration Register 1
(PFCR1), for more information about register description.

Table 35-17. BIU0 field descriptions

Field Description

BI0[31:00] Bus Interface unit 0 31-00 (Read/Write)
The writability of the bits in this register can be locked.

Offset: 0x0020 Access: Read / Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
BI13

1
BI13

0
BI12

9
BI12

8
BI12

7
BI12

6
BI12

5
BI12

4
BI12

3
BI12

2
BI12

1
BI12

0
BI11

9
BI11

8
BI11

7
BI11

6W

Reset1

1 Reset values labeled “X” are loaded from the NVLML value which is preprogrammed at the factory. The default
value from the factory for this register is 0xXXXX XXXX. The default value can be reprogrammed by the user.

X X X X X X X X X X X X X X X X

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
BI11

5
BI11

4
BI11

3
BI11

2
BI11

1
BI11

0
BI10

9
BI10

8
BI10

7
BI10

6
BI10

5
BI10

4
BI10

3
BI10

2
BI10

1
BI10

0W

Reset X X X X X X X X X X X X X X X X

Figure 35-11. Bus Interface Unit 1 register (BIU1)

Table 35-18. BIU1 field descriptions

Field Description

BI1[31:00] Bus Interface unit 1 31-00 (Read/Write)
The writability of the bits in this register can be locked.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1178 Freescale Semiconductor

35.2.5.13 Bus Interface Unit 2 register (BIU2)

The Bus Interface Unit 2 Register provides a means for BIU specific information or BIU configuration
information to be stored. Please refer to Section 35.4.3.3, Platform Flash Access Protection Register
(PFAPR), for more information about register description.

The BIU2 register has a related Nonvolatile Bus Interface Unit 2 register located in the Shadow Sector that
contains the default reset value for BIU2. During the reset phase of the flash memory module, the NVBIU2
register content is read and loaded into the BIU2.

The NVBIU2 register is a 64-bit register, of which the 32 most significant bits 63:32 are ‘don’t care’ and
eventually used to manage ECC codes.

Offset: 0x00241

1 See device memory map table for base address information of shadow flash.

Access: Read / Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R2

2 Reset values labeled “X” are loaded from the NVLML value which is preprogrammed at the factory. The default value from
the factory for this register is 0xXXXX XXXX. The default value can be reprogrammed by the user.

BI231 BI230 BI229 BI228 BI227 BI226 BI225 BI224 BI223 BI222 BI221 BI220 BI219 BI218 BI217 BI216
W

Reset X X X X X X X X X X X X X X X X

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
BI215 BI214 BI213 BI212 BI211 BI210 BI209 BI208 BI207 BI206 BI205 BI204 BI203 BI202 BI201 BI200

W

Reset X X X X X X X X X X X X X X X X

Figure 35-12. Bus Interface Unit 2 register (BIU2)

Table 35-19. BIU2 field descriptions

Field Description

BI2[31:00] Bus Interface unit 2 31-00 (Read/Write)
The BI2[31:00] generic registers are reset based on the information stored in NVBIU2.
The writability of the bits in this register can be locked.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1179

35.2.5.14 Bus Interface Unit 3 register (BIU3)

The Bus Interface Unit 3 Register provides a means for BIU specific information or BIU configuration
information to be stored.

The BIU3 register has a related Nonvolatile Bus Interface Unit 3 register located in the Shadow Sector that
contains the default reset value for BIU3. The NVBIU3 register is read during the reset phase of the flash
memory module and loaded into the BIU3.

The NVBIU3 register is a 64-bit register, the 32 most significative bits of which (bits 63:32) are
‘don’t care’ and eventually used to manage ECC codes.

Offset: 0x00281

1 See device memory map table for base address information of shadow flash.

Access: Read / Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

B
I3

31

B
I3

30

B
I3

29

B
I3

28

B
I3

27

B
I3

26

B
I3

25

B
I3

24

B
I3

23

B
I3

22

B
I3

21

B
I3

20

B
I3

19

B
I3

18

B
I3

17

B
I3

16

W

Reset2

2 Reset values labeled “X” are loaded from the NVLML value which is preprogrammed at the factory. The default
value from the factory for this register is 0xFFFF FFFF. The default value can be reprogrammed by the user.

X X X X X X X X X X X X X X X X

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

B
I3

15

B
I3

14

B
I3

13

B
I3

12

B
I3

11

B
I3

10

B
I3

09

B
I3

08

B
I3

07

B
I3

06

B
I3

05

B
I3

04

B
I3

03

B
I3

02

B
I3

01

B
I3

00

W

Reset X X X X X X X X X X X X X X X X

Table 35-1. BIU3 field descriptions

Field Description

BI331-00 Bus Interface unit 3 31-00 (Read/Write)
The BI331-00 generic registers are reset based on the information stored in NVBIU3.
The writability of the bits in this register can be locked.
The use of this bus is SoC specific.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1180 Freescale Semiconductor

35.2.5.15 User Test 0 register (UT0)

The User Test Registers provide the user with the ability to test features on the flash memory module. The
User Test 0 Register allows control of the way in which the flash memory content check is done.

Bits MRE, MRV, AIS, EIE and DSI[7:0] of the User Test 0 Register are not accessible whenever
MCR.DONE or UT0.AID are low: reading returns indeterminate data while writing has no effect.

Offset: 0x003C Access: Read / Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
UTE

0 0 0 0 0 0 0
DSI7 DSI6 DSI5 DSI4 DSI3 DSI2 DSI1 DSI0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0
X MRE MRV EIE AIS AIE

AID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 35-13. User Test 0 register (UT0)

Table 35-20. UT0 field descriptions

Field Description

UTE User Test Enable (Read/Clear)
This status bit gives indication when User Test is enabled. All bits in UT0-2 and UMISR0-4 are locked
when this bit is 0.
This bit is not writeable to a 1, but may be cleared. The reset value is 0.
The method to set this bit is to provide a password, and if the password matches, the UTE bit is set to
reflect the status of enabled, and remains enabled until it is cleared by a register write.
For UTE the password 0xF9F99999 must be written to the UT0 register.

Bit 1:7 Reserved (Read Only).
Write these bits has no effect and read these bits always outputs 0.

DSI[7:0] Data Syndrome Input 7-0 (Read/Write)
These bits represent the input of Syndrome bits of ECC logic used in the ECC Logic Check. Bits DSI[7:0]
correspond to the 8 syndrome bits on a double word.
These bits are not accessible whenever MCR.DONE or UT0.AID are low: reading returns indeterminate
data while writing has no effect.
0: The syndrome bit is forced at 0.
1: The syndrome bit is forced at 1.

Bits 16:24 Reserved (Read Only).
Write these bits has no effect and read these bits always outputs 0.

Bit 25 Reserved (Read/Write).
This bit can be written and its value can be read back, but there is no function associated.
This bit is not accessible whenever MCR.DONE or UT0.AID are low: reading returns indeterminate data
while writing has no effect.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1181

MRE Margin Read Enable (Read/Write)
MRE enables margin reads to be done. This bit, combined with MRV, enables regular user mode reads
to be replaced by margin reads inside the Array Integrity Checks sequences. Margin reads are only
active during Array Integrity Checks; Normal User reads are not affected by MRE. This bit is not
accessible whenever MCR.DONE or UT0.AID are low: reading returns indeterminate data while writing
has no effect.
0: Margin reads are not enabled
1: Margin reads are enabled.

MRV Margin Read Value (Read/Write)
If MRE is high, MRV selects the margin level that is being checked. Margin can be checked to an erased
level (MRV = 1) or to a programmed level (MRV = 0).
This bit is not accessible whenever MCR.DONE or UT0.AID are low: reading returns indeterminate data
while writing has no effect.
0: Zero’s (programmed) margin reads are requested (if MRE = 1).
1: One’s (erased) margin reads are requested (if MRE = 1).

EIE ECC data Input Enable (Read/Write)
EIE enables the ECC Logic Check operation to be done. This bit is not accessible whenever MCR.DONE
or UT0.AID are low: reading returns indeterminate data while writing has no effect.
0: ECC Logic Check is not enabled.
1: ECC Logic Check is enabled.

AIS Array Integrity Sequence (Read/Write)
AIS determines the address sequence to be used during array integrity checks or Margin Read. The
default sequence (AIS=0) is meant to replicate sequences normal user code follows, and thoroughly
checks the read propagation paths. This sequence is proprietary. The alternative sequence (AIS=1) is
just logically sequential. It should be noted that the time to run a sequential sequence is significantly
shorter than the time to run the proprietary sequence. The usage of proprietary sequence is forbidden
in Margin Read. This bit is not accessible whenever MCR.DONE or UT0.AID are low: reading returns
indeterminate data while writing has no effect.
0: Array Integrity sequence is proprietary sequence.
1: Array Integrity is sequential.

AIE Array Integrity Enable (Read/Write)
AIE set to ‘1’ starts the Array Integrity Check done on all selected and unlocked blocks.
The pattern is selected by AIS, and the MISR (UMISR0-4) can be checked after the operation is
complete, to determine if a correct signature is obtained.
AIE can be set only if MCR.ERS, MCR.PGM and MCR.EHV are all low.
0: Array Integrity Checks, Margin Read and ECC Logic Checks are not enabled.
1: Array Integrity Checks, Margin Read and ECC Logic Checks are enabled

AID Array Integrity Done (Read Only)
AID will be cleared upon an Array Integrity Check being enabled (to signify the operation is on-going).
Once completed, AID will be set to indicate that the Array Integrity Check is complete. At this time the
MISR (UMISR0-4) can be checked.
0: Array Integrity Check is on-going.
1: Array Integrity Check is done.

Table 35-20. UT0 field descriptions (continued)

Field Description

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1182 Freescale Semiconductor

35.2.5.16 User Test 1 register (UT1)

The User Test 1 Register allows to enable the checks on the ECC logic related to the 32 LSB of the Double
Word.

The User Test 1 Register is not accessible whenever MCR.DONE or UT0.AID are low: reading returns
indeterminate data while writing has no effect.

Offset: 0x0040 Access: Read / Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

D
A

I3
1

D
A

I3
0

D
A

I2
9

D
A

I2
8

D
A

I2
7

D
A

I2
6

D
A

I2
5

D
A

I2
4

D
A

I2
3

D
A

I2
2

D
A

I2
1

D
A

I2
0

D
A

I1
9

D
A

I1
8

D
A

I1
7

D
A

I1
6

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

D
A

I1
5

D
A

I1
4

D
A

I1
3

D
A

I1
2

D
A

I1
1

D
A

I1
0

D
A

I0
9

D
A

I0
8

D
A

I0
7

D
A

I0
6

D
A

I0
5

D
A

I0
4

D
A

I0
3

D
A

I0
2

D
A

I0
1

D
A

I0
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-14. User Test 1 register (UT1)

Table 35-21. UT1 field descriptions

Field Description

DAI[31:00] Data Array Input 31-0 (Read/Write)
These bits represent the input of even word of ECC logic used in the ECC Logic Check. Bits DAI[31:00]
correspond to the 32 array bits representing Word 0 within the double word.
0: The array bit is forced at 0.
1: The array bit is forced at 1.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1183

35.2.5.17 User Test 2 register (UT2)

The User Test 2 Register allows to enable the checks on the ECC logic related to the 32 MSB of the Double
Word.

The User Test 2 Register is not accessible whenever MCR.DONE or UT0.AID are low: reading returns
indeterminate data while writing has no effect.

Offset: 0x0044 Access: Read / Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

D
A

I6
3

D
A

I6
2

D
A

I6
1

D
A

I6
0

D
A

I5
9

D
A

I5
8

D
A

I5
7

D
A

I5
6

D
A

I5
5

D
A

I5
4

D
A

I5
3

D
A

I5
2

D
A

I5
1

D
A

I5
0

D
A

I4
9

D
A

I4
8

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

D
A

I4
7

D
A

I4
6

D
A

I4
5

D
A

I4
4

D
A

I4
3

D
A

I4
2

D
A

I4
1

D
A

I4
0

D
A

I3
9

D
A

I3
8

D
A

I3
7

D
A

I3
6

D
A

I3
5

D
A

I3
4

D
A

I3
3

D
A

I3
2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-15. User Test 2 register (UT2)

Table 35-22. UT2 field descriptions

Field Description

DAI[63:32] Data Array Input 63-32 (Read/Write)
These bits represent the input of odd word of ECC logic used in the ECC Logic Check. Bits DAI[63:32]
correspond to the 32 array bits representing Word 1 within the double word.
0: The array bit is forced to 0.
1: The array bit is forced to 1.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1184 Freescale Semiconductor

35.2.5.18 User Multiple Input Signature Register 0 (UMISR0)

The Multiple Input Signature Register provides a mean to evaluate the Array Integrity. The User Multiple
Input Signature Register 0 represent the bits 31-0 of the word. The UMISR0 Register is not accessible
whenever MCR.DONE or UT0.AID are low: reading returns indeterminate data while writing has no
effect.

35.2.5.19 User Multiple Input Signature Register 1 (UMISR1)

Offset: 0x0048 Access: Read / Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS31 MS30 MS29 MS28 MS27 MS26 MS25 MS24 MS23 MS22 MS21 MS20 MS19 MS18 MS17 MS16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS15 MS14 MS13 MS12 MS11 MS10 MS09 MS08 MS07 MS06 MS05 MS04 MS03 MS02 MS01 MS00

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-16. User Multiple Input Signature Register 0 (UMISR0)

Table 35-23. UMSIR0 field descriptions

Field Description

MS31:00 Multiple input Signature 31-00 (Read/Write)
These bits represent the MISR value obtained accumulating the bits 31:0 of all the pages read from the
flash memory.
The MS can be seeded to any value by writing the UMISR0 register.

Offset: 0x004C Access: Read / Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

M
S

06
3

M
S

06
2

M
S

06
1

M
S

06
0

M
S

05
9

M
S

05
8

M
S

05
7

M
S

05
6

M
S

05
5

M
S

05
4

M
S

05
3

M
S

05
2

M
S

05
1

M
S

05
0

M
S

04
9

M
S

04
8

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

M
S

04
7

M
S

04
6

M
S

04
5

M
S

04
4

M
S

04
3

M
S

04
2

M
S

04
1

M
S

04
0

M
S

03
9

M
S

03
8

M
S

03
7

M
S

03
6

M
S

03
5

M
S

03
4

M
S

03
3

M
S

03
2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-17. User Multiple Input Signature Register 1 (UMISR1)

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1185

The Multiple Input Signature Register provides a mean to evaluate the Array Integrity. The User Multiple
Input Signature Register 1 represent the ECC bits of the 32 bits word: bits 6-0 are the ECC bits for the
Word; bits 10 and 11 of MISR are respectively the double and single ECC error detection.

The UMISR1 Register is not accessible whenever MCR.DONE or UT0.AID are low: reading returns
indeterminate data while writing has no effect.

35.2.5.20 User Multiple Input Signature Register 2 (UMISR2)

The Multiple Input Signature Register provides a means to evaluate the Array Integrity.

The User Multiple Input Signature Register 2 represents the bits 95:64 of the whole 144 bits word (2
Double Words including ECC).

The UMISR2 Register is not accessible whenever MCR.DONE or UT0.AID are low: reading returns
indeterminate data while writing has no effect.

Table 35-24. UMISR1 field descriptions

Field Description

MS063:032 Multiple input Signature 063-032 (Read/Write)
These bits represent the MISR value obtained accumulating the bits 63:32 of all the pages read from
the flash memory.
The MS can be seeded to any value by writing the UMISR1 register.

Offset: 0x0050 Access: Read / Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

M
S

09
5

M
S

09
4

M
S

09
3

M
S

09
2

M
S

09
1

M
S

09
0

M
S

08
9

M
S

08
8

M
S

08
7

M
S

08
6

M
S

08
5

M
S

08
4

M
S

08
3

M
S

08
2

M
S

08
1

M
S

08
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

M
S

07
9

M
S

07
8

M
S

07
7

M
S

07
6

M
S

07
5

M
S

07
4

M
S

07
3

M
S

07
2

M
S

07
1

M
S

07
0

M
S

06
9

M
S

06
8

M
S

06
7

M
S

06
6

M
S

06
5

M
S

06
4

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-18. User Multiple Input Signature Register 2 (UMISR2)

Table 35-25. UMISR2 field descriptions

Field Description

MS095:064 Multiple input Signature 095-064 (Read/Write)
These bits represent the MISR value obtained accumulating the bits 95:64 of all the pages read from
the flash memory.
The MS can be seeded to any value by writing the UMISR2 register.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1186 Freescale Semiconductor

35.2.5.21 User Multiple Input Signature Register 3 (UMISR3)

The Multiple Input Signature Register provides a mean to evaluate the Array Integrity.

The User Multiple Input Signature Register 3 represents the bits 127:96 of the whole 144 bits word (2
Double Words including ECC).

The UMISR3 Register is not accessible whenever MCR.DONE or UT0.AID are low: reading returns
indeterminate data while writing has no effect.

Offset: 0x0054 Access: Read / Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

M
S

12
7

M
S

12
6

M
S

12
5

M
S

12
4

M
S

12
3

M
S

12
2

M
S

12
1

M
S

12
0

M
S

11
9

M
S

11
8

M
S

11
7

M
S

11
6

M
S

11
5

M
S

11
4

M
S

11
3

M
S

11
2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

M
S

11
1

M
S

11
0

M
S

10
9

M
S

10
8

M
S

10
7

M
S

10
6

M
S

10
5

M
S

10
4

M
S

10
3

M
S

10
2

M
S

10
1

M
S

10
0

M
S

09
9

M
S

09
8

M
S

09
7

M
S

09
6

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-19. User Multiple Input Signature Register 3 (UMISR3)

Table 35-26. UMISR3 field descriptions

Field Description

MS127:096 Multiple input Signature 127-096 (Read/Write)
These bits represent the MISR value obtained accumulating the bits 127:96 of all the pages read
from the flash memory.
The MS can be seeded to any value by writing the UMISR3 register.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1187

35.2.5.22 User Multiple Input Signature Register 4 (UMISR4)

The Multiple Input Signature Register provides a mean to evaluate the Array Integrity.

The User Multiple Input Signature Register 4 represents the ECC bits of the whole 144 bits word (2 Double
Words including ECC): bits 8:15 are ECC bits for the odd Double Word and bits 24:31 are the ECC bits
for the even Double Word; bits 4:5 and 20:21 of MISR are respectively the double and single ECC error
detection for odd and even Double Word.

The UMISR4 Register is not accessible whenever MCR.DONE or UT0.AID are low: reading returns
indeterminate data while writing has no effect.

Offset: 0x0058 Access: Read / Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

M
S

15
9

M
S

15
8

M
S

15
7

M
S

15
6

M
S

15
5

M
S

15
4

M
S

15
3

M
S

15
2

M
S

15
1

M
S

15
0

M
S

14
9

M
S

14
8

M
S

14
7

M
S

14
6

M
S

14
5

M
S

14
4

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

M
S

14
3

M
S

14
2

M
S

14
1

M
S

14
0

M
S

13
9

M
S

13
8

M
S

13
7

M
S

13
6

M
S

13
5

M
S

13
4

M
S

13
3

M
S

13
2

M
S

13
1

M
S

13
0

M
S

12
9

M
S

12
8

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-20. User Multiple Input Signature Register 4(UMISR4)

Table 35-27. UMISR4 field descriptions

Field Description

f Multiple input Signature 159-128 (Read/Write)
These bits represent the MISR value obtained accumulating:
the 8 ECC bits for the even Double Word (on MS[135:128]);
the single ECC error detection for even Double Word (on MS138);
the double ECC error detection for even Double Word (on MS139);
the 8 ECC bits for the odd Double Word (on MS[151:144]);
the single ECC error detection for odd Double Word (on MS154);
the double ECC error detection for odd Double Word (on MS155).
The MS can be seeded to any value by writing the UMISR4 register.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1188 Freescale Semiconductor

35.2.5.23 Nonvolatile private censorship PassWord 0 register (NVPWD0)

The nonvolatile private censorship password 0 register contains the 32 LSB of the Password used to
validate the Censorship information contained in NVSCC0–1 registers.

35.2.5.24 Nonvolatile private censorship PassWord 1 register (NVPWD1)

The nonvolatile private censorship password 1 register contains the 32 MSB of the Password used to
validate the Censorship information contained in NVSCC0–1 registers.

NOTE
In a secured device, starting with a serial boot, it is possible to read the
content of the four flash memory locations where the RCHW can be stored.
For example if the RCHW is stored at address 0x00000000, the reads at
address 0x00000000, 0x00000004, 0x00000008 and 0x0000000C will
return a correct value. Any other flash memory address cannot be accessed.

Offset: 0x03DD81

1 See device memory map table for base address information of shadow flash.

Access: Read / Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
P

W
D

31

P
W

D
30

P
W

D
29

P
W

D
28

P
W

D
27

P
W

D
26

P
W

D
25

P
W

D
24

P
W

D
23

P
W

D
22

P
W

D
21

P
W

D
20

P
W

D
19

P
W

D
18

P
W

D
17

P
W

D
16

W

Reset2

2 Reset values labeled “X” are loaded from the NVLML value which is preprogrammed at the factory. The default
value from the factory for this register is 0xFEED_FACE. The default value can be reprogrammed by the user.

X X X X X X X X X X X X X X X X

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

P
W

D
15

P
W

D
14

P
W

D
13

P
W

D
12

P
W

D
11

P
W

D
10

P
W

D
09

P
W

D
08

P
W

D
07

P
W

D
06

P
W

D
05

P
W

D
04

P
W

D
03

P
W

D
02

P
W

D
01

P
W

D
00

W

Reset X X X X X X X X X X X X X X X X

Figure 35-21. Nonvolatile private censorship PassWord 0 register (NVPWD0)

Table 35-28. NVPWD0 field descriptions

Field Description

PWD[31:00] PassWorD 31-00 (Read/Write)
The PWD31-00 registers represent the 32 LSB of the Private Censorship Password.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1189

35.2.5.25 Nonvolatile System Censoring Information 0 register (NVSCC0)

Offset: 0x03DDC1

1 See device memory map table for base address information of shadow flash.

Access: Read / Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
P

W
D

63

P
W

D
62

P
W

D
61

P
W

D
60

P
W

D
59

P
W

D
58

P
W

D
57

P
W

D
56

P
W

D
55

P
W

D
54

P
W

D
53

P
W

D
52

P
W

D
51

P
W

D
50

P
W

D
49

P
W

D
48

W

Reset2

2 Reset values labeled “X” are loaded from the NVLML value which is preprogrammed at the factory. The default
value from the factory for this register is 0xCAFE_BEEF. The default value can be reprogrammed by the user.

X X X X X X X X X X X X X X X X

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

P
W

D
47

P
W

D
46

P
W

d4
5

P
W

D
44

P
W

D
43

P
W

D
42

P
W

D
41

P
W

D
40

P
W

D
39

P
W

D
38

P
W

D
37

P
W

D
36

P
W

D
35

P
W

D
34

P
W

D
33

P
W

D
32

W

Reset X X X X X X X X X X X X X X X X

Figure 35-22. Nonvolatile private censorship PassWord 1 register (NVPWD1)

Table 35-29. NVPWD1 field descriptions

Field Description

PWD[63:32] PassWorD 63-32 (Read/Write)
The PWD63-32 registers represent the 32 MSB of the Private Censorship Password.

Offset: 0x03DE01

1 See device memory map table for base address information of shadow flash.

Delivery value: 0x55AA_55AA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SC15 SC14 SC13 SC12 SC11 SC10 SC9 SC8 SC7 SC6 SC5 SC4 SC3 SC2 SC1 SC0

W

Reset2

2 Reset values labeled “X” are loaded from the NVLML value which is preprogrammed at the factory. The default
value from the factory for this register is 0x55AA_55AA. The default value can be reprogrammed by the user.

X X X X X X X X X X X X X X X X

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

C
W

15

C
W

14

C
W

13

C
W

12

C
W

11

C
W

10

CW9 CW8 CW7 CW6 CW5 CW4 CW3 CW2 CW1 CW0
W

Reset X X X X X X X X X X X X X X X X

Figure 35-23. Nonvolatile System Censoring Information 0 register (NVSCC0)

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1190 Freescale Semiconductor

The nonvolatile system censoring information 0 register stores the 32 LSB of the Censorship Control Word
of the device.

The NVSCC0 is a nonvolatile register located in the Shadow sector: it is read during the reset phase of the
flash memory module and the protection mechanisms are activated consequently.

The parts are delivered uncensored to the user.

35.2.5.26 Nonvolatile System Censoring Information 1 register (NVSCC1)

The nonvolatile System Censoring Information 1 register stores the 32 MSB of the Censorship Control
Word of the device.

The NVSCC1 is a nonvolatile register located in the Shadow sector: it is read during the reset phase of the
flash memory module and the protection mechanisms are activated consequently.

The parts are delivered uncensored to the user.

Table 35-30. NVSCC0 field descriptions

Field Description

SC[15:0] Serial Censorship control word 15-0 (Read/Write)
These bits represent the 16 LSB of the Serial Censorship Control Word (SCCW).
If SC15-0 = 0x55AA and NVSCC1 = NVSCC0 the Public Access is disabled.
If SC15-0  0x55AA or NVSCC1  NVSCC0 the Public Access is enabled.

CW[15:0] Censorship control Word 15-0 (Read/Write)
These bits represent the 16 LSB of the Censorship Control Word (CCW).
If CW15-0 = 0x55AA and NVSCC1 = NVSCC0 the Censored Mode is disabled.
If CW15-0  0x55AA or NVSCC1  NVSCC0 the Censored Mode is enabled.

Offset: 0x03DE41

1 See device memory map table for base address information of shadow flash.

Access: Read / Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

S
C

31

S
C

30

S
C

29

S
C

28

S
C

27

S
C

26

S
C

25

S
C

24

S
C

23

S
C

22

S
C

21

S
C

20

S
C

19

S
C

18

S
C

17

S
C

16

W

Reset2

2 Reset values labeled “X” are loaded from the NVLML value which is preprogrammed at the factory. The default
value from the factory for this register is 0x55AA_55AA. The default value can be reprogrammed by the user.

X X X X X X X X X X X X X X X X

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

C
W

31

C
W

30

C
W

29

C
W

28

C
W

27

C
W

26

C
W

25

C
W

24

C
W

23

C
W

22

C
W

21

C
W

20

C
W

19

C
W

18

C
W

17

C
W

16

W

Reset X X X X X X X X X X X X X X X X

Figure 35-24. Nonvolatile System Censoring Information 1 register (NVSCC1)

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1191

35.2.5.27 Nonvolatile User Options register (NVUSRO)

The Nonvolatile User Options Register contains configuration information for the user application.

The NVUSRO register is a 64-bit register, of which the 32 most significant bits 63:32 are ‘don’t care’ and
eventually used to manage ECC codes.

Table 35-31. NVSCC1 field descriptions

Field Description

SC[31:16] Serial Censorship control word 31-16 (Read/Write)
These bits represent the 16 MSB of the Serial Censorship Control Word (SCCW).
If SC15-0 = 0x55AA and NVSCC1 = NVSCC0 the Public Access is disabled.
If SC15-0  0x55AA or NVSCC1  NVSCC0 the Public Access is enabled.

CW[31:16] Censorship control Word 31-16 (Read/Write)
These bits represent the 16 MSB of the Censorship Control Word (CCW).
If CW15-0 = 0x55AA and NVSCC1 = NVSCC0 the Censored Mode is disabled.
If CW15-0  0x55AA or NVSCC1  NVSCC0 the Censored Mode is enabled.

Offset: 0x03E181

1 See device memory map table for base address information of shadow flash.

Access: Read / Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

W
AT

C
H

D
O

G
_E

N

UO3
0

PA
D

_3
V

5V
[0

]

PA
D

_3
V

5V
[1

]

UO2
7

UO2
6

UO2
5

UO2
4

UO2
3

UO2
2

UO2
1

UO2
0

UO1
9

UO1
8

UO1
7

UO1
6

W

Reset2

2 Reset values labeled “X” are loaded from the NVLML value which is preprogrammed at the factory. The default
value from the factory for this register is 0xXXXX_XXXX. The default value can be reprogrammed by the user.

X X X X X X X X X X X X X X X X

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
UO1

5
UO1

4
UO1

3
UO1

2
UO1

1

S
T

C
U

_E
N

UO0
9

UO0
8

UO0
7

UO0
6

UO0
5

UO0
4

UO0
3

UO0
2

UO0
1

UO0
1W

Reset X X X X X X X X X X X X X X X X

Figure 35-25. Nonvolatile User Options register (NVUSRO)

Table 35-32. NVUSRO field descriptions

Field Description

UO User Options (Read/Write)
The UO generic field is reset based on the information stored in NVUSRO.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1192 Freescale Semiconductor

35.2.5.28 Nonvolatile User Options register 1(NVUSRO_1)

STCU_EN Self MBIST Enable (Read/Write)
1: Disable after reset
0: Enable after reset
Default manufacturing value before flash memory initialization is ‘1’.

UO[20:04] User Options 20:04 (Read/Write)
The UO20-4 generic registers are reset based on the information stored in NVUSRO.

PAD3V5V[0] High voltage supply for VDD_HV_A domain
0: High voltage supply is 5.0 V
1: High voltage supply is 3.3 V
Default manufacturing value before flash memory initialization is ‘1’ (3.3 V) which should
ensure correct minimum slope for boundary scan.

PAD3V5V[1] High voltage supply for VDD_HV_B domain
0: High voltage supply is 5.0 V
1: High voltage supply is 3.3 V
Default manufacturing value before flash memory initialization is ‘1’ (3.3 V) which should
ensure correct minimum slope for boundary scan.

UO[01] User Options 01 (Read/Write)
The UO01 generic register is reset based on the information stored in NVUSRO.

WATCHDOG_EN
0: Disable after reset
1: Enable after reset
Default manufacturing value before flash memory initialization is ‘1’

Offset: 0x00201

1 See device memory map table for base address information of shadow flash.

Access: Read / Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

U
O

31

U
O

30

U
O

29

U
O

28

U
O

27

U
O

26

U
O

25

U
O

24

U
O

23

U
O

22

U
O

21

U
O

20

U
O

19

U
O

18

U
O

17

U
O

16

W

Reset2 X X X X X X X X X X X X X X X X

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

U
O

15

U
O

14

U
O

13

U
O

12

U
O

11

U
O

10

U
O

09

U
O

08

U
O

07

U
O

06

U
O

05

U
O

04

U
O

03

U
O

02

U
O

01

C
S

E
_R

U
N

_M
O

D
E

W

Reset X X X X X X X X X X X X X X X X

Figure 35-26. Nonvolatile User Options register 1(NVUSRO_1)

Table 35-32. NVUSRO field descriptions (continued)

Field Description

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1193

The Nonvolatile User Options Register 1 contains configuration information for the user application.

35.2.5.29 Programming NVUSRO_1 and STCU fault grading parameters

The following shadow addresses need to be programmed to configure the NVUSRO_1 register and STCU
fault grading parameters.

2 Reset values labeled “X” are loaded from the NVLML value which is preprogrammed at the factory. The default
value from the factory for this register is 0xFFFF_FFFF. The default value can be reprogrammed by the user.

Table 35-33. NVUSRO_1 field descriptions

Field Description

CSE_RUN_MODE
1: CSE runs in parallel mode
0: CSE runs in serial mode
Default manufacturing value before flash memory initialization is ‘1’.

UO[31:1] User Options 31-1 (Read/Write)
The UO31-1 generic registers are reset based on the information stored in NVUSRO_1.

Table 35-34. Programming NVUSRO_1 and STCU fault grading parameters

Address offset1
(Byte)

flash memory
content2 (word)

Comment

0x0010 0x05AA_55AF START word

0x0014 0x0000_0000

0x0018 0xFFFFFFFF

0x001C 0xFFFFFFFF

0x0020 NVUSRO_1 NVUSRO_1

0x0024 0x00400000

0x0028

0x002C

0x0030 0x7f0e0000 UPDATE STCU MBIST 0 CTR

0x0034 0x00080300

0x0038 0xFFFFFFFF

0x003C 0xFFFFFFFF

0x0040 0x10000000 UPDATE STCU CFG Register

0x0044 0x0008000c

0x0048 0xFFFFFFFF

0x004C 0xFFFFFFFF

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1194 Freescale Semiconductor

0x0050 0x825a132b UPDATE STCU MBSEK
Register

0x0054 0x0008004c

0x0058 0xFFFFFFFF

0x005C 0xFFFFFFFF

0x0060 0xfffffffe UPDATE STCU MBSL Register

0x0064 0x0008003c

0x0068 0xFFFFFFFF

0x006C 0xFFFFFFFF

0x0070 0x000000ff Update STCU MBSH Register

0x0074 0x00080040

0x0078 0xFFFFFFFF

0x007C 0xFFFFFFFF

0x0080 0xfffffffe UPDATE STCU MBEL Register

0x0084 0x00080044

0x0088 0xFFFFFFFF

0x008C 0xFFFFFFFF

0x0090 0x000000ff Update STCU MBEH Register

0x0094 0x00080048

0x0098 0xFFFFFFFF

0x009C 0xFFFFFFFF

0x00A0 0x00000001 Update STCU WDG Register

0x00A4 0x00080010

0x00A8 0xFFFFFFFF

0x00AC 0xFFFFFFFF

0x00B0 0x1a60d097 Update STCU CRC Register

0x00B4 0x00080014

0x00B8 0xFFFFFFFF

0x00BC 0xFFFFFFFF

0x00C0 0xFFFFFFFF Finish WORD

0x00C4 0xFFFFFFFF

0x00C8 0xFFFFFFFF

0x00CC 0xFFFFFFFF

Table 35-34. Programming NVUSRO_1 and STCU fault grading parameters

Address offset1
(Byte)

flash memory
content2 (word)

Comment

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1195

35.2.6 STCU programming using Flash

The Shadow Flash contains the data for STCU programming. Table 35-35 shows the interpretation of the
Flash read bus by the STCU. This results in the memory usage show in Table 35-36. Each write command
for the STCU consists of 32 bits for write data, and 32 bits for write address and chip select fields. The
next 64 bits are reserved (this is to avoid data multiplexing). One bit in the data structure is the STOP flag.
The STCU will process all commands until it detects a STOP flag. The command with the stop flag will
not cause a write operation on the DCF bus.

So an empty Shadow Flash will not create a series of commands, instead it will just cause the STCU to
stop scanning the Flash.

It has to detect the start word 0x05AA55AF at the location offset + 0x0 for execution of write command.

1 See device memory map table for base address information of code flash0
shadow sector.

2 Default settings are erased (0xFFFF_FFFF)

Table 35-35. Interpretation of Flash read data

127:64 63:49 48:34 33 32 31:0

RSVD CS[14:0] ADDR[16:2] RSVD STOP WDATA[31:0]

Table 35-36. Storing STCU data in shadow flash

ADDR Offset Data

16n + 0xC

16n + 0x8

16n + 0x4 Reserved 1

16n + 0x0 Reserved

16n-1 + 0xC

16n-1 + 0x8

16n-1 + 0x4 CS[14:0] ADDR[16:2] RSVD 0

16n-1 + 0x0 WDATA[31:0]

...

0x2C

0x28

0x24 CS[14:0] ADDR[16:2] RSVD STOP

0x20 WDATA[31:0]

0x1C

0x18

0x14 CS[14:0] ADDR[16:2] RSVD STOP

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1196 Freescale Semiconductor

35.2.7 Programming considerations

35.2.7.1 Modify operation

All modify operations of the flash memory module are managed through the flash memory User Registers
Interface.

All the sectors of the flash memory module belong to the same partition (Bank), therefore when a Modify
operation is active on some sectors no read access is possible on any other sector (Read-While-Write is not
supported).

During a flash memory modify operation any attempt to read any flash memory location will output invalid
data and bit RWE of the MCR will be automatically set. This means that the flash memory module is not
fetchable when a modify operation is active and these commands must be executed from another memory
(internal SRAM or another flash memory module).

If during a Modify Operation a reset occurs, the operation is suddenly terminated and the module is reset
to Read Mode. The data integrity of the flash memory section where the Modify Operation has been
terminated is not guaranteed: the interrupted flash memory Modify Operation must be repeated.

In general each modify operation is started through a sequence of three steps:

1. The first instruction is used to select the desired operation by setting its corresponding selection bit
in MCR (PGM or ERS) or UT0 (MRE or EIE).

2. The second step is the definition of the operands: the Address and the Data for programming or the
Sectors for erase or margin read.

3. The third instruction is used to start the modify operation, by setting EHV in MCR or AIE in UT0.

Once selected, but not yet started, one operation can be canceled by resetting the operation selection bit.

A summary of the available flash memory modify operations is shown in Table 35-37.

0x10 WDATA[31:0]

0xC

0x8

0x4 0x00000000 STOP=0

0x0 0x05AA55AF

Table 35-37. Flash memory modify operations

Operation Select bit Operands Start bit

Double word program MCR.PGM Address and data by interlock writes MCR.EHV

Sector erase MCR.ERS LMS, HBS MCR.EHV

Array integrity check None LMS, HBS UT0.AIE

Table 35-36. Storing STCU data in shadow flash

ADDR Offset Data

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1197

Once bit MCR.EHV (or UT0.AIE) is set, all the operands can no more be modified until bit MCR.DONE
(or UT0.AID) is high.

In general each modify operation is completed through a sequence of four steps:

1. Wait for operation completion: wait for bit MCR.DONE (or UT0.AID) to go high.

2. Check operation result: check bit MCR.PEG (or compare UMISR0-4 with expected value).

3. Switch off FPEC by resetting MCR.EHV (or UT0.AIE).

4. Deselect current operation by clearing MCR.PGM/ERS (or UT0.MRE/EIE).

If the device embeds more than one flash memory module and a modify operation is on-going on one of
them, then it is forbidden to start any other modify operation on the other flash memory modules.

In the following all the possible modify operations are described and some examples of the sequences
needed to activate them are presented.

35.2.7.1.1 Double word program

A flash memory Program sequence operates on any Double Word within the flash memory core.

Up to two words within the Double Word may be altered in a single Program operation.

ECC is handled on a 64-bit boundary. Thus, if only one word in any given 64-bit ECC segment is
programmed, the adjoining word (in that segment) should not be programmed since ECC calculation has
already completed for that 64-bit segment. Attempts to program the adjoining word will probably result in
an operation failure. It is recommended that all programming operations be of 64 bits. The programming
operation should completely fill selected ECC segments within the Double Word.

Programming changes the value stored in an array bit from logic 1 to logic 0 only. Programming cannot
change a stored logic 0 to a logic 1.

Addresses in locked/disabled blocks cannot be programmed.

The user may program the values in any or all of two words, of a Double Word, with a single program
sequence.

Double Word-bound words have addresses which differ only in address bit 2.

The Program operation consists of the following sequence of events:

1. Change the value in the MCR.PGM bit from 0 to 1.

2. Ensure the block that contains the address to be programmed is unlocked.
Write the first address to be programmed with the program data.
The flash memory module latches address bits (22:3) at this time.

Margin read UT0.MRE UT0.MRV + LMS, HBS UT0.AIE

ECC Logic Check UT0.EIE UT0.DSI, UT1, UT2 UT0.AIE

Table 35-37. Flash memory modify operations (continued)

Operation Select bit Operands Start bit

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1198 Freescale Semiconductor

The flash memory module latches data written as well.
This write is referred to as a program data interlock write. An interlock write may be as large as 64
bits, and as small as 32 bits (depending on the CPU bus).

3. If more than 1 word is to be programmed, write the additional address in the Double Word with
data to be programmed. This is referred to as a program data write.
The flash memory module ignores address bits (22:3) for program data writes.
The eventual unwritten data word default to 0xFFFFFFFF.

4. Write a logic 1 to the MCR.EHV bit to start the internal program sequence or skip to step 9 to
terminate.

5. Wait until the MCR.DONE bit goes high.

6. Confirm MCR.PEG = 1.

7. Write a logic 0 to the MCR.EHV bit.

8. If more addresses are to be programmed, return to step 2.

9. Write a logic 0 to the MCR.PGM bit to terminate the program operation.

Program may be initiated with the 0 to 1 transition of the MCR.PGM bit or by clearing the MCR.EHV bit
at the end of a previous program.

The first write after a program is initiated determines the page address to be programmed. This first write
is referred to as an interlock write. The interlock write determines if the shadow, test or normal array space
will be programmed by causing MCR.PEAS to be set/cleared.

An interlock write must be performed before setting MCR.EHV. The user may terminate a program
sequence by clearing MCR.PGM prior to setting MCR.EHV.

After the interlock write, additional writes only affect the data to be programmed at the word location
determined by address bit 2. Unwritten locations default to a data value of 0xFFFFFFFF. If multiple writes
are done to the same location the data for the last write is used in programming.

While MCR.DONE is low and MCR.EHV is high, the user may clear EHV, resulting in a program abort.
A Program abort forces the module to step 8 of the program sequence.

An aborted program will result in MCR.PEG being set low, indicating a failed operation. MCR.DONE
must be checked to know when the aborting command has completed.

The data space being operated on before the abort will contain indeterminate data. This may be recovered
by repeating the same program instruction or executing an erase of the affected blocks.

Example 35-1. Double word program of data 0x55AA55AA at address 0x00AAA8 and data 0xAA55AA55 at
address 0x00AAAC

MCR = 0x00000010; /* Set PGM in MCR: Select Operation */
(0x00AAA8) = 0x55AA55AA; /* Latch Address and 32 LSB data */
(0x00AAAC) = 0xAA55AA55; /* Latch 32 MSB data */
MCR = 0x00000011; /* Set EHV in MCR: Operation Start */
do /* Loop to wait for DONE=1 */
{ tmp = MCR; /* Read MCR */
} while (!(tmp & 0x00000400));
status = MCR & 0x00000200; /* Check PEG flag */
MCR = 0x00000010; /* Reset EHV in MCR: Operation End */

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1199

MCR = 0x00000000; /* Reset PGM in MCR: Deselect Operation */

35.2.7.1.2Sector erase

Erase changes the value stored in all bits of the selected block(s) to logic 1.

An erase sequence operates on any combination of blocks (sectors) in the low, mid or high address space,
or the shadow block (if available). The test block cannot be erased.

The erase sequence is fully automated within the flash memory. The user only needs to select the blocks
to be erased and initiate the erase sequence.

Locked/disabled blocks cannot be erased.

If multiple blocks are selected for erase during an erase sequence, no specific operation order must be
assumed.

The erase operation consists of the following sequence of events:

1. Change the value in the MCR.ERS bit from 0 to 1.

2. Select the block(s) to be erased by writing ‘1’s to the appropriate register(s) in LMS or HBS
registers.
If the shadow block is to be erased, this step may be skipped, and LMS and HBS are ignored.
Note that Lock and Select are independent. If a block is selected and locked, no erase will occur.

3. Write to any address in flash memory. This is referred to as an erase interlock write.

4. Write a logic 1 to the MCR.EHV bit to start the internal erase sequence or skip to step 9 to
terminate.

5. Wait until the MCR.DONE bit goes high.

6. Confirm MCR.PEG = 1.

7. Write a logic 0 to the MCR.EHV bit.

8. If more blocks are to be erased, return to step 2.

9. Write a logic 0 to the MCR.ERS bit to terminate the erase operation.

After setting MCR.ERS, one write, referred to as an interlock write, must be performed before MCR.EHV
can be set to ‘1’. Data words written during erase sequence interlock writes are ignored.

The user may terminate the erase sequence by clearing ERS before setting EHV.

An erase operation may be aborted by clearing MCR.EHV assuming MCR.DONE is low, MCR.EHV is
high and MCR.ESUS is low.

An erase abort forces the module to step 8 of the erase sequence.

An aborted erase will result in MCR.PEG being set low, indicating a failed operation. MCR.DONE must
be checked to know when the aborting command has completed.

The block(s) being operated on before the abort contain indeterminate data. This may be recovered by
executing an erase on the affected blocks.

The user may not abort an erase sequence while in erase suspend.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1200 Freescale Semiconductor

Example 35-2. Erase of sectors B0F1 and B0F2

MCR = 0x00000004; /* Set ERS in MCR: Select Operation */
LMS = 0x00000006; /* Set LSL2-1 in LMS: Select Sectors to erase */
(0x000000) = 0xFFFFFFFF; /* Latch a flash memory Address with any data */
MCR = 0x00000005; /* Set EHV in MCR: Operation Start */
do /* Loop to wait for DONE=1 */
{ tmp = MCR; /* Read MCR */
} while (!(tmp & 0x00000400));
status = MCR & 0x00000200; /* Check PEG flag */
MCR = 0x00000004; /* Reset EHV in MCR: Operation End */
MCR = 0x00000000; /* Reset ERS in MCR: Deselect Operation */

Erase suspend/resume

The erase sequence may be suspended to allow read access to the flash memory core.

It is not possible to program or to erase during an erase suspend.

During erase suspend, all reads to blocks targeted for erase return indeterminate data.

An erase suspend can be initiated by changing the value of the MCR.ESUS bit from 0 to 1. MCR.ESUS
can be set to ‘1’ at any time when MCR.ERS and MCR.EHV are high and MCR.PGM is low. A 0 to 1
transition of MCR.ESUS causes the module to start the sequence which places it in erase suspend.

The user must wait until MCR.DONE = 1 before the module is suspended and further actions are
attempted. MCR.DONE will go high no more than tESUS after MCR.ESUS is set to ‘1’.

Once suspended, the array may be read. flash memory core reads while MCR.ESUS = 1 from the block(s)
being erased return indeterminate data.

Example 35-3. Sector erase suspend

MCR = 0x00000007; /* Set ESUS in MCR: Erase Suspend */
do /* Loop to wait for DONE=1 */
{ tmp = MCR; /* Read MCR */
} while (!(tmp & 0x00000400));

Notice that there is no need to clear MCR.EHV and MCR.ERS in order to perform reads during erase
suspend.

The erase sequence is resumed by writing a logic 0 to MCR.ESUS.

MCR.EHV must be set to ‘1’ before MCR.ESUS can be cleared to resume the operation.

The module continues the erase sequence from one of a set of predefined points. This may extend the time
required for the erase operation.

Example 35-4. Sector erase resume

MCR = 0x00000005; /* Reset ESUS in MCR: Erase Resume */

35.2.7.1.3 User Test mode

The user can perform specific tests to check flash memory module integrity by putting the flash memory
module in User Test Mode.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1201

Three kinds of test can be performed:

• Array Integrity Self Check

• Margin Read

• ECC Logic Check

The User Test Mode is equivalent to a Modify operation: read accesses attempted by the user during User
Test Mode generates a Read-While-Write Error (RWE of MCR set).

It is not allowed to perform User Test operations on the Test and Shadow blocks.

35.2.7.1.3.1 Array integrity self check

Array Integrity is checked using a predefined address sequence (proprietary), and this operation is
executed on selected and unlocked blocks. Once the operation is completed, the results of the reads can be
checked by reading the MISR value (stored in UMISR0-4), to determine if an incorrect read, or ECC
detection was noted.

The internal MISR calculator is a 32-bit register.

The 128 bit data, the 16 ECC data and the single and double ECC errors of the two Double Words are
therefore captured by the MISR through five different read accesses at the same location.

The whole check is done through five complete scans of the memory address space:

1. The first pass will scan only bits 31:0 of each page.

2. The second pass will scan only bits 63:32 of each page.

3. The third pass will scan only bits 95:64 of each page.

4. The fourth pass will scan only bits 127:96 of each page.

5. The fifth pass will scan only the ECC bits (8 + 8) and the single and double ECC errors (2 + 2) of
both Double Words of each page.

The 128 bit data and the 16 ECC data are sampled before the eventual ECC correction, while the single
and double error flags are sampled after the ECC evaluation.

Only data from existing and unlocked locations are captured by the MISR.

The MISR can be seeded to any value by writing the UMISR0–4 registers.

The Array Integrity Self Check consists of the following sequence of events:

1. Set UTE in UT0 by writing the related password in UT0.

2. Select the block(s) to be checked by writing ‘1’s to the appropriate register(s) in LMS or HBS
registers.
Note that Lock and Select are independent. If a block is selected and locked, no Array Integrity
Check will occur.

3. Set eventually UT0.AIS bit for a sequential addressing only.

4. Write a logic 1 to the UT0.AIE bit to start the Array Integrity Check.

5. Wait until the UT0.AID bit goes high.

6. Compare UMISR0-4 content with the expected result.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1202 Freescale Semiconductor

7. Write a logic 0 to the UT0.AIE bit.

8. If more blocks are to be checked, return to step 2.

It is recommended to leave UT0.AIS at 0 and use the proprietary address sequence that checks the read
path more fully, although this sequence takes more time. During the execution of the Array Integrity Check
operation it is forbidden to modify the content of Block Select (LMS, HBS) and Lock (LML, SLL, HBL)
registers, otherwise the MISR value can vary in an unpredictable way. While UT0.AID is low and
UT0.AIE is high, the User may clear AIE, resulting in a Array Integrity Check abort.

UT0.AID must be checked to know when the aborting command has completed.

Example 35-5. Array integrity check of sectors B0F1 and B0F2

UT0 = 0xF9F99999; /* Set UTE in UT0: Enable User Test */
LMS = 0x00000006; /* Set LSL2-1 in LMS: Select Sectors */
UT0 = 0x80000002; /* Set AIE in UT0: Operation Start */
do /* Loop to wait for AID=1 */
{ tmp = UT0; /* Read UT0 */
} while (!(tmp & 0x00000001));
data0 = UMISR0; /* Read UMISR0 content*/
data1 = UMISR1; /* Read UMISR1 content*/
data2 = UMISR2; /* Read UMISR2 content*/
data3 = UMISR3; /* Read UMISR3 content*/
data4 = UMISR4; /* Read UMISR4 content*/
UT0 = 0x00000000; /* Reset UTE and AIE in UT0: Operation End */

35.2.7.1.3.2 Margin read

Margin read procedure (either Margin 0 or Margin 1), can be run on unlocked blocks in order to unbalance
the Sense Amplifiers, respect to standard read conditions, so that all the read accesses reduce the margin
vs ‘0’ (UT0.MRV = ‘0’) or vs ‘1’ (UT0.MRV = ‘1’). Locked sectors are ignored by MISR calculation and
ECC flagging. The results of the margin reads can be checked comparing checksum value in UMISR0-4.
Since Margin reads are done at voltages that differ than the normal read voltage, lifetime expectancy of
the flash memory module is impacted by the execution of Margin reads. Doing Margin reads repetitively
results in degradation of the flash memory Array, and shorten expected lifetime experienced at normal read
levels. For these reasons the Margin Read usage is allowed only in Factory, while it is forbidden to use it
inside the User Application.

In any case the charge losses detected through the Margin Read cannot be considered failures of the device
and no Failure Analysis will be opened on them. The Margin Read Setup operation consists of the
following sequence of events:

1. Set UTE in UT0 by writing the related password in UT0.

2. Select the block(s) to be checked by writing 1’s to the appropriate register(s) in LMS or HBS
registers.

Note that Lock and Select are independent. If a block is selected and locked, no Array Integrity Check will
occur.

3. Set T0.AIS bit for a sequential addressing only.

4. Change the value in the UT0.MRE bit from 0 to 1.

5. Select the Margin level: UT0.MRV=0 for 0’s margin, UT0.MRV=1 for 1’s margin.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1203

6. Write a logic 1 to the UT0.AIE bit to start the Margin Read Setup or skip to step 6 to terminate.

7. Wait until the UT0.AID bit goes high.

8. Compare UMISR0-4 content with the expected result.

9. Write a logic 0 to the UT0.AIE, UT0.MRE and UT0.MRV bits.

10. If more blocks are to be checked, return to step 2.

It is mandatory to leave UT0.AIS at 1 and use the linear address sequence, the usage of the proprietary
sequence in Margin Read is forbidden.

During the execution of the Margin Read operation it is forbidden to modify the content of Block Select
(LMS, HBS) and Lock (LML, SLL, HBL) registers, otherwise the MISR value can vary in an
unpredictable way.

The read accesses will be done with the addition of a proper number of Wait States to guarantee the
correctness of the result.

While UT0.AID is low and UT0.AIE is high, the User may clear AIE, resulting in a Array Integrity Check
abort.

UT0.AID must be checked to know when the aborting command has completed.

Example 35-6. Margin read setup versus ‘1’s

UMISR0 = 0x00000000; /* Reset UMISR0 content */
UMISR1 = 0x00000000; /* Reset UMISR1 content */
UMISR2 = 0x00000000; /* Reset UMISR2 content */
UMISR3 = 0x00000000; /* Reset UMISR3 content */
UMISR4 = 0x00000000; /* Reset UMISR4 content */
UT0 = 0xF9F99999; /* Set UTE in UT0: Enable User Test */
LMS = 0x00000006; /* Set LSL2-1 in LMS: Select Sectors */
UT0 = 0x80000004; /* Set AIS in UT0: Select Operation */
UT0 = 0x80000024; /* Set MRE in UT0: Select Operation */
UT0 = 0x80000034; /* Set MRV in UT0: Select Margin versus 1’s */
UT0 = 0x80000036; /* Set AIE in UT0: Operation Start */
do /* Loop to wait for AID=1 */
{ tmp = UT0; /* Read UT0 */
} while (!(tmp & 0x00000001));
data0 = UMISR0; /* Read UMISR0 content*/
data1 = UMISR1; /* Read UMISR1 content*/
data2 = UMISR2; /* Read UMISR2 content*/
data3 = UMISR3; /* Read UMISR3 content*/
data4 = UMISR4; /* Read UMISR4 content*/
UT0 = 0x80000034; /* Reset AIE in UT0: Operation End */
UT0 = 0x00000000; /* Reset UTE, MRE, MRV, AIS in UT0: Deselect Op. */

To exit from the Margin Read Mode a Read Reset operation must be executed.

35.2.7.1.3.3 ECC logic check

ECC logic can be checked by forcing the input of ECC logic: The 64 bits of data and the 8 bits of ECC
syndrome can be individually forced and they will drive simultaneously at the same value the ECC logic
of the whole page (2 Double Words).

The results of the ECC Logic Check can be verified by reading the MISR value.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1204 Freescale Semiconductor

The ECC Logic Check operation consists of the following sequence of events:

1. Set UTE in UT0 by writing the related password in UT0.

2. Write in UT1.DAI31–0 and UT2.DAI63–32 the Double Word Input value.

3. Write in UT0.DSI7–0 the Syndrome Input value.

4. Select the ECC Logic Check: write a logic 1 to the UT0.EIE bit.

5. Write a logic 1 to the UT0.AIE bit to start the ECC Logic Check.

6. Wait until the UT0.AID bit goes high.

7. Compare UMISR0–4 content with the expected result.

8. Write a logic 0 to the UT0.AIE bit.

Notice that when UT0.AID is low UMISR0–4, UT1–2 and bits MRE, MRV, EIE, AIS and DSI7–0 of UT0
are not accessible: reading returns indeterminate data and write has no effect.

Example 35-7. ECC logic check

UT0 = 0xF9F99999; /* Set UTE in UT0: Enable User Test */
UT1 = 0x55555555; /* Set DAI31-0 in UT1: Even Word Input Data */
UT2 = 0xAAAAAAAA; /* Set DAI63-32 in UT2: Odd Word Input Data */
UT0 = 0x80FF0000; /* Set DSI7-0 in UT0: Syndrome Input Data */
UT0 = 0x80FF0008; /* Set EIE in UT0: Select ECC Logic Check */
UT0 = 0x80FF000A; /* Set AIE in UT0: Operation Start */
do /* Loop to wait for AID=1 */
{ tmp = UT0; /* Read UT0 */
} while (!(tmp & 0x00000001));
data0 = UMISR0; /* Read UMISR0 content (expected 0x55555555) */
data1 = UMISR1; /* Read UMISR1 content (expected 0xAAAAAAAA) */
data2 = UMISR2; /* Read UMISR2 content (expected 0x55555555) */
data3 = UMISR3; /* Read UMISR3 content (expected 0xAAAAAAAA) */
data4 = UMISR4; /* Read UMISR4 content (expected 0x00FF00FF) */
UT0 = 0x00000000; /* Reset UTE, AIE and EIE in UT0: Operation End */

35.2.7.2 Error correction code

The flash memory module provides a method to improve the reliability of the data stored in flash memory:
the usage of an Error Correction Code. The word size is fixed at 64 bits.

Eight ECC bits, programmed to guarantee a Single Error Correction and a Double Error Detection
(SEC-DED), are associated to each 64-bit Double Word.

ECC circuitry provides correction of single bit faults and is used to achieve automotive reliability targets.
Some units will experience single bit corrections throughout the life of the product with no impact to
product reliability.

35.2.7.2.1 ECC algorithms

The flash memory module supports one ECC Algorithm: “All ‘1’s No Error”. A modified Hamming code
is used that ensures the all erased state (that is, 0xFFFF.....FFFF) data is a valid state, and will not cause an
ECC error. This allows the user to perform a blank check after a sector erase operation.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1205

35.2.7.3 EEprom emulation

35.2.7.4 Eprom Emulation

The choosen ECC algorithm allows some bit manipulations so that a Double Word can be rewritten several
times without needing an erase of the sector. This allows to use a Double Word to store flags useful for the
Eeprom Emulation. As an example the chosen ECC algorithm allows to start from an All ‘1’s Double Word
value and rewrite whichever of its four 16-bits Half-Words to an All ‘0’s content by keeping the same ECC
value.

The following table shows a set of Double Words sharing the same ECC value:

When some flash memory sectors are used to perform an Eeprom Emulation, it is recommended for safety
reasons to reserve at least 3 sectors to this purpose.

35.2.7.4.1 All ‘1’s No Error

The All ‘1’s No Error Algorithm detects as valid any Double Word read on a just erased sector (all the 72
bits are ‘1’s).

This option allows to perform a Blank Check after a Sector Erase operation.

35.2.7.5 Protection strategy

Two kinds of protection are available: Modify Protection to avoid unwanted program/erase in flash
memory sectors and Censored Mode to avoid piracy.

Table 35-38. Bits Manipulation: Double Words with the same ECC value

Double Word ECC All ‘1’s No Error

0xFFFF_FFFF_FFFF_FFFF 0xFF

0xFFFF_FFFF_FFFF_0000 0xFF

0xFFFF_FFFF_0000_FFFF 0xFF

0xFFFF_0000_FFFF_FFFF 0xFF

0x0000_FFFF_FFFF_FFFF 0xFF

0xFFFF_FFFF_0000_0000 0xFF

0xFFFF_0000_FFFF_0000 0xFF

0x0000_FFFF_FFFF_0000 0xFF

0xFFFF_0000_0000_FFFF 0xFF

0x0000_FFFF_0000_FFFF 0xFF

0x0000_0000_FFFF_FFFF 0xFF

0xFFFF_0000_0000_0000 0xFF

0x0000_FFFF_0000_0000 0xFF

0x0000_0000_0000_0000 0xFF

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1206 Freescale Semiconductor

35.2.7.5.1 Modify protection

The flash memory Modify Protection information is stored in nonvolatile flash memory cells located in
the TestFlash. This information is read once during the flash memory initialization phase following the
exiting from Reset and is stored in volatile registers that act as actuators.

The reset state of all the volatile modify protection registers is the protected state.

All the nonvolatile modify protection registers can be programmed through a normal Double Word
Program operation at the related locations in TestFlash.

The nonvolatile modify protection registers cannot be erased.

• The nonvolatile Modify Protection Registers are physically located in TestFlash their bits can be
programmed to ‘0’ only once and they can no more be restored to ‘1’.

• The Volatile Modify Protection Registers are Read/Write registers which bits can be written at ‘0’
or ‘1’ by the user application.

A software mechanism is provided to independently lock/unlock each Low, Mid and High Address Space
Block against program and erase.

Software locking is done through the LML (Low/Mid Address Space Block Lock Register) or HBL (High
Address Space Block Lock Register) registers.

An alternate means to enable software locking for blocks of Low Address Space only is through the SLL
(Secondary Low/Mid Address Space Block Lock Register).

All these registers have a nonvolatile image stored in TestFlash (NVLML, NVHBL, NVSLL), so that the
locking information is kept on reset.

On delivery the TestFlash nonvolatile image is at all ‘1’s, meaning all sectors are locked.

By programming the nonvolatile locations in TestFlash the selected sectors can be unlocked.

Being the TestFlash One Time Programmable (that is, not erasable), once unlocked the sectors cannot be
locked again.

Of course, on the contrary, all the volatile registers can be written at 0 or 1 at any time, therefore the user
application can lock and unlock sectors when desired.

35.2.7.5.2 Censored mode

The Censored Mode information is stored in nonvolatile flash memory cells located in the Shadow Sector.
This information is read once during the flash memory initialization phase following the exiting from
Reset and is stored in volatile registers that act as actuators.

The reset state of all the Volatile Censored Mode Registers is the protected state.

All the nonvolatile Censored Mode registers can be programmed through a normal Double Word Program
operation at the related locations in the Shadow Sector.

The nonvolatile Censored Mode registers can be erased by erasing the Shadow Sector.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1207

• The nonvolatile Censored Mode Registers are physically located in the Shadow Sector their bits
can be programmed to ‘0’ and eventually restored to ‘1’ by erasing the Shadow Sector.

• The Volatile Censored Mode Registers are registers not accessible by the user application.

The flash memory module provides two levels of protection against piracy:

• If bits CW15:0 of NVSCC0 are programmed at 0x55AA and NVSC1 = NVSCC0 the Censored
Mode is disabled, while all the other possible values enable the Censored Mode.

• If bits SC15:0 of NVSCC0 are programmed at 0x55AA and NVSC1 = NVSCC0 the Public Access
is disabled, while all the other possible values enable the Public Access.

The parts are delivered to the user with Censored Mode and Public Access disabled.

35.3 Data flash memory

35.3.1 Introduction

The primary function of the Data flash module is to serve as electrically programmable and erasable
nonvolatile memory.

Nonvolatile memory may be used for instruction and/or data storage.

The module is a nonvolatile solid-state silicon memory device consisting of blocks (also called “sectors”)
of single transistor storage elements, an electrical means for selectively adding (programming) and
removing (erasing) charge from these elements, and a means of selectively sensing (reading) the charge
stored in these elements.

The Data flash memory module is arranged as two functional units: the flash memory core and the memory
interface.

The flash memory core is composed of arrayed nonvolatile storage elements, sense amplifiers, row
decoders, column decoders and charge pumps. The arrayed storage elements in the flash memory core are
subdivided into physically separate units referred to as blocks (or sectors).

The flash memory core is organized including ECC correction code. ECC circuitry provides correction of
single bit faults and is used to achieve automotive reliability targets. Some units will experience single bit
corrections throughout the life of the product with no impact to product reliability.

The memory interface contains the registers and logic which control the operation of the flash memory
core. The memory interface is also the interface between the flash memory module and a Bus Interface
Unit (BIU) and contains the ECC logic and redundancy logic.

A BIU connects the flash memory module to a system bus, and contains all system level customization
required for the device application. The flash memory module is generic and requires a BIU to configure
it for different device applications. A BIU is not included as a part of the flash memory module.

35.3.2 Main features
• High Read parallelism (32 bits)

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1208 Freescale Semiconductor

• Error Correction Code (SEC-DED) to enhance Data Retention

• Sector erase

• RWW is supported between code flash memory and data flash memory modules whereas within
single bank RWW is not available. Examples of supported RWW below:

— CF0 (or CF1) and DFlash

— CF0 and CF1

• Erase Suspend available (Program Suspend not available)

• Software programmable program/erase protection to avoid unwanted writings

35.3.3 Block diagram

The flash memory module contains one Matrix Module, composed of a single bank: Bank 0, normally used
for code storage.

The modify operations are managed by an embedded flash memory Program/Erase Controller (FPEC).
Commands to the FPEC are given through a User Registers Interface.

The read data bus is 32 bits wide, while the flash memory registers are on a separate bus 32 bits wide.

The high voltages needed for program/erase operations are internally generated.

Figure 35-27. Data flash memory module structure

35.3.4 Functional description

35.3.4.1 Module structure

The data flash memory module is designed for use in embedded device applications which require Data
Non-Volatile Memories for EE emulation. The flash memory module is addressable by Word (32 bits) for
program and for read.

64 KB

+ 8 KB TestFlash

HV generator

Flash

Controller

Flash

Matrix Registers

Program/Erase

Registers

Interface

Flash Bank 1

Interface

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1209

The flash memory module supports fault tolerance through Error Correction Code (ECC) and/or error
detection. The ECC implemented within the flash memory module will correct single bit failures and
detect double bit failures.

The flash memory module uses an embedded hardware algorithm implemented in the Memory Interface
to program and erase the flash memory core.

Control logic that works with the software block enables, and software lock mechanisms, is included in
the embedded hardware algorithm to guard against accidental program/erase.

The hardware algorithm perform the steps necessary to ensure that the storage elements are programmed
and erased with sufficient margin to guarantee data integrity and reliability.

A programmed bit in the flash memory module reads as logic level 0 (or low). An erased bit in the flash
memory module reads as logic level 1 (or high). Program and erase of the flash memory module requires
multiple system clock cycles to complete.

The erase sequence may be suspended. The program and erase sequences may be aborted.

Code Flash0 needs to be active for data flash to be active as it is a slave.

35.3.4.2 Data flash memory module sectorization

The data flash memory module supports 64 KB of user memory, plus 8 KB of test memory. There are two
User Address Spaces: Low and Mid Address Space. There is only one size of blocks available to the User
in the flash memory Core: 16KB. 8KB is reserved for Test flash memory.

The flash memory module is composed of a single bank (Bank 0): Read-While-Write is not supported.
Bank 0 of the 64 KB flash memory module is divided in four sectors. Bank 0 also contains a reserved
sector named TestFlash in which some One-Time Programmable user data are stored.

The sectorization of the flash memory Matrix Module is shown in the Table 35-39.

The flash memory module is divided into blocks also to implement independent erase/program protection.
A software mechanism is provided to independently lock/unlock each block in low, mid address space
against program and erase.

Table 35-39. 64 KB data flash memory module sectorization

Bank Sector Addresses Size Address space

B0 B0F0 0x000000–0x003FFF 16 KB Low Address Space

B0 B0F1 0x004000–0x007FFF 16 KB Low Address Space

B0 B0F2 0x008000–0x00BFFF 16 KB Low Address Space

B0 B0F3 0x00C000–0x00FFFF 16 KB Low Address Space

B0 Reserved 0x010000–0x07FFFF — Reserved

B0 B0TF 0x402000–0x403FFF 8 KB Test Address Space

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1210 Freescale Semiconductor

35.3.4.2.1 Test flash memory Block

The TestFlash block exists outside the normal address space and is programmed, erased and read
independently of the other blocks. The independent TestFlash block is reserved to store the Non Volatile
informations related to Redundancy, Configuration and Protection.

Due to this special usage, the TestFlash sector is not affected by the Column Redundancy. The ECC, on
the contrary, is applied also to TestFlash.

The usage of reserved TestFlash sector is detailed in the following table.

The Test flash memory block can be enabled by the BIU. When the Test space is enabled, the program
operations to the Test block are allowed from 0x403D00 to 0x403EFF (User/Lock area is One Time
Programmable). User Mode program of the test block are enabled only when MCR.PEAS is high. The
TestFlash block contains specified data that are needed for the flash memory module or SoC features.

35.3.5 User mode operation

In User Mode the flash memory module may be read and written (register writes and interlock writes),
programmed or erased. The default state of the flash memory module is read. The main and test address
space can be read only in the read state.

The flash memory registers are always available for read, also when the module is in disable mode (except
few documented registers). The flash memory module enters the read state on reset. The module is in the
read state under two sets of conditions:

• The read state is active when the module is enabled (User Mode Read)

• The read state is active when MCR.ERS and MCR.ESUS are high and MCR.PGM is low (Erase
Suspend).

Notice that no Read-While-Modify is available. flash memory Core reads return 32 bits. Registers reads
return 32 bits (1 Word). flash memory Core reads are done through the Bus Interface Unit.

Registers reads to unmapped register address space will return all 0’s. Registers writes to unmapped
register address space will have no effect. Array reads attempted to invalid locations will result in
indeterminate data. Invalid locations occur when addressing is done to blocks that do not exist in non 2n
array sizes.

Table 35-40. TestFlash structure

Name Description Addresses Size

User Reserved 0x403D00 to 0x403DE7 232 byte

NVLML NV Low/Mid address space block Locking reg 0x403DE8 to 0x403DEF 8 byte

Reserved 0x403DF0 to 0x403DF7 8 byte

NVSLL NV Secondary Low/mid add space block Lock reg 0x403DF8 to 0x403DFF 8 byte

User Reserved 0x403E00 to 0x403EFF 256 byte

Reserved 0x403F00 to 0x403FB7 184 byte

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1211

Interlock writes attempted to invalid locations, will result in an interlock occurring, but attempts to
program these blocks will not occur since they are forced to be locked. Erase will occur to selected and
unlocked blocks even if the interlock write is to an invalid location.

Simultaneous Read cycle on the flash memory Matrix and Read/Write cycles on the Registers are possible.
On the contrary Registers Read/Write accesses simultaneous to a flash memory Matrix interlock write are
forbidden.

35.3.5.1 Reset

A reset is the highest priority operation for the flash memory module and terminates all other operations.

The flash memory module uses reset to initialize register and status bits to their default reset values. If the
flash memory module is executing a Program or Erase operation (MCR.PGM = 1 or MCR.ERS = 1) and
a reset is issued, the operation will be suddenly terminated and the module will disable the high voltage
logic without damage to the high voltage circuits. Reset terminates all operations and forces the flash
memory module into User mode ready to receive accesses. Reset and power-off must not be used as a
systematic way to terminate a Program or Erase operation.

After reset is negated, read register access may be done, although it should be noted that registers that
require updating from TEST block or KRAM information, or other inputs, may not be read until
MCR.DONE transitions. MCR.DONE may be polled to determine if the flash memory module has
transitioned out of reset. Notice that the registers cannot be written until MCR.DONE is high.

35.3.5.2 Power-down mode

The power-down mode allows to turn off all flash memory DC current sources, so that all power
dissipation is due only to leakage in this mode.

Reads from or writes to the module are not possible in power-down mode.

The user may not read some registers (UMISR0–1, UT1–1 and part of UT0) until the power-down mode
is exited. On the contrary write access is locked on all the registers in Disable Mode.

When enabled the flash memory module returns to its pre-disable state in all cases unless in the process of
executing an erase high voltage operation at the time of disable.

If the flash memory module is disabled during an erase operation, MCR.ESUS bit is set to 1. This means
that flash memory module is first put into suspend state (after tSUSP). The User may resume the erase
operation at the time the module is enabled by clearing MCR.ESUS bit. MCR.EHV must be high to resume
the erase operation.

If the flash memory module is disabled during a program operation, the Disable Mode will be entered only
after the programming ends.

35.3.5.3 Slave Mode

It is forbidden to put code flash0 in Disable Mode or in Sleep mode or under reset when the data flash is
active.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1212 Freescale Semiconductor

35.3.6 Register description

The flash memory user registers mapping is shown in the Table 35-41.

Locations 0x0044, 0x0050, 0x0054 and 0x0058 are Write/Read from user point of view but no
functionality is associated. Registers are not accessible whenever MCR.DONE or UT0.AID are low:
reading returns indeterminate data while writing has no effect.

In the following some nonvolatile registers are described. Please notice that such entities are not
Flip-Flops, but locations of TestFlash sector with a special meaning.

During the flash memory initialization phase, the FPEC reads these nonvolatile registers and update the
corresponding volatile registers. When the FPEC detects ECC double errors in these special locations, it
behaves in the following way:

• In case of a failing system locations (configurations, redundancy, EmbAlgo firmware), the
initialization phase is interrupted and a Fatal Error is flagged.

• In case of failing user locations (protections, ...), the volatile registers are filled with all ‘1’s and
the flash memory initialization ends setting low the PEG bit of MCR.

Table 35-41. Data Flash Single Bank Registers

Address offset Register name Location

0x0000 Module Configuration Register (MCR) on page
1213

0x0004 Low/Mid address space block Locking register (LML) on page
1218

0x0008 Reserved —

0x000C Secondary Low/mid address space block Locking register (SLL) on page
1219

0x0010 Low/Mid address space block Select register (LMS) on page
1222

0x0014 Reserved —

0x0018 Address Register (ADR) on page
1223

0x001C-0x0038 Reserved —

0x003C User Test 0 register (UT0) on page
1224

0x0040 User Test 1 register (UT1) on page
1226

0x0044 Reserved —

0x0048 User Multiple Input Signature Register 0 (UMISR0) on page
1227

0x004C User Multiple Input Signature Register 1 (UMISR1) on page
1228

0x0050-0x0058 Reserved —

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1213

Table 35-42 lists bit access type abbreviations used in this section.

35.3.6.1 Module Configuration Register (MCR)

The Module Configuration Register is used to enable and monitor all modify operations of the flash
memory module.

Table 35-42. Abbreviations

Abbreviation Case Description

rw read/write The software can read and write to these bits.

rc read/clear The software can read and clear to these bits.

r read-only The software can only read these bits.

w write-only The software should only write to these bits.

Offset: 0x0000 Reset value: 0x07570X00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
EDC 0 0 0 0

SIZE
2

SIZE
1

SIZE
0

0 LAS2 LAS1 LAS0 0 MAS2 MAS1 MAS0

W w1c

Reset 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
EER RWE 0 0 PEAS

DON
E

PEG 0 0 0 0
PGM PSUS ERS ESUS EHV

W w1c w1c

Reset 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

Figure 35-28. Module Configuration Register (MCR)

Table 35-43. MCR field descriptions

Field Description

 EDC ECC Data Correction (Read/Clear)
EDC provides information on previous reads. If an ECC Single Error detection and correction occurred, the
EDC bit is set to ‘1’. This bit must then be cleared, or a reset must occur before this bit will return to a 0 state.
This bit may not be set to ‘1’ by the user.
In the event of an ECC Double Error detection, this bit will not be set.
If EDC is not set, or remains 0, this indicates that all previous reads (from the last reset, or clearing of EDC)
were not corrected through ECC.
Since this bit is an error flag, it must be cleared to ‘0’ by writing 1 to the register location. A write of 0 will have
no effect.
0: Reads are occurring normally.
1: An ECC Single Error occurred and was corrected during a previous read.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1214 Freescale Semiconductor

Bits
1:4

Reserved (Read Only)
Write these bits has no effect and read these bits always outputs 0.

SIZE[
2:0]

Array Space SIZE 2-0 (Read Only)
The value of SIZE field is dependent upon the size of the flash memory module.

Bit 8 Reserved (Read Only).
Write this bit has no effect and read this bit always outputs 0.

LAS[2
:0]

Low Address Space 2-0 (Read Only)
The value of the LAS field corresponds to the configuration of the Low Address Space.

Bit 12 Reserved (Read Only)
Write these bits has no effect and read these bits always outputs 0.

MAS2
-0

MAS2-0: Mid Address Space (Read Only)
The value of the MAS field corresponds to the configuration of the Mid Address Space.

EER ECC event Error (Read/Clear)
EER provides information on previous reads. If an ECC Double Error detection occurred, the EER bit is set
to ‘1’.
This bit must then be cleared, or a reset must occur before this bit will return to a 0 state. This bit may not be
set to ‘1’ by the user.
In the event of an ECC Single Error detection and correction, this bit will not be set.
If EER is not set, or remains 0, this indicates that all previous reads (from the last reset, or clearing of EER)
were correct.
Since this bit is an error flag, it must be cleared to ‘0’ by writing 1 to the register location. A write of 0 will have
no effect.
0: Reads are occurring normally.
1: An ECC Double Error occurred during a previous read.

Table 35-43. MCR field descriptions (continued)

Field Description

SIZE[2:0] Array space size

111 96 KB (Upper 32 KB is reserved)

LAS[2:0] Low address space sectorization

101 6 x 16 KB (Upper 32 KB is reserved)

MAS Mid address space sectorization

111 MID not present

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1215

RWE Read-while-Write event Error (Read/Clear)
RWE provides information on previous reads when a Modify operation is on going. If a RWW Error occurs,
the RWE bit will be set to ‘1’. Read-While-Write Error means that a read access to the flash memory Matrix
has occurred while the FPEC was performing a program or erase operation or an Array Integrity Check.
This bit must then be cleared, or a reset must occur before this bit will return to a 0 state. This bit may not be
set to ‘1’ by the user.
If RWE is not set, or remains 0, this indicates that all previous RWW reads (from the last reset, or clearing of
RWE) were correct.
Since this bit is an error flag, it must be cleared to ‘0’ by writing 1 to the register location. A write of 0 will have
no effect.
0: Reads are occurring normally.
1: A RWW Error occurred during a previous read.

Bits
18:19

Reserved (Read Only)
Write these bits has no effect and read these bits always outputs 0.

PEAS Program/Erase Access Space (Read Only)
PEAS is used to indicate which space is valid for program and erase operations: main array space or test
space.
PEAS = 0 indicates that the main address space is active for all flash memory module program and erase
operations.
PEAS = 1 indicates that the test address space is active for program and erase.
The value in PEAS is captured and held with the first interlock write done for Modify operations. The value of
PEAS is retained between sampling events (that is, subsequent first interlock writes).
0: Test address space is disabled for program/erase and main address space enabled.
1: Test address space is enabled for program/erase and main address space disabled.

DONE modify operation DONE (Read Only)
DONE indicates if the flash memory module is performing a high voltage operation.
DONE is set to 1 on termination of the flash memory module reset.
DONE is cleared to 0 just after a 0 to 1 transition of EHV, which initiates a high voltage operation, or after
resuming a suspended operation.
DONE is set to 1 at the end of program and erase high voltage sequences.
DONE is set to 1 (within tPABT or tEABT, equal to P/E Abort Latency) after a 1 to 0 transition of EHV,
which aborts a high voltage Program/Erase operation.
DONE is set to 1 (within tESUS, time equals to Erase Suspend Latency) after a 0 to 1 transition of ESUS,
which suspends an erase operation.
0: Flash memory is executing a high voltage operation.
1: Flash memory is not executing a high voltage operation.

Table 35-43. MCR field descriptions (continued)

Field Description

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1216 Freescale Semiconductor

PEG Program/Erase Good (Read Only)
The PEG bit indicates the completion status of the last flash memory Program, Erase, AIC or MM sequence
for which high voltage operations were initiated. The value of PEG is updated automatically during the
Program, Erase, AIC or MM high voltage operations.
Aborting a Program/Erase/AIC/MM high voltage operation will cause PEG to be cleared to ‘0’, indicating the
sequence failed.
PEG is set to ‘1’ when the flash memory module is reset, unless a flash memory initialization error has been
detected.
The value of PEG is valid only when PGM=1 and/or ERS=1 and after DONE transitions from ‘0’ to ‘1’ due to
an abort or the completion of a Program/Erase/AIC/MM operation. PEG is valid until PGM/ERS makes a ‘1’
to ‘0’ transition or EHV makes a ‘0’ to ‘1’ transition.
The value in PEG is not valid after a ‘0’ to ‘1’ transition of DONE caused by ESUS being set to logic ‘1’.
If Program or Erase are attempted on blocks that are locked, the response will be PEG=1, indicating that the
operation was successful, and the content of the block were properly protected from the Program or Erase
operation.
If a Program operation tries to program at ‘1’ bits that are at ‘0’, the program operation is correctly executed
on the new bits to be programmed at ‘0’, but PEG is cleared, indicating that the requested operation has
failed.
In AIC or MM PEG is set to ‘1’ when the operation is completed, regardless the occurrence of any error.
The presence of errors can be detected only comparing checksum value stored in UMIRS0-1.
0: Program or Erase, operation failed or aborted.
1: Program or Erase operation successful.
0: AIC or MM aborted.
1: AIC or MM operation successfully concluded, with or without checksum errors.

Bits
23:26

Reserved (Read Only)
Write these bits has no effect and read these bits always outputs 0.

PGM ProGraM (Read/Write)
PGM is used to set up the flash memory module for a Program operation.
A 0 to 1 transition of PGM initiates a Program sequence.
A 1 to 0 transition of PGM ends the Program sequence.
PGM can be set only under User Mode Read (ERS is low and UT0.AIE is low).
PGM can be cleared by the user only when EHV is low and DONE is high.
PGM is cleared on reset.
0: Flash memory is not executing a Program sequence.
1: Flash memory is executing a Program sequence.

PSUS Program SUSpend (Read/Write)
Write this bit has no effect, but the written data can be read back.

ERS ERaSe (Read/Write)
ERS is used to set up the flash memory module for an erase operation.
A 0 to 1 transition of ERS initiates an erase sequence.
A 1 to 0 transition of ERS ends the erase sequence.
ERS can be set only under User Mode Read (PGM is low and UT0.AIE is low).
ERS can be cleared by the user only when ESUS and EHV are low and DONE is high.
ERS is cleared on reset.
0: Flash memory is not executing an erase sequence.
1: Flash memory is executing an erase sequence.

Table 35-43. MCR field descriptions (continued)

Field Description

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1217

A number of MCR bits are protected against write when another bit, or set of bits, is in a specific state.
These write locks are covered on a bit by bit basis in the preceding description, but those locks do not
consider the effects of trying to write two or more bits simultaneously.

The flash memory module does not allow the user to write bits simultaneously which would put the device
into an illegal state. This is implemented through a priority mechanism among the bits. The bit changing
priorities are detailed in the Table 35-44.

ESUS Erase SUSpend (Read/Write)
ESUS is used to indicate that the flash memory module is in Erase Suspend or in the process of entering a
Suspend state. The flash memory module is in Erase Suspend when ESUS = 1 and DONE = 1.
ESUS can be set high only when ERS and EHV are high and PGM is low.
A 0 to 1 transition of ESUS starts the sequence which sets DONE and places the flash memory in Erase
Suspend. The flash memory module enters Suspend within tESUS of this transition.
ESUS can be cleared only when DONE and EHV are high and PGM is low.
A 1 to 0 transition of ESUS with EHV = 1 starts the sequence which clears DONE and returns the module to
Erase.
The flash memory module cannot exit Erase Suspend and clear DONE while EHV is low.
ESUS is cleared on reset.
0: Erase sequence is not suspended.
1: Erase sequence is suspended.

EHV Enable High Voltage (Read/Write)
The EHV bit enables the flash memory module for a high voltage Program/Erase operation.
EHV is cleared on reset.
EHV must be set after an interlock write to start a Program/Erase sequence. EHV may be set under one
of the following conditions:
Erase (ERS=1, ESUS=0, UT0.AIE=0)
Program (ERS=0, ESUS=0, PGM=1, UT0.AIE=0)

In normal operation, a 1 to 0 transition of EHV with DONE high and ESUS low terminates the current
Program/Erase high voltage operation.
When an operation is aborted, there is a 1 to 0 transition of EHV with DONE low and the eventual Suspend
bit low. An abort causes the value of PEG to be cleared, indicating a failing Program/Erase; address locations
being operated on by the aborted operation contain indeterminate data after an abort.
A suspended operation cannot be aborted.
Aborting a high voltage operation will leave the flash memory module addresses in an undeterminate data
state.
This may be recovered by executing an Erase on the affected blocks.
EHV may be written during Suspend. EHV must be high to exit Suspend. EHV may not be written after ESUS
is set and before DONE transitions high. EHV may not be cleared after ESUS is cleared and before DONE
transitions low.
0: Flash memory is not enabled to perform an high voltage operation.
1: Flash memory is enabled to perform an high voltage operation.

Table 35-44. MCR bits set/clear priority levels

Priority Level MCR bits

1 ERS

2 PGM

Table 35-43. MCR field descriptions (continued)

Field Description

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1218 Freescale Semiconductor

If the user attempts to write two or more MCR bits simultaneously then only the bit with the lowest priority
level is written.

35.3.6.2 Low/Mid address space block Locking register (LML)

Address offset: 0x0004

Reset value: 0x00X0_00XX, initially determined by NVLML value from test sector.

35.3.6.2.1 Nonvolatile Low/Mid address space block Locking register (NVLML)

The Low/Mid Address Space Block Locking register provides a means to protect blocks from being
modified. These bits, along with bits in the SLL register, determine if the block is locked from Program or
Erase. An “OR” of LML and SLL determine the final lock status.

The LML register has a related Nonvolatile Low/Mid Address Space Block Locking register located in
TestFlash that contains the default reset value for LML: the NVLML register content is read during the
reset phase of the flash memory module, and loaded into the LML.

3 EHV

4 ESUS

Offset: 0x403DE8 Delivery value: 0xFFFF_FFFF

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R LME 0 0 0 0 0 0 0 0 0 0
TSLK 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
LLK3 LLK2 LLK1 LLK0

W

Reset 0 0 0 0 0 0 0 0 0 0 1 1 X X X X

Figure 35-29. Nonvolatile Low/Mid address space block Locking register (NVLML)

Table 35-44. MCR bits set/clear priority levels (continued)

Priority Level MCR bits

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1219

35.3.6.3 Secondary Low/mid address space block Locking register (SLL)

Address offset: 0x000C

Reset value: 0x00X0_00XX

Table 35-45. LML field descriptions

Field Description

LME Low/Mid address space block Enable (Read Only)
This bit is used to enable the Lock registers (TSLK and LLK5-0) to be set or cleared by registers writes.
This bit is a status bit only. The method to set this bit is to write a password, and if the password matches,
the LME bit will be set to reflect the status of enabled, and is enabled until a reset operation occurs. For LME
the password 0xA1A11111 must be written to the LML register.
0: Low Address Locks are disabled: TSLK and LLK5-0 cannot be written.
1: Low Address Locks are enabled: TSLK and LLK5-0 can be written.

Bits
1:10

Reserved (Read Only).
Write these bits has no effect and read these bits always outputs 0.

TSLK Test address space block LocK (Read/Write)
This bit is used to lock the block of Test Address Space from Program and Erase (Erase is any case forbidden
for Test block).
A value of 1 in the TSLK register signifies that the Test block is locked for Program and Erase.
A value of 0 in the TSLK register signifies that the Test block is available to receive program and erase pulses.
The TSLK register is not writable once an interlock write is completed until MCR.DONE is set at the
completion of the requested operation. Likewise, the TSLK register is not writable if a high voltage operation
is suspended or if a margin mode is on going.
Upon reset, information from the TestFlash block is loaded into the TSLK register. The TSLK bit may be
written as a register. Reset will cause the bit to go back to its TestFlash block value. The default value of the
TSLK bit (assuming erased fuses) would be locked.
TSLK is not writable unless LME is high.
0: Test Address Space Block is unlocked and can be modified (also if SLL.STSLK = 0).
1: Test Address Space Block is locked and cannot be modified.

Bits
12:25

Reserved (Read Only).
Write these bits has no effect and read these bits always outputs 0.

LLK[3:
0]

Low address space block LocK 3-0 (Read/Write)
These bits are used to lock the blocks of Low Address Space from Program and Erase.
LLK3:0 are related to sectors B0F3-0, respectively.
A value of 1 in a bit of the LLK register signifies that the corresponding block is locked for Program and Erase.
A value of 0 in a bit of the LLK register signifies that the corresponding block is available to receive program
and erase pulses.
The LLK register is not writable once an interlock write is completed until MCR.DONE is set at the completion
of the requested operation. Likewise, the LLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the LLK registers. The LLK bits may be written
as a register. Reset will cause the bits to go back to their TestFlash block value. The default value of the LLK
bits (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the LLK bits will default
to locked, and will not be writable. The reset value will always be 1 (independent of the TestFlash block), and
register writes will have no effect.
LLK is not writable unless LME is high.
0: Low Address Space Block is unlocked and can be modified (also if SLL.SLK = 0).
1: Low Address Space Block is locked and cannot be modified.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1220 Freescale Semiconductor

35.3.6.3.1 Nonvolatile Secondary Low/mid address space block Locking register
(NVSLL)

The Secondary Low/Mid Address Space Block Locking register provides an alternative means to protect
blocks from being modified. These bits, along with bits in the LML register, determine if the block is
locked from Program or Erase. An “OR” of LML and SLL determine the final lock status.

The SLL register has a related Nonvolatile Secondary Low/Mid Address Space Block Locking register
located in TestFlash that contains the default reset value for SLL. During the reset phase of the flash
memory module, the NVSLL register content is read and loaded into the SLL.

Offset: 0x403DF8 Delivery value: 0xFFFF_FFFF

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SLE 0 0 0 0 0 0 0 0 0 0

STSL
K

0 0 0 0

W rw/X

Reset 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
SLK3 SLK2 SLK1 SLK0

W

Reset 0 0 0 0 0 0 0 0 0 0 1 1 X X X X

Figure 35-30. Nonvolatile Secondary Low/mid address space block Locking reg (NVSLL)

Table 35-46. SLL field descriptions

Field Description

SLE Secondary Low/mid address space block Enable (Read Only)
This bit is used to enable the Lock registers (STSLK and SLK 5-0) to be set or cleared by registers writes.
This bit is a status bit only. The method to set this bit is to write a password, and if the password matches,
the SLE bit will be set to reflect the status of enabled, and is enabled until a reset operation occurs. For SLE
the password 0xC3C33333 must be written to the SLL register.
0: Secondary Low/Mid Address Locks are disabled: STSLK and SLK 5-0 cannot be written.
1: Secondary Low/Mid Address Locks are enabled: STSLK and SLK 5-0 can be written.

Bits
1:10

Reserved (Read Only).
Write these bits has no effect and read these bits always outputs 0.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1221

STSL
K

Secondary Test/Shadow address space block LocK (Read/Write)
This bit is used as an alternate means to lock the block of Test Address Space from Program and Erase
(Erase is any case forbidden for Test block).
A value of 1 in the STSLK register signifies that the Test block is locked for Program and Erase.
A value of 0 in the STSLK register signifies that the Test block is available to receive program and erase
pulses.
The STSLK register is not writable once an interlock write is completed until MCR.DONE is set at the
completion of the requested operation. Likewise, the STSLK register is not writable if a high voltage operation
is suspended or if a margin mode is on going.
Upon reset, information from the TestFlash block is loaded into the STSLK register. The STSLK bit may be
written as a register. Reset will cause the bit to go back to its TestFlash block value. The default value of the
STSLK bit (assuming erased fuses) would be locked.
STSLK is not writable unless SLE is high.
0: Test Address Space Block is unlocked and can be modified (also if LML.TSLK = 0).
1: Test Address Space Block is locked and cannot be modified.

Bits
12:25

Reserved (Read Only).
Write these bits has no effect and read these bits always outputs 0.

SLK[3
:0]

Secondary Low address space block locK 3-0 (Read/Write)
These bits are used as an alternate means to lock the blocks of Low Address Space from Program and
Erase.
SLK[35:0] are related to sectors B0F3-0, respectively.
A value of 1 in a bit of the SLK register signifies that the corresponding block is locked for Program and Erase.
A value of 0 in a bit of the SLK register signifies that the corresponding block is available to receive program
and erase pulses.
The SLK register is not writable once an interlock write is completed until MCR.DONE is set at the completion
of the requested operation. Likewise, the SLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the SLK registers. The SLK bits may be
written as a register. Reset will cause the bits to go back to their TestFlash block value. The default value of
the SLK bits (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the SLK bits will default
to locked, and will not be writable. The reset value will always be 1 (independent of the TestFlash block), and
register writes will have no effect.
SLK is not writable unless SLE is high.
0: Low Address Space Block is unlocked and can be modified (also if LML.LLK = 0).
1: Low Address Space Block is locked and cannot be modified.

Table 35-46. SLL field descriptions (continued)

Field Description

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1222 Freescale Semiconductor

35.3.6.4 Low/Mid address space block Select register (LMS)

The Low/Mid Address Space Block Select register provides a means to select blocks to be operated on
during erase.

Offset: 0x00010 Reset value: 0x0000_0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
LSL3 LSL2 LSL1 LSL0

W

Reset 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

Figure 35-31. Low/Mid address space block Select register (LMS)

Table 35-47. LMS field descriptions

Field Description

Bits
0:25

Reserved (Read Only).
Write these bits has no effect and read these bits always outputs 0.

LSL[3:
0]

Low address space block SeLect 3-0 (Read/Write)
A value of 1 in the select register signifies that the block is selected for erase.
A value of 0 in the select register signifies that the block is not selected for erase. The reset value for the
select register is 0, or unselected.
LSL[3:0] are related to sectors B0F3-0, respectively.
The blocks must be selected (or unselected) before doing an erase interlock write as part of the erase
sequence. The select register is not writable once an interlock write is completed or if a high voltage operation
is suspended.
In the event that blocks are not present (due to configuration or total memory size), the corresponding LSL
bits will default to unselected, and will not be writable. The reset value will always be 0, and register writes
will have no effect.
0: Low Address Space Block is unselected for Erase.
1: Low Address Space Block is selected for Erase.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1223

35.3.6.5 Address Register (ADR)

The Address Register provides the first failing address in the event module failures (ECC, RWW or FPEC)
occur or the first address at which an ECC single error correction occurs.

Offset: 0x00018 Reset value: 0x0000_0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 AD[22:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R AD[15:2] 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-32. Address Register (ADR)

Table 35-48. ADR field descriptions

Field Description

AD[22:2] ADdress 22-2 (Read Only)
The Address Register provides the first failing address in the event of ECC error (MCR.EER set) or the
first failing address in the event of RWW error (MCR.RWE set), or the address of a failure that may
have occurred in a FPEC operation (MCR.PEG cleared). The Address Register also provides the first
address at which an ECC single error correction occurs (MCR.EDC set), if the device is configured to
show this feature.

The ECC double error detection takes the highest priority, followed by the RWW error, the FPEC error
and the ECC single error correction. When accessed ADR will provide the address related to the first
event occurred with the highest priority. The priorities between these four possible events is
summarized in the Table 35-49.
In User Mode the Address Register is read only.

Table 35-49. ADR content: priority list

Priority Level Error Flag ADR content

1 MCR.EER = 1 Address of first ECC Double Error

2 MCR.RWE = 1 Address of first RWW Error

3 MCR.PEG = 0 Address of first FPEC Error

4 MCR.EDC = 1 Address of first ECC Single Error Correction

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1224 Freescale Semiconductor

35.3.6.6 User Test 0 register (UT0)

The User Test feature gives the User of the flash memory module the ability to perform test features on the
flash memory. The User Test 0 Register allows to control the way in which the flash memory content check
is done. Bits MRE, MRV, AIS, EIE and DSI6-0 of the User Test 0 Register are not accessible whenever
MCR.DONE or UT0.AID are low: reading returns indeterminate data while writing has no effect.

Offset: 0x0003C Reset value: 0x0000_0001

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
UTE

0 0 0 0 0 0 0 0
DSI6 DSI5 DSI4 DSI3 DSI2 DSI1 DSI0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0
X MRE MRV EIE AIS AIE

AID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 35-33. User Test 0 register (UT0)

Table 35-50. UT0 field descriptions

Field Description

UTE User Test Enable (Read/Clear)
This status bit gives indication when User Test is enabled. All bits in UT0-1 and UMISR0-1 are locked when
this bit is 0.
This bit is not writeable to a 1, but may be cleared. The reset value is 0.
The method to set this bit is to provide a password, and if the password matches, the UTE bit is set to reflect
the status of enabled, and is enabled until it is cleared by a register write.
For UTE the password 0xF9F99999 must be written to the UT0 register.

Bits
1:8

Reserved (Read Only).
Write these bits has no effect and read these bits always outputs 0.

DSI[6:
0]

Data Syndrome Input 6-0 (Read/Write)
These bits represent the input of Syndrome bits of ECC logic used in the ECC Logic Check. Bits DSI[6:0]
correspond to the 7 syndrome bits on a single word.
These bits are not accessible whenever MCR.DONE or UT0.AID are low: reading returns indeterminate data
while writing has no effect.
0: The syndrome bit is forced at 0.
1: The syndrome bit is forced at 1.

Bits
16:24

Reserved (Read Only).
Write these bits has no effect and read these bits always outputs 0.

Bit 25 Reserved (Read/Write).
This bit can be written and its value can be read back, but there is no function associated.
This bit is not accessible whenever MCR.DONE or UT0.AID are low: reading returns indeterminate data
while writing has no effect.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1225

MRE Margin Read Enable (Read/Write)
MRE enables margin reads to be done. This bit, combined with MRV, enables start of FPEC margin
reads respect to erased or programmed value. Outputs of margin read are: checksum values in
UMISR0-1.
This bit is not accessible whenever MCR.DONE or UT0.AID are low: reading returns indeterminate data
while writing has no effect.
0: Margin reads are not enabled, all reads are User mode reads.
1: Margin reads are enabled.

MRV Margin Read Value (Read/Write)
If MRE is high, MRV selects the margin level that is being checked. Margin can be checked to an erased level
(MRV = 1) or to a programmed level (MRV = 0).
This bit is not accessible whenever MCR.DONE or UT0.AID are low: reading returns indeterminate data
while writing has no effect.
0: Zero’s (programmed) margin reads are requested (if MRE = 1).
1: One’s (erased) margin reads are requested (if MRE = 1).

EIE ECC data Input Enable (Read/Write)
EIE enables the ECC Logic Check operation to be done.
This bit is not accessible whenever MCR.DONE or UT0.AID are low: reading returns indeterminate data
while writing has no effect.
0: ECC Logic Check is not enabled.
1: ECC Logic Check is enabled.

AIS Array Integrity Sequence (Read/Write)
AIS determines the address sequence to be used during array integrity checks.
The default sequence (AIS=0) is meant to replicate sequences normal user code follows, and
thoroughly checks the read propagation paths. This sequence is proprietary.
The alternative sequence (AIS=1) is just logically sequential.
It should be noted that the time to run a sequential sequence is significantly shorter than the time to run
the proprietary sequence.
This bit is not accessible whenever MCR.DONE or UT0.AID are low: reading returns indeterminate data
while writing has no effect.
0: Array Integrity sequence is proprietary sequence.
1: Array Integrity sequence is sequential.

AIE Array Integrity Enable (Read/Write)
AIE set to 1 starts the Array Integrity Check done on all selected and unlocked blocks.
The pattern is selected by AIS, and the MISR (UMISR0-1) can be checked after the operation is
complete, to determine if a correct signature is obtained.
AIE can be set only if MCR.ERS, MCR.PGM and MCR.EHV are all low.
0: Array Integrity Checks are not enabled.
1: Array Integrity Checks are enabled.

AID Array Integrity Done (Read Only)
AID will be cleared upon an Array Integrity Check being enabled (to signify the operation is on-going).
Once completed, AID will be set to indicate that the Array Integrity Check is complete. At this time the
MISR (UMISR0-1) can be checked.
0: Array Integrity Check is on-going.
1: Array Integrity Check is done.

Table 35-50. UT0 field descriptions (continued)

Field Description

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1226 Freescale Semiconductor

35.3.6.7 User Test 1 register (UT1)

The User Test 1 Register allows to enable the checks on the ECC logic related to the Word. The User Test
1 Register is not accessible whenever MCR.DONE or UT0.AID are low: reading returns indeterminate
data while writing has no effect.

Offset: 0x00040 Reset value: 0x0000_0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DAI31 DAI30 DAI29 DAI28 DAI27 DAI26 DAI25 DAI24 DAI23 DAI22 DAI21 DAI20 DAI19 DAI18 DAI17 DAI16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DAI15 DAI14 DAI13 DAI12 DAI11 DAI10 DAI09 DAI08 DAI07 DAI06 DAI05 DAI04 DAI03 DAI02 DAI01 DAI00

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-34. User Test 1 register (UT1)

Table 35-51. UT1 field descriptions

Field Description

DAI[3
1:00]

Data Array Input 31-0 (Read/Write)
These bits represent the input of even word of ECC logic used in the ECC Logic Check. Bits DAI[31:00]
correspond to the 32 array bits word.
0: The array bit is forced at 0.
1: The array bit is forced at 1.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1227

35.3.6.8 User Multiple Input Signature Register 0 (UMISR0)

The Multiple Input Signature Register provides a mean to evaluate the Array Integrity. The User Multiple
Input Signature Register 0 represent the bits 31-0 of the word. The UMISR0 Register is not accessible
whenever MCR.DONE or UT0.AID are low: reading returns indeterminate data while writing has no
effect.

Offset: 0x00048 Reset value: 0x0000_0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R MS31 MS30 MS29 MS28 MS27 MS26 MS25 MS24 MS23 MS22 MS21 MS20 MS19 MS18 MS17 MS16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R MS15 MS14 MS13 MS12 MS11 MS10 MS09 MS08 MS07 MS06 MS05 MS04 MS03 MS02 MS01 MS00

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-35. User Multiple Input Signature Register 0 (UMISR0)

Table 35-52. UMSIR0 field descriptions

Field Description

MS[31
:00]

Multiple input Signature 31-00 (Read/Write)
These bits represent the MISR value obtained accumulating the bits 31:0 of all the pages read from the flash
memory.
The MS can be seeded to any value by writing the UMISR0 register.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1228 Freescale Semiconductor

35.3.6.9 User Multiple Input Signature Register 1 (UMISR1)

The Multiple Input Signature Register provides a mean to evaluate the Array Integrity. The User Multiple
Input Signature Register 1 represent the ECC bits of the 32 bits word: bits 6-0 are the ECC bits for the
Word; bits 10 and 11 of MISR are respectively the double and single ECC error detection. The UMISR1
Register is not accessible whenever MCR.DONE or UT0.AID are low: reading returns indeterminate data
while writing has no effect.

35.3.7 Programming considerations

35.3.7.1 Modify operation

All the Modify Operations of the flash memory module are managed through the flash memory User
Registers Interface. All the sectors of the flash memory module belong to the same partition (Bank),
therefore when a Modify operation is active on some sectors no read access is possible on any other sector
(Read-While-Modify is not supported).

During a flash memory Modify Operation any attempt to read any flash memory location will output
invalid data and bit RWE of MCR will be automatically set. This means that the flash memory module is
not fetchable when a Modify Operation is active: the Modify Operation commands must be executed from
another Memory (internal Ram or external Memory). If during a Modify Operation a reset occurs, the
operation is suddenly terminated and the module is reset to Read Mode. The data integrity of the flash

Offset: 0x0004C Reset value: 0x0000_0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS63 MS62 MS61 MS60 MS59 MS58 MS57 MS56 MS55 MS54 MS53 MS52 MS51 MS50 MS49 MS48

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS47 MS46 MS45 MS44 MS43 MS42 MS41 MS40 MS39 MS38 MS37 MS36 MS35 MS34 MS33 MS32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-36. User Multiple Input Signature Register 1 (UMISR1)

Table 35-53. UMISR1 field descriptions

Field Description

MS[63
:32]

Multiple input Signature 63-32 (Read/Write)
These bits represents the MISR value obtained accumulating:
7 ECC bits for the Word (on MS38-32);
single ECC error detection (on MS42);
double ECC error detection (on MS43);
The MS can be seeded to any value by writing the UMISR1 register.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1229

memory section where the Modify Operation has been terminated or aborted is not guaranteed: the
interrupted flash memory Modify Operation must be repeated. In general each Modify Operation is started
through a sequence of 3 steps:

1. The first instruction is used to select the desired operation by setting its corresponding selection bit
in MCR (PGM or ERS) or UT0 (MRE or EIE).

2. The second step is the definition of the operands: the Address and the Data for programming or the
Sectors for erase or margin read.

3. The third instruction is used to start the Modify Operation, by setting EHV in MCR or AIE in UT0.
Once selected, but not yet started, one operation can be canceled by resetting the operation
selection bit.

A summary of the available flash memory modify operations is shown in the Table 35-37.

Once bit MCR.EHV (or UT0.AIE) is set, all the operands can no more be modified until bit MCR.DONE
(or UT0.AID) is high.

In general each modify operation is completed through a sequence of four steps:

1. Wait for operation completion: wait for bit MCR.DONE (or UT0.AID) to go high.

2. Check operation result: check bit MCR.PEG (or compare UMISR0-1 with expected value).

3. Switch off FPEC by resetting MCR.EHV (or UT0.AIE).

4. Deselect current operation by clearing MCR.PGM/ERS (or UT0.MRE/EIE).

In the following all the possible modify operations are described and some examples of the sequences
needed to activate them are presented.

35.3.7.2 Word program

A flash memory program sequence operates on any word within the flash memory core.

Whenever flash bits are programmed, ECC bits also get programmed, unless the selected address belongs
to a sector in which the ECC has been disabled in order to allow bit manipulation. ECC is handled on a
32-bit boundary.

Programming changes the value stored in an array bit from logic 1 to logic 0 only. Programming cannot
change a stored logic 0 to a logic 1. Addresses in locked/disabled blocks cannot be programmed.

The user may program the values in any words within a single program sequence.

Table 35-54. Flash memory modify operations

Operation Select bit Operands Start bit

Double word program MCR.PGM Address and data by interlock writes MCR.EHV

Sector erase MCR.ERS LMS MCR.EHV

Array integrity check None LMS UT0.AIE

Margin read UT0.MRE UT0.MRV + LMS UT0.AIE

ECC logic check UT0.EIE UT0.DSI, UT1, UT2 UT0.AIE

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1230 Freescale Semiconductor

The Program operation consists of the following sequence of events:

1. Change the value in the MCR.PGM bit from 0 to 1.

2. Ensure the block that contains the address to be programmed is unlocked.

a) Write the first address to be programmed with the program data.

b) The flash memory module latches address bits (22:2) at this time.

c) The flash memory module latches data written as well.

d) This write is referred to as a program data interlock write. An interlock is at 32 bits.

3. Write a logic 1 to the MCR[EHV] bit to start the internal program sequence or skip to step 8 to
terminate.

4. Wait until the MCR[DONE] bit goes high.

5. Confirm MCR[PEG]=1.

6. Write a logic 0 to the MCR[EHV] bit.

7. If more addresses are to be programmed, return to step 2.

8. Write a logic 0 to the MCR[PGM] bit to terminate the program operation.

Program may be initiated with the 0 to 1 transition of the MCR[PGM] bit or by clearing the MCR[EHV]
bit at the end of a previous program. The first write after a program is initiated determines the page address
to be programmed. This first write is referred to as an interlock write. The interlock write determines if the
test or normal array space will be programmed by causing MCR[PEAS] to be set/cleared. An interlock
write must be performed before setting MCR[EHV]. The user may terminate a program sequence by
clearing MCR[PGM] prior to setting MCR[EHV]. After the interlock write, additional writes only affect
the data to be programmed in the word. If multiple writes are done to the same location the data for the last
write is used in programming.

While MCR[DONE] is low and MCR[EHV] is high, the user may clear EHV, resulting in a program abort.
A Program abort forces the module to step 7 of the program sequence. An aborted program will result in
MCR[PEG] being set low, indicating a failed operation. MCR[DONE] must be checked to know when the
aborting command has completed. The data space being operated on before the abort will contain
indeterminate data. This may be recovered by repeating the same program instruction or executing an erase
of the affected blocks.

Example 35-8. Word program of data 0x55AA55AA at address 0x00AAA8

MCR = 0x00000010; /* Set PGM in MCR: Select Operation */
(0x00AAA8) = 0x55AA55AA; /* Latch Address and 32 LSB data */
MCR = 0x00000011; /* Set EHV in MCR: Operation Start */
do /* Loop to wait for DONE=1 */
{ tmp = MCR; /* Read MCR */
} while (!(tmp & 0x00000400));
status = MCR & 0x00000200; /* Check PEG flag */
MCR = 0x00000010; /* Reset EHV in MCR: Operation End */
MCR = 0x00000000; /* Reset PGM in MCR: Deselect Operation */

35.3.7.3 Sector erase

Erase changes the value stored in all bits of the selected block(s) to logic 1. An erase sequence operates on
any combination of blocks (sectors). The test block cannot be erased.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1231

The erase sequence is fully automated within the flash memory. The user only needs to select the blocks
to be erased and initiate the erase sequence. Locked/disabled blocks cannot be erased. If multiple blocks
are selected for erase during an erase sequence, no specific operation order must be assumed.

The erase operation consists of the following sequence of events:

1. Change the value in the MCR.ERS bit from 0 to 1.

2. Select the block(s) to be erased by writing ‘1’s to the appropriate register(s).
Note that Lock and Select are independent. If a block is selected and locked, no erase will occur.

3. Write to any address in flash memory. This is referred to as an erase interlock write.

4. Write a logic 1 to the MCR.EHV bit to start the internal erase sequence or skip to step 9 to
terminate.

5. Wait until the MCR.DONE bit goes high.

6. Confirm MCR.PEG=1.

7. Write a logic 0 to the MCR.EHV bit.

8. If more blocks are to be erased, return to step 2.

9. Write a logic 0 to the MCR.ERS bit to terminate the erase operation.

After setting MCR.ERS, one write, referred to as an interlock write, must be performed before MCR.EHV
can be set to 1. Data words written during erase sequence interlock writes are ignored. The User may
terminate the erase sequence by clearing ERS before setting EHV.

An erase operation may be aborted by clearing MCR.EHV assuming MCR.DONE is low, MCR.EHV is
high and MCR.ESUS is low. An erase abort forces the module to step 8 of the erase sequence.

An aborted erase will result in MCR.PEG being set low, indicating a failed operation. MCR.DONE must
be checked to know when the aborting command has completed. The block(s) being operated on before
the abort contain indeterminate data. This may be recovered by executing an erase on the affected blocks.
The User may not abort an erase sequence while in erase suspend.

Example 35-9. Erase of sectors B0F1 and B0F2

MCR = 0x00000004; /* Set ERS in MCR: Select Operation */
LMS = 0x00000006; /* Set LSL2-1 in LMS: Select Sectors to erase */
(0x000000) = 0xFFFFFFFF; /* Latch a flash memory Address with any data */
MCR = 0x00000005; /* Set EHV in MCR: Operation Start */
do /* Loop to wait for DONE=1 */
{ tmp = MCR; /* Read MCR */
} while (!(tmp & 0x00000400));
status = MCR & 0x00000200; /* Check PEG flag */
MCR = 0x00000004; /* Reset EHV in MCR: Operation End */
MCR = 0x00000000; /* Reset ERS in MCR: Deselect Operation */

35.3.7.3.1 Erase suspend/resume

The erase sequence may be suspended to allow read access to the flash memory Core. It is not possible to
program or to erase during an erase suspend. During erase suspend, all reads to blocks targeted for erase
return indeterminate data.An erase suspend can be initiated by changing the value of the MCR.ESUS bit
from 0 to 1. MCR.ESUS can be set to 1 at any time when MCR.ERS and MCR.EHV are high and

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1232 Freescale Semiconductor

MCR.PGM is low. A 0 to 1 transition of MCR.ESUS causes the module to start the sequence which places
it in erase suspend.

The User must wait until MCR.DONE=1 before the module is suspended and further actions are
attempted. MCR.DONE will go high no more than tESUS after MCR.ESUS is set to 1. Once suspended,
the array may be read. flash memory Core reads while MCR.ESUS=1 from the block(s) being erased
return indeterminate data.

Example 35-10. Sector erase suspend

MCR = 0x00000007; /* Set ESUS in MCR: Erase Suspend */
do /* Loop to wait for DONE=1 */
{ tmp = MCR; /* Read MCR */
} while (!(tmp & 0x00000400));

Notice that there is no need to clear MCR.EHV and MCR.ERS in order to perform reads during erase
suspend. The erase sequence is resumed by writing a logic 0 to MCR.ESUS. MCR.EHV must be set to ‘1’
before MCR.ESUS can be cleared to resume the operation. The module continues the erase sequence from
one of a set of predefined points. This may extend the time required for the erase operation.

Example 35-11. Sector erase resume

MCR = 0x00000005; /* Reset ESUS in MCR: Erase Resume */

35.3.7.4 User Test Mode

User Test Mode is a procedure to check the integrity of the flash memory module.

Three kinds of test can be performed:

• Array Integrity Self Check

• Margin Read

• ECC Logic Check

The User Test Mode is equivalent to a Modify operation: read accesses attempted by the user during User
Test Mode generates a Read-While-Write Error (RWE of MCR set).

It is not allowed to perform User Test operations on the Test and Shadow blocks.

35.3.7.4.1 Array integrity self check

Array Integrity is checked using a pre-defined address sequence (proprietary), and this operation is
executed on selected and unlocked blocks. Once the operation is completed, the results of the reads can be
checked by reading the MISR value (stored in UMISR0-1), to determine if an incorrect read, or ECC
detection was noted.

The internal MISR calculator is a 32 bit register. The 32 bit data, the 7 ECC data and the single and double
ECC errors of the Word are therefore captured by the MISR through 2 different read accesses at the same
location. The whole check is done through 2 complete scans of the memory address space:

1. The 1st pass will scan only bits 31-0 of each word.

2. The 2nd pass will scan only the ECC bits (7) and the single and double ECC errors (1 + 1) of each
word.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1233

The 32 data bit and the 7 ECC data are sampled before the eventual ECC correction, while the single and
double error flags are sampled after the ECC evaluation. Only data from existing and unlocked locations
are captured by the MISR. The MISR can be seeded to any value by writing the UMISR0-1 registers.

Once command is started, Array Integrity check is run by FPEC using system clock and the number of
wait states identified by address and data wait states.

The Array Integrity Self Check consists of the following sequence of events:

1. Set UTE in UT0 by writing the related password in UT0.

2. Select the block(s) to be checked by writing 1’s to the appropriate register(s) in LMS. Note that
Lock and Select are independent. If a block is selected and locked, no Array Integrity Check will
occur.

3. Set eventually UT0.AIS bit for a sequential addressing only.

4. Clear (or insert seed) UMISR0-1

5. Write a logic 1 to the UT0.AIE bit to start the Array Integrity Check.

6. Wait until the UT0.AID bit goes high.

7. Compare UMISR0-1 content with the expected result.

8. Write a logic 0 to the UT0.AIE bit.

9. If more blocks are to be checked, return to step 2.

10. clear UT0 writing UT0.UTE to ‘0’

It is recommended to leave UT0.AIS at 0 and use the proprietary address sequence that checks the read
path more fully, although this sequence takes more time. While UT0.AID is low and UT0.AIE is high, the
User may clear AIE, resulting in a Array Integrity Check abort.

UT0.AID must be checked to know when the aborting command has completed.

Example 35-12. Array integrity check of sectors B0F1 and B0F2

UT0 = 0xF9F99999; /* Set UTE in UT0: Enable User Test */
LMS = 0x00000006; /* Set LSL2-1 in LMS: Select Sectors */
UT0 = 0x80000002; /* Set AIE in UT0: Operation Start */
do /* Loop to wait for AID=1 */
{ tmp = UT0; /* Read UT0 */
} while (!(tmp & 0x00000001));
data0 = UMISR0; /* Read UMISR0 content*/
data1 = UMISR1; /* Read UMISR1 content*/
UT0 = 0x00000000; /* Reset UTE and AIE in UT0: Operation End */

35.3.7.4.2 Margin read

Margin read procedure (either Margin 0 or Margin 1), can be run on unlocked blocks in order to unbalance
the Sense Amplifiers, respect to standard read conditions, so that all the read accesses reduce the margin
vs ‘0’ (UT0.MRV = ‘0’) or vs ‘1’ (UT0.MRV = ‘1’). Locked sectors are ignored by MISR calculation and
ECC flagging.

The results of the margin reads can be checked comparing checksum value in UMISR0-1. Since Margin
reads are done at voltages that differ than the normal read voltage, lifetime expectancy of the flash memory
module is impacted by the execution of Margin reads.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1234 Freescale Semiconductor

Doing Margin reads repetitively results in degradation of the flash memory Array, and shorten expected
lifetime experienced at normal read levels. It is recommended the Margin reads be done on a limited basis
(less than 10 times before the next chip erase).

The Margin Read Setup operation consists of the following sequence of events:

1. Set UTE in UT0 by writing the related password in UT0.

2. Select the block(s) to be checked by writing 1’s to the appropriate register(s) in LMS. Note that
Lock and Select are independent. If a block is selected and locked, no Margin Read will occur.

3. Set eventually UT0.AIS bit for a sequential addressing only.

4. Change the value in the UT0.MRE bit from 0 to 1.

5. Select the Margin level: UT0.MRV=0 for 0’s margin, UT0.MRV=1 for 1’s margin.

6. Write a logic 1 to the UT0.AIE bit to start the Margin Read Setup or skip to step 6 to terminate.

7. Wait until the UT0.AID bit goes high.

8. Compare UMISR0-1 content with the expected result.

9. Write a logic 0 to the UT0.AIE UT0.MRE and UT0.MRV bits.

It is recommended to leave UT0.AIS at 1 and use the linear address sequence and takes less time. While
UT0.AID is low and UT0.AIE is high, the User may clear AIE, resulting in a Margin Mode abort.
UT0.AID must be checked to know when the aborting command has completed.

Example 35-13. Margin read setup versus ‘1’s

UT0 = 0xF9F99999; /* Set UTE in UT0: Enable User Test */
UT0 = 0x80000020; /* Set MRE in UT0: Select Operation */
UT0 = 0x80000030; /* Set MRV in UT0: Select Margin versus 1’s */
UT0 = 0x80000032; /* Set AIE in UT0: Operation Start */
do /* Loop to wait for AID=1 */
{ tmp = UT0; /* Read UT0 */
} while (!(tmp & 0x00000001));
data0 = UMISR0; /* Read UMISR0 content*/
data1 = UMISR1; /* Read UMISR1 content*/
UT0 = 0x00000000; /* Reset UTE, AIE, MRE, MRV in UT0: Deselect
Operation */

35.3.7.4.3 ECC logic check

ECC logic can be checked by forcing the input of ECC logic: the 32 bits of data and the 7 bits of ECC
syndrome can be individually forced and they will drive simultaneously at the same value the ECC logic
of the word.

The results of the ECC Logic Check can be verified by reading the MISR value. The ECC Logic Check
operation consists of the following sequence of events:

1. Set UTE in UT0 by writing the related password in UT0.

2. Write in UT1.DAI31-0 Word Input value.

3. Write in UT0.DSI6-0 the Syndrome Input value.

4. Select the ECC Logic Check: write a logic 1 to the UT0.EIE bit.

5. Write a logic 1 to the UT0.AIE bit to start the ECC Logic Check.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1235

6. Wait until the UT0.AID bit goes high.

7. Compare UMISR0-1 content with the expected result.

8. Write a logic 0 to the UT0.AIE bit.

Notice that when UT0.AID is low UMISR0-1, UT1 and bits MRE, MRV, EIE, AIS and DSI6-0 of UT0 are
not accessible: reading returns undeterminate data and write has no effect.

Example 35-14. ECC logic check

UT0 = 0xF9F99999; /* Set UTE in UT0: Enable User Test */
UT1 = 0x55555555; /* Set DAI31-0 in UT1: Word Input Data */
UT0 = 0x80380000; /* Set DSI6-0 in UT0: Syndrome Input Data */
UT0 = 0x80380008; /* Set EIE in UT0: Select ECC Logic Check */
UT0 = 0x8038000A; /* Set AIE in UT0: Operation Start */
do /* Loop to wait for AID=1 */
{ tmp = UT0; /* Read UT0 */
} while (!(tmp & 0x00000001));
data0 = UMISR0; /* Read UMISR0 content (expected 0x55555555) */
UT0 = 0x00000000; /* Reset UTE, AIE and EIE in UT0: Operation End */

35.3.8 Error correction code

The flash memory module provides a method to improve the reliability of the data stored in flash memory:
the usage of an Error Correction Code. ECC circuitry provides correction of single bit faults and is used
to achieve automotive reliability targets. Some units will experience single bit corrections throughout the
life of the product with no impact to product reliability. Word size is fixed at 32 bits.

At each Word of 32 bits there are associated 7 ECC bits that are programmed in such a way to guarantee
a Single Error Correction and a Double Error Detection (SEC-DED).

35.3.8.1 ECC algorithms

The flash memory module supports one ECC Algorithm: “All ‘1’s No Error”. A modified Hamming code
is used that ensures the all erased state (that is, 0xFFFF.....FFFF) data is a valid state, and will not cause an
ECC error. This allows the user to perform a blank check after a sector erase operation.

35.3.8.2 ECC Algorithms Features

The flash memory module ECC Algorithm supports the following features:

• All ‘0’s Error

— The All ‘0’s Error Algorithm detects as Double ECC Error any Word in which all the 39 bits
are “0’s.

• All ‘1’s No Error

— The All ‘1’s No Error Algorithm detects as valid any Word read on a just erased sector (all the
39 bits are “1’s).
This option allows to perform a Blank Check after a Sector Erase operation.

• Bit Manipulation

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1236 Freescale Semiconductor

— 8 bits clears (by byte) are allowed on any erased word maintaining valid the syndrome of the
word. 8 bits clears can be done on any byte of the word without a specific order. This featured
is intended as a counter for EE-Emulation.
Example 1: data patterns with the same ECC syndrome (equal to 0x7F).
0xFFFFFFFF -> 7F
0xFFFFFF00 -> 7F
0xFFFF00FF -> 7F
0xFF00FFFF -> 7F
0x00FFFFFF -> 7F
0xFFFF0000 -> 7F
0x0000FFFF -> 7F
0xFF000000 -> 7F
0x000000FF -> 7F
0x00000000 -> 7F

• Enhanced flagging
In case flagging method is required for more then 4 writes, the following sequence allows up to 7
pattern with the same ECC syndrome.

0xFFFFFFFF -> 7F
0xFFFFFFB1 -> 7F
0xFFFFFF00 -> 7F
0xFFACFF00 -> 7F
0xFF00FF00 -> 7F
0xCA00FF00 -> 7F
0x0000FF00 -> 7F
0x00000000 -> 7F

• 3 Bits Error Detection

— 40.21% of the possible 3 bits errors are detects as Double ECC Error.

— 59.79% of the possible 3 bits errors are instead detects as Single ECC Error and miscorrected.

35.3.9 Protection strategy

Two kinds of protection are available: Modify Protection to avoid unwanted program/erase in flash
memory sectors. The Censored Mode to avoid piracy must be managed by the associated Code flash
memory module embedded in the same device.

35.3.9.1 Modify protection

The flash memory Modify Protection information is stored in nonvolatile flash memory cells located in
the TestFlash. This information is read once during the flash memory initialization phase following the
exiting from Reset and they are stored in volatile registers that act as actuators.

The reset state of all the Volatile Modify Protection Registers is the protected state.

All the nonvolatile Modify Protection registers can be programmed through a normal Word Program
operation at the related locations in TestFlash.

The nonvolatile Modify Protection registers cannot be erased.

• The nonvolatile Modify Protection Registers are physically located in TestFlash their bits can be
programmed to ‘0’ only once and they can no more be restored to ‘1’.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1237

• The Volatile Modify Protection Registers are Read/Write registers which bits can be written at ‘0’
or ‘1’ by the user application.

A software mechanism is provided to independently lock/unlock each Low, Mid Address Space Block
against program and erase.

Software locking is done through the LML (Low/Mid Address Space Block Lock Register). An alternate
means to enable software locking for blocks of Low Address Space only is through the SLL (Secondary
Low/Mid Address Space Block Lock Register).

All these registers have a Non Volatile image stored in TestFlash (NVLML, NVSLL), so that the locking
information is kept on reset.

On delivery the TestFlash Non Volatile image is at all 1’s that means all sectors locked. By programming
the Non Volatile locations in TestFlash the selected sectors can be unlocked. Being the TestFlash One Time
Programmable (i.e. not erasable), once unlocked the sectors cannot be locked again.

Of course, on the contrary, all the volatile registers can be written at 0 or 1 at any time, therefore the User
Application can lock and unlock sectors when desired.

35.4 Platform Flash Controller

35.4.1 Introduction

This section provides an introduction to the 2-port platform flash controller for Standard Product Platforms
(SPP).The platform flash controller acts as the interface between two system bus masters (AHB-Lite 2.v6)
and up to three banks of flash memory arrays. It intelligently converts the protocols between the system
bus ports and the dedicated flash array interfaces.

Throughout this document, several important terms are used to describe the platform flash controller
module and its connections. These terms are defined here:

• Port — This is used to describe the AMBA-AHB connection(s) into the platform flash controller.
This flash controller supports 2 AHB ports. For the platform design, platform flash controller port
0 (P0) is always connected to the e200z4d instruction set, platform flash controller port 1 (P1) is
always connected to the e200z4d data set and all other masters including e200z0h.

• Bank — This term is used to describe the attached flash memories. From the platform flash
controller’s perspective, there are three attached banks of flash memory. There are two “code flash”
arrays required and they are attached to banks 0 and 2. The platform flash controller treats banks 0
and 2 in a common manner with various configuration fields of the programming model shared
across the two banks. Additionally, there is a “data flash” attached to bank1.

• Array — Within each memory bank, there are one (or more) flash array instantiations. Regardless
of the number of array instantiations or the number of populated banks, the operating configuration
of the platform flash controller is defined by the register values contained in bank0 array0.

• Page — This value defines the number of bits read from the flash array in a single access. For the
code flash, the page size is 128-bits (16 bytes). The data flash has a page size of 32-bits (4 bytes).

The nomenclature “page buffers and “line buffers” are used interchangeably.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1238 Freescale Semiconductor

From an architectural and programming model perspective, there are two configuration registers
associated with the platform flash controller. These variables define the 2 AHB input ports (p0 and p1)
initiating transactions and the three destination flash memory banks (b0, b1, b2). The following
abbreviations for these variables are used throughout the document:

p0 AHB port 0
p1 AHB port 1
b0, bk0 flash memory bank0
b1, bk1 flash memory bank1
b2, bk2 flash memory bank2
b02 flash memory banks 0 and 2

Finally since the page buffers and temporary holding registers are associated with both an AHB input port
and a flash bank, they use a bx_py nomenclature. For example, the b0_p0 page buffer refers to the bank0,
port 0 storage elements.

35.4.1.1 Overview

The platform flash controller supports a 64-bit data bus width at the two AHB ports and connections to
two 128-bit read data interfaces from each of the code flash memory banks and a 32-bit read data interface
from the data flash bank, where each bank contains one (or more) instantiations of the flash memory array.
Flash bank0 is connected to the first code flash memory, bank2 is connected to a second code flash
memory, and bank1 is connected to the data flash memory. The memory controller capabilities vary
between the banks with each bank’s functionality optimized for the typical use cases associated with the
attached flash memory.

As an example, the platform flash controller logic associated with bank0 contains 2 four-entry 128-bit page
buffers, one for each AHB port which pre-fetches sequential lines of data from the flash array into the
buffer. This structure is repeated for bank2, providing a total of four copies of the 4-entry page buffer
between bank 0 and 2. The controller logic associated with bank1 is simpler and supports two 64-bit
registers (one for each AHB port) which serve as temporary page holding registers and no support of any
prefetching. Prefetch buffer hits from any of the page buffers or temporary holding registers support
zero-wait AHB data phase responses. AHB read requests which miss the buffers generate the needed flash
array access and the read data is forwarded to the AHB port upon completion, typically incurring 5 wait
states for C-flash (bank 0/2) and 13 wait states for D-flash (bank 1) at an operating frequency of 120 MHz.
The logic of the platform flash controller is structured to support simultaneous AHB accesses from the two
ports fully in parallel when the references are targeted to different memory banks. If simultaneous AHB
port accesses reference the same bank, then arbitration logic within the platform flash controller
determines the order the references are granted access to the bank.

35.4.1.2 Features

The following list summarizes the key features of the platform flash controller:

• Dual AHB input port interfaces support a 64-bit data bus. All AHB aligned and unaligned reads
within the 64-bit container are supported. Only aligned word writes are supported.

• Code flash array interfaces support a 128-bit read data bus and 64-bit write data bus. Data flash
array interface supports a 32-bit read data bus and write data bus.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1239

• Internal hardware structure supports fully concurrent accesses from the dual AHB input ports when
accessing different flash banks

— If the AHB ports reference the same flash bank, there is arbitration logic which determines the
order the accesses are granted access to the bank

— Programmable arbitration allows the user to select fixed priority or round-robin

• Total flash page storage in the platform flash controller includes four 4-entry page buffers (b0_p0,
b0_p1, b2_p0, b2_p1) and two 64-bit temporary holding registers (b1_p0, b1_p1).

— Each AHB input port provides configurable and independent read buffering and page prefetch
support for banks 0 and 2

— Each AHB input port includes four page read buffers (each 128 bits wide) and a prefetch
controller to support single-cycle read responses (zero AHB data phase wait-states) for hits in
the buffers. The buffers implement a least-recently-used replacement algorithm to maximize
performance.

— Each AHB input port interfaces to the data flash (bank1) includes a 64-bit register to
temporarily hold up to two data flash pages. This logic supports single-cycle read responses
(zero AHB data phase wait-states) for accesses that hit in the holding register. There is no
support for prefetching associated with this bank.

• Programmable response for read-while-write sequences including support for stall-while-write,
optional stall notification interrupt, optional flash operation abort, and optional abort notification
interrupt

• Separate and independent configurable access timing (common settings for banks 0 and 2, separate
settings for bank1)

• Support of address-based read access timing for emulation of other memory types

• Support for reporting of single- and multi-bit flash ECC events

• Typical operating configuration loaded into programming model by system reset

35.4.1.3 Modes of Operation

The platform flash controller module does not support any special modes of operation. Its operation is
driven from the AMBA-AHB memory references it receives from the platform’s bus masters. Its
configuration is defined by the setting of its programming model registers, physically located as part of the
flash array modules.

35.4.2 External Signal Descriptions

The platform flash controller does not directly interface with any external signals. Its primary internal
interfaces include two input connections from AMBA-AHB crossbar (or memory protection unit) slave
ports and output connections with three banks (2 code and 1 data) of flash memory, each containing one
or more instantiations of the flash array. Additionally, the operating configuration for the platform flash
controller is defined by the contents of bank0 array0 registers which are inputs to the module.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1240 Freescale Semiconductor

A summary of the platform flash controller internal connections is shown in Table 35-55.

35.4.3 Memory map and register description

There are two memory maps associated with the platform flash controller: one for the flash memory space
and another for the program-visible control and configuration registers. The flash memory space is
accessed via the AMBA-AHB ports while the program-visible registers are accessed via the slave
peripheral bus.

There are no program-visible registers that physically reside inside the platform flash controller. Rather,
the platform flash controller receives control and configuration information from the flash array
controller(s) to determine the operating configuration. These are part of the flash array’s configuration
registers mapped into its slave peripheral (IPS) address space but are described here.

NOTE
Updating the configuration fields that control the platform flash controller
behavior should only occur while the flash controller is idle. Changing
configuration settings while a flash access is in progress can lead to
non-deterministic behavior.

First, consider the flash memory space accessed via transactions from the platform flash controller’s AHB
ports. To support the three separate flash memory banks, the platform flash controller decodes the system
address of the memory request to steer the access to the appropriate memory bank. The program-visible
control and configuration registers associated with each memory array are included in the slave peripheral
address region. See Table 35-56.

Table 35-55. platform flash controller Module Connections

platform flash controller
Connection

Description

Input p0 e200z4d Instruction Set

Input p1 e200z4d data set plus all other masters including e200z0h

Output b0 Bank0, Code Flash 0

Output b1 Bank1, Data Flash

Output b2 Bank2, Code Flash 1

Table 35-56. Flash-related regions in the system memory map

Start Address End Address
BlockSize

[KB]
Region

0x0000_0000 0x0007_7FFF 512 Code flash0 array 0

0x0008_0000 0x000F_FFFF 512 Code flash0 array 1

0x0010_0000 0x0017_FFFF 512 Code flash0 array 2

0x0018_0000 0x001F_FFFF 512 Code flash1 array 0

0x0020_0000 0x0027_FFFF 512 Code flash1 array 1

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1241

Notice the sector orientation for Code Flash1 maps the LAS/MAS regions (512 KB) to the end of logical
system address range for Code Flash1. Accordingly, the HAS region (1 MB) is mapped to logical start of
the system address range for Code Flash1. Additional decoding is required during program and erase to
ensure the corresponding physical sectors are selected correctly for a given system address.

0x0028_0000 0x002F_FFFF 512 Code flash1 array 2

0x0030_0000 0x007F_FFFF 5120 Reserved

0x0080_0000 0x0080_FFFF 64 Data flash array 0

0x0081_0000 0x00E0_7FFF 6256 Reserved

0x00E0_8000 0x00E0_BFFF 16 Code flash array 1: test sector

0x00E0_C000 0x00FF_BFFF 2026 Reserved

0x00FF_C000 0x00FF_FFFF 16 Code flash array 0: shadow sector

0x0100_0000 0x1FFF_FFFF 507904 Emulation Mapping

0xFFE8_8000 0xFFE8_BFFF 16 Code flash array 0 configuration1

0xFFE8_C000 0xFFE8_FFFF 16 Data flash array 0 configuration1

0xFFEB_0000 0xFFEB_3FFF 16 Code flash array 1 configuration2

1 This region is also aliased to address 0xC3F8_nnnn.
2 This region is also aliased to address 0xC3FB_nnnn.

Table 35-56. Flash-related regions in the system memory map (continued)

Start Address End Address
BlockSize

[KB]
Region

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1242 Freescale Semiconductor

Figure 35-37. Code Flash1 Array Address Decode

For additional information on the address-based read access timing for emulation of other memory types,
see Section 35.4.4.14, “Wait-State Emulation.

Next, consider the memory map associated with the control and configuration registers.

There are multiple registers that control operation of the platform flash controller. These registers are
generically defined as “Bus Interface Unit n (BIU n) Register” in the flash array documentation, where n
= 0, 1, 2, 3 and are to be only referenced with 32-bit accesses. Note the first two flash array registers (BIU0,
BIU1) are reset to an SoC-defined value, while the remaining two array registers (BIU2, BIU3) are loaded
at reset from specific locations in the array’s shadow region.

Regardless of the number of populated banks or the number of flash arrays included in a given bank, the
configuration of the platform flash controller is wholly specified by the BIU registers associated with
bank0 array0. These register settings define the operating behavior of all flash banks; it is recommended
that the BIU registers for all physically-present arrays be set to the bank0 array0 values.

System addr:
0x000018_0000

0x0020_0000

0x0028_0000

Code Flash1 array addr offset::

0x0018_0000

0x0008_0000

0x0000_0000

51
2K

51
2K

51
2K

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1243

NOTE
To perform program and erase operations, the control registers in the actual
referenced flash array must be programmed, but the configuration of the
platform flash controller module is defined by the BIUn registers of bank0
array0.

The 32-bit memory map for the platform flash controller control registers are shown in Table 35-57.

Within the platform flash controller's programming model, there are a variety of control and configuration
fields. Some are associated with the operating configuration of the memory banks, while others are related
to the behavior of the AHB master ports.

Due to limitations in the available register bits in the programming model, the PFLASH controllers do not
provide completely symmetric capabilities for the various memory banks. In fact, the platform flash
controller groups together the attributes of the two code flash arrays attached to bank0 and bank2 of the
controller while the configuration of the data flash (bank1) is treated separately.

First, consider the operating configuration of the flash banks. In particular, there are 4 unique configuration
fields that are associated with a bank. These include all the parameters associated with the timing (read
and write wait states, address pipeline control) as well as the read-while-write control field. Accordingly,
the programming model supports two separate sets of these 4 fields: one for banks 0 and 2 in PFCR0, and
another for bank1 in PFCR1:

// per memory bank configuration controls
b02_apc, b1_apc // address pipeline control
b02_rwsc, b1_rwsc // read wait state control
b02_rwwc, b1_rwwc // read-while-write control

where b02 is used to refer to configuration and control information common to banks 0 and 2 while b1
refers to bank1.

Second, there are a total of 6 configuration fields that relate to the operation of the platform flash
controller’s page buffers. These fields are defined on a “per port” basis since the control needs to be
associated with the AHB master port and not the destination flash bank. In addition, recall that bank1,
connected to the data flash, does not support prefetching, so the configuration controls for that bank are
considerably reduced compared to banks 0 and 2. The resulting fields are:

// per ahb master port configuration controls
b02_p0_bcfg, b02_p1_bcfg // page buffer configuration
b02_p0_dpfen, b02_p1_dpfen // data prefetch enable
b02_p0_ipfen, b02_p1_ipfen // inst prefetch enable
b02_p0_pflim, b02_p1_pflim // page buffer prefetch limit
b02_p0_bfe, b02_p1_bfe // page buffer enable for banks 0,2

Table 35-57. platform flash controller 32-bit Memory Map

Address Offset Register Location

 0x01C Platform Flash Configuration Register 0 (PFCR0) on page 1244

0x020 Platform Flash Configuration Register 1 (PFCR1) on page 1247

 0x024 Platform Flash Access Protection Register (PFAPR) on page 1250

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1244 Freescale Semiconductor

b1_p0_bfe, b1_p1_bfe // page buffer enable for bank1

All these fields are located in the PFCR0 and PFCR1 registers described below.

35.4.3.1 Platform Flash Configuration Register 0 (PFCR0)

This register defines the configuration associated with flash memory banks 0 and 2. Collectively, this
corresponds to the “code flash” and the operating configuration defined by certain fields applies to both
memory banks. Additionally, it includes fields that provide specific information for the two separate AHB
ports (p0 and p1). This register should only be written with 32-bit write operations to avoid any issues
associated with register "incoherency" caused by bit fields spanning smaller size (8-, 16-bit) boundaries.

NOTE
This register should not be updated directly from flash memory. Before
modifying the wait states:

1. Transfer code execution to RAM.

2. Modify this register.

3. Return to the execution from flash memory.

Offset 0x01c Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

B02_APC

0 0 0 0 0

B02_RWSC

B
02

_R
W

W
C

2

W

Reset 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

B
02

_R
W

W
C

1

B
02

_P
1_

B
C

F
G

B
02

_P
1_

D
P

F
E

B
02

_P
1_

IP
F

E

B
02

_P
1_

P
F

LM

B
02

_P
1_

B
F

E

B
02

_R
W

W
C

0

B
0_

P
0_

B
C

F
G

B
02

_P
0_

D
P

F
E

B
02

_P
0_

IP
F

E

B
02

_P
0_

P
F

LM

B
02

_P
0_

B
F

E

W

Reset 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1

Figure 35-38. PFLASH Configuration Register 0 (PFCR0)

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1245

Table 35-58. PFCR0 field descriptions

Field Description

B02_APC Bank0+2 Address Pipelining Control. This field is used to control the number of cycles
between flash array access requests. This field must be set to a value appropriate to the
operating frequency of the PFLASH. Higher operating frequencies require non-zero settings
for this field for proper flash operation.

00000 Accesses may be initiated on consecutive (back-to-back) cycles
00001 Access requests require one additional hold cycle
00010 Access requests require two additional hold cycles
...
11110 Access requests require 30 additional hold cycles
11111 Access requests require 31 additional hold cycles

B02_RWSC Bank0+2 Read Wait State Control. This field is used to control the number of wait-states to be
added to the flash array access time for reads. This field must be set to a value corresponding
to the operating frequency of the PFLASH and the actual read access time of the PFLASH.
Higher operating frequencies require non-zero settings for this field for proper flash operation.

Shown below are the maximum operating frequencies for legal APC and RWSC settings

based on estimated flash access times at 150 C.

0 MHz –20 MHz, APC =RWSC=0
> 20 MHz –40 MHz, APC =RWSC=1
> 40 MHz –60 MHz, APC =RWSC=2
> 60 MHz –80 MHz, APC =RWSC=3
> 80 MHz –100 MHz, APC =RWSC=4
>100 MHz –120 MHz, APC =RWSC=5

00000 No additional wait-states are added
00001 1 additional wait-state is added
00010 2 additional wait-states are added
...
111111 31 additional wait-states are added

B02_RWWC Bank0+2 Read-While-Write Control. This 3-bit field defines the controller response to flash
reads while the array is busy with a program (write) or erase operation.

0-- This state should be avoided. Setting to this state can cause unpredictable operation.
111 Generate a bus stall for a read while write/erase, disable the stall notification interrupt,
disable the abort +

abort notification interrupt
110 Generate a bus stall for a read while write/erase, enable the stall notification interrupt,
disable the abort +

abort notification interrupt
101 Generate a bus stall for a read while write/erase, enable the operation abort, disable
the abort notification interrupt
100 Generate a bus stall for a read while write/erase, enable the operation abort and
the abort notification interrupt

This field is set to 0b111 by hardware reset enabling the stall-while-write/erase and disabling
the abort and notification interrupts.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1246 Freescale Semiconductor

B02_P1_BCFG Bank0+2, Port 1 Page Buffer Configuration. This field controls the configuration of the four
page buffers in the PFLASH controller. The buffers can be organized as a “pool” of available
resources, or with a fixed partition between instruction and data buffers.

If enabled, when a buffer miss occurs, it is allocated to the least-recently-used buffer within the
group and the just-fetched entry then marked as most-recently-used. If the flash access is for
the next-sequential line, the buffer is not marked as most-recently-used until the given address
produces a buffer hit.

00 All four buffers are available for any flash access, that is, there is no partitioning of the
buffers based on the access type.

01 Reserved
10 The buffers are partitioned into two groups with buffers 0 and 1 allocated for instruction

fetches and buffers 2 and 3 for data accesses.
11 The buffers are partitioned into two groups with buffers 0,1,2 allocated for instruction

fetches and buffer 3 for data accesses.

B02_P1_DPFE Bank0+2, Port 1 Data Prefetch Enable. This field enables or disables prefetching initiated by a
data read access.

0 No prefetching is triggered by a data read access
1 If page buffers are enabled (B02_P1_BFE=1), prefetching is triggered by any data read
access

B02_P1_IPFE Bank0+2, Port 1 Instruction Prefetch Enable. This field enables or disables prefetching initiated
by an instruction fetch read access.

0 No prefetching is triggered by an instruction fetch read access
1 If page buffers are enabled (B02_P1_BFE=1), prefetching is triggered by any instruction
fetch read access

B02_P1_PFLM Bank0+2, Port 1 Prefetch Limit. This field controls the prefetch algorithm used by the PFLASH
controller. This field defines the prefetch behavior. In all situations when enabled, only a single
prefetch is initiated on each buffer miss or hit.

00 No prefetching is performed.
01 The referenced line is prefetched on a buffer miss, that is, prefetch on miss.
1- The referenced line is prefetched on a buffer miss, or the next sequential page is

prefetched on a buffer hit (if not already present), that is, prefetch on miss or hit.

B02_P1_BFE Bank0+2, Port 1 Buffer Enable. This bit enables or disables page buffer read hits. It is also
used to invalidate the buffers. This bit is set by hardware reset, enabling the page buffers.

0 The page buffers are disabled from satisfying read requests, and all buffer valid bits are
cleared.

1 The page buffers are enabled to satisfy read requests on hits. Buffer valid bits may be set
when the buffers are successfully filled.

Table 35-58. PFCR0 field descriptions (continued)

Field Description

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1247

35.4.3.2 Platform Flash Configuration Register 1 (PFCR1)

This register defines the configuration associated with flash memory bank1. This typically corresponds to
the optional “data flash”. This register should only be written with 32-bit write operations to avoid any

B02_P0_BCFG Bank0+2, Port 0 Page Buffer Configuration. This field controls the configuration of the four
page buffers in the PFLASH controller. The buffers can be organized as a “pool” of available
resources, or with a fixed partition between instruction and data buffers.

If enabled, when a buffer miss occurs, it is allocated to the least-recently-used buffer within the
group and the just-fetched entry then marked as most-recently-used. If the flash access is for
the next-sequential line, the buffer is not marked as most-recently-used until the given address
produces a buffer hit.

00 All four buffers are available for any flash access, that is, there is no partitioning of the
buffers based on the access type.

01 Reserved
10 The buffers are partitioned into two groups with buffers 0 and 1 allocated for instruction

fetches and buffers 2 and 3 for data accesses.
11 The buffers are partitioned into two groups with buffers 0,1,2 allocated for instruction

fetches and buffer 3 for data accesses.

This field is set to 2b11 by hardware reset.

B02_P0_DPFE Bank0+2, Port 0 Data Prefetch Enable. This field enables or disables prefetching initiated by a
data read access. This field is cleared by hardware reset.

0 No prefetching is triggered by a data read access
1 If page buffers are enabled (B0_P0_BFE = 1), prefetching is triggered by any data read
access

B02_P0_IPFE Bank0+2, Port 0 Instruction Prefetch Enable. This field enables or disables prefetching initiated
by an instruction fetch read access. This field is set by hardware reset.

0 No prefetching is triggered by an instruction fetch read access
1 If page buffers are enabled (B0_P0_BFE = 1), prefetching is triggered by any instruction
fetch read access

B02_P0_PFLM Bank0+2, Port 0 Prefetch Limit. This field controls the prefetch algorithm used by the PFLASH
controller. This field defines the prefetch behavior. In all situations when enabled, only a single
prefetch is initiated on each buffer miss or hit. This field is set to 2b10 by hardware reset.

00 No prefetching is performed.
01 The referenced line is prefetched on a buffer miss, that is, prefetch on miss.
1- The referenced line is prefetched on a buffer miss, or the next sequential page is

prefetched on a buffer hit (if not already present), that is, prefetch on miss or hit.

B02_P0_BFE Bank0+2, Port 0 Buffer Enable. This bit enables or disables page buffer read hits. It is also
used to invalidate the buffers. This bit is set by hardware reset.

0 The page buffers are disabled from satisfying read requests, and all buffer valid bits are
cleared.

1 The page buffers are enabled to satisfy read requests on hits. Buffer valid bits may be set
when the buffers are successfully filled.

Table 35-58. PFCR0 field descriptions (continued)

Field Description

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1248 Freescale Semiconductor

issues associated with register "incoherency" caused by bit fields spanning smaller size (8-, 16-bit)
boundaries.

NOTE
This register should not be updated directly from flash memory. Before
modifying the wait states:

1. Transfer code execution to RAM.

2. Modify this register.

3. Return to the execution from flash memory.

Offset 0x020 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

B1_APC

0 0 0 0 0

B1_RWSC

B
1_

R
W

W
C

2

W

Reset 0 1 1 0 1 0 0 0 0 0 0 1 1 0 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

B
1_

R
W

W
C

1 0 0 0 0 0 0

B
1_

P
1_

B
F

E

B
1_

R
W

W
C

0 0 0 0 0 0 0

B
1_

P
0_

B
F

E

W

Reset 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1

Figure 35-39. PFLASH Configuration Register 1 (PFCR1)

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1249

Table 35-59. PFCR1 field descriptions

Field Description

B1_APC Bank1 Address Pipelining Control. This field is used to control the number of cycles between
flash array access requests. This field must be set to a value appropriate to the operating
frequency of the PFLASH. Higher operating frequencies require non-zero settings for this field
for proper flash operation.

00000 Accesses may be initiated on consecutive (back-to-back) cycles
00001 Access requests require one additional hold cycle
00010 Access requests require two additional hold cycles
...
11110 Access requests require 30 additional hold cycles
11111 Access requests require 31 additional hold cycles

B1_RWSC Bank1 Read Wait State Control. This field is used to control the number of wait-states to be
added to the flash array access time for reads. This field must be set to a value corresponding
to the operating frequency of the PFLASH and the actual read access time of the PFLASH. The
required settings are documented in the SoC specification. Higher operating frequencies
require non-zero settings for this field for proper flash operation.

Shown below are the maximum operating frequencies for legal APC and RWSC settings based
on estimated flash access times at 150 C.

0 MHz –20 MHz, APC =RWSC=2
> 20 MHz –40 MHz, APC =RWSC=4
> 40 MHz –60 MHz, APC =RWSC=7
> 60 MHz –80 MHz, APC =RWSC=9
> 80 MHz –100 MHz, APC =RWSC=11
>100 MHz –120 MHz, APC =RWSC=13

00000 No additional wait-states are added
00001 1 additional wait-state is added
00010 2 additional wait-states are added
...
111111 31 additional wait-states are added

B1_RWWC Bank1 Read-While-Write Control. This 3-bit field defines the controller response to flash reads
while the array is busy with a program (write) or erase operation.

0-- This state should be avoided.
111 Generate a bus stall for a read while write/erase, disable the stall notification interrupt,
disable the abort +

abort notification interrupt
110 Generate a bus stall for a read while write/erase, enable the stall notification interrupt,
disable the abort +

abort notification interrupt
101 Generate a bus stall for a read while write/erase, enable the operation abort, disable
the abort notification interrupt
100 Generate a bus stall for a read while write/erase, enable the operation abort and the abort
notification interrupt

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1250 Freescale Semiconductor

35.4.3.3 Platform Flash Access Protection Register (PFAPR)

The PFLASH Access Protection Register (PFAPR) is used to control read and write accesses to the flash
based on system master number. Prefetching capabilities are defined on a per master basis. This register
also defines the arbitration mode between the 2 AHB ports for the platform flash controller. This register
should only be written with 32-bit write operations to avoid any issues associated with register
"incoherency" caused by bit fields spanning smaller size (8-, 16-bit) boundaries.

The contents of the register are loaded from location 0x203E00 of the shadow region in the code flash
(bank0) array at reset. To temporarily change the values of any of the fields in the PFAPR, a write to the
IPS-mapped register is performed. To change the values loaded into the PFAPR at reset, the word location
at address 0x203E00 of the shadow region in the flash array must be programmed using the normal
sequence of operations. The reset value shown in Figure 35-40 reflects an erased or unprogrammed value
from the shadow region.

B1_P1_BFE Bank1, Port 1 Buffer Enable. This bit enables or disables read hits from the 64-bit holding
register. It is also used to invalidate the contents of the holding register.

0 The holding register is disabled from satisfying read requests.
1 The holding register is enabled to satisfy read requests on hits.

B1_P0_BFE Bank1, Port 0 Buffer Enable. This bit enables or disables read hits from the 64-bit holding
register. It is also used to invalidate the contents of the holding register.

0 The holding register is disabled from satisfying read requests.
1 The holding register is enabled to satisfy read requests on hits.

Offset 0x024 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0
ARBM

M7PF
D

M6PF
D

M5PF
D

M4PF
D

M3PF
D

M2PF
D

M1PF
D

M0PF
DW

Reset * * * * * * 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
M7AP M6AP M5AP M4AP M3AP M2AP M1AP M0AP

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 35-40. PFLASH Access Protection Register (PFAPR)

Table 35-59. PFCR1 field descriptions (continued)

Field Description

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1251

35.4.4 Functional Description

The platform flash controller interfaces between 2 AHB-Lite 2.v6 system bus master ports and three banks
of the flash memory arrays.

The platform flash controller generates three sets of interface signals for the flash banks, including read
and write enables, the flash array address, write size, and write data as inputs to each flash bank. The
platform flash controller captures read data from the flash banks and drives it onto the AHB. Each flash
bank includes data storage for fetched pages on a per AHB port basis, either in the form of 4-entry page
buffers (banks 0 and 2) or a 1-entry temporary holding register (bank 1). Pages may be prefetched in
advance of being requested by the AHB interface, allowing single-cycle (zero AHB wait-states) read data
responses on buffer hits.

Multiple prefetch control algorithms are available for controlling page read buffer fills. Prefetch triggering
may be restricted to instruction accesses only, data accesses only, or may be unrestricted. Prefetch
triggering may also be controlled on a per-master basis.

Buffers may also be selectively enabled or disabled for allocation by instruction and data prefetch.

Access protections may be applied on a per-master basis for both reads and writes to support security and
privilege mechanisms.

Recall the logic of the platform flash controller is structured to support simultaneous AHB accesses from
the two ports fully in parallel when the references are targeted to different memory banks. If simultaneous
AHB accesses reference the same bank, then arbitration logic within the platform flash controller

Table 35-60. PFLASH Access Protection Register Field Descriptions

Field Description

0-5 Reserved, should be cleared.

6-7
ARBM

Arbitration Mode. This 2-bit field controls the arbitration for PFLASH controllers supporting 2 AHB ports. The port
arbitration mode is used only when accesses from the 2 AHB ports attempt to simultaneously reference the
same flash bank. Simultaneous references to different memory banks are processed concurrently.

00 Fixed priority arbitration with AHB p0 > p1
01 Fixed priority arbitration with AHB p1 > p0
1- Round-robin arbitration

8-15
MxPFD

Master x Prefetch Disable (x = 0,1,2,...,7). These bits control whether prefetching may be triggered based on the
master number of the requesting AHB master. This field is further qualified by the PFCRn[B02_Px_DPFE,
B02_Px_IPFE, Bx_Py_BFE] bits.

0 Prefetching may be triggered by this master
1 No prefetching may be triggered by this master

16-31
MxAP

Master x Access Protection (x = 0,1,2,...,7). These fields control whether read and write accesses to the flash are
allowed based on the master number of the initiating module.

00 No accesses may be performed by this master
01 Only read accesses may be performed by this master
10 Only write accesses may be performed by this master
11 Both read and write accesses may be performed by this master

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1252 Freescale Semiconductor

determines the order the references are granted access to the bank. For more information, see
Section 35.4.4.12, “Input Port Arbitration.

Throughout this discussion, bkn_ is used as a prefix to refer to the three sets of interface signals, one for
the bk0_, another for bk1_ and another for bk2_. Also, the nomenclature Bx_Py_RegName is used to
reference a program-visible register field associated with bank “x” and port “y”.

35.4.4.1 Basic Interface Protocol

The platform flash controller interfaces to the flash array by driving addresses (bkn_fl_addr[23:0]) and
read or write enable signals (bkn_fl_rd_en, bkn_fl_wr_en).

The read or write enable signal (bkn_fl_rd_en, bkn_fl_wr_en) is asserted in conjunction with the reference
address for a single rising clock when a new access request is made.

Addresses are driven to the flash array in a flow-through fashion to minimize array access time. When no
outstanding access is in progress, the platform flash controller negates bkn_fl_rd_en and bkn_fl_wr_en.
These signals may then change to the next outstanding request in the next cycle.

Accesses are terminated under control of the appropriate read/write wait state control setting. Thus, the
access time of the operation is determined by the settings of the wait-state control fields. Access timing
can be varied to account for the operating conditions of the SoC (frequency, voltage, temperature) by
appropriately setting the fields in the programming model for either bank (b02, b1).

The platform flash controller also has the capability of extending the normal AHB access time by inserting
additional wait states for reads and writes. This capability is provided to allow emulation of other
memories which have different access time characteristics. The added wait-state specifications are
provided by haddr[28:24]. These wait-states are applied in addition to the normal wait-states incurred for
flash accesses. Refer to Section 35.4.4.14, “Wait-State Emulation for more details.

Prefetching of next sequential page is blocked when haddr[28:24] is non-zero. Buffer hits are also blocked
as well, regardless of whether the access corresponds to valid data in one of the page read buffers. These
steps are taken to ensure that timing emulation is correct and that excessive prefetching is avoided. In
addition, to prevent erroneous operation in certain rare cases, the buffers are invalidated on any
non-sequential AHB access with a non-zero value on haddr[28:24].

35.4.4.2 Access Protections

The platform flash controller provides programmable configurable access protections for both read and
write cycles from masters via the platform flash controller Access Protection Register (PFAPR). It allows
restriction of read and write requests on a per-master basis. This functionality is described in
Section 35.4.3.3, “Platform Flash Access Protection Register (PFAPR). Detection of a protection violation
results in an error response from the platform flash controller on the AHB transfer.

35.4.4.3 Read Cycles - Buffer Miss

Read cycles from the flash array are initiated by driving a valid access address on bkn_fl_addr[23:0] and
asserting bkn_fl_rd_en for the required setup (and hold) time before (and after) the rising edge of hclk. The
platform flash controller then waits for the programmed number of read wait states before sampling the

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1253

read data on bkn_fl_rdata[127:0]. This data is normally stored in the least-recently updated page read
buffer for banks 0 and 2 in parallel with the requested data being forwarded to the AHB. For bank1, the
data is captured in the 64-bit temporary holding register as the requested data is forwarded to the AHB bus.
Timing diagrams of basic read accesses from the flash array are shown in Figure 35-41 through
Figure 35-46.

If the flash access was the direct result of an AHB transaction, the page buffer is marked as
most-recently-used as it is being loaded. If the flash access was the result of a speculative prefetch to the
next sequential line, it is first loaded into the least-recently-used buffer. The status of this buffer is not
changed to most-recently-used until a subsequent buffer hit occurs.

35.4.4.4 Read Cycles - Buffer Hit

Single cycle read responses to the AHB are possible with the platform flash controller when the requested
read access was previously loaded into one of the page buffers associated with banks 0 and 2. In these
“buffer hit” cases, read data is returned to the AHB data phase with a zero wait-state response.

Likewise, the bank1 logic includes 64-bit temporary holding registers (one per AHB port) and sequential
accesses which “hit” in these registers are also serviced with a zero wait-state response.

35.4.4.5 Write Cycles

In a write cycle, address, write data, and control signals are launched off the same edge of hclk at the
completion of the first AHB data phase cycle. Write cycles to the flash array are initiated by driving a valid
access address on bkn_fl_addr[23:0], driving write data on bkn_fl_wdata[63:0], and asserting
bkn_fl_wr_en. Again, the controller drives the address and control information for the required setup time
before the rising edge of hclk, and provides the required amount of hold time. The platform flash controller
then waits for the appropriate number of write wait-states before terminating the write operation. On the
cycle following the programmed wait state value, the PFLASH2P_LCAasserts hready_out to indicate to
the AHB port that the cycle has terminated.

35.4.4.6 Error Termination

The platform flash controller follows the standard procedure when an AHB bus cycle is terminated with
an ERROR response. First, the platform flash controller asserts hresp[0] and negates hready_out to signal
an error has occurred. On the following clock cycle, the platform flash controller asserts hready_out and
holds both hresp[0] and hready_out asserted until hready_in is asserted.

The first case that can cause an error response to the AHB is when an access is attempted by an AHB
master whose corresponding Read Access Control or Write Access Control settings do not allow the
access, thus causing a protection violation. In this case, the platform flash controller does not initiate a
flash array access.

The second case that can cause an error response to the AHB is when an access is performed to the flash
array and is terminated with a flash error response. See Section 35.4.4.8, “Flash Error Response Operation.
This may occur for either a read or a write operation.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1254 Freescale Semiconductor

The third case that can cause an error response to the AHB is when a write access is attempted to the flash
array and is disallowed by the state of the bkn_fl_ary_access control input. This case is similar to case 1.

The platform flash controller can also terminate the current AHB access if hready_in is asserted before the
end of the current bus access. While this circumstance should not occur, this does not result in an error
condition being reported, as this behavior is initiated by the AHB master. In this circumstance, the platform
flash controller control state machine completes any flash array access in progress (without signaling the
AHB) before handling a new access request.

35.4.4.7 Access Pipelining

The platform flash controller does not support access pipelining since this capability is not supported by
the flash array. As a result, the APC (Address Pipelining Control) field is typically set to the same value
as the RWSC (Read Wait State Control) field for best performance, that is, Bn_APC = Bn_RWSC. It
cannot be less than the RWSC.

35.4.4.8 Flash Error Response Operation

The flash array may signal an error response by asserting bkn_fl_xfr_err to terminate a requested access
with an error. This may occur due to an uncorrectable ECC error, or because of improper sequencing
during program/erase operations. When an error response is received, the platform flash controller does
not update or validate a bank 0 or 2 page read buffer nor the bank1 temporary holding register. An error
response may be signaled on read or write operations. For more information on the specifics related to
signaling of errors, including flash ECC, refer to the flash array documentation. For additional information
on the system registers which capture the faulting address, attributes, data and ECC information, see the
ECSM block guide.

35.4.4.9 Code flash memory bank 0 and 2 page read buffers and prefetch
operation

The logic associated with banks 0 and 2 of the platform flash controller contains four page read buffers
which are used to hold data read from the flash array. Each buffer stores 4 pages (4 x 128 bit storage)
operates independently, and is filled using a single array access. The buffers are used for both prefetch and
normal demand fetches.

The organization of each page buffer is described below in a pseudo-code representation. The hardware
structure includes the buffer address and valid bit, along with 128 bits of page read data and several error
flags.

struct { // bx_py_page_buffer
reg addr[23:4]; // page address
reg valid; // valid bit
reg rdata[127:0]; // page read data
reg xfr_error; // transfer error indicator from flash array
reg multi_ecc_error; // multi-bit ECC error indicator from flash array
reg single_ecc_error; // single-bit correctable ECC indicator from flash array

} bx_py_page_buffer[4];

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1255

Given this definition, the platform flash controller includes four instantiations of the basic 4 x 128 bit page
buffer. These are named: b0_p0, b0_p1, b2_p0 and b2_p1.

For the general case, a page buffer is written at the completion of an error-free flash access and the valid
bit asserted. Subsequent flash accesses that “hit” the buffer, that is, the current access address matches the
address stored in the buffer, can be serviced in 0 AHB wait-states as the stored read data is routed from the
given page buffer back to the requesting bus master.

As noted in Section 35.4.4.8, “Flash Error Response Operation, a page buffer is not marked as valid if the
flash array access terminated with any type of transfer error. However, the result is that flash array accesses
that are tagged with a single-bit correctable ECC event are loaded into the page buffer and validated. For
additional comments on this topic, see Section 35.4.4.10, “Buffer Invalidation.

Prefetch triggering is controllable on a per-master and access-type basis. Bus masters may be enabled or
disabled from triggering prefetches, and triggering may be further restricted based on whether a read
access is for instruction or data. A read access to the platform flash controller may trigger a prefetch to the
next sequential page of array data on the first idle cycle following the request. The access address is
incremented to the next-higher 16-byte boundary, and a flash array prefetch is initiated if the data is not
already resident in a page buffer. Prefetched data is always loaded into the least-recently-used buffer.

Buffers may be in one of six states, listed here in prioritized order:

1. Invalid - the buffer contains no valid data

2. Used - the buffer contains valid data which has been provided to satisfy an AHB burst type read

3. Valid - the buffer contains valid data which has been provided to satisfy an AHB single type read

4. Prefetched - the buffer contains valid data which has been prefetched to satisfy a potential future
AHB access

5. Busy AHB - the buffer is currently being used to satisfy an AHB burst read

6. Busy Fill - the buffer has been allocated to receive data from the flash array, and the array access
is still in progress

Selection of a buffer to be loaded on a miss is based on the following replacement algorithm:

1. First, the buffers are examined to determine if there are any invalid buffers. If there are multiple
invalid buffers, the one to be used is selected using a simple numeric priority, where buffer 0 is
selected first, then buffer 1, etc.

2. If there are no invalid buffers, the least-recently-used buffer is selected for replacement.

Once the candidate page buffer has been selected, the flash array is accessed and read data loaded into the
buffer. If the buffer load was in response to a miss, the just-loaded buffer is immediately marked as
most-recently-used. If the buffer load was in response to a speculative fetch to the next-sequential line
address after a buffer hit, the recently-used status is not changed. Rather, it is marked as
most-recently-used only after a subsequent buffer hit.

This policy maximizes performance based on reference patterns of flash accesses and allows for
prefetched data to remain valid when non-prefetch enabled bus masters are granted flash access.

Multiple algorithms are available for prefetch control which trade off performance versus power. They are
defined by the Bx_Py_PFLM (prefetch limit) register field. More aggressive prefetching increases power

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1256 Freescale Semiconductor

slightly due to the number of wasted (discarded) prefetches, but may increase performance by lowering
average read latency.

In order for prefetching to occur, a number of control bits must be enabled. Specifically, the global buffer
enable (Bx_Py_BFE) must be set, the prefetch limit (Bx_Py_PFLM) must be non-zero and either
instruction prefetching (Bx_Py_IPFE) or data prefetching (Bx_Py_DPFE) enabled. Recall the prefetch
and buffer enables are defined on a per AHB port in the PFCR0 and PFCR1 registers. Refer to
Section 35.4.3.1, “Platform Flash Configuration Register 0 (PFCR0) and Section 35.4.3.2, “Platform
Flash Configuration Register 1 (PFCR1) for a description of these control fields.

35.4.4.9.1 Inst/Data Prefetch Triggering

Prefetch triggering may be enabled for instruction reads via the Bx_Py_IPFE control field, while
prefetching for data reads is enabled via the Bx_Py_DPFE control field. Additionally, the Bx_Py_PFLIM
field must also be set to enable prefetching. Prefetches are never triggered by write cycles.

35.4.4.9.2 Per-Master Prefetch Triggering

Prefetch triggering may be also controlled for individual bus masters. AHB accesses indicate the
requesting master via the hmaster[3:0] inputs. Refer to PFAPR description for details on these controls.

35.4.4.9.3 Code flash memory buffer allocation

Allocation of the page read buffers is controlled via page buffer configuration (Bx_Py_BCFG) field. This
field defines the operating organization of the four page buffers. The buffers can be organized as a “pool”
of available resources (with all four buffers in the pool) or with a fixed partition between buffers allocated
to instruction or data accesses. For the fixed partition, two configurations are supported. In one
configuration, buffers 0 and 1 are allocated for instruction fetches and buffers 2 and 3 for data accesses. In
the second configuration, buffers 0, 1 and 2 are allocated for instruction fetches and buffer 3 reserved for
data accesses.

35.4.4.10 Buffer Invalidation

The page read buffers may be invalidated under hardware or software control.

Any falling edge transition of the array’s bkn_fl_done signal causes the page read buffers to be marked as
invalid. This input is negated by the flash array at the beginning of all program/erase operations as well as
in certain other cases. Buffer invalidation occurs at the next AHB non-sequential access boundary, but does
not affect a burst from a page read buffer which is in progress.

Software may invalidate the buffers by clearing the Bx_Py_BFE bit, which also disables the buffers.
Software may then re-assert the Bx_Py_BFE bit to its previous state, and the buffers will have been
invalidated.

One special case needing software invalidation relates to page buffer “hits” on flash data which was tagged
with a single-bit ECC event on the original array access. Recall that the page buffer structure includes an
status bit signaling the array access detected and corrected a single-bit ECC error. On all subsequent buffer
hits to this type of page data, a single-bit ECC event is signaled by the platform flash controller. Depending
on the specific hardware configuration, this reporting of a single-bit ECC event may generate an ECC alert

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1257

interrupt. In order to prevent repeated ECC alert interrupts, the page buffers need to be invalidated by
software after the first notification of the single-bit ECC event.

Finally, the buffers are invalidated by hardware on any non-sequential access with a non-zero value on
haddr[28:24] to support wait-state emulation.

35.4.4.11 Bank1 Temporary Holding Registers

Recall the bank1 logic within the platform flash controller includes two 64-bit data register (one for each
AHB port), used for capturing read data. Since this bank does not support prefetching, the read data for the
referenced address is bypassed directly back to the AHB data bus. The page is also loaded into the
appropriate temporary data register and subsequent accesses to this page can hit from this register, if it is
enabled (B1_Py_BFE).

The organization of the temporary holding register is described below in a pseudo-code representation.
The hardware structure includes the buffer address and valid bit, along with up to 64 bits of page read data
and several error flags and is the same as an individual bank 0 or 2 page buffer.

struct { // b1_py_page_buffer
reg addr[23:4]; // page address
reg valid; // valid bit
reg rdata[63:0]; // page read data
reg xfr_error; // transfer error indicator from flash array
reg multi_ecc_error; // multi-bit ECC error indicator from flash array
reg single_ecc_error; // single-bit correctable ECC indicator from flash array

} b1_py_page_buffer;

Given this definition, the platform flash controller includes two instantiations of this temporary holding
register for bank 1. These are named: b1_p0 and b1_p1.

For the general case, a temporary holding register is written at the completion of an error-free flash access
and the valid bit asserted. Subsequent flash accesses that “hit” the buffer, that is, the current access address
matches the address stored in the temporary holding register, can be serviced in 0 AHB wait-states as the
stored read data is routed from the temporary register back to the requesting bus master.

Any 64-bit AHB access request will require two consecutive accesses to the data flash. On a 64-bit AHB
read request, the platform flash controller accesses the data flash to obtain the first word (32-bits) and
places it in the temporary holding register, aligned accordingly for a 64-bit container. Then the
PFLASH2P_LCA accesses the data flash again to obtain the second word. Upon completion of the second
flash access, the 32-bit of data on the flash read data bus are combined with the other half of the requested
double-word, stored in the temporary holding register, and sent back to the requesting master. The contents
of the second flash access are also written to the temporary holding register, aligned accordingly for a
64-bit container. Any subsequent 64- or 32-bit flash accesses that “hit” the buffer, that is, the current access
address matches the address stored in the temporary holding register, can be serviced in 0 AHB wait-states
as the stored read data is routed from the temporary register back to the requesting bus master.

On a 32-bit read request, the platform flash controller accesses the data flash to obtain the requested word
and places it in the temporary holding register, aligned accordingly for a 64-bit container. The other half
of the 64-bit holding register is marked invalid. Any subsequent 32-bit flash accesses that “hit” the buffer,

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1258 Freescale Semiconductor

that is, the current access address matches the address stored in the temporary holding register, can be
serviced in 0 AHB wait-states as the stored read data is routed from the temporary register back to the
requesting bus master

The contents of the holding register are invalidated by the falling edge transition of b1_fl_done and on any
non-sequential access with a non-zero value on haddr[28:24] (to support wait-state emulation) in the same
manner as the bank0 page buffers. Additionally, the B1_Py_BFE register bit can be cleared by software to
invalidate the contents of the holding register.

As noted in Section 35.4.4.8, “Flash Error Response Operation, the temporary holding register is not
marked as valid if the flash array access terminated with any type of transfer error. However, the result is
that flash array accesses that are tagged with a single-bit correctable ECC event are loaded into the
temporary holding register and validated. Accordingly, one special case needing software invalidation
relates to holding register “hits” on flash data which was tagged with a single-bit ECC event. Depending
on the specific hardware configuration, the reporting of a single-bit ECC event may generate an ECC alert
interrupt. In order to prevent repeated ECC alert interrupts, the temporary holding registers need to be
invalidated by software after the first notification of the single-bit ECC event.

Each bank1 temporary holding register effectively operates like a single page buffer.

35.4.4.12 Input Port Arbitration

For maximum system performance, the platform flash controller fully supports concurrent flash accesses
from the two AHB input ports when the references are targeted to different flash banks.

In the event that both AHB ports reference the same flash bank, there is arbitration logic in the module to
determine the order the references are granted access to the targeted bank. The 2-bit PFAPR[ARBM] field
defines the port arbitration mode and this field can define a fixed priority scheme with either p0 > p1 or
p1 > p0 or a round-robin mode where the port given priority simply toggles on every simultaneous bank
conflict.

35.4.4.13 Read-While-Write Functionality

The platform flash controller supports various programmable responses for read accesses while the flash
is busy performing a write (program) or erase operation. For all situations, the platform flash controller
uses the state of the flash array’s bkn_fl_done output to determine if it is busy performing some type of
high-voltage operation, namely, if bkn_fl_done = 0, the array is busy.

Specifically, there are two 3-bit read-while-write (Bn_RWWC) control register fields which define the
platform flash controller’s response to these types of access sequences. There are 4 unique responses that
are defined by the Bn_RWWC setting: one immediately reports an error on an attempted read and four
settings that support various stall-while-write capabilities. Consider the details of these settings.

• Bn_RWWC = 0b111

— This defines the basic stall-while-write capability and represents the default reset setting. For
this mode, the platform flash controller module simply stalls any read reference until the flash
has completed its program/erase operation. If a read access arrives while the array is busy or if
a falling-edge on bkn_fl_done occurs while a read is still in progress, the AHB data phase is
stalled by negating hready_out and saving the address and attributes into holding registers.

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1259

Once the array has completed its program/erase operation, the platform flash controller uses
the saved address and attribute information to create a pseudo address phase cycle to “retry”
the read reference and sends the registered information to the array as bkn_fl_rd_en is asserted.
Once the retried address phase is complete, the read is processed normally and once the data is
valid, it is forwarded to the AHB bus and hready_out negated to terminate the system bus
transfer. See Interrupt Controller chapter for details.

• Bn_RWWC = 0b110

— This setting is similar to the basic stall-while-write capability provided when Bn_RWWC =
0b111 with the added ability to generate a notification interrupt if a read arrives while the array
is busy with a program/erase operation. There are two notification interrupts, one for each
bank.

• Bn_RWWC = 0b101

— Again, this setting provides the basic stall-while-write capability with the added ability to abort
any program/erase operation if a read access is initiated. For this setting, the read request is
captured and retried as described for the basic stall-while-write, plus the program/erase
operation is aborted by the platform flash controller’s assertion of the bkn_fl_abort signal. The
bkn_fl_abort signal remains asserted until bkn_fl_done is driven high. For this setting, there are
no notification interrupts generated.

• Bn_RWWC = 0b100

— This setting provides the basic stall-while-write capability with the ability to abort any
program/erase operation if a read access is initiated plus the generation of an abort notification
interrupt. For this setting, the read request is captured and retried as described for the basic
stall-while-write, the program/erase operation is aborted by the platform flash controller’s
assertion of the bkn_fl_abort signal and an abort notification interrupt generated. There are two
abort notification interrupts, one for each bank.

As detailed above, there are a total of 4 interrupt requests associated with the stall-while-write
functionality. These interrupt requests are captured as part of ECSM Interrupt Register and logically
summed together to form a single request to the interrupt controller.

For example timing diagrams of the stall-while-write and abort-while-write operations, see Figure 35-41
and Figure 35-46 respectively.

Table 35-61. Platform flash controller Stall-While-Write Interrupts

MIR[n] Interrupt Description

ECSM.MIR[7] Platform flash bank0 abort notification, MIR[FB0AI]

ECSM.MIR[6] Platform flash bank0 stall notification, MIR[FB0SI]

ECSM.MIR[5] Platform flash bank1 abort notification, MIR[FB1AI]

ECSM.MIR[4] Platform flash bank1 stall notification, MIR[FB1S1]

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1260 Freescale Semiconductor

35.4.4.14 Wait-State Emulation

Emulation of other memory array timings are supported by the platform flash controller on read cycles to
the flash. This functionality may be useful to maintain the access timing for blocks of memory which were
used to overlay flash blocks for the purpose of system calibration or tuning during code development.

The platform flash controller inserts additional wait-states according to the values of haddr[28:24]. When
these inputs are non-zero, additional cycles are added to AHB read cycles. Write cycles are not affected.
In addition, no page read buffer prefetches are initiated, and buffer hits are ignored.

Table 35-62 and Table 35-63 show the relationship of haddr[28:24] to the number of additional primary
wait-states. These wait-states are applied to the initial access of a burst fetch or to single-beat read accesses
on the AHB system bus.

Note that the wait-state specification consists of two components: haddr[28:26] and haddr[25:24] and
effectively extends the flash read by (8 * haddr[25:24] + haddr[28:26]) cycles.

Table 35-63 shows the relationship of haddr[25:24] to the number of additional wait-states. These are
applied in addition to those specified by haddr[28:26] and thus extend the total wait-state specification
capability.

Table 35-62. Additional Wait-State Encoding

Memory Address
haddr[28:26]

Additional
wait-states

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

Table 35-63. Extended Additional Wait-State Encoding

Memory Address
haddr[25:24]

Additional Wait-states
(added to those specified by haddr[28:26])

00 0

01 8

10 16

11 24

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1261

35.4.4.15 Timing Diagrams

Since platform flash controller is typically used in platform configurations with a cacheless core, the
operation of the processor accesses to the platform memories, e.g., flash and SRAM, plays a major role in
the overall system performance. Given the core/platform pipeline structure, the platform’s memory
controllers (PFLASH, PRAM) are designed to provide a zero wait-state data phase response to maximize
processor performance. The following diagrams illustrate operation of various cycle types and responses
referenced earlier in this chapter including stall-while-read (Figure 35-45) and abort-while-read
(Figure 35-46) diagrams.

Figure 35-41. 1-Cycle Access, No Buffering, No Prefetch

nonseq seq seq

addr y addr y+4 addr y+12

C(y) C(y+4)

okay okay okay okay okay okay okay okay

y

C(y) C(y+4)

Read, no buffering, no prefetch, APC=0, RWSC=0, PFLM=0

1 2 3 4 5 6 7 8

addr y

seq

addr y+8

y+4 y+8

C(y+8) C(y+12)

y+12

addr y+4 addr y+8

C(y+8) C(y+12)

hclk

htrans

haddr, hprot

hwrite

hrdata

hwdata

hready_out

hresp

bkn_fl_addr

bkn_fl_rd_en

bkn_fl_wr_en

bkn_fl_rdata

addr+12

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1262 Freescale Semiconductor

Figure 35-42. 3-Cycle Access, No Prefetch, Buffering Disabled

nonseq seq seq

addr y addr y+4 addr y+12

C(y) C(y+4)

okay okay okay okay okay okay okay okay

y

C(y)

Burst Read, buffer miss, no prefetch, APC=2, RWSC=2, PFLM=0

1 2 3 4 5 6 7 8

addr y

seq

addr y+8

y+4

addr y+4

C(y+4)

y+8

addr y+8

hclk

htrans

haddr, hprot

hwrite

hrdata

hwdata

hready_out

hresp

bkn_fl_addr

bkn_fl_rd_en

bkn_fl_wr_en

bkn_fl_rdata

bkn_fl_xfr_err

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1263

Figure 35-43. 3-Cycle Access, No Prefetch, Buffering Enabled

nonseq seq seq

addr y addr y+4 addr y+12

C(y) C(y+4) C(y+8) C(y+12)

okay okay okay okay okay okay okay okay

Y

C(y)

Burst Read, buffer miss, no prefetch, APC=2, RWSC=2, PFLM=0

1 2 3 4 5 6 7 8

addr y

seq

addr y+8

hclk

htrans

haddr, hprot

hwrite

hrdata

hwdata

hready_out

hresp

bkn_fl_addr

bkn_fl_rd_en

bkn_fl_wr_en

bkn_fl_rdata

bkn_fl_xfr_err

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1264 Freescale Semiconductor

Figure 35-44. 3-Cycle Access, Prefetch and Buffering Enabled

nonseq seq seq

addr y addr y+4 addr y+12

C(y) C(y+4) C(y+8) C(y+12)

okay okay okay okay okay okay okay okay

y

C(y)

Burst Read, buffer miss, prefetch, APC=2, RWSC=2, PFLM=2

1 2 3 4 5 6 7 8

addr y

seq

addr y+8

y+16

C(y+16)

seq seq

addr y+16 addr y+20

C(y+16)

y+32

addr y+16 addr y+32

hclk

htrans

haddr, hprot

hwrite

hrdata

hwdata

hready_out

hresp

bkn_fl_addr

bkn_fl_rd_en

bkn_fl_wr_en

bkn_fl_rdata

bkn_fl_xfr_err

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1265

Figure 35-45. 3-Cycle Access, Stall-and-Retry with Bn_RWWC = 11x

As shown in Figure , the 3-cycle access to address y is interrupted when an operation causes the bkn_done
signal to be negated signaling that the array bank is busy with a high-voltage program or erase event.
Eventually, this array operation completes (at the end of cycle 4) and bkn_done returns to a logical 1. In
cycle 6, the platform flash controller module retries the read to address y which was interrupted by the
negation of bkn_done in cycle 3. Note that throughout cycles 2-9, the AHB bus pipeline is stalled with a
read to address y in the AHB data phase and a read to address y+4 in the address phase. Depending on the
state of the least-significant-bit of the Bn_RWWC control field, the hardware may also signal a stall
notification interrupt (if Bn_RWWC = 110). The stall notification interrupt is shown as the optional
assertion of ECSM’s MIR[FBnSI] (flash bank n stall interrupt).

nonseq seq

addr y addr y+4

C(y) C(y+4)

okay okay okay okay okay okay okay okay

y

C(y)

Burst Read, Stall-and-Retry, APC=2, RWSC=2, PFLM=2

1 2 3 4 5 6 7 8

addr y

seq

addr y+8

y+16 y+16y

okay okay

addr y+16addr y (retry)

hclk

htrans

haddr, hprot

hwrite

hrdata

hwdata

hready_out

hresp

bkn_fl_addr

bkn_fl_rd_en

bkn_fl_wr_en

bkn_fl_rdata

bkn_fl_xfr_err

bkn_done

bkn_abort

ecsm_mir[fbnsi]

ecsm_mir[fbnai]

9 10

Chapter 35 Flash Memory

MPC5646C Microcontroller Reference Manual, Rev. 5

1266 Freescale Semiconductor

Figure 35-46. 3-Cycle Access, Abort-and-Retry with Bn_RWWC = 10x

Figure shows the abort-while-write timing diagram. In this example, the 3-cycle access to address y is
interrupted when an operation causes the bkn_done signal to be negated signaling that the array bank is
busy with a high-voltage program or erase event. Based on the setting of Bn_RWWC, once the bkn_done
signal is detected as negated, the platform flash controller asserts bkn_abort which forces the flash array
to cancel the high-voltage program or erase event. The array operation completes (at the end of cycle 4)
and bkn_done returns to a logical 1. It should be noted that the time spent in cycle 4 for Figure is
considerably less than the time in the same cycle in Figure (because of the abort operation). In cycle 6,
the platform flash controller module retries the read to address y which was interrupted by the negation of
bkn_done in cycle 3. Note that throughout cycles 2-9, the AHB bus pipeline is stalled with a read to address
y in the AHB data phase and a read to address y+4 in the address phase. Depending on the state of the
least-significant-bit of the Bn_RWWC control field, the hardware may also signal an abort notification
interrupt (if Bn_RWWC = 100). The stall notification interrupt is shown as the optional assertion of
ECSM’s MIR[FBnAI] (flash bank n abort interrupt).

nonseq seq

addr y addr y+4

C(y) C(y+4)

okay okay okay okay okay okay okay okay

y

C(y)

Burst Read, Abort-and-Retry, APC=2, RWSC=2, PFLM=2

1 2 3 4 5 6 7 8

addr y

seq

addr y+8

y+16 y+16y

okay okay

addr y+16addr y (retry)

hclk

htrans

haddr, hprot

hwrite

hrdata

hwdata

hready_out

hresp

bkn_fl_addr

bkn_fl_rd_en

bkn_fl_wr_en

bkn_fl_rdata

bkn_fl_xfr_err

bkn_done

bkn_abort

ecsm_mir[fbnsi]

ecsm_mir[fbnai]

9 10

Chapter 36 Register Protection

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1267

Chapter 36
Register Protection

36.1 Introduction

36.1.1 Overview

The Register Protection Module provides an easy mechanism to protect write access to registers within a
module on a per-register basis. The registers that can be protected are typically a subset of the main module
registers. Section 36.6, Protected registers, details which registers can be protected for each module.

The Register Protection Module sits between the PBRIDGE and the module under protection. This is
shown in Figure 36-1.

Figure 36-1. Register Protection Module Block Diagram

Please see Section 36.6, Protected registers, for the list of protected registers.

36.1.2 Features

The Register Protection Module includes these distinctive features for each module under protection:

• Restrict access for the module to supervisor mode only.

• Protect a subset of registers located in the first 6 KB of the memory mapped address space

• Provide a mirrored register block at (Base+0x2000) to facilitate automated setting of a register lock
bit when the register is written.

PBRIDGE/
APB

supervisor access /

Lock
Registers

Module
under

Protection

Protection Module

write data

address / access size

UAA

HLB
GCR

Access allowed?

peripheral enable

Other control signals

peripheral
enable

Chapter 36 Register Protection

MPC5646C Microcontroller Reference Manual, Rev. 5

1268 Freescale Semiconductor

• Once register lock bits have been set, they can be protected from changes until reset.

36.1.3 Modes of operation

The Register Protection Module is active when the module under protection is operable.

36.2 External signal description
There are no external signals.

36.3 Memory map and register description
This section provides a detailed description of the memory map of a module using the Register Protection
Module. The original 16 KB module memory space is divided into five areas as shown in Figure 36-2.

Figure 36-2. Memory map of module using Register Protection

Area 1 (6 KB) - Registers of module under protection.

Area 2 (2 KB) - Reserved

Area 3 (6 KB) - This is a mirror of the module registers contained in block 1 and is implemented to
facilitate setting the register protection lock bits. When a (protectable) register is written in this area, the
module register (in area 1) is written as well as updating the corresponding register soft lock bit(s) in Area
4 in the same cycle. For registers that do not have protection available, a write to the register in Area 3 will

module register space
Base + 0x0000

6 KB

2 KB Reserved

mirror module register space

6 KB

1.5 KB Lock Bits

with user defined

Base + 0x1800

Base + 0x2000

Base + 0x3800

soft locking function

512 B Configuration
Base + 0x3E00

Base + 0x3FFF

Area 1

Area 2

Area 3

Area 4

Area 5

Chapter 36 Register Protection

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1269

still perform the register write but will not attempt to update the soft lock bit. Reads to registers in Area 3
are no different to directly reading the register in Area 1.

Area 4 (1.5 KB) - This contains the soft lock bits for each module register that can be protected. There is
one soft lock bit per byte of a protected register. The four soft lock bits associated with a module register
word are arranged at byte boundaries in the memory map. The soft lock bit registers can be directly written
using a bit mask.

Area 5 (512 bytes) - This area hold the configuration bits of the protection mode. There is one
configuration hard lock bit per module that prevents all further modifications to the soft lock bits and can
only be cleared by a system reset once set. The other bits, if set, will allow user access to the protected
module.

If any locked byte is accessed with a write transaction, a transfer error will be issued to the system and the
write transaction will not be executed. This is true even if not all accessed bytes are locked within a
register.

Accessing unimplemented 32-bit registers in Areas 4 and 5 results in a transfer error.

36.3.1 Memory map

Table 36-1 gives an overview on the Register Protection Module registers implemented.

NOTE
Reserved registers in area #2 will be handled according to the protected IP
(module under protection).

Table 36-1. Register protection memory map

Address offset Area Use Location

0x0000–0x17FF Area 1 Module register address space on page
1270

0x1800–0x1FFF Area 2 Reserved

0x2000–0x37FF Area 3 Mirror of module register address space with user-defined soft
locking function.

on page
1270

0x3800 Area 4 Soft Lock Bit Register 0 (SLBR0): soft lock bits 0-3 on page
1270

0x3801 Soft Lock Bit Register 1 (SLBR1): soft lock bits 4-7 on page
1270

0x3802–0x3DFF Soft Lock Bit Register 2 (SLBR2): soft lock bits 8-11 –
Soft Lock Bit Register 1535 (SLBR1535): soft lock bits

6140-6143

on page
1270

0x3E00–0x3FFB — Reserved

0x3FFC Area 5 Global Configuration Register (GCR) on page
1272

Chapter 36 Register Protection

MPC5646C Microcontroller Reference Manual, Rev. 5

1270 Freescale Semiconductor

36.3.2 Register description

36.3.2.1 Module register address space (MR0-6143)

This is the lower 6 KB module memory space which holds all the functional registers of the module that
is protected by the SIUL.

36.3.2.2 Module Register and Set Soft Lock Bit (LMR0-6143)

This is memory area 3 which provides mirrored access to the register space MR[0..6143]. Each time a
protectable register is written via this mirror, the soft lock bit(s) are updated. Each byte of a register has its
own associated soft lock bit as defined in Section 36.3.2.3, Soft Lock Bit Register (SLBR0-1535).

36.3.2.3 Soft Lock Bit Register (SLBR0-1535)

These registers contain the soft lock bits for the protectable module registers. This corresponds to area 4
in Figure 36-2.

 Address 0x3800-0x3DFF Access: Read always
Supervisor write

0 1 2 3 4 5 6 7

R 0 0 0 0
SLB0 SLB1 SLB2 SLB3

W WE0 WE1 WE2 WE3

Reset 0 0 0 0 0 0 0 0

Figure 36-3. Soft Lock Bit Register (SLBRn)

Chapter 36 Register Protection

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1271

Figure 36-3 gives some examples how SLBRn.SLB and MRn go together.

Table 36-2. SLBRn field descriptions

Field Description

WEn Write Enable Bits for soft lock bits (SLB):
WE0 enables writing to SLB0
WE1 enables writing to SLB1
WE2 enables writing to SLB2
WE3 enables writing to SLB3

The WE bits allow the user to over-write an existing register that already has soft lock bits set (i.e.
one that has previously been written and locked).

The mechanism to update a register (that is already locked) is:
- Write to the SLBRn register with WEx bits set for whatever SLBn bits are being modified (eg 0xF0
to clear all lock bits)
- Re-write the register using the mirrored registers in area 3 which will re-set the locking bits
accordingly.

If the global protection bit is set, the write enables cannot be enabled and the soft locks remain in
force until the next reset.

1 Value is written to SLB
0 SLB is not modified

SLBn Soft lock bits for one MRn register:
SLB0 can block accesses to MR[n *4 + 0]
SLB1 can block accesses to MR[n *4 + 1]
SLB2 can block accesses to MR[n *4 + 2]
SLB3 can block accesses to MR[n *4 + 3]

1 Associated MRn byte is locked against write accesses
0 Associated MRn byte is unprotected and writeable

Table 36-3. Soft lock bits vs. protected address

Soft lock bit Protected address

SLBR0.SLB0 MR0

SLBR0.SLB1 MR1

SLBR0.SLB2 MR2

SLBR0.SLB3 MR3

SLBR1.SLB0 MR4

SLBR1.SLB1 MR5

SLBR1.SLB2 MR6

SLBR1.SLB3 MR7

SLBR2.SLB0 MR8

... ...

Chapter 36 Register Protection

MPC5646C Microcontroller Reference Manual, Rev. 5

1272 Freescale Semiconductor

36.3.2.4 Global Configuration Register (GCR)

This register is used to control access to SLB bits related to register protection.

NOTE
The GCR.UAA bit has no effect on the allowed access modes for the
registers in the System Integration Unit Lite module.

36.4 Functional description

36.4.1 General

This module provides a generic register (address) write-protection mechanism. The protection size can be:

• 32-bit (address == multiples of 4)

• 16-bit (address == multiples of 2)

• 8-bit (address == multiples of 1)

Address 0x3FFC Access: Read Always Supervisor write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R HLB 0 0 0 0 0 0 0 UAA 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 36-4. Global Configuration Register (GCR)

Table 36-4. GCR field descriptions

Field Description

HLB Hard Lock Bit.
This register can not be cleared once it is set by software. It can only be cleared by a system reset.

1 All SLB bits are write protected and can not be modified
0 All SLB bits are accessible and can be modified.

UAA User Access Allowed.

1 The registers in the module under protection can be accessed in the mode defined for the module
registers without any additional restrictions.

0 The registers in the module under protection can only be written in supervisor mode. All write
accesses in non-supervisor mode are not executed and a transfer error is issued. This access
restriction is in addition to any access restrictions imposed by the protected IP module.

Chapter 36 Register Protection

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1273

• unprotected (address == multiples of 1)

The specific registers being protected (address and size) depends on the module. This section lists some
generic examples to show the mechanism of register protection.

For all addresses that are protected there are SLBRn.SLBm bits that specify whether the address is locked.
When an address is locked it can be read but not written in any mode (supervisor/normal). If an address is
unprotected the corresponding SLBRn.SLBm bit is always 0b0 no matter what software is writing to.

36.4.2 Change lock settings

To change the setting whether an address is locked or unlocked the corresponding SLBRn.SLBm bit needs
to be changed. This can be done using the following methods:

• Modify the SLBRn.SLBm directly by writing to area #4

• Set the SLBRn.SLBm bit(s) by writing to the mirror module space (area #3)

Both methods are explained in the following sections.

36.4.2.1 Change lock settings directly via area #4

Memory area #4 contains the lock bits. They can be modified by writing to them. Each SLBRn.SLBm bit
has a mask bit SLBRn.WEm, which protects it from being modified. This masking makes
clear-modify-write operations unnecessary.

Figure 36-5 shows two modification examples. In the left example there is a write access to the SLBRn
register specifying a mask value which allows modification of all SLBRn.SLBm bits. The example on the
right specifies a mask which only allows modification of the bits SLBRn.SLB[3:1].

Figure 36-5. Change Lock Settings Directly Via Area #4

Figure 36-5 shows four registers that can be protected 8-bit wise. In Figure 36-6 registers with 16-bit
protection and in Figure 36-7 registers with 32-bit protection are shown:

1

SLB3SLB2SLB1SLB0

SLBRn.WE[3:0]

SLBRn.SLB[3:0] SLB3SLB2SLB1SLB0 SLBRn.SLB[3:0]

change allowed

to SLB3 write datato SLB2to SLB1to SLB0

111 1 SLBRn.WE[3:0]

to SLB3 write datato SLB2to SLB1to SLB0

110

change allowed

Chapter 36 Register Protection

MPC5646C Microcontroller Reference Manual, Rev. 5

1274 Freescale Semiconductor

Figure 36-6. Change Lock Settings for 16-bit Protected Addresses

On the right side of Figure 36-6 it is shown that the data written to SLBRn.SLB[0] is automatically written
to SLBRn.SLB[1] also. This is done as the address reflected by SLBRn.SLB[0] is protected 16-bit wise.
Note that in this case the write enable SLBRn.WE[0] must be set while SLBRn.WE[1] does not matter. As
the enable bits SLBRn.WE[3:2] are cleared the lock bits SLBRn.SLB[3:2] remain unchanged.

In the example on the left side of Figure 36-6 the data written to SLBRn.SLB[0] is mirrored to
SLBRn.SLB[1] and the data written to SLBRn.SLB[2] is mirrored to SLBRn.SLB[3] as for both registers
the write enables are set.

In Figure 36-7 a 32-bit wise protected register is shown. When SLBRn.WE[0] is set the data written to
SLBRn.SLB[0] is automatically written to SLBRn.SLB[3:1] also. Otherwise SLBRn.SLB[3:0] remains
unchanged.

Figure 36-7. Change Lock Settings for 32-bit Protected Addresses

In Figure 36-8 an example is shown which has a mixed protection size configuration:

SLB0 SLB1 SLB2 SLB3 SLBR

update lock bits

1 SLBRn.WE[3:0]

to SLB0 write datato SLB1 to SLB2 to SLB3

X 1 X

SLB0 SLB1 SLB2 SLB3 SLBR

update lock bits

1 SLBRn.WE[3:0]

to SLB0 write datato SLB1 to SLB2 to SLB3

X 0 0

1

SLB0 SLB1 SLB2 SLB3

SLBRn.WE[3:0]

SLBR.SLB[3:0]

update lock bits

to SLB0 write datato SLB1 to SLB2 to SLB3

X X X

Chapter 36 Register Protection

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1275

Figure 36-8. Change Lock Settings for Mixed Protection

The data written to SLBRn.SLB[0] is mirrored to SLBRn.SLB[1] as the corresponding register is 16-bit
protected. The data written to SLBRn.SLB[2] is blocked as the corresponding register is unprotected. The
data written to SLBRn.SLB[3] is written to SLBRn.SLB[3].

36.4.2.2 Enable locking via mirror module space (area #3)

It is possible to enable locking for a register after writing to it. To do so the mirrored module address space
can be used. (Locking can also be enabled directly via the SLRBn registers.) Figure 36-9 shows one
example:

Figure 36-9. Enable Locking Via Mirror Module Space (Area #3)

When writing to address 0x0008 the registers MR9 and MR8 in the protected module are updated. The
corresponding lock bits remain unchanged (left part of Figure 36-6).

When writing to address 0x2008 the registers MR9 and MR8 in the protected module are updated. The
corresponding lock bits SLBR2.SLB[1:0] are set while the lock bits SLBR2.SLB[3:2] remain unchanged
(right part of Figure 36-6).

Figure 36-10 shows an example where some addresses are protected and some are not:

SLB0 SLB1 0 SLB3 SLBR

update lock bits

1 SLBRn.WE[3:0]

to SLB0 write datato SLB1 to SLB2 to SLB3

X X 1

SLBR2

WE[3:0]

0 0 0 0 0 0 0 0

SLB[3:0]

16-bit write to address 0x0008

no change

write to MR[9:8]

SLBR2

WE[3:0]

0 0 0 0 1 1 0 0

SLB[3:0]

16-bit write to address 0x2008

set lock bits

write to MR[9:8]

Chapter 36 Register Protection

MPC5646C Microcontroller Reference Manual, Rev. 5

1276 Freescale Semiconductor

Figure 36-10. Enable Locking for Protected and Unprotected Addresses

In the example in Figure 36-10 addresses 0x0C and 0x0D are unprotected. Therefore their corresponding
lock bits SLBR3.SLB[1:0] are always 0b0 (shown in bold). When doing a 16-bit write access to address
0x200C only lock bits SLBR3.SLB[3:2] are set while bits SLBR3.SLB[1:0] stay 0b0. When doing a 32-bit
write access to address 0x200C lock bits SLBR3.SLB[3:0] are set

NOTE
Lock bits are only set automatically during writes to the mirrored address
space. The lock bits can also be modified manually.

36.4.2.3 Write protection for locking bits

Changing the locking bits through any of the procedures mentioned in Section 36.4.2.1, “Change lock
settings directly via area #4 and Section 36.4.2.2, “Enable locking via mirror module space (area #3) is
only possible as long as the bit GCR.HLB is cleared. Once this bit is set the locking bits can no longer be
modified until there is a system reset.

36.4.3 Access errors

The protection module generates transfer errors under several circumstances. For the area definition refer
to Figure 36-2.

1. If accessing area #1 or area #3, the protection module transfers any access error from the
underlying Module under Protection.

2. If user mode is not allowed, user write attempts to all areas will assert a transfer error and the writes
will be blocked.

3. Access attempts to the reserved area #2 cause a transfer error to be asserted.

4. Access attempts to unimplemented 32-bit registers in area #4 or area #5 cause a transfer error to be
asserted.

5. Attempted writes to a register in area #1 or area #3 with soft lock bit set for any of the affected
bytes causes a transfer error to be asserted and the write is blocked. The complete write operation
to non-protected bytes in this word is ignored.

6. If writing to a soft lock register in area #4 with the hard lock bit being set a transfer error is asserted.

7. Any write operation in any access mode to area #3 while GCR.HLB is set result in a error.

SLBR3

WE[3:0]

0 0 0 0 0 0 0 0

SLB[3:0]

Before write access

SLBR3

WE[3:0]

0 0 0 0 1 1 1 1

SLB[3:0]

16-bit write to address 0x200C

set lock bits

write to MR[15:12]

After
write access

Chapter 36 Register Protection

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1277

36.5 Reset
The reset state of each individual bit is shown within the Register Description section (See Section 36.3.2,
“Register description). In summary, after reset, locking for all MRn registers is disabled. The registers can
be accessed in Supervisor Mode only.

36.6 Protected registers
For MPC5646C, the Register Protection module is operable on the registers of Table 36-5.

Table 36-5. Protected registers

Module Register
Protected
size (bits)

Module base
Register

offset
Register

size (bits)

Code Flash

Code Flash MCR 32 C3F88000 000 bits[0:31]

Code Flash BIU0 32 C3F88000 01C bits[0:31]

Code Flash BIU1 32 C3F88000 020 bits[0:31]

Code Flash BIU2 32 C3F88000 024 bits[0:31]

Data Flash

Data Flash MCR 32 C3F8C000 000 bits[0:31]

SIU lite

SIUL IRER 32 C3F90000 018 bits[0:31]

SIUL IREER 32 C3F90000 028 bits[0:31]

SIUL IFEER 32 C3F90000 02C bits[0:31]

SIUL IFER 32 C3F90000 030 bits[0:31]

SIUL PCR0 16 C3F90000 040 bits[0:15]

SIUL PCR1 16 C3F90000 042 bits[0:15]

SIUL PCR2 16 C3F90000 044 bits[0:15]

SIUL PCR3 16 C3F90000 046 bits[0:15]

SIUL PCR4 16 C3F90000 048 bits[0:15]

SIUL PCR5 16 C3F90000 04A bits[0:15]

SIUL PCR6 16 C3F90000 04C bits[0:15]

SIUL PCR7 16 C3F90000 04E bits[0:15]

SIUL PCR8 16 C3F90000 050 bits[0:15]

SIUL PCR9 16 C3F90000 052 bits[0:15]

SIUL PCR10 16 C3F90000 054 bits[0:15]

SIUL PCR11 16 C3F90000 056 bits[0:15]

Chapter 36 Register Protection

MPC5646C Microcontroller Reference Manual, Rev. 5

1278 Freescale Semiconductor

SIUL PCR12 16 C3F90000 058 bits[0:15]

SIUL PCR13 16 C3F90000 05A bits[0:15]

SIUL PCR14 16 C3F90000 05C bits[0:15]

SIUL PCR15 16 C3F90000 05E bits[0:15]

SIUL PCR16 16 C3F90000 060 bits[0:15]

SIUL PCR17 16 C3F90000 062 bits[0:15]

SIUL PCR18 16 C3F90000 064 bits[0:15]

SIUL PCR19 16 C3F90000 066 bits[0:15]

SIUL PCR34 16 C3F90000 084 bits[0:15]

SIUL PCR35 16 C3F90000 086 bits[0:15]

SIUL PCR36 16 C3F90000 088 bits[0:15]

SIUL PCR37 16 C3F90000 08A bits[0:15]

SIUL PCR38 16 C3F90000 08C bits[0:15]

SIUL PCR39 16 C3F90000 08E bits[0:15]

SIUL PCR40 16 C3F90000 090 bits[0:15]

SIUL PCR41 16 C3F90000 092 bits[0:15]

SIUL PCR42 16 C3F90000 094 bits[0:15]

SIUL PCR43 16 C3F90000 096 bits[0:15]

SIUL PCR44 16 C3F90000 098 bits[0:15]

SIUL PCR45 16 C3F90000 09A bits[0:15]

SIUL PCR46 16 C3F90000 09C bits[0:15]

SIUL PCR47 16 C3F90000 09E bits[0:15]

SIUL PCR64 16 C3F90000 0C0 bits[0:15]

SIUL PCR65 16 C3F90000 0C2 bits[0:15]

SIUL PCR66 16 C3F90000 0C4 bits[0:15]

SIUL PCR67 16 C3F90000 0C6 bits[0:15]

SIUL PCR68 16 C3F90000 0C8 bits[0:15]

SIUL PCR69 16 C3F90000 0CA bits[0:15]

SIUL PCR70 16 C3F90000 0CC bits[0:15]

SIUL PCR71 16 C3F90000 0CE bits[0:15]

SIUL PCR72 16 C3F90000 0D0 bits[0:15]

SIUL PCR73 16 C3F90000 0D2 bits[0:15]

Table 36-5. Protected registers (continued)

Module Register
Protected
size (bits)

Module base
Register

offset
Register

size (bits)

Chapter 36 Register Protection

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1279

SIUL PCR74 16 C3F90000 0D4 bits[0:15]

SIUL PCR75 16 C3F90000 0D6 bits[0:15]

SIUL PCR76 16 C3F90000 0D8 bits[0:15]

SIUL PCR77 16 C3F90000 0DA bits[0:15]

SIUL PCR78 16 C3F90000 0DC bits[0:15]

SIUL PCR79 16 C3F90000 0DE bits[0:15]

SIUL PCR88 16 C3F90000 0F0 bits[0:15]

SIUL PCR89 16 C3F90000 0F2 bits[0:15]

SIUL PCR90 16 C3F90000 0F4 bits[0:15]

SIUL PCR91 16 C3F90000 0F6 bits[0:15]

SIUL PCR92 16 C3F90000 0F8 bits[0:15]

SIUL PCR93 16 C3F90000 0FA bits[0:15]

SIUL PCR94 16 C3F90000 0FC bits[0:15]

SIUL PCR95 16 C3F90000 0FE bits[0:15]

SIUL PCR96 16 C3F90000 100 bits[0:15]

SIUL PCR97 16 C3F90000 102 bits[0:15]

SIUL PCR98 16 C3F90000 104 bits[0:15]

SIUL PCR99 16 C3F90000 106 bits[0:15]

SIUL PCR100 16 C3F90000 108 bits[0:15]

SIUL PCR101 16 C3F90000 10A bits[0:15]

SIUL PCR102 16 C3F90000 10C bits[0:15]

SIUL PCR103 16 C3F90000 10E bits[0:15]

SIUL PCR104 16 C3F90000 110 bits[0:15]

SIUL PCR105 16 C3F90000 112 bits[0:15]

SIUL PCR106 16 C3F90000 114 bits[0:15]

SIUL PCR107 16 C3F90000 116 bits[0:15]

SIUL PCR108 16 C3F90000 118 bits[0:15]

SIUL PCR109 16 C3F90000 11A bits[0:15]

SIUL PCR110 16 C3F90000 11C bits[0:15]

SIUL PCR111 16 C3F90000 11E bits[0:15]

SIUL PCR112 16 C3F90000 120 bits[0:15]

SIUL PCR113 16 C3F90000 122 bits[0:15]

Table 36-5. Protected registers (continued)

Module Register
Protected
size (bits)

Module base
Register

offset
Register

size (bits)

Chapter 36 Register Protection

MPC5646C Microcontroller Reference Manual, Rev. 5

1280 Freescale Semiconductor

SIUL PCR114 16 C3F90000 124 bits[0:15]

SIUL PCR115 16 C3F90000 126 bits[0:15]

SIUL PCR123 16 C3F90000 136 bits[0:15]

SIUL PCR124 16 C3F90000 138 bits[0:15]

SIUL PCR125 16 C3F90000 13A bits[0:15]

SIUL PCR126 16 C3F90000 13C bits[0:15]

SIUL PCR127 16 C3F90000 13E bits[0:15]

SIUL PCR128 16 C3F90000 140 bits[0:15]

SIUL PCR129 16 C3F90000 142 bits[0:15]

SIUL PCR130 16 C3F90000 144 bits[0:15]

SIUL PCR131 16 C3F90000 146 bits[0:15]

SIUL PCR132 16 C3F90000 148 bits[0:15]

SIUL PCR133 16 C3F90000 14A bits[0:15]

SIUL PCR134 16 C3F90000 14C bits[0:15]

SIUL PCR135 16 C3F90000 14E bits[0:15]

SIUL PCR136 16 C3F90000 150 bits[0:15]

SIUL PCR137 16 C3F90000 152 bits[0:15]

SIUL PCR138 16 C3F90000 154 bits[0:15]

SIUL PCR139 16 C3F90000 156 bits[0:15]

SIUL PCR140 16 C3F90000 158 bits[0:15]

SIUL PCR141 16 C3F90000 15A bits[0:15]

SIUL PCR142 16 C3F90000 15C bits[0:15]

SIUL PCR143 16 C3F90000 15E bits[0:15]

SIUL PCR144 16 C3F90000 160 bits[0:15]

SIUL PCR145 16 C3F90000 162 bits[0:15]

SIUL PCR146 16 C3F90000 164 bits[0:15]

SIUL PCR147 16 C3F90000 166 bits[0:15]

SIUL PCR148 16 C3F90000 168 bits[0:15]

SIUL PCR149 16 C3F90000 16A bits[0:15]

SIUL PCR150 16 C3F90000 16C bits[0:15]

SIUL PCR151 16 C3F90000 16E bits[0:15]

SIUL PCR152 16 C3F90000 170 bits[0:15]

Table 36-5. Protected registers (continued)

Module Register
Protected
size (bits)

Module base
Register

offset
Register

size (bits)

Chapter 36 Register Protection

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1281

SIUL PCR153 16 C3F90000 172 bits[0:15]

SIUL PCR154 16 C3F90000 174 bits[0:15]

SIUL PCR155 16 C3F90000 176 bits[0:15]

SIUL PCR156 16 C3F90000 178 bits[0:15]

SIUL PCR157 16 C3F90000 17A bits[0:15]

SIUL PCR158 16 C3F90000 17C bits[0:15]

SIUL PCR159 16 C3F90000 17E bits[0:15]

SIUL PCR160 16 C3F90000 180 bits[0:15]

SIUL PCR161 16 C3F90000 182 bits[0:15]

SIUL PCR162 16 C3F90000 184 bits[0:15]

SIUL PCR163 16 C3F90000 186 bits[0:15]

SIUL PCR164 16 C3F90000 188 bits[0:15]

SIUL PCR165 16 C3F90000 18A bits[0:15]

SIUL PCR166 16 C3F90000 18C bits[0:15]

SIUL PCR167 16 C3F90000 18E bits[0:15]

SIUL PCR168 16 C3F90000 190 bits[0:15]

SIUL PCR169 16 C3F90000 192 bits[0:15]

SIUL PCR170 16 C3F90000 194 bits[0:15]

SIUL PCR171 16 C3F90000 196 bits[0:15]

SIUL PCR172 16 C3F90000 198 bits[0:15]

SIUL PCR173 16 C3F90000 19A bits[0:15]

SIUL PCR174 16 C3F90000 19C bits[0:15]

SIUL PCR175 16 C3F90000 19E bits[0:15]

SIUL PCR176 16 C3F90000 1A0 bits[0:15]

SIUL PCR177 16 C3F90000 1A2 bits[0:15]

SIUL PCR178 16 C3F90000 1A4 bits[0:15]

SIUL PCR179 16 C3F90000 1A6 bits[0:15]

SIUL PCR180 16 C3F90000 1A8 bits[0:15]

SIUL PCR181 16 C3F90000 1AA bits[0:15]

SIUL PCR182 16 C3F90000 1AC bits[0:15]

SIUL PCR183 16 C3F90000 1AE bits[0:15]

SIUL PCR184 16 C3F90000 1B0 bits[0:15]

Table 36-5. Protected registers (continued)

Module Register
Protected
size (bits)

Module base
Register

offset
Register

size (bits)

Chapter 36 Register Protection

MPC5646C Microcontroller Reference Manual, Rev. 5

1282 Freescale Semiconductor

SIUL PCR185 16 C3F90000 1B2 bits[0:15]

SIUL PCR186 16 C3F90000 1B4 bits[0:15]

SIUL PCR187 16 C3F90000 1B6 bits[0:15]

SIUL PCR188 16 C3F90000 1B8 bits[0:15]

SIUL PCR189 16 C3F90000 1BA bits[0:15]

SIUL PCR190 16 C3F90000 1BC bits[0:15]

SIUL PCR191 16 C3F90000 1BE bits[0:15]

SIUL PCR192 16 C3F90000 1C0 bits[0:15]

SIUL PCR193 16 C3F90000 1C2 bits[0:15]

SIUL PCR194 16 C3F90000 1C4 bits[0:15]

SIUL PCR195 16 C3F90000 1C6 bits[0:15]

SIUL PCR196 16 C3F90000 1C8 bits[0:15]

SIUL PCR197 16 C3F90000 1CA bits[0:15]

SIUL PCR198 16 C3F90000 1CC bits[0:15]

SIUL PSMI0_3 8 C3F90000 500 bits[0:7]

SIUL PSMI4_7 8 C3F90000 504 bits[0:7]

SIUL PSMI8_11 8 C3F90000 508 bits[0:7]

SIUL PSMI12_15 8 C3F90000 50C bits[0:7]

SIUL PSMI16_19 8 C3F90000 510 bits[0:7]

SIUL PSMI20_23 32 C3F90000 514 bits[0:7]

SIUL PSMI24_27 32 C3F90000 518 bits[0:7]

SIUL PSMI28_31 32 C3F90000 51C bits[0:7]

SIUL PSMI32_35 32 C3F90000 520 bits[0:7]

SIUL PSMI36_39 32 C3F90000 524 bits[0:7]

SIUL PSMI40_43 32 C3F90000 528 bits[0:7]

SIUL PSMI44_47 32 C3F90000 52C bits[0:7]

SIUL PSMI48_51 32 C3F90000 530 bits[0:7]

SIUL PSMI52_55 32 C3F90000 534 bits[0:7]

SIUL PSMI56_59 32 C3F90000 538 bits[0:7]

SIUL PSMI61_63 32 C3F90000 53C bits[0:7]

SIUL PSMI64_67 32 C3F90000 540 bits[0:7]

SIUL IFMC0 32 C3F90000 1000 bits[0:31]

Table 36-5. Protected registers (continued)

Module Register
Protected
size (bits)

Module base
Register

offset
Register

size (bits)

Chapter 36 Register Protection

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1283

SIUL IFMC1 32 C3F90000 1004 bits[0:31]

SIUL IFMC2 32 C3F90000 1008 bits[0:31]

SIUL IFMC3 32 C3F90000 100C bits[0:31]

SIUL IFMC4 32 C3F90000 1010 bits[0:31]

SIUL IFMC5 32 C3F90000 1014 bits[0:31]

SIUL IFMC6 32 C3F90000 1018 bits[0:31]

SIUL IFMC7 32 C3F90000 101C bits[0:31]

SIUL IFMC8 32 C3F90000 1020 bits[0:31]

SIUL IFMC9 32 C3F90000 1024 bits[0:31]

SIUL IFMC10 32 C3F90000 1028 bits[0:31]

SIUL IFMC11 32 C3F90000 102C bits[0:31]

SIUL IFMC12 32 C3F90000 1030 bits[0:31]

SIUL IFMC13 32 C3F90000 1034 bits[0:31]

SIUL IFMC14 32 C3F90000 1038 bits[0:31]

SIUL IFMC15 32 C3F90000 103C bits[0:31]

SIUL IFMC16 32 C3F90000 1040 bits[0:31]

SIUL IFMC17 32 C3F90000 1044 bits[0:31]

SIUL IFMC18 32 C3F90000 1048 bits[0:31]

SIUL IFMC19 32 C3F90000 104C bits[0:31]

SIUL IFMC20 32 C3F90000 1050 bits[0:31]

SIUL IFMC21 32 C3F90000 1054 bits[0:31]

SIUL IFMC22 32 C3F90000 1058 bits[0:31]

SIUL IFMC23 32 C3F90000 105C bits[0:31]

SIUL IFCP 32 C3F90000 1080 bits[0:31]

Code Flash

Code Flash MCR 32 C3FB0000 032 bits[0:31]

Code Flash BIU0 32 C3FB0000 01C bits[0:31]

Code Flash BIU1 32 C3FB0000 020 bits[0:31]

Code Flash BIU2 32 C3FB0000 024 bits[0:31]

SSCM

SSCM DPM_BOOT 32 C3FD8000 018 bits[0:31]

SSCM DPM_BOOT_KEY 32 C3FD8000 01C bits[0:31]

Table 36-5. Protected registers (continued)

Module Register
Protected
size (bits)

Module base
Register

offset
Register

size (bits)

Chapter 36 Register Protection

MPC5646C Microcontroller Reference Manual, Rev. 5

1284 Freescale Semiconductor

MC_ME

MC_ME ME_ME 32 C3FDC000 008 bits[0:31]

MC_ME ME_IM 32 C3FDC000 010 bits[0:31]

MC_ME ME_TEST_MC 32 C3FDC000 024 bits[0:31]

MC_ME ME_SAFE_MC 32 C3FDC000 028 bits[0:31]

MC_ME ME_DRUN_MC 32 C3FDC000 02C bits[0:31]

MC_ME ME_RUN0_MC 32 C3FDC000 030 bits[0:31]

MC_ME ME_RUN1_MC 32 C3FDC000 034 bits[0:31]

MC_ME ME_RUN2_MC 32 C3FDC000 038 bits[0:31]

MC_ME ME_RUN3_MC 32 C3FDC000 03C bits[0:31]

MC_ME ME_HALT_MC 32 C3FDC000 040 bits[0:31]

MC_ME ME_STOP0_MC 32 C3FDC000 048 bits[0:31]

MC_ME ME_STANDBY_MC 32 C3FDC000 054 bits[0:31]

MC_ME ME_RUN_PC0 32 C3FDC000 080 bits[0:31]

MC_ME ME_RUN_PC1 32 C3FDC000 084 bits[0:31]

MC_ME ME_RUN_PC2 32 C3FDC000 088 bits[0:31]

MC_ME ME_RUN_PC3 32 C3FDC000 08C bits[0:31]

MC_ME ME_RUN_PC4 32 C3FDC000 090 bits[0:31]

MC_ME ME_RUN_PC5 32 C3FDC000 094 bits[0:31]

MC_ME ME_RUN_PC6 32 C3FDC000 098 bits[0:31]

MC_ME ME_RUN_PC7 32 C3FDC000 09C bits[0:31]

MC_ME ME_LP_PC0 32 C3FDC000 0A0 bits[0:31]

MC_ME ME_LP_PC1 32 C3FDC000 0A4 bits[0:31]

MC_ME ME_LP_PC2 32 C3FDC000 0A8 bits[0:31]

MC_ME ME_LP_PC3 32 C3FDC000 0AC bits[0:31]

MC_ME ME_LP_PC4 32 C3FDC000 0B0 bits[0:31]

MC_ME ME_LP_PC5 32 C3FDC000 0B4 bits[0:31]

MC_ME ME_LP_PC6 32 C3FDC000 0B8 bits[0:31]

MC_ME ME_LP_PC7 32 C3FDC000 0BC bits[0:31]

MC_ME ME_PCTL[4..7] 8 C3FDC000 0C4 bits[0:31]

MC_ME ME_PCTL[16..19] 8 C3FDC000 0D0 bits[0:31]

MC_ME ME_PCTL[20..23] 8 C3FDC000 0D4 bits[0:31]

Table 36-5. Protected registers (continued)

Module Register
Protected
size (bits)

Module base
Register

offset
Register

size (bits)

Chapter 36 Register Protection

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1285

MC_ME ME_PCTL[32..35] 8 C3FDC000 0E0 bits[0:31]

MC_ME ME_PCTL[44..47] 8 C3FDC000 0EC bits[0:31]

MC_ME ME_PCTL[48..51] 8 C3FDC000 0F0 bits[0:31]

MC_ME ME_PCTL[56..59] 8 C3FDC000 0F8 bits[0:31]

MC_ME ME_PCTL[60..63] 8 C3FDC000 0FC bits[0:31]

MC_ME ME_PCTL[68..71] 8 C3FDC000 104 bits[0:31]

MC_ME ME_PCTL[72..75] 8 C3FDC000 108 bits[0:31]

MC_ME ME_PCTL[88..91] 8 C3FDC000 118 bits[0:31]

MC_ME ME_PCTL[92..95] 8 C3FDC000 11C bits[0:31]

MC_ME ME_PCTL[104..107] 8 C3FDC000 128 bits[0:7]

MC_MGM

MC_MGM CGM_Z0_DCR 8 C3FE0000 0C0 bits[0:7]

MC_MGM CGM_FEC_DCR 8 C3FE0000 0E0 bits[0:7]

MC_MGM CGM_FLASH_DCR 8 C3FE0000 120 bits[0:7]

MC_MGM CGM_OC_EN 8 C3FE0000 373 bits[0:7]

MC_MGM CGM_OCDS_SC 8 C3FE0000 374 bits[0:7]

MC_MGM CGM_SC_DC[0..3] 32 C3FE0000 37C bits[0:31]

MC_MGM CGM_AC1_SC 8 C3FE0000 388 bits[0:7]

CMU

CMU CMU_CSR 32 C3FE0100 bits[24:31]

MC_RGM

MC_RGM RGM_FERD 16 C3FE4000 004 bits[0:15]

MC_RGM RGM_DERD 16 C3FE4000 006 bits[0:15]

MC_RGM RGM_FEAR 16 C3FE4000 010 bits[0:15]

MC_RGM RGM_DEAR 16 C3FE4000 012 bits[0:15]

MC_RGM RGM_FESS 16 C3FE4000 018 bits[0:15]

MC_RGM RGM_STDBY 16 C3FE4000 01A bits[0:15]

MC_RGM RGM_FBRE 16 C3FE4000 01C bits[0:15]

MC_PCU

MC_PCU PCONF2 32 C3FE8000 008 bits[0:31]

MC_PCU PCONF3 32 C3FE8000 00C bits[0:31]

Table 36-5. Protected registers (continued)

Module Register
Protected
size (bits)

Module base
Register

offset
Register

size (bits)

Chapter 36 Register Protection

MPC5646C Microcontroller Reference Manual, Rev. 5

1286 Freescale Semiconductor

PMC

PMC PMC_CFGR 8 C3FE8080 000 bits[0:31]

PMC PMC_PDMODE 8 C3FE8080 004 bits[0:31]

FLEXRAY

FLEXRAY MCR 16 FFFE0000 002 bits[0:15]

FLEXRAY SYMBADHR 16 FFFE0000 004 bits[0:15]

FLEXRAY SYMBADLR 16 FFFE0000 006 bits[0:15]

FLEXRAY STBSCR 16 FFFE0000 008 bits[0:15]

FLEXRAY MBDSR 16 FFFE0000 00C bits[0:15]

FLEXRAY MBSSUTR 16 FFFE0000 00E bits[0:15]

FLEXRAY POCR 16 FFFE0000 014 bits[0:15]

FLEXRAY GIFER 16 FFFE0000 016 bits[0:15]

FLEXRAY PIER0 16 FFFE0000 01C bits[0:15]

FLEXRAY PIER1 16 FFFE0000 01E bits[0:15]

FLEXRAY SYMATOR 16 FFFE0000 03E bits[0:15]

FLEXRAY SFTOR 16 FFFE0000 042 bits[0:15]

FLEXRAY SFTCCSR 16 FFFE0000 044 bits[0:15]

FLEXRAY SFIDRFR 16 FFFE0000 046 bits[0:15]

FLEXRAY SFIDAFVR 16 FFFE0000 048 bits[0:15]

FLEXRAY SFIDAFMR 16 FFFE0000 04A bits[0:15]

FLEXRAY NMVLR 16 FFFE0000 058 bits[0:15]

FLEXRAY TICCR 16 FFFE0000 05A bits[0:15]

FLEXRAY TI1CYSR 16 FFFE0000 05C bits[0:15]

FLEXRAY TI1MTOR 16 FFFE0000 05E bits[0:15]

FLEXRAY TI2CR0 16 FFFE0000 060 bits[0:15]

FLEXRAY TI2CR1 16 FFFE0000 062 bits[0:15]

FLEXRAY MTSACFR 16 FFFE0000 080 bits[0:15]

FLEXRAY MTSBCFR 16 FFFE0000 082 bits[0:15]

FLEXRAY RFRFCTR 16 FFFE0000 09A bits[0:15]

FLEXRAY PCR0–PCR30 16 FFFE0000 00A0–00DC bits[0:15]

FLEXRAY MBCCFR0 16 FFFE0000 802 bits[0:15]

FLEXRAY MBFIDR0 16 FFFE0000 804 bits[0:15]

Table 36-5. Protected registers (continued)

Module Register
Protected
size (bits)

Module base
Register

offset
Register

size (bits)

Chapter 36 Register Protection

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1287

FLEXRAY MBCCFR1 16 FFFE0000 80A bits[0:15]

FLEXRAY MBFIDR1 16 FFFE0000 80C bits[0:15]

FLEXRAY MBCCFR2
.......
......
......

16 FFFE0000 810
......
.....
.....

bits[0:15]

FLEXRAY MBFIDR2
.......
.......
.......

16 FFFE0000 80C
.....
.....
.....

bits[0:15]

FLEXRAY MBCCFR127 16 FFFE0000 BFA bits[0:15]

FLEXRAY MBFIDR127 16 FFFE0000 BFC bits[0:15]

FlexCAN 0

FlexCAN 0 CAN_MCR 32 FFFC0000 000 bits[0:31]

FlexCAN 0 CAN_CTRL 32 FFFC0000 004 bits[0:31]

FlexCAN 0 CAN_RXGMASK 32 FFFC0000 010 bits[0:31]

FlexCAN 0 CAN_RX14MASK 32 FFFC0000 014 bits[0:31]

FlexCAN 0 CAN_RX15MASK 32 FFFC0000 018 bits[0:31]

FlexCAN 0 CAN_IMASK2 32 FFFC0000 024 bits[0:31]

FlexCAN 0 CAN_IMASK1 32 FFFC0000 028 bits[0:31]

FlexCAN 0 CAN_MSGx_CS
x = [0:63]

32 FFFC0000 80 + 10.x bits[0:31]

FlexCAN 0 CAN_MSGx_ID
x = [0:63]

32 FFFC0000 84 + 10.x bits[0:31]

FlexCAN 0 CAN_RXIMRx
x = [0:63]

32 FFFC0000 880 + 10.x bits[0:31]

FlexCAN 1

FlexCAN 1 CAN_MCR 32 FFFC4000 000 bits[0:31]

FlexCAN 1 CAN_CTRL 32 FFFC4000 004 bits[0:31]

FlexCAN 1 CAN_RXGMASK 32 FFFC4000 010 bits[0:31]

FlexCAN 1 CAN_RX14MASK 32 FFFC4000 014 bits[0:31]

FlexCAN 1 CAN_RX15MASK 32 FFFC4000 018 bits[0:31]

FlexCAN 1 CAN_IMASK2 32 FFFC4000 024 bits[0:31]

FlexCAN 1 CAN_IMASK1 32 FFFC4000 028 bits[0:31]

FlexCAN 1 CAN_MSGx_CS
x = [0:63]

32 FFFC4000 80 + 10.x bits[0:31]

Table 36-5. Protected registers (continued)

Module Register
Protected
size (bits)

Module base
Register

offset
Register

size (bits)

Chapter 36 Register Protection

MPC5646C Microcontroller Reference Manual, Rev. 5

1288 Freescale Semiconductor

FlexCAN 1 CAN_MSGx_ID
x = [0:63]

32 FFFC4000 84+ 10.x bits[0:31]

FlexCAN 1 CAN_RXIMRx
x = [0:63]

32 FFFC4000 880+ 10.x bits[0:31]

Table 36-5. Protected registers (continued)

Module Register
Protected
size (bits)

Module base
Register

offset
Register

size (bits)

Chapter 37 Software Watchdog Timer (SWT)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1289

Chapter 37
Software Watchdog Timer (SWT)

37.1 Introduction
The Software Watchdog Timer (SWT) is a peripheral module that can prevent system lockup in situations
such as software getting trapped in a loop or if a bus transaction fails to terminate. When enabled, the SWT
requires periodic execution of a watchdog servicing operation. The servicing operation resets the timer to
a specified time-out period. If this servicing action does not occur before the timer expires the SWT
generates an interrupt or hardware reset. The SWT can be configured to generate a reset or interrupt on an
initial time-out, a reset is always generated on a second consecutive time-out.

37.2 Features
The SWT is clocked by the SIRC.

The SWT has the following features:

• 32-bit time-out register to set the time-out period

• Programmable selection of window mode or regular servicing

• Programmable selection of reset or interrupt on an initial time-out

• Programmable selection of fixed or keyed servicing

• Master access protection

• Hard and soft configuration lock bits

37.3 Modes of operation
The SWT supports three device modes of operation: normal, debug and stop. When the SWT is enabled
in normal mode, its counter runs continuously. In debug mode, operation of the counter is controlled by
the FRZ bit in the SWT_CR. If the FRZ bit is set, the counter is stopped in debug mode, otherwise it
continues to run. In stop mode, operation of the counter is controlled by the STP bit in the SWT_CR. If
the STP bit is set, the counter is stopped in stop mode, otherwise it continues to run.

37.4 External signal description
The SWT module does not have any external interface signals.

37.5 Memory map and register definition
The SWT programming model has seven 32-bit registers. The programming model can only be accessed
using 32-bit (word) accesses. References using a different size are invalid. Other types of invalid accesses
include: writes to read only registers, incorrect values written to the service register when enabled,
accesses to reserved addresses and accesses by masters without permission. If the RIA bit in the SWT_CR
is set then the SWT generates a system reset on an invalid access otherwise a bus error is generated. If

Chapter 37 Software Watchdog Timer (SWT)

MPC5646C Microcontroller Reference Manual, Rev. 5

1290 Freescale Semiconductor

either the HLK or SLK bits in the SWT_CR are set then the SWT_CR, SWT_TO, SWT_WN, SWT_SK
registers are read only.

37.5.1 Memory map

The SWT memory map is shown in Table 37-1. The reset values of SWT_CR, SWT_TO and SWT_WN
are device specific. These values are determined by SWT inputs.

37.5.2 Register descriptions

The following sections detail the individual registers within the SWT programming model.

37.5.2.1 SWT Control Register (SWT_CR)

The SWT_CR contains fields for configuring and controlling the SWT. The reset value of this register is
device specific. Some devices can be configured to automatically clear the SWT_CR[WEN] bit during the
boot process. This register is read only if either the SWT_CR[HLK] or SWT_CR[SLK] bits are set.

Table 37-1. SWT memory map

Base address: 0xFFF3_8000

Address offset Register Location

0x0000 SWT Control Register (SWT_CR) on page 1290

0x0004 SWT Interrupt Register (SWT_IR) on page 1292

0x0008 SWT Time-out Register (SWT_TO) on page 1292

0x000C SWT Window Register (SWT_WN) on page 1293

0x0010 SWT Service Register (SWT_SR) on page 1293

0x0014 SWT Counter Output Register (SWT_CO) on page 1294

0x0018 SWT Service Key Register (SWT_CK) on page 1294

0x001C—0x3FFF Reserved

Chapter 37 Software Watchdog Timer (SWT)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1291

Table 37-2. SWT_CR Field Descriptions

Offset 0x0000 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R MAP
0

MAP
1

MAP
2

MAP
3

MAP
4

MAP
5

MAP
6

MAP
7

0 0 0 0 0 0 0 0

W

Reset 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 KEY RIA WND ITR HLK SLK CSL STP FRZ WEN

W

Reset 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 01

1 This bit depends on the WATCHDOG_EN of the Nonvolatile User Options register (NVUSRO).

Figure 37-1. SWT Control Register (SWT_CR)

Field Description

MAPn Master Access Protection for Master ID. The platform bus master assignments are device specific.
0 = Access for the master is not enabled
1 = Access for the master is enabled

KEY Keyed Service Mode.
0 = Fixed Service Sequence, the fixed sequence 0xA602, 0xB480 is used to service the watchdog
1 = Keyed Service Mode, two pseudorandom key values are used to service the watchdog

RIA Reset on Invalid Access.
0 = Invalid access to the SWT generates a bus error
1 = Invalid access to the SWT causes a system reset if WEN=1

WND Window Mode.
0 = Regular mode, service sequence can be done at any time
1 = Windowed mode, the service sequence is only valid when the down counter is less than the value in
the SWT_WN register.

ITR Interrupt Then Reset.
0 = Generate a reset on a time-out
1 = Generate an interrupt on an initial time-out, reset on a second consecutive time-out

HLK Hard Lock. This bit is only cleared at reset.
0 = SWT_CR, SWT_TO, SWT_WN and SWT_SK are read/write registers if SLK=0
1 = SWT_CR, SWT_TO, SWT_WN and SWT_SK are read only registers

SLK Soft Lock. This bit is cleared by writing the unlock sequence to the service register.
0 = SWT_CR, SWT_TO SWT_WN and SWT_SK are read/write registers if HLK=0
1 = SWT_CR, SWT_TO, SWT_WN and SWT_SK are read only registers

CSL Default/Stucked = 1.
The oscillator clock will always be the 128 kHz.
It must be shown as Reserved. Any read-back of this bit returns ‘1’.

Chapter 37 Software Watchdog Timer (SWT)

MPC5646C Microcontroller Reference Manual, Rev. 5

1292 Freescale Semiconductor

37.5.2.2 SWT Interrupt Register (SWT_IR)

The SWT_IR contains the time-out interrupt flag.

Table 37-3. SWT_IR Field Descriptions

37.5.2.3 SWT Time-Out Register (SWT_TO)

The SWT Time-Out (SWT_TO) register contains the 32-bit time-out period. This register has read-only
access if either the SWT_CR[HLK] or SWT_CR[SLK] bits are set.

STP Stop Mode Control. Allows the watchdog timer to be stopped when the device enters stop mode.
0 = SWT counter continues to run in stop mode
1 = SWT counter is stopped in stop mode

FRZ Debug Mode Control. Allows the watchdog timer to be stopped when the device enters debug mode.
0 = SWT counter continues to run in debug mode
1 = SWT counter is stopped in debug mode

WEN Watchdog Enabled.
0 = SWT is disabled
1 = SWT is enabled

Offset 0x0004 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TIF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 37-2. SWT Interrupt Register (SWT_IR)

Field Description

TIF Time-out Interrupt Flag. The flag and interrupt are cleared by writing a 1 to this bit. Writing a 0 has no
effect.
0 = No interrupt request.
1 = Interrupt request due to an initial time-out.

Field Description

Chapter 37 Software Watchdog Timer (SWT)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1293

Figure 37-3. SWT Time-Out Register (SWT_TO)

Table 37-4. SWT_TO Register Field Descriptions

37.5.2.4 SWT Window Register (SWT_WN)

The SWT Window (SWT_WN) register contains the 32-bit window start value. This register is cleared on
reset. This register is read only if either the SWT_CR[HLK] or SWT_CR[SLK] bits are set.

Figure 37-4. SWT Window Register (SWT_WN)

Table 37-5. SWT_WN Register Field Descriptions

37.5.2.5 SWT Service Register (SWT_SR)

The SWT Time-Out (SWT_SR) service register is the target for service operation writes used to reset the
watchdog timer.

Offset 0x008 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R WTO

W

Reset 0 1 0 1 0 0 0 0 0 0 0 0

Field Description

WTO Watchdog time-out period in clock cycles. An internal 32-bit down counter is loaded with this value or
0x100 which ever is greater when the service sequence is written or when the SWT is enabled.

Offset 0x00C Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R WST

W

Reset 0

Field Description

WST Window start value. When window mode is enabled, the service sequence can only be written when the
internal down counter is less than this value.

Chapter 37 Software Watchdog Timer (SWT)

MPC5646C Microcontroller Reference Manual, Rev. 5

1294 Freescale Semiconductor

Figure 37-5. SWT Service Register (SWT_SR)

Table 37-6. SWT_SR Field Descriptions

37.5.2.6 SWT Counter Output Register (SWT_CO)

The SWT Counter Output (SWT_CO) register is a read only register that shows the value of the internal
down counter when the SWT is disabled.

Figure 37-6. SWT Counter Output Register (SWT_CO)

Table 37-7. SWT_CO Register Field Descriptions

37.5.2.7 SWT Service Key Register (SWT_SK)

The SWT Service Key (SWT_SK) register holds the previous (or initial) service key value. This register
is read only if either the SWT_CR[HLK] or SWT_CR[SLK] bits are set.

Offset 0x010 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0

W WSC

Reset 0

Field Description

WSC Watchdog Service Code.This field is used to service the watchdog and to clear the soft lock bit
(SWT_CR[SLK]). If the SWT_CR[KEY] bit is set, two pseudorandom key values are written to service the
watchdog, see Section 37.6 for details. Otherwise, the sequence 0xA602 followed by 0xB480 is written to
the WSC field. To clear the soft lock bit (SWT_CR[SLK]), the value 0xC520 followed by 0xD928 is written to
the WSC field.

Offset 0x014 Access: Read Only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CNT

W

Reset 0

Field Description

CNT Watchdog Count. When the watchdog is disabled (SWT_CR[WEN]=0) this field shows the value of the
internal down counter. When the watchdog is enabled the value of this field is 0x0000_0000. Values in this
field can lag behind the internal counter value for up to six system plus eight counter clock cycles.
Therefore, the value read from this field immediately after disabling the watchdog may be higher than the
actual value of the internal counter.

Chapter 37 Software Watchdog Timer (SWT)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1295

Figure 37-7. SWT Service Register (SWT_SR)

Table 37-8. SWT_SR Field Descriptions

37.6 Functional Description
The SWT is a 32-bit timer designed to enable the system to recover in situations such as software getting
trapped in a loop or if a bus transaction fails to terminate. It includes a control register (SWT_CR), an
interrupt register (SWT_IR), a time-out register (SWT_TO), a window register (SWT_WN), a service
register (SWT_SR), a counter output register (SWT_CO) and a service key register (SWT_SK).

The SWT_CR includes bits to enable the timer, set configuration options and lock configuration of the
module. The watchdog is enabled by setting the SWT_CR[WEN] bit. The reset value of the
SWT_CR[WEN] bit is device specific. If the reset value of this bit is 1, the watchdog starts operation
automatically after reset is released. Some devices can be configured to clear this bit automatically during
the boot process.

The SWT_TO register holds the watchdog time-out period in clock cycles unless the value is less than
0x100 in which case the time-out period is set to 0x100. This time-out period is loaded into an internal
32-bit down counter when the SWT is enabled and each time a valid service operation is performed. The
SWT_CR[CSL] bit selects which clock (system or oscillator) is used to drive the down counter. The reset
value of the SWT_TO register is device specific.

The configuration of the SWT can be locked through use of either a soft lock or a hard lock. In either case,
when locked the SWT_CR, SWT_TO, SWT_WN and SWT_SK registers are read only. The hard lock is
enabled by setting the SWT_CR[HLK] bit which can only be cleared by a reset. The soft lock is enabled
by setting the SWT_CR[SLK] bit and is cleared by writing the unlock sequence to the service register. The
unlock sequence is a write of 0xC520 followed by a write of 0xD928 to the SWT_SR[WSC] field. There
is no timing requirement between the two writes. The unlock sequence logic ignores service sequence
writes and recognizes the 0xC520, 0xD928 sequence regardless of previous writes. The unlock sequence
can be written at any time and does not require the SWT_CR[WEN] bit to be set.

When enabled, the SWT requires periodic execution of a servicing operation which consists of writing two
values to the SWT_SR. Writing the proper sequence of values loads the internal down counter with the
time-out period. There is no timing requirement between the two writes and the service sequence logic
ignores unlock sequence writes. If the SWT_CR[KEY] bit is zero, the fixed sequence 0xA602, 0xB480 is

Offset 0x018 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0

W SK

Reset 0

Field Description

SK Service Key.This field is the previous (or initial) service key value used in keyed service mode. If
SWT_CR[KEY] is set, the next key value to be written to the SWT_SR is (17*SK+3) mod 216.

Chapter 37 Software Watchdog Timer (SWT)

MPC5646C Microcontroller Reference Manual, Rev. 5

1296 Freescale Semiconductor

written to the SWT_SR[WSC] field to service the watchdog. If the SWT_CR[KEY] bit is set, then two
pseudorandom keys are written to the SWT_SR[WSC] field to service the watchdog. The key values are
determined by the pseudorandom key generator defined in Figure 37-8. This algorithm will generate a
sequence of 216 different key values before repeating. The state of the key generator is held in the
SWT_SK register. For example, if SWT_SK[SK] is 0x0100 then the service sequence keys are 0x1103,
0x2136. In this mode, each time a valid key is written to the SWT_SR register, the SWT_SK register is
updated. So, after servicing the watchdog by writing 0x1103 and then 0x2136 to the SWT_SR[WSC] field,
SWT_SK[SK] is 0x2136 and the next key sequence is 0x3499, 0x7E2C.

Figure 37-8. Pseudorandom Key Generator

Accesses to SWT registers occur with no peripheral bus wait states. (The peripheral bus bridge may add
one or more system wait states.) However, due to synchronization logic in the SWT design, recognition of
the service sequence or configuration changes may require up to three system plus seven counter clock
cycles.

If window mode is enabled (SWT_CR[WND] bit is set), the service sequence must be performed in the
last part of the time-out period defined by the window register. The window is open when the down counter
is less than the value in the SWT_WN register. Outside of this window, service sequence writes are invalid
accesses and generate a bus error or reset depending on the value of the SWT_CR[RIA] bit. For example,
if the SWT_TO register is set to 5000 and SWT_WN register is set to 1000 then the service sequence must
be performed in the last 20% of the time-out period. There is a short lag in the time it takes for the window
to open due to synchronization logic in the watchdog design. This delay could be up to three system plus
four counter clock cycles.

The interrupt then reset bit (SWT_CR[ITR]) controls the action taken when a time-out occurs. If the
SWT_CR[ITR] bit is not set, a reset is generated immediately on a time-out. If the SWT_CR[ITR] bit is
set, an initial time-out causes the SWT to generate an interrupt and load the down counter with the time-out
period. If the service sequence is not written before the second consecutive time-out, the SWT generates
a system reset. The interrupt is indicated by the time-out interrupt flag (SWT_IR[TIF]). The interrupt
request is cleared by writing a one to the SWT_IR[TIF] bit.

The SWT_CO register shows the value of the down counter when the watchdog is disabled. When the
watchdog is enabled this register is cleared. The value shown in this register can lag behind the value in
the internal counter for up to six system plus eight counter clock cycles.

The SWT_CO can be used during a software self test of the SWT. For example, the SWT can be enabled
and not serviced for a fixed period of time less than the time-out value. Then the SWT can be disabled
(SWT_CR[WEN] cleared) and the value of the SWT_CO read to determine if the internal down counter
is working properly.

SKn+1 = (17*SKn+3) mod 2
16

Chapter 38 Error Correction Status Module (ECSM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1297

Chapter 38
Error Correction Status Module (ECSM)

38.1 Introduction
The Error Correction Status Module (ECSM) provides a myriad of miscellaneous control functions for the
device including program-visible information about configuration and revision levels, a reset status
register, and information on memory errors reported by error-correcting codes.

38.2 Overview
The Error Correction Status Module is mapped into the IPS space and supports a number of miscellaneous
control functions for the device.

The AIPS is the interface between the Advanced High performance Bus (AHB) interface and on-chip IPS
peripherals. IPS peripherals are modules that contain readable/writable control and status registers. The
AHB master reads and writes these registers through the AIPS. The AIPS generates module enables, the
module address, transfer attributes, byte enables, and write data. These elements then function as inputs to
the IPS peripherals.

• IPS — Inter Peripheral Subsytem

• AIPS — interface between the Advanced High performance Bus (AHB) interface and on-chip IPS
peripherals

• AHB — Advanced High-performance Bus

38.3 Features
The ECSM includes these features:

• Program-visible information on the device configuration and revision

• Registers for capturing information on memory errors due to error-correction codes

• Registers to specify the generation of single- and double-bit memory data inversions for test
purposes to check ECC protection

• Configuration for additional SRAM WS for system frequency above 64 + 4% MHz

38.4 Memory map and register description
This section details the programming model for the Error Correction Status Module. This is a 128-byte
space mapped to the region serviced by an IPS bus controller.

38.4.1 Memory map

The Error Correction Status Module does not include any logic which provides access control. Rather, this
function is supported using the standard access control logic provided by the IPS controller.

Table 38-1 shows the ECSM’s memory map.

Chapter 38 Error Correction Status Module (ECSM)

MPC5646C Microcontroller Reference Manual, Rev. 5

1298 Freescale Semiconductor

38.4.2 Register description

Attempted accesses to reserved addresses result in an error termination, while attempted writes to
read-only registers are ignored and do not terminate with an error. Unless noted otherwise, writes to the

Table 38-1. ECSM memory map

Base address: 0xFFF4_0000

Address offset Register Location

0x00 Processor Core Type Register (PCT) on page 1299

0x02 SoC-Defined Platform Revision Register (REV) on page 1299

0x04 Reserved

0x08 IPS On-Platform Module Configuration Register (IMC) on page 1300

0x0C–0x1E Reserved

0x1F Miscellaneous Interrupt Register (MIR) on page 1301

0x20–0x23 Reserved

0x24 Miscellaneous User-Defined Control Register (MUDCR) on page 1302

0x28–0x42 Reserved

0x43 ECC Configuration Register (ECR) on page 1303

0x44–0x46 Reserved

0x47 ECC Status Register (ESR) on page 1305

0x48–0x49 Reserved

0x4A ECC Error Generation Register (EEGR) on page 1306

0x4C–0x4F Reserved

0x50 Platform Flash ECC Address Register (PFEAR) on page 1309

0x54–0x55 Reserved

0x56 Platform Flash ECC Master Number Register (PFEMR) on page 1311

0x57 Platform Flash ECC Attributes Register (PFEAT) on page 1311

0x58–0x5B Reserved

0x5C Platform Flash ECC Data Register (PFEDR) on page 1312

0x60 Platform RAM ECC Address Register (PREAR) on page 1313

0x64 Reserved

0x65 Platform RAM ECC Syndrome Register (PRESR) on page 1313

0x66 Platform RAM ECC Master Number Register (PREMR) on page 1315

0x67 Platform RAM ECC Attributes Register (PREAT) on page 1316

0x68–0x6B Reserved

0x6C Platform RAM ECC Data Register (PREDR) on page 1317

Chapter 38 Error Correction Status Module (ECSM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1299

programming model must match the size of the register, e.g., an n-bit register only supports n-bit writes,
etc. Attempted writes of a different size than the register width produce an error termination of the bus
cycle and no change to the targeted register.

38.4.2.1 Processor Core Type Register (PCT)

The PCT is a 16-bit read-only register specifying the architecture of the processor core in MPC5646C in
the device. The state of this register is defined by a module input signal; it can only be read from the IPS
programming model. Any attempted write is ignored.

38.4.2.2 SoC-Defined Platform Revision Register (REV)

The REV is a 16-bit read-only register specifying a revision number. The state of this register is defined
by an input signal; it can only be read from the IPS programming model. Any attempted write is ignored.

Offset: 0x00 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PCT

W

Reset 1 1 1 0 0 1 0 0 0 1 0 0 0 1 1 0

Figure 38-1. Processor Core Type Register (PCT)

Table 38-2. PCT field descriptions

Field Description

PCT Processor Core Type
0xE446 identifies the e200z4d core built on Power Architecture technology

Offset: 0x02 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R REV

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 38-2. SoC-Defined Platform Revision Register (REV)

Table 38-3. REV field descriptions

Field Description

REV Revision
The REV field is specified by an input signal to define a software-visible revision number.

Chapter 38 Error Correction Status Module (ECSM)

MPC5646C Microcontroller Reference Manual, Rev. 5

1300 Freescale Semiconductor

38.4.2.3 IPS On-Platform Module Configuration Register (IMC)

The IMC is a 32-bit read-only register identifying the presence/absence of the 32 low-order IPS peripheral
modules connected to the primary IPI slave bus controller. The state of this register is defined by a module
input signal; it can only be read from the IPS programming model. Any attempted write is ignored.

Offset: 0x08 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R MC[31:16]

W

Reset: 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R MC[15:0]

W

Reset: 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Figure 38-3. IPS On-Platform Module Configuration Register (IMC)

Table 38-4. IMC field descriptions

Field Description

MC IPS Module Configuration
MC[n] = 0 if an IPS module connection to decoded slot “n” is absent
MC[n] = 1 if an IPS module connection to decoded slot “n” is present

Chapter 38 Error Correction Status Module (ECSM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1301

38.4.2.4 Miscellaneous Interrupt Register (MIR)

All interrupt requests associated with ECSM are collected in the MIR. This includes the processor core
system bus fault interrupt.

During the appropriate interrupt service routine handling these requests, the interrupt source contained in
the MIR must be explicitly cleared. See Figure 38-4 and Table 38-5.

Offset: 0x1F Access: Special

0 1 2 3 4 5 6 7

R FB0AI FB0SI FB1AI FB1SI 0 0 0 0

W 1 1 1 1

Reset: 0 0 0 0 0 0 0 0

Figure 38-4. Miscellaneous Interrupt (MIR) Register

Table 38-5. MIR field descriptions

Field Description

FB0AI Flash Bank 0 Abort Interrupt
0 A flash bank 0 abort has not occurred.
1 A flash bank 0 abort has occurred. The interrupt request is negated by writing a 1 to this bit.

Writing a 0 has no effect.

FB0SI Flash Bank 0 Stall Interrupt
0 A flash bank 0 stall has not occurred.
1 A flash bank 0 stall has occurred. The interrupt request is negated by writing a 1 to this bit. Writing

a 0 has no effect.

FB1AI Flash Bank 1 Abort Interrupt
0 A flash bank 1 abort has not occurred.
1 A flash bank 1 abort has occurred. The interrupt request is negated by writing a 1 to this bit.

Writing a 0 has no effect.

FB1SI Flash Bank 1 Stall Interrupt
0 A flash bank 1 stall has not occurred.
1 A flash bank 1 stall has occurred. The interrupt request is negated by writing a 1 to this bit. Writing

a 0 has no effect.

Chapter 38 Error Correction Status Module (ECSM)

MPC5646C Microcontroller Reference Manual, Rev. 5

1302 Freescale Semiconductor

38.4.2.5 Miscellaneous User-Defined Control Register (MUDCR)

The MUDCR provides a program-visible register for user-defined control functions. It typically is used as
configuration control for miscellaneous SoC-level modules. The contents of this register is simply output
from the ECSM to other modules where the user-defined control functions are implemented.

Offset: 0x24 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0

R
A

M
_W

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0

M
U

D
C

R
[1

0]

M
U

D
C

R
[9

]

M
U

D
C

R
[8

]

M
U

D
C

R
[7

]

M
U

D
C

R
[6

]

M
U

D
C

R
[5

]

M
U

D
C

R
[4

]

M
U

D
C

R
[3

]

M
U

D
C

R
[2

]

M
U

D
C

R
[1

]

M
U

D
C

R
[0

]

W

Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 38-5. Miscellaneous User-Defined Control (MUDCR) Register

Table 38-6. MUDCR field descriptions

Field Description

RAM_WS Platform RAM wait-state control
This bit is used to select whether the platform RAM controller will insert 1-wait state into every

read access made to the platform RAM arrays. One wait state is required when the System
Frequency is >64MHz

0 The platform RAM controller operates as a 0-wait state controller
1 The platform RAM controller operates as a 1-wait state controller
Note: This bit must not be changed while there are ongoing transfer on the SRAM

MUDCR[10:0] FEC XBAR slave burst enable. MUDCRn enables bursting by the FEC interface to the XBAR slave
port controlled by that respective MUDCRn bit. If MUDCRn is asserted, then that XBAR slave port
enabled by the bit can accept the bursts allowed by MUDCR8 and MUDCR9. Otherwise, the FEC
interface will not burst to the XBAR slave port controlled by that respective MUDCRn bit. Read
bursts from that XBAR slave port are enabled by MUDCR8. Write bursts to that XBAR slave port
are enabled by MUDCR9.

MUDCR0 = Burst enable for haddr[31:29] = 3'h0
MUDCR1 = Burst enable for haddr[31:29] = 3'h1
MUDCR2= Burst enable for haddr[31:29] = 3'h2
MUDCR3= Burst enable for haddr[31:29] = 3'h3
MUDCR4 = Burst enable for haddr[31:29] = 3'h4
MUDCR5 = Burst enable for haddr[31:29] = 3'h5
MUDCR6 = Burst enable for haddr[31:29] = 3'h6
MUDCR7= Burst enable for haddr[31:29] = 3'h7
MUDCR8 = Global Slave Read Burst Enable
MUDCR9 = Global Slave Write Burst Enable
MUDCR10 = Accumulate Error: 1 = Accumulate 0 = Discard

Chapter 38 Error Correction Status Module (ECSM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1303

38.4.2.6 ECC registers

For designs including error-correcting code (ECC) implementations to improve the quality and reliability
of memories, there are a number of program-visible registers for the sole purpose of reporting and logging
of memory failures. These registers include:

• ECC Configuration Register (ECR)

• ECC Status Register (ESR)

• ECC Error Generation Register (EEGR)

• Platform Flash ECC Address Register (PFEAR)

• Platform Flash ECC Master Number Register (PFEMR)

• Platform Flash ECC Attributes Register (PFEAT)

• Platform Flash ECC Data Register (PFEDR)

• Platform RAM ECC Address Register (PREAR)

• Platform RAM ECC Syndrome Register (PRESR)

• Platform RAM ECC Master Number Register (PREMR)

• Platform RAM ECC Attributes Register (PREAT)

• Platform RAM ECC Data Register (PREDR)

The details on the ECC registers are provided in the subsequent sections.

38.4.2.6.1 ECC Configuration Register (ECR)

The ECC Configuration Register is an 8-bit control register for specifying which types of memory errors
are reported. In all systems with ECC, the occurrence of a non-correctable error causes the current access
to be terminated with an error condition. In many cases, this error termination is reported directly by the
initiating bus master. However, there are certain situations where the occurrence of this type of
non-correctable error is not reported by the master. Examples include speculative instruction fetches which
are discarded due to a change-of-flow operation, and buffered operand writes. The ECC reporting logic in
the ECSM provides an optional error interrupt mechanism to signal all non-correctable memory errors. In
addition to the interrupt generation, the ECSM captures specific information (memory address, attributes
and data, bus master number, etc.) which may be useful for subsequent failure analysis.

Offset: 0x43 Access: Read/write

0 1 2 3 4 5 6 7

R 0 0
ER1BR EF1BR

0 0
ERNCR EFNCR

W

Reset: 0 0 0 0 0 0 0 0

Figure 38-6. ECC Configuration (ECR) Register

Chapter 38 Error Correction Status Module (ECSM)

MPC5646C Microcontroller Reference Manual, Rev. 5

1304 Freescale Semiconductor

Table 38-7. ECR field descriptions

Field Description

ER1BR Enable SRAM 1-bit Reporting
This bit can only be set if the SoC-configurable input enable signal is asserted. The occurrence of a
single-bit SRAM correction generates a ECSM ECC interrupt request as signalled by the assertion
of ESR[R1BC]. The address, attributes and data are also captured in the PREAR, PRESR, PREMR,
PREAT and PREDR registers.
0 Reporting of single-bit SRAM corrections is disabled.
1 Reporting of single-bit SRAM corrections is enabled.

EF1BR Enable Flash 1-bit Reporting
This bit can only be set if the SoC-configurable input enable signal is asserted. The occurrence of a
single-bit flash correction generates a ECSM ECC interrupt request as signalled by the assertion of
ESR[F1BC]. The address, attributes and data are also captured in the PFEAR, PFEMR, PFEAT and
PFEDR registers.
0 Reporting of single-bit flash corrections is disabled.
1 Reporting of single-bit flash corrections is enabled.

ERNCR Enable SRAM Non-Correctable Reporting
The occurrence of a non-correctable multi-bit SRAM error generates a ECSM ECC interrupt request
as signalled by the assertion of ESR[RNCE]. The faulting address, attributes and data are also
captured in the PREAR, PRESR, PREMR, PREAT and PREDR registers.
0 Reporting of non-correctable SRAM errors is disabled.
1 Reporting of non-correctable SRAM errors is enabled.

EFNCR Enable Flash Non-Correctable Reporting
The occurrence of a non-correctable multi-bit flash error generates a ECSM ECC interrupt request
as signalled by the assertion of ESR[FNCE]. The faulting address, attributes and data are also
captured in the PFEAR, PFEMR, PFEAT and PFEDR registers.
0 Reporting of non-correctable flash errors is disabled.
1 Reporting of non-correctable flash errors is enabled.

Chapter 38 Error Correction Status Module (ECSM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1305

38.4.2.6.2 ECC Status Register (ESR)

The ECC Status Register is an 8-bit control register for signaling which types of properly-enabled ECC
events have been detected. The ESR signals the last, properly-enabled memory event to be detected. ECC
interrupt generation is separated into single-bit error detection/correction, uncorrectable error detection
and the combination of the two as defined by the following boolean equations:

ECSM_ECC1BIT_IRQ

 = ECR[ER1BR] & ESR[R1BC]// ram, 1-bit correction

 | ECR[EF1BR] & ESR[F1BC]// flash, 1-bit correction

ECSM_ECCRNCR_IRQ

 = ECR[ERNCR] & ESR[RNCE]// ram, noncorrectable error

ECSM_ECCFNCR_IRQ

 = ECR[EFNCR] & ESR[FNCE]// flash, noncorrectable error

ECSM_ECC2BIT_IRQ

 = ECSM_ECCRNCR_IRQ// ram, noncorrectable error

 | ECSM_ECCFNCR_IRQ// flash, noncorrectable error

ECSM_ECC_IRQ

 = ECSM_ECC1BIT_IRQ // 1-bit correction

 | ECSM_ECC2BIT_IRQ// noncorrectable error

where the combination of a properly-enabled category in the ECR and the detection of the corresponding
condition in the ESR produces the interrupt request.

The ECSM allows a maximum of one bit of the ESR to be asserted at any given time. This preserves the
association between the ESR and the corresponding address and attribute registers, which are loaded on
each occurrence of an properly-enabled ECC event. If there is a pending ECC interrupt and another
properly-enabled ECC event occurs, the ECSM hardware automatically handles the ESR reporting,
clearing the previous data and loading the new state and thus guaranteeing that only a single flag is
asserted.

To maintain the coherent software view of the reported event, the following sequence in the ECSM error
interrupt service routine is suggested:

1. Read the ESR and save it.

2. Read and save all the address and attribute reporting registers.

3. Re-read the ESR and verify the current contents matches the original contents. If the two values
are different, go back to step 1 and repeat.

4. When the values are identical, write a 1 to the asserted ESR flag to negate the interrupt request.

Chapter 38 Error Correction Status Module (ECSM)

MPC5646C Microcontroller Reference Manual, Rev. 5

1306 Freescale Semiconductor

In the event that multiple status flags are signaled simultaneously, ECSM records the event with the R1BC
as highest priority, then F1BC, then RNCE, and finally FNCE.

38.4.2.6.3 ECC Error Generation Register (EEGR)

The ECC Error Generation Register is a 16-bit control register used to force the generation of single- and
double-bit data inversions in the memories with ECC, most notably the SRAM. This capability is provided
for two purposes:

• It provides a software-controlled mechanism for “injecting” errors into the memories during data
writes to verify the integrity of the ECC logic.

Offset: 0x47 Access: Read/write

0 1 2 3 4 5 6 7

R 0 0
R1BC F1BC

0 0
RNCE FNCE

W

Reset: 0 0 0 0 0 0 0 0

Figure 38-7. ECC Status Register (ESR)

Table 38-8. ESR field descriptions

Field Description

R1BC SRAM 1-bit Correction
This bit can only be set if ECR[EPR1BR] is asserted. The occurrence of a properly-enabled
single-bit SRAM correction generates a ECSM ECC interrupt request. The address, attributes and
data are also captured in the PREAR, PRESR, PREMR, PREAT and PREDR registers. To clear this
interrupt flag, write a 1 to this bit. Writing a 0 has no effect.
0 No reportable single-bit SRAM correction has been detected.
1 A reportable single-bit SRAM correction has been detected.

F1BC Flash Memory 1-bit Correction
This bit can only be set if ECR[EPF1BR] is asserted. The occurrence of a properly-enabled single-bit
flash memory correction generates a ECSM ECC interrupt request. The address, attributes and data
are also captured in the PFEAR, PFEMR, PFEAT and PFEDR registers. To clear this interrupt flag,
write a 1 to this bit. Writing a 0 has no effect.
0 No reportable single-bit flash memory correction has been detected.
1 A reportable single-bit flash memory correction has been detected.

RNCE SRAM Non-Correctable Error
The occurrence of a properly-enabled non-correctable SRAM error generates a ECSM ECC
interrupt request. The faulting address, attributes and data are also captured in the PREAR, PRESR,
PREMR, PREAT and PREDR registers. To clear this interrupt flag, write a 1 to this bit. Writing a 0
has no effect.
0 No reportable non-correctable SRAM error has been detected.
1 A reportable non-correctable SRAM error has been detected.

FNCE Flash Memory Non-Correctable Error
The occurrence of a properly-enabled non-correctable flash memory error generates a ECSM ECC
interrupt request. The faulting address, attributes and data are also captured in the PFEAR, PFEMR,
PFEAT and PFEDR registers. To clear this interrupt flag, write a 1 to this bit. Writing a 0 has no effect.
0 No reportable non-correctable flash memory error has been detected.
1 A reportable non-correctable flash memory error has been detected.

Chapter 38 Error Correction Status Module (ECSM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1307

• It provides a mechanism to allow testing of the software service routines associated with memory
error logging.

It should be noted that while the EEGR is associated with the SRAM, similar capabilities exist for the
flash, that is, the ability to program the non-volatile memory with single- or double-bit errors is supported
for the same two reasons previously identified.

For both types of memories (SRAM and flash), the intent is to generate errors during data write cycles,
such that subsequent reads of the corrupted address locations generate ECC events, either single-bit
corrections or double-bit non-correctable errors that are terminated with an error response.

Offset: 0x4A Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0

F
R

C
1B

I

F
R

11
B

I

0 0

F
R

C
N

C
I

F
R

1N
C

I

0
ERRBIT

W

Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 38-8. ECC Error Generation Register (EEGR)

Table 38-9. EEGR field descriptions

Field Description

FRC1BI Force SRAM Continuous 1-bit Data Inversions
The assertion of this bit forces the SRAM controller to create 1-bit data inversions, as defined by the
bit position specified in ERRBIT[6:0], continuously on every write operation.

The normal ECC generation takes place in the SRAM controller, but then the polarity of the bit
position defined by ERRBIT is inverted to introduce a 1-bit ECC event in the SRAM.

After this bit has been enabled to generate another continuous 1-bit data inversion, it must be
cleared before being set again to properly re-enable the error generation logic.

This bit can only be set if the same SoC configurable input enable signal (as that used to enable
single-bit correction reporting) is asserted.

0 No SRAM continuous 1-bit data inversions are generated.
1 1-bit data inversions in the SRAM are continuously generated.

FR11BI Force SRAM One 1-bit Data Inversion
The assertion of this bit forces the SRAM controller to create one 1-bit data inversion, as defined by
the bit position specified in ERRBIT[6:0], on the first write operation after this bit is set.

The normal ECC generation takes place in the SRAM controller, but then the polarity of the bit
position defined by ERRBIT is inverted to introduce a 1-bit ECC event in the SRAM.

After this bit has been enabled to generate a single 1-bit data inversion, it must be cleared before
being set again to properly re-enable the error generation logic.

This bit can only be set if the same SoC configurable input enable signal (as that used to enable
single-bit correction reporting) is asserted.

0 No SRAM single 1-bit data inversion is generated.
1 One 1-bit data inversion in the SRAM is generated.

Chapter 38 Error Correction Status Module (ECSM)

MPC5646C Microcontroller Reference Manual, Rev. 5

1308 Freescale Semiconductor

FRCNCI Force SRAM Continuous Non-correctable Data Inversions
The assertion of this bit forces the SRAM controller to create 2-bit data inversions, as defined by the
bit position specified in ERRBIT[6:0] and the overall odd parity bit, continuously on every write
operation.

After this bit has been enabled to generate another continuous non-correctable data inversion, it
must be cleared before being set again to properly re-enable the error generation logic.

The normal ECC generation takes place in the SRAM controller, but then the polarity of the bit
position defined by ERRBIT and the overall odd parity bit are inverted to introduce a 2-bit ECC error
in the SRAM.

0 No SRAM continuous 2-bit data inversions are generated.
1 2-bit data inversions in the SRAM are continuously generated.

FR1NCI Force SRAM One Non-correctable Data Inversions
The assertion of this bit forces the SRAM controller to create one 2-bit data inversion, as defined by
the bit position specified in ERRBIT[6:0] and the overall odd parity bit, on the first write operation
after this bit is set.

The normal ECC generation takes place in the SRAM controller, but then the polarity of the bit
position defined by ERRBIT and the overall odd parity bit are inverted to introduce a 2-bit ECC error
in the SRAM.

After this bit has been enabled to generate a single 2-bit error, it must be cleared before being set
again to properly re-enable the error generation logic.

0 No SRAM single 2-bit data inversions are generated.
1 One 2-bit data inversion in the SRAM is generated.

Table 38-9. EEGR field descriptions (continued)

Field Description

Chapter 38 Error Correction Status Module (ECSM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1309

If an attempt to force a non-correctable inversion (by asserting EEGR[FRCNCI] or EEGR[FRC1NCI])
and EEGR[ERRBIT] equals 64, then no data inversion will be generated.

The only allowable values for the 4 control bit enables {FR11BI, FRC1BI, FRCNCI, FR1NCI} are
{0,0,0,0}, {1,0,0,0}, {0,1,0,0}, {0,0,1,0} and {0,0,0,1}. All other values result in undefined behavior.

38.4.2.6.4 Platform Flash ECC Address Register (PFEAR)

The PFEAR is a 32-bit register for capturing the address of the last, properly-enabled ECC event in the
flash memory. Depending on the state of the ECC Configuration Register, an ECC event in the flash causes
the address, attributes and data associated with the access to be loaded into the PFEAR, PFEMR, PFEAT
and PFEDR registers, and the appropriate flag (F1BC or FNCE) in the ECC Status Register to be asserted.

This register can only be read from the IPS programming model; any attempted write is ignored.

ERRBIT Error Bit Position
The vector defines the bit position which is complemented to create the data inversion on the write
operation. For the creation of 2-bit data inversions, the bit specified by this field plus the odd parity
bit of the ECC code are inverted.

The platform RAM controller follows a vector bit ordering scheme where LSB = 0. Errors in the ECC
syndrome bits can be generated by setting this field to a value greater than the RAM width

For example, consider a 64-bit RAM implementation and ECC organized on a 32-bit boundary.The
32-bit ECC approach requires 7 code bits for each 32-bit word. For a PRAM data width of 64 bits,
the actual SRAM is 2x (32b data + 7b for ECC) = 78 bits which is organized as two 39-bit memory
banks, "even" bank and "odd" bank. The following association between the ERRBIT field and the
corrupted memory bit is defined:

if ERRBIT = 0, then RAM[0] of the odd bank is inverted
if ERRBIT = 1, then RAM[1] of the odd bank is inverted
...
if ERRBIT = 31, then RAM[31] of the odd bank is inverted
if ERRBIT = 32, then RAM[0] of the even bank is inverted
if ERRBIT = 33, then RAM[1] of the even bank is inverted
...
if ERRBIT = 63, then RAM[31] of the even bank is inverted
if ERRBIT = 64, then ECC Parity[0] of the odd bank is inverted
if ERRBIT = 65, then ECC Parity[1] of the odd bank is inverted
...
if ERRBIT = 70, then ECC Parity[6] of the odd bank is inverted
if ERRBIT = 71, then ECC Parity[0] of the even bank is inverted
if ERRBIT = 72, then ECC Parity[1] of the even bank is inverted
...
if ERRBIT = 77,then ECC Parity[6] of the even bank is inverted

For ERRBIT values greater than 77, no bit position is inverted.

Table 38-9. EEGR field descriptions (continued)

Field Description

Chapter 38 Error Correction Status Module (ECSM)

MPC5646C Microcontroller Reference Manual, Rev. 5

1310 Freescale Semiconductor

Offset: 0x50 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FEAR[31:16]

W

Reset: – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R FEAR[15:0]

W

Reset: – – – – – – – – – – – – – – – –

Figure 38-9. Platform Flash ECC Address Register (PFEAR)

Table 38-10. PFEAR field descriptions

Field Description

FEAR Flash ECC Address Register
This 32-bit register contains the faulting access address of the last, properly-enabled flash ECC
event.

Chapter 38 Error Correction Status Module (ECSM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1311

38.4.2.6.5 Platform Flash ECC Master Number Register (PFEMR)

The PFEMR is a 4-bit register for capturing the XBAR bus master number of the last, properly-enabled
ECC event in the flash memory. Depending on the state of the ECC Configuration Register, an ECC event
in the flash causes the address, attributes and data associated with the access to be loaded into the PFEAR,
PFEMR, PFEAT and PFEDR registers, and the appropriate flag (F1BC or FNCE) in the ECC Status
Register to be asserted.

This register can only be read from the IPS programming model; any attempted write is ignored.
.

38.4.2.6.6 Platform Flash ECC Attributes Register (PFEAT)

The PFEAT is an 8-bit register for capturing the XBAR bus master attributes of the last, properly-enabled
ECC event in the flash memory. Depending on the state of the ECC Configuration Register, an ECC event
in the flash causes the address, attributes and data associated with the access to be loaded into the PFEAR,
PFEMR, PFEAT and PFEDR registers, and the appropriate flag (F1BC or FNCE) in the ECC Status
Register to be asserted.

This register can only be read from the IPS programming model; any attempted write is ignored.

Offset: 0x56 Access: Read

0 1 2 3 4 5 6 7

R 0 0 0 0 FEMR

W

Reset: 0 0 0 0 – – – –

Figure 38-10. Platform Flash ECC Master Number Register (PFEMR)

Table 38-11. PFEMR field descriptions

Field Description

FEMR Flash ECC Master Number Register
This 4-bit register contains the XBAR bus master number of the faulting access of the last,
properly-enabled flash ECC event.

Offset: 0x57 Access: Read

0 1 2 3 4 5 6 7

R WRITE SIZE PROTECTION

W

Reset: – – – – – – – –

Figure 38-11. Platform Flash ECC Attributes Register (PFEAT)

Table 38-12. PFEAT field descriptions

Field Description

WRITE AMBA-AHB HWRITE
0 AMBA-AHB read access
1 AMBA-AHB write access

Chapter 38 Error Correction Status Module (ECSM)

MPC5646C Microcontroller Reference Manual, Rev. 5

1312 Freescale Semiconductor

38.4.2.6.7 Platform Flash ECC Data Register (PFEDR)

The PFEDR is a 32-bit register for capturing the data associated with the last, properly-enabled ECC event
in the flash memory. Depending on the state of the ECC Configuration Register, an ECC event in the flash
causes the address, attributes and data associated with the access to be loaded into the PFEAR, PFEMR,
PFEAT and PFEDR registers, and the appropriate flag (F1BC or FNCE) in the ECC Status Register to be
asserted.

The data captured on a multi-bit non-correctable ECC error is undefined.

This register can only be read from the IPS programming model; any attempted write is ignored.

SIZE AMBA-AHB HSIZE[2:0]
000 8-bit AMBA-AHB access
001 16-bit AMBA-AHB access
010 32-bit AMBA-AHB access
1xx Reserved

PROTECTION AMBA-AHB HPROT[3:0]
Protection[3]: Cacheable 0 = Non-cacheable, 1 = Cacheable
Protection[2]: Bufferable 0 = Non-bufferable, 1 = Bufferable
Protection[1]: Mode 0 = User mode, 1 = Supervisor mode
Protection[0]: Type 0 = I-Fetch, 1 = Data

Offset: 0x5C Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FEDR[31:16]

W

Reset: – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R FEDR[15:0]

W

Reset: – – – – – – – – – – – – – – – –

Figure 38-12. Platform Flash ECC Data Register (PFEDR)

Table 38-13. PFEDR field descriptions

Field Description

FEDR Flash ECC Data Register
This 32-bit register contains the data associated with the faulting access of the last, properly-enabled
flash ECC event. The register contains the data value taken directly from the data bus.

Table 38-12. PFEAT field descriptions (continued)

Field Description

Chapter 38 Error Correction Status Module (ECSM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1313

38.4.2.6.8 Platform RAM ECC Address Register (PREAR)

The PREAR is a 32-bit register for capturing the address of the last, properly-enabled ECC event in the
SRAM memory. Depending on the state of the ECC Configuration Register, an ECC event in the SRAM
causes the address, attributes and data associated with the access to be loaded into the PREAR, PRESR,
PREMR, PREAT and PREDR registers, and the appropriate flag (R1BC or RNCE) in the ECC Status
Register to be asserted.

This register can only be read from the IPS programming model; any attempted write is ignored.

38.4.2.6.9 Platform RAM ECC Syndrome Register (PRESR)

The PRESR is an 8-bit register for capturing the error syndrome of the last, properly-enabled ECC event
in the SRAM memory. Depending on the state of the ECC Configuration Register, an ECC event in the
SRAM causes the address, attributes and data associated with the access to be loaded into the PREAR,
PRESR, PREMR, PREAT and PREDR registers, and the appropriate flag (R1BC or RNCE) in the ECC
Status Register to be asserted.

This register can only be read from the IPS programming model; any attempted write is ignored.

Offset: 0x60 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R REAR[31:16]

W

Reset: – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R REAR[15:0]

W

Reset: – – – – – – – – – – – – – – – –

Figure 38-13. Platform RAM ECC Address Register (PREAR)

Table 38-14. PREAR field descriptions

Field Description

REAR SRAM ECC Address Register
This 32-bit register contains the faulting access address of the last, properly-enabled SRAM ECC
event.

Offset: 0x65 Access: Read

0 1 2 3 4 5 6 7

R RESR

W

Reset: – – – – – – – –

Figure 38-14. Platform RAM ECC Syndrome Register (PRESR)

Chapter 38 Error Correction Status Module (ECSM)

MPC5646C Microcontroller Reference Manual, Rev. 5

1314 Freescale Semiconductor

Table 38-16 associates the upper 7 bits of the ECC syndrome with the exact data bit in error for single-bit
correctable codewords. This table follows the bit vectoring notation where the LSB = 0. Note that the
syndrome value of 0x01 implies no error condition but this value is not readable when the PRESR is read
for the no error case.

Table 38-15. PRESR field descriptions

Field Description

RESR SRAM ECC Syndrome Register
This 8-bit syndrome field includes 6 bits of Hamming decoded parity plus an odd-parity bit for the
entire 39-bit (32-bit data + 7 ECC) code word. The upper 7 bits of the syndrome specify the exact bit
position in error for single-bit correctable codewords, and the combination of a non-zero 7-bit
syndrome plus overall incorrect parity bit signal a multi-bit, non-correctable error.

For correctable single-bit errors, the mapping shown in Table 38-16 associates the upper 7 bits of
the syndrome with the data bit in error.

Table 38-16. RAM syndrome mapping for single-bit correctable errors

PRESR[RESR] Data bit in error

0x00 ECC ODD[0]

0x01 No error

0x02 ECC ODD[1]

0x04 ECC ODD[2]

0x06 DATA ODD BANK[31]

0x08 ECC ODD[3]

0x0a DATA ODD BANK[30]

0x0c DATA ODD BANK[29]

0x0e DATA ODD BANK[28]

0x10 ECC ODD[4]

0x12 DATA ODD BANK[27]

0x14 DATA ODD BANK[26]

0x16 DATA ODD BANK[25]

0x18 DATA ODD BANK[24]

0x1a DATA ODD BANK[23]

0x1c DATA ODD BANK[22]

0x50 DATA ODD BANK[21]

0x20 ECC ODD[5]

0x22 DATA ODD BANK[20]

0x24 DATA ODD BANK[19]

0x26 DATA ODD BANK[18]

Chapter 38 Error Correction Status Module (ECSM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1315

38.4.2.6.10 Platform RAM ECC Master Number Register (PREMR)

The PREMR is a 4-bit register for capturing the XBAR bus master number of the last, properly-enabled
ECC event in the SRAM memory. Depending on the state of the ECC Configuration Register, an ECC
event in the SRAM causes the address, attributes and data associated with the access to be loaded into the
PREAR, PRESR, PREMR, PREAT and PREDR registers, and the appropriate flag (R1BC or RNCE) in
the ECC Status Register to be asserted.

See the XBAR chapter of this reference manual for a listing of XBAR bus master numbers.

This register can only be read from the IPS programming model; any attempted write is ignored.

0x28 DATA ODD BANK[17]

0x2a DATA ODD BANK[16

0x2c DATA ODD BANK[15]

0x58 DATA ODD BANK[14]

0x30 DATA ODD BANK[13]

0x32 DATA ODD BANK[12]

0x34 DATA ODD BANK[11]

0x64 DATA ODD BANK[10]

0x38 DATA ODD BANK[9]

0x62 DATA ODD BANK[8]

0x70 DATA ODD BANK[7]

0x60 DATA ODD BANK[6]

0x40 ECC ODD[6]

0x42 DATA ODD BANK[5]

0x44 DATA ODD BANK[4]

0x46 DATA ODD BANK[3]

0x48 DATA ODD BANK[2]

0x4a DATA ODD BANK[1]

0x4c DATA ODD BANK[0]

0x03,0x05........0x4d Multiple bit error

> 0x4d Multiple bit error

Table 38-16. RAM syndrome mapping for single-bit correctable errors (continued)

PRESR[RESR] Data bit in error

Chapter 38 Error Correction Status Module (ECSM)

MPC5646C Microcontroller Reference Manual, Rev. 5

1316 Freescale Semiconductor

38.4.2.6.11 Platform RAM ECC Attributes Register (PREAT)

The PREAT is an 8-bit register for capturing the XBAR bus master attributes of the last, properly-enabled
ECC event in the SRAM memory. Depending on the state of the ECC Configuration Register, an ECC
event in the SRAM causes the address, attributes and data associated with the access to be loaded into the
PREAR, PRESR, PREMR, PREAT and PREDR registers, and the appropriate flag (R1BC or RNCE) in
the ECC Status Register to be asserted.

Offset: 0x66 Access: Read

0 1 2 3 4 5 6 7

R 0 0 0 0 REMR

W

Reset: 0 0 0 0 – – – –

Figure 38-15. Platform RAM ECC Master Number Register (PREMR)

Table 38-17. PREMR field descriptions

Field Description

REMR SRAM ECC Master Number Register
This 4-bit register contains the XBAR bus master number of the faulting access of the last,
properly-enabled SRAM ECC event.
See the XBAR chapter of this reference manual for a listing of XBAR bus master numbers.

Offset: 0x67 Access: Read

0 1 2 3 4 5 6 7

R WRITE SIZE PROTECTION

W

Reset: – – – – – – – –

Figure 38-16. Platform RAM ECC Attributes Register (PREAT)

Table 38-18. PREAT field descriptions

Field Description

WRITE XBAR HWRITE
0 XBAR read access
1 XBAR write access

SIZE XBAR HSIZE[2:0]
000 8-bit XBAR access
001 16-bit XBAR access
010 32-bit XBAR access
1xx Reserved

PROTECTION XBAR HPROT[3:0]
Protection[3]: Cacheable 0 = Non-cacheable, 1 = Cacheable
Protection[2]: Bufferable 0 = Non-bufferable, 1 = Bufferable
Protection[1]: Mode 0 = User mode, 1 = Supervisor mode
Protection[0]: Type 0 = I-Fetch, 1 = Data

Chapter 38 Error Correction Status Module (ECSM)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1317

38.4.2.6.12 Platform RAM ECC Data Register (PREDR)

The PREDR is a 32-bit register for capturing the data associated with the last, properly-enabled ECC event
in the SRAM memory. Depending on the state of the ECC Configuration Register, an ECC event in the
SRAM causes the address, attributes and data associated with the access to be loaded into the PREAR,
PRESR, PREMR, PREAT and PREDR registers, and the appropriate flag (R1BC or RNCE) in the ECC
Status Register to be asserted.

The data captured on a multi-bit non-correctable ECC error is undefined.

38.4.3 Register protection

Logic exists which restricts accesses to INTC, ECSM, MPU, STM and SWT to supervisor mode only.
Accesses in User mode are not possible.

Offset: 0x6C Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R REDR[31:16]

W

Reset: – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R REDR[15:0]

W

Reset: – – – – – – – – – – – – – – – –

Figure 38-17. Platform RAM ECC Data Register (PREDR)

Table 38-19. PREDR field descriptions

Field Description

REDR SRAM ECC Data Register
This 32-bit register contains the data associated with the faulting access of the last, properly-enabled
SRAM ECC event. The register contains the data value taken directly from the data bus.

Chapter 38 Error Correction Status Module (ECSM)

MPC5646C Microcontroller Reference Manual, Rev. 5

1318 Freescale Semiconductor

Chapter 39 Self-Test Control Unit (STCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1319

Chapter 39
Self-Test Control Unit (STCU)

39.1 Introduction
The Self-Test Control Unit (STCU) is a component within the overall Safety Integrity Subsystem. The
STCU controls the sequencing of the device’s self test before the primary user application starts running
applications software (Apps SW). The goal of the self test is to detect physical defects in embedded
memories with enough coverage to meet the required Safety Integrity Level (SIL) of the system.

To the user, the purpose of the STCU is to display the results of the self test.

39.1.1 Acronyms, abbreviations, and terms

Table 39-1 contains acronyms, abbreviations, and terms used in this document.

Table 39-1. Acronyms and abbreviated terms

Term Meaning

Apps SW User applications software

BIST Built-In Self Test

CF Critical faults

CPU Central Processing Unit

CRC Cyclic Redundancy Code (used for internal STCU testing)

HW Hardware in general

IPS Integrated Peripheral System Bus Interface

MBIST Memory Built-In Self Test

MC_RGM Reset generation module

NCF Non-critical faults

SIL Safety Integrity Level (industry standard)

Safety Integrity
Subsystem

Collection of hardware and software working together to implement the required SIL

SIR Stay in reset (type of fault)

SSCM System Status and Configuration Module

SW Software in general

Integrity SW Safety integrity software (a component within the Safety Integrity Subsystem)

WDG Watchdog Timers

Chapter 39 Self-Test Control Unit (STCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

1320 Freescale Semiconductor

39.2 STCU main features
The STCU cannot be started by software.

The STCU features include the following:

• Performs a one-time self test after a reset trigger event

• Provides register interfaces for both software and hardware:

— Hardware: SSCM write-one-time register interface

— Software: IPS read-only register interface

• Manages 40 MBISTs (embedded memory blocks)

• Performs self-checking: The Self Checker monitors critical internal signals during the self test.

• Provides a rich set of status and error information:

— Timeout flags if the self test does not start or finish within a limited amount of time

— Status flags for individual MBIST operations

— Flags for STCU internal errors

• Software can confirm the integrity of the CRC status information by directly comparing the
expected and actual results the CRC operations.

39.3 Block diagram and components
Figure 39-1 shows a block diagram of the STCU.

Figure 39-1. STCU block diagram

The main components of the STCU are:

Registers: Hold the self-test parameters and status flags: scheduling activity,
Critical/Non-Critical/Stay-in-Reset fault mapping, and CRC expected values. See Section 39.5, “Memory
map and register definition.”
The IPS and SSCM interfaces provide access:

IPS Interface

MBIST
engine

Collector

Watchdog
Timers

Registers

SSCM

Read
Parameters

Load
Parameters

STCU

Self
Checker

Check Results Failures

S
S

C
M

 In
te

rf
ac

e

Run Tests

MBIST Partitions

Functional Reset

Done

MC_RGM

NVM

Detect Status

STCU
Reset Event

Integrity SW

Chapter 39 Self-Test Control Unit (STCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1321

— SSCM interface—The SSCM uses this interface to program the STCU’s self-test parameters
without CPU intervention. A write-once mechanism disables the SSCM interface to prevent the
STCU parameters from being reloaded after the self test has been performed.

— IPS interface—Software running on the CPUs use this slave bus to access registers.

• Self Checker: Performs a CRC test on a sampled set of selected internal signals when the STCU is
running

• Collector: Collects and updates the status and error conditions related to the MBIST execution and
STCU internal operation. The Collector sends the BIST results and signals to MC_RGM to begin
a functional reset (unless a stay-in-reset fault is encountered).

• Watchdog Timers: Provide timeout mechanisms to protect against the following:

— Dead-lock or runaway condition during the self test

— STCU is activated but the self test is not run

• MBIST engine: Manages the testing of embedded memory blocks.

Chapter 39 Self-Test Control Unit (STCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

1322 Freescale Semiconductor

39.4 The Safety Integrity Subsystem
Figure 39-2 shows the STCU as a component of the Safety Integrity Subsystem on the device.

Figure 39-2. The STCU within the Safety Integrity Subsystem

When an STCU Reset Event occurs, the device goes through a two-phase boot sequence:

1. Self-test phase: See Figure 39-3.

2. Functional-reset phase: See Figure 39-4.

MBIST PartitionsSSCM

STCU

MC_RGM
STCU Reset
Event

NVM

Component1

1 Components are the hardware and software that make up a subsystem. Events that affect subsystem
behavior are also included.

Description

CPU or
Integrity SW

The Safety Integrity Software checks the STCU status before passing control over to
Integrity SW.

MBIST
Partitions

The set of individual embedded memory blocks included in the self test.
(See Table 39-13)

MC_RGM Reset generation module

NVM The Flash nonvolatile memory contains the initial self-test parameters.

SSCM The System Status and Configuration Module is the central control for device configuration
after reset.

STCU The Self Test Control Unit manages the device self test.

STCU Reset
Event

The following reset events trigger the SSCM to activate the STCU:
 • Power-on reset
 • Destructive reset
 • External reset

Integrity SW

Chapter 39 Self-Test Control Unit (STCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1323

Figure 39-3. Boot sequence phase 1: Self test

SSCM

NVM

Read
Parameters

STCU

Failures Done

Run Tests

4

5

Load
Parameters3

2

MC_RGM

MBIST Partitions

Detect Status
1

1. After an STCU Reset Event, the SSCM detects that the device self test has not been
run yet.

2. The SSCM reads the self-test parameters from Flash nonvolatile memory (NVM).

3. The SSCM loads the self-test parameters into the STCU and passes control over to the
STCU. For details, refer to Section 39.4.1, “Default setup after the boot sequence
phase 1.”

4. The STCU manages the MBISTs and updates its internal status.

5. If faults are detected, the STCU reports the test failures to the MC_RGM.

6. The STCU signals the MC_RGM that the tests are complete, and the boot sequence
proceeds to the next phase (see Figure 39-4). However, if a SIR fault occurs, the
STCU keeps the device in reset until an STCU Reset Event is applied.

STCU Reset
Event

Chapter 39 Self-Test Control Unit (STCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

1324 Freescale Semiconductor

Figure 39-4. Boot sequence phase 2: Functional reset

39.4.1 Default setup after the boot sequence phase 1

Table 39-2 shows the STCU registers configuration after the boot sequence phase 1, (parameters loaded
from Flash into the STCU).

Table 39-2. STCU registers configuration after the boot sequence phase 1

STCU register Note

Name Value

STCU_RUN 0x0000_0001 MBIST test activation

STCU_CFG 0x1000_0000 The first MBIST scheduled is cluster #0
STCU clock is the system clock: FIRC source

STCU_WDGG 0x0000_0003 The watchdog 10 bit counter granularity is 211b x 1024
STCU clock cycles

STCU_CRCE 0x5ecb_2787 This value is to be defined and programmed in
shadow Flash by the user.

STCU_CRCR don’t care This value will be updated by the STC after the MBISR
run.

STCU_ERR 0x0000_0000 • WDG timeout issues a SIR fault
 • CRC mismatch issues a NCI fault
 • Engine error issues a NCI fault
 • Invalid pointer issues a NCI fault

STCU_MBSL 0x0000_0000 —

STCU_MBSH 0x0000_0000 —

STCU_MBEL 0x0000_0000 —

SSCM STCU

Check
Results

3

Reset

MC_RGM

1

Detect Status
2

Pass
Control

Apps SW

1. The MC_RGM triggers a functional reset.

2. The SSCM detects that the device self test has been run and passes control over to the
CPUs.

3. The integrity SW checks the results of the self test.

4. If the integrity SW check passes, the device can be considered as OK. If there is any
fault, it takes an appropriate action.

Chapter 39 Self-Test Control Unit (STCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1325

STCU_MBEH 0x0000_0000 —

STCU_MBCFML 0x0000_0000 Non critical fault configured for every memory cluster

STCU_MBCFMH 0x0000_0000

STCU_MBSFML 0x0000_0000 No stay in the Reset fault configured for every memory
cluster

STCU_MBSFMH 0x0000_0000

STCU_MB_CTRL0 0x9103_0000 • Concurrent mode selected
 • Next MIST pointer is 0x11
 • MBIST0 run time budget is 0x03 x 211b x 1024

STCU clock cycles

STCU_MB_CTRL1 0x9203_0000 • Concurrent mode selected
 • Next MIST pointer is 0x12
 • MBIST1 run time budget is 0x03 x 211b x 1024

STCU clock cycles

STCU_MB_CTRL2 00x9303_0000 • Concurrent mode selected
 • Next MIST pointer is 0x13
 • MBIST2 run time budget is 0x03 x 211b x 1024

STCU clock cycles

STCU_MB_CTRL3 0x9403_0000 • Concurrent mode selected
 • Next MIST pointer is 0x14
 • MBIST3 run time budget is 0x03 x 211b x 1024

STCU clock cycles

STCU_MB_CTRL4 0x9503_0000 • Concurrent mode selected
 • Next MIST pointer is 0x15
 • MBIST4 run time budget is 0x03 x 211b x 1024

STCU clock cycles

STCU_MB_CTRL5 0x9603_0000 • Concurrent mode selected
 • Next MIST pointer is 0x16
 • MBIST5 run time budget is 0x03 x 211b x 1024

STCU clock cycles

STCU_MB_CTRL6 0x9703_0000 • Concurrent mode selected
 • Next MIST pointer is 0x17
 • MBIST7 run time budget is 0x03 x 211b x 1024

STCU clock cycles

STCU_MB_CTRL7 0x9803_0000 • Concurrent mode selected
 • Next MIST pointer is 0x18
 • MBIST7 run time budget is 0x03 x 211b x 1024

STCU clock cycles

STCU_MB_CTRL8 0x9903_0000 • Concurrent mode selected
 • Next MIST pointer is 0x19
 • MBIST8 run time budget is 0x03 x 211b x 1024

STCU clock cycles

Table 39-2. STCU registers configuration after the boot sequence phase 1

STCU register Note

Chapter 39 Self-Test Control Unit (STCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

1326 Freescale Semiconductor

STCU_MB_CTRL9 0x9A03_0000 • Concurrent mode selected
 • Next MIST pointer is 0x1A
 • MBIST9 run time budget is 0x03 x 211b x 1024

STCU clock cycles

STCU_MB_CTRL10 0x9B03_0000 • Concurrent mode selected
 • Next MIST pointer is 0x1B
 • MBIST10 run time budget is 0x03 x 211b x 1024

STCU clock cycles

STCU_MB_CTRL11 0x9C03_0000 • Concurrent mode selected
 • Next MIST pointer is 0x1C
 • MBIST11 run time budget is 0x03 x 211b x 1024

STCU clock cycles

STCU_MB_CTRL12 0x9D03_0000 • Concurrent mode selected
 • Next MIST pointer is 0x1D
 • MBIST12 run time budget is 0x03 x 211b x 1024

STCU clock cycles

STCU_MB_CTRL13 0x9E03_0000 • Concurrent mode selected
 • Next MIST pointer is 0x1E
 • MBIST13 run time budget is 0x03 x 211b x 1024

STCU clock cycles

STCU_MB_CTRL14 0x9F03_0000 • Concurrent mode selected
 • Next MIST pointer is 0x1F
 • MBIST14 run time budget is0x03 x 211b x 1024

STCU clock cycles

STCU_MB_CTRL15 0xA003_0000 • Concurrent mode selected
 • Next MIST pointer is 0x20
 • MBIST15 run time budget is 0x03 x 211b x 1024

STCU clock cycles

STCU_MB_CTRL16 0xA103_0000 • Concurrent mode selected
 • Next MIST pointer is 0x21
 • MBIST17 run time budget is 0x03 x 211b x 1024

STCU clock cycles

STCU_MB_CTRL17 0xA203_0000 • Concurrent mode selected
 • Next MIST pointer is 0x22
 • MBIST17 run time budget is 0x03 x 211b x 1024

STCU clock cycles

STCU_MB_CTRL18 0xA303_0000 • Concurrent mode selected
 • Next MIST pointer is 0x23
 • MBIST18 run time budget is 0x03 x 211bx 1024

STCU clock cycles

STCU_MB_CTRL19 0xA403_0000 • Concurrent mode selected
 • Next MIST pointer is 0x24
 • MBIST19 run time budget is 0x03 x 211bx 1024

STCU clock cycles

Table 39-2. STCU registers configuration after the boot sequence phase 1

STCU register Note

Chapter 39 Self-Test Control Unit (STCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1327

STCU_MB_CTRL20 0xA503_0000 • Concurrent mode selected
 • Next MIST pointer is 0x25
 • MBIST20 run time budget is 0x03 x 211b x 1024

STCU clock cycles

STCU_MB_CTRL21 0xA603_0000 • Concurrent mode selected
 • Next MIST pointer is 0x26
 • MBIST21 run time budget is 0x03 x 211b x 1024

STCU clock cycles

STCU_MB_CTRL22 0xA703_0000 • Concurrent mode selected
 • Next MIST pointer is 0x27
 • MBIST22 run time budget is 0x03 x 211b x 1024

STCU clock cycles

STCU_MB_CTRL23 0xA803_0000 • Concurrent mode selected
 • Next MIST pointer is 0x28
 • MBIST23 run time budget is 0x03 x 211b x 1024

STCU clock cycles

STCU_MB_CTRL24 0XA91C_0000 • Concurrent mode selected
 • Next MIST pointer is 0x29
 • MBIST24 run time budget is 0x1C x 211bx 1024

STCU clock cycles

STCU_MB_CTRL25 0xAA18_0000 • Concurrent mode selected
 • Next MIST pointer is 0x2A
 • MBIST25 run time budget is 0x18 x 211b x 1024

STCU clock cycles

STCU_MB_CTRL26 0xAB18_0000 • Concurrent mode selected
 • Next MIST pointer is 0x2B
 • MBIST27 run time budget is 0x18 x 211b x 1024

STCU clock cycles

STCU_MB_CTRL27 0xAC18_0000 • Concurrent mode selected
 • Next MIST pointer is 0x2C
 • MBIST27 run time budget is 0x18 x 211b x 1024

STCU clock cycles

STCU_MB_CTRL28 0xAD03_0000 • Concurrent mode selected
 • Next MIST pointer is 0x2D
 • MBIST28 run time budget is 0x03 x 211b x 1024

STCU clock cycles

STCU_MB_CTRL29 0xAE07_0000 • Concurrent mode selected
 • Next MIST pointer is 0x2E
 • MBIST29 run time budget is 0x07 x 211b x 1024

STCU clock cycles

STCU_MB_CTRL30 0xAF2F_0000 • Concurrent mode selected
 • Next MIST pointer is 0x2F
 • MBIST30 run time budget is 0x2F x 211b x 1024

STCU clock cycles

Table 39-2. STCU registers configuration after the boot sequence phase 1

STCU register Note

Chapter 39 Self-Test Control Unit (STCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

1328 Freescale Semiconductor

39.4.2 Changing the default fault grading

The fault mapping in terms of critical fault (CF), non-critical fault (NCF) and stay in reset (SIR) can be
configured by modifying parameters in shadow Flash.

The following parameters need to be changed to suit the specific application:

• STCU_MBCFML:STCU_MBCFMH

• STCU_MBSFML:STCU_MBSFMH

STCU_MB_CTRL31 0xB030_0000 • Concurrent mode selected
 • Next MIST pointer is 0x30
 • MBIST31 run time budget is 0x30 x 211b x 1024

STCU clock cycles

STCU_MB_CTRL32 0xB12F_0000 • Concurrent mode selected
 • Next MIST pointer is 0x31
 • MBIST32 run time budget is 0x2F x 211b x 1024

STCU clock cycles

STCU_MB_CTRL33 0xB22F_0000 • Concurrent mode selected
 • Next MIST pointer is 0x32
 • MBIST33 run time budget is 0x2F x 211bx 1024

STCU clock cycles

STCU_MB_CTRL34 0xB32F_0000 • Concurrent mode selected
 • Next MIST pointer is 0x33
 • MBIST34 run time budget is 0x2F x 211b x 1024

STCU clock cycles

STCU_MB_CTRL35 0xB430_0000 • Concurrent mode selected
 • Next MIST pointer is 0x34
 • MBIST35 run time budget is 0x30 x 211b x 1024

STCU clock cycles

STCU_MB_CTRL36 0xB530_0000 • Concurrent mode selected
 • Next MIST pointer is 0x35
 • MBIST37 run time budget is 0x30 x 211b x 1024

STCU clock cycles

STCU_MB_CTRL37 0xB630_0000 • Concurrent mode selected
 • Next MIST pointer is 0x36
 • MBIST37 run time budget is 0x30 x 211b x 1024

STCU clock cycles

STCU_MB_CTRL38 0xB703_0000 • Concurrent mode selected
 • Next MIST pointer is 0x37
 • MBIST38 run time budget is 0x03 x 211b x 1024

STCU clock cycles

STCU_MB_CTRL39 0x7F13_0000 • Concurrent mode selected
 • Next MIST pointer is 0x10
 • MBIST39 run time budget is 0x13 x 211b x 1024

STCU clock cycles

Table 39-2. STCU registers configuration after the boot sequence phase 1

STCU register Note

Chapter 39 Self-Test Control Unit (STCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1329

• STCU_ERR

The process for programing these parameters is documented in the Flash memory chapter, Table 35-34.

The STCU_CRCE needs to be calculated for the updated parameters. However, to guarantee maximum
coverage during self test, the CRC value cannot be calculated offline and the STUC itself needs to be used
to calculate the value.

To calculate CRC value, follow the steps provided below:

1. Modify the Self-test parameters (CF, NCF, SIR values).

2. Run the Self-Test.

3. Read the CRCR.

4. Use this CRCR value to program the Final Self-Test parameter (CRCE).

39.4.3 Integrity SW operations

The Integrity SW performs operations, based on the STCU status conditions after the self test. If no error
is reported, the Integrity software confirms that the expected and actual values within the CRC registers
do not indicate an error. This software confirmation prevents a fault within the STCU itself incorrectly
indicating that the self test passed.

39.4.3.1 IReported errors

In the case of reported errors, the Integrity SW should:

• Read the STCU_MBSL flag register to determine which MBISTs failed.

• Read the STCU_MBEL flag register to determine which MBISTs did not finish.

• Read the STCU_ERR register to check whether there has been an internal STCU failure.

39.4.3.2 No reported errors

In the case of no reported errors, the Integrity SW should confirm the following:

• The internal CRC computation result matches the expected value:
Read the CRCE and CRCR registers to check the coherency with the STCU_ERR[CRCS] flag.

Chapter 39 Self-Test Control Unit (STCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

1330 Freescale Semiconductor

39.5 Memory map and register definition
All registers shown in this section are defined as visible by the IPS interface.

39.5.1 Memory map

The STCU memory map is listed in Table 39-3.

Table 39-3. STCU register map

Base address: 0xC3FF_4000

Address offset Register Location

0x0000–0x0004 Reserved

0x0008 STCU SK Code Register (STCU_SKC) on page 1331

0x000C STCU Configuration Register (STCU_CFG) on page 1332

0x0010 STCU Watchdog Register Granularity (STCU_WDGG) on page 1333

0x0014 STCU CRC Expected Status Register (STCU_CRCE) on page 1334

0x0018 STCU CRC Read Status Register (STCU_CRCR) on page 1334

0x001C STCU Error Register (STCU_ERR) on page 1335

0x0020 STCU Error Key Register (STCU_ERRK) on page 1335

0x0024–0x0038 Reserved

0x003C STCU MBIST Status Low Register (STCU_MBSL) on page 1336

0x0040 STCU MBIST Status High Register (STCU_MBSH) on page 1338

0x0044 STCU MBIST End Flag Low Register (STCU_MBEL) on page 1341

0x0048 STCU MBIST End Flag High Register (STCU_MBEH) on page 1341

0x004C STCU MBIST Status End Key Register
(STCU_MBSEK)

on page 1341

0x0050 STCU MBIST Critical FM Low Register
(STCU_MBCFML)

on page 1343

0x0054 STCU MBIST Critical FM High Register
(STCU_MBCFMH)

on page 1343

0x0058 STCU MBIST Stay-In-Reset FM Low Register
(STCU_MBSFML)

on page 1344

0x005C STCU MBIST Stay-In-Reset FM High Register
(STCU_MBSFMH)

on page 1345

0x0060 STCU MBIST FM Key Register (STCU_MBFMK) on page 1345

0x0064–0x002FF Reserved

(0x0300 + ((k1-1) ×
0x4))

STCU MBIST Control Register (STCU_MB_CTRL) on page 1347

0x0780–0x7FFF Reserved

Chapter 39 Self-Test Control Unit (STCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1331

39.5.2 Register conventions

The following bus operations (contiguous byte enables) are supported:

• Word (32 bits) data read operations

• Low and high halfwords (16 bits, data[31:16] or data[15:0]) data read operations

• Byte (8 bits, data[31:24] or data[23:16] or data[15:8] or data[7:0]) data read operations

The STCU generates a bus transfer error in the following cases:

• A read access to the register addresses not mapped on the peripheral but included in the address
space of the peripheral

• A read operation different from byte/halfword/word (free byte enables or other operations) on each
register

The registers of the STCU are accessible (read only) in each access mode: user or supervisor.

39.5.3 Detailed register descriptions

39.5.3.1 STCU SK Code Register (STCU_SKC)

The STCU_SKC register implements the security key code mechanism needed to access the write mode
to other STCU registers. To unlock the STCU access after

• The Power-On, Destructive or External Reset

• The completion of the STCU run

the SW (IPs bus) or the SSCM interfaces have to apply the following sequence:

1. Write the key1 into the STCU_SKC register

2. Write the key2 into the STCU_SKC register

After the Self-Test sequence has been completed or the Bypass feature has been enabled (forcing the signal
tcu_bypass_slftst), the SSCM interface is no more available.

In case of invalid access or sequence (Key1/2 have to be applied consecutively), a transfer error on the IPS
or SSCM bus is asserted depending on the selected source. The STCU write access is locked and to unlock
the access the sequence has to be applied again.

In case the STCU register access last more cycles than the one defined into the Hard-coded WDG time-out,
the STCU write access is locked and the WDG and Register ITF clocks are switched off. Also, in this case,
to enable again the write access to the STCU and the WDG and Register ITF clocks, it is required to apply
again the sequence. The STCU_SKC register is not readable. The value 00000000h is always returned in
case of read operation.

1 Here 'k' is a variable representing the repeated register blocks of the multiple MBISTs: k ranges
from 1 up to 40.

Chapter 39 Self-Test Control Unit (STCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

1332 Freescale Semiconductor

39.5.3.2 STCU Configuration Register (STCU_CFG)

The STCU_CFG register includes the global configuration of the STCU.

Offset: 0x0008 Access: User write-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

W SKC

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

W SKC

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 39-5. STCU SK Code Register (STCU_SKC)

Table 39-4. STCU_SKC field descriptions

Field Description

SKC STCU security key code
= ABFC1893h: Key1 to unlock the write access the STCU (when not protected)
= 319A6C2Fh: Key2 to unlock the write access the STCU (when not protected)

Offset: 0x000C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
PTR

0 0 0 0 0 0 0 0

W

Reset 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
CLK_CFG

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 39-6. STCU Configuration Register (STCU_CFG)

Table 39-5. STCU_CFG field descriptions

Field Description

PTR MBIST pointer
PTR defines the logical pointer to the first MBIST to be scheduled.
10h to (10h + 34): pointer to MBIST
7Fh: pointer to NIL. No BIST execution.

Chapter 39 Self-Test Control Unit (STCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1333

39.5.3.3 STCU Watchdog Register Granularity (STCU_WDGG)

The STCU_WDGG register defines the granularity of the MBIST watchdog timer that provides protection
against dead-lock or runaway conditions during the self test.

When the self test is not run but the STCU is still activated, the bits 15..0 define the timeout before the
STCU_ERR[WDTO] bit is set and the STCU core clock is switched off.

CLK_CFG Logic, Memory BIST and STCU core CLK Clock configuration
CLK_CFG defines the ratio between the sys_clk and the clock used to program the MBIST and
STCU core clock. The allowed configurations are the following:

0000: sys_clk
0001: sys_clk/2
0010: sys_clk/3
....
1101: sys_clk/14
1110: sys_clk/15
1111: sys_clk/16

Offset: 0x0010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0
GMBIST

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Figure 39-7. STCU Watchdog Register Granularity (STCU_WDGG)

Table 39-6. STCU_WDGG field descriptions

Field Description

GMBIST Granularity of the MBIST
The value of this field has to be evaluated in order to define the granularity of the MBIST run taking
into account that the Watchdog timer operates at the STCU clock frequency prescaled depending
on the parameter CLK_CFG defined into the STCU_CFG register and the minimum value is the
length of a fixed prescaler (10 bit).
The following relation gives the system clock cycles granularity of MBIST:

The following example shows the granularity:
000b => 1 K STCU clock cycles
001b => 2 K STCU clock cycles
111b => 128 K STCU clock cycles

Table 39-5. STCU_CFG field descriptions (continued)

Field Description

GMBISTcycles 2
GMBIST

1024=

Chapter 39 Self-Test Control Unit (STCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

1334 Freescale Semiconductor

39.5.3.4 STCU CRC Expected Status Register (STCU_CRCE)

The STCU_CRCE register holds the expected signature of the CRC-32 loaded by the SSCM. The Self
Checker computes the CRC signature of the STCU’s critical signals. If the CRC computation does not
match the expected value, the STCU_ERR[CRCS] bit is set.

39.5.3.5 STCU CRC Read Status Register (STCU_CRCR)

The STCU_CRCR register reports the value obtained by the Self Checker at the end of the self test. It can
be used for diagnostics and as an additional check with respect to the STCU_ERR[CRCS] bit.

Offset: 0x0014 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
CRCE

W

Reset 0 1 0 1 1 1 1 0 1 1 0 0 1 0 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CRCE

W

Reset 0 0 1 0 0 1 1 1 1 0 0 0 0 1 1 1

Figure 39-8. STCU CRC Expected Status Register (STCU_CRCE)

Table 39-7. STCU_CRCE field descriptions

Field Description

CRCE CRC expected signature

Offset: 0x0018 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
CRCR

W

Reset 0 1 0 1 1 1 1 0 1 1 0 0 1 0 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CRCR

W

Reset 0 0 1 0 0 1 1 1 1 0 0 0 0 1 1 1

Figure 39-9. STCU CRC Read Status Register (STCU_CRCR)

Table 39-8. STCU_CRCR field descriptions

Field Description

CRCR Read CRC signature

Chapter 39 Self-Test Control Unit (STCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1335

39.5.3.6 STCU Error Register (STCU_ERR)

The STCU_ERR register includes the status flags for the STCU internal error conditions that occurred
during the configuration or the self test and defines their associated fault mapping (SIR and CF).

Offset: 0x001C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

0 0 0 0

W
D

TO
SF

M

C
R

C
SS

FM

EN
G

ES
FM

IN
V

P
S

F
M

0 0 0 0

W
D

TO
C

FM

C
R

C
SC

FM

EN
G

EC
FM

IN
V

P
C

F
M

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0

C
F

S
F

N
C

F
S

F

S
IR

S
F 0 0 0 0

W
D

TO

C
R

C
S

E
N

G
E

INVPW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 39-10. STCU Error Register (STCU_ERR)

Table 39-9. STCU_ERR field descriptions

Field Description

WDTOSFM Watchdog timeout SIR Fault Mapping
0: Non SIR Fault mapping
1: SIR Fault mapping

CRCSSFM CRC SIR Fault Mapping
0: Non SIR Fault mapping
1: SIR Fault mapping

ENGESFM Engine Error SIR Fault Mapping
0: Non SIR Fault mapping
1: SIR Fault mapping

INVPSFM Invalid Pointer SIR Fault Mapping
0: Non SIR Fault mapping
1: SIR Fault mapping

WDTOCFM Watchdog timeout critical fault mapping
0: Non Critical Fault mapping
1: Critical Fault mapping

CRCSCFM CRC Status critical fault mapping
0: Non critical fault mapping
1: Critical fault mapping

ENGECFM Engine Error critical fault mapping
0: Non Critical fault mapping
1: Critical fault mapping

Chapter 39 Self-Test Control Unit (STCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

1336 Freescale Semiconductor

39.5.3.7 STCU Error Key Register (STCU_ERRK)

The STCU_ERRK register implements the security key code to access to the STCU_ERR register. To
write the STCU_ERR register, the SW has to:

• Write the keyx into the STCU_ERRK

• Set/Clear the STCU_ERR register

where:

• Key1 allows to clear the bit at 1

• Key2 allows to set the bit at 0

In case of invalid access, a transfer error on the IPS or SSCM bus is asserted (It depends on the selected
bus) and the Key is cleared. To unlock the set/clear operation on the STCU_ERR register, the Key1 or
Key2 has to be applied again.

INVPCFM Invalid Pointer critical fault mapping
0: Non critical fault mapping
1: Critical fault mapping

CFSF Critical Faults Status Flag
This flag reports the global status of the CF.
0: No errors that trigger the CF condition occurred.
1: At least one error that triggers the CF condition occurred.

NCFSF Non Critical Faults Status Flag
0: No errors that trigger the NCF condition occurred.
1: At least one error that triggers the NCF condition occurred.

SIRSF Stay In Reset Faults Status Flag
0: No Errors which trigger the SIR condition
1: There are Errors which trigger the SIR condition
In the typical condition, it should not be possible to read the content of this register when this bit is
set because the system should be permanently under reset. However, for diagnostic purposes, the
system could exit from reset to allow SW to check the flag and attempt to trace the failure.

WDTO Watchdog timeout
0: The self test completed within the assigned watchdog time.
1: The self test did not complete within the assigned watchdog time. This bit is also set when the
STCU is activated but the self test is not run.

CRCS CRC status
0: Successful CRC comparison
1: Failed CRC comparison

ENGE Engine Error
0: Valid Engine execution
1: Invalid Engine execution

INVP Invalid pointer
0: Valid linked pointer list
1: Invalid linked pointer list. The following conditions set this bit:
 • Initial MBIST pointer is out of range

Table 39-9. STCU_ERR field descriptions (continued)

Field Description

Chapter 39 Self-Test Control Unit (STCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1337

Only one access mode (set/clear) at the time is allowed. The last key written into this register defines the
access mode.

In case the STCU register access last more cycles than the one defined into the Hard-coded WDG time-out
or there is a transfer error or the IPS or SSCM bus operation performed just after the Key1/Key2 Keys has
been written into STCU_ERRK is not a write operation into the STCU_ERR register, the key is cleared.

The STCU_ERRK register is not readable. The value 00000000h is always returned in case of read
operation.

39.5.3.8 STCU MBIST Status Low Register (STCU_MBSL)

The STCU_MBSL register includes the results corresponding to the execution of each MBIST. The
STCU_MBSL register is automatically set following the completion of the MBIST run.

Offset: 0x0020 Access: User write-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

W ERR_SK

Reset 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

W ERR_SK

Reset 1 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0

Figure 39-11. STCU Error Key Register (STCU_ERRK)

Table 39-10. STCU_ERRK field descriptions

Field Description

ERR_SK STCU_ERRK security key
= F1759034h: Key1 to reset the STCU_ERR bits at 1
= 9531B0C6h: Key2 to set the STCU_ERR bits at 0

Offset: 0x003C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

M
B

S
31

M
B

S
30

M
B

S
29

M
B

S
28

M
B

S
27

M
B

S
26

M
B

S
25

M
B

S
24

M
B

S
23

M
B

S
22

M
B

S
21

M
B

S
20

M
B

S
19

M
B

S
18

M
B

S
17

M
B

S
16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

M
B

S
15

M
B

S
14

M
B

S
13

M
B

S
12

M
B

S
11

M
B

S
10

M
B

S
9

M
B

S
8

M
B

S
7

M
B

S
6

M
B

S
5

M
B

S
4

M
B

S
3

M
B

S
2

M
B

S
1

M
B

S
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 39-12. STCU MBIST Status Low Register (STCU_MBSL)

Chapter 39 Self-Test Control Unit (STCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

1338 Freescale Semiconductor

39.5.3.9 STCU MBIST Status High Register (STCU_MBSH)

The STCU_MBSH register includes the results corresponding to the execution of each MBIST. The
STCU_MBSH register is automatically set following the completion of the MBIST run.

Table 39-11. STCU_MBSL field descriptions

Field Description

MBSx MBIST status
0: Failed MBIST execution
1: No Fault detected during the “x (from MBx) +1 MBIST” execution or until watchdog time out

Offset: 0x0040 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0

M
B

S
39

M
B

S
38

M
B

S
37

M
B

S
36

M
B

S
35

M
B

S
34

M
B

S
33

M
B

S
32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 39-13. STCU MBIST Status High Register (STCU_MBSH)

Table 39-12. STCU_MBSH field descriptions

Field Description

MBSx MBIST status
0: Failed MBIST execution
1: No Fault detected during the “x (from MBx) +1 MBIST” execution or until watchdog time out

Chapter 39 Self-Test Control Unit (STCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1339

Table 39-13 shows STCU MBIST status bits to partition mapping.

Table 39-13. STCU MBIST status bits to partition mapping

STCU registers:
STCU_MBSL./H
STCU_MBEL/H

STCU_MBCFML/H
STCU_MBSFML/H

Corresponding memory cluster in
the device

Note

MBx0 FlexCAN 0 Message buffers —

MBx1 FlexCAN 1 Message buffers —

MBx2 FlexCAN 2 Message buffers —

MBx3 FlexCAN 3 Message buffers —

MBx4 FlexCAN 4 Message buffers —

MBx5 FlexCAN 5 Message buffers —

MBx6 FlexCAN 0 Rx masks —

MBx7 FlexCAN 1 Rx masks —

MBx8 FlexCAN 2 Rx masks —

MBx9 FlexCAN 3 Rx masks —

MBx10 FlexCAN 4 Rx masks —

MBx11 FlexCAN 5 Rx masks —

MBx12 FlexRAY Protocol Engine (PE) data
memory

—

MBx13 FlexRAY Contoller Host Interface (CHI)
look up table

—

MBx14 FEC Tx/Rx FIFO —

MBx15 FEC Message Information Block (MIB) —

MBx16 e200z4d Instruction cache TAG —

MBx17 e200z4d Instruction cache TAG —

MBx18 e200z4d Instruction cache TAG —

MBx19 e200z4d Instruction cache TAG —

MBx20 e200z4d Instruction cache array —

MBx21 e200z4d Instruction cache array —

MBx22 e200z4d Instruction cache array —

MBx23 e200z4d Instruction cache array —

MBx24 CSE RAM CSE RAM only checked when
CSE is disabled

MBx25 Flash internal RAM 0 —

Chapter 39 Self-Test Control Unit (STCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

1340 Freescale Semiconductor

MBx26 Flash internal RAM 1 —

MBx27 Flash internal RAM 2 —

MBx28 DMA RAM —

MBx29 System RAM 8K 0x4000_0000 to 0x4000_1FFF

MBx30 System RAM 24K 0x4000_2000 to 0x4000_7FFF

MBx31 System RAM 32K 0x4000_8000 to 0x4000_FFFF

MBx32 System RAM 32K 0x4001_0000 to 0x4001_7FFF

MBx33 System RAM 32K 0x4001_8000 to 0x4001_FFFF

MBx34 System RAM 32K 0x4002_0000 to 0x4002_7FFF

MBx35 System RAM 32K 0x4002_8000 to 0x4002_FFFF

MBx36 System RAM 32K 0x4003_0000 to 0x4003_7FFF

MBx37 System RAM 32K 0x4003_8000 to 0x4003_FFFF

MBx38 Boot Access Module (ROM) CRC signature

MBx39 FlexRAY Protocol Engine (PE)
Introduction memory (ROM)

CRC signature

Table 39-13. STCU MBIST status bits to partition mapping

STCU registers:
STCU_MBSL./H
STCU_MBEL/H

STCU_MBCFML/H
STCU_MBSFML/H

Corresponding memory cluster in
the device

Note

Chapter 39 Self-Test Control Unit (STCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1341

39.5.3.10 STCU MBIST End Flag Low Register (STCU_MBEL)

The STCU_MBEL register includes the End Flag related to the execution of each MBIST. (See
Table 39-13). The STCU_MBEL register is automatically updated following the completion of the MBIST
run.

39.5.3.11 STCU MBIST End Flag High Register (STCU_MBEH)

The STCU_MBEH register includes the End Flag related to the execution of each MBIST. (See
Table 39-13). The STCU_MBEH register is automatically updated following the completion of the
MBIST run.

Offset: 0x0044 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

M
B

E
31

M
B

E
30

M
B

E
29

M
B

E
28

M
B

E
27

M
B

E
26

M
B

E
25

M
B

E
24

M
B

E
23

M
B

E
22

M
B

E
21

M
B

E
20

M
B

E
19

M
B

E
18

M
B

E
17

M
B

E
16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

M
B

E
15

M
B

E
14

M
B

E
13

M
B

E
12

M
B

E
11

M
B

E
10

M
B

E
9

M
B

E
8

M
B

E
7

M
B

E
6

M
B

E
5

M
B

E
4

M
B

E
3

M
B

E
2

M
B

E
1

M
B

E
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 39-14. STCU MBIST End Flag Low Register (STCU_MBEL)

Table 39-14. STCU_MBEL field descriptions

Field Description

MBEx MBIST End status
0: MBIST execution is not finished.
1: MBIST execution is finished.

Offset: 0x0048 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0

M
B

E
39

M
B

E
38

M
B

E
37

M
B

E
36

M
B

E
35

M
B

E
34

M
B

E
33

M
B

E
32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 39-15. STCU MBIST End Flag High Register (STCU_MBEH)

Chapter 39 Self-Test Control Unit (STCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

1342 Freescale Semiconductor

39.5.3.12 STCU MBIST Status-End Key Register (STCU_MBSEK)

The STCU_MBSEK register implements the key to access the STCU_MBSH/L and STCU_MBEH/L
registers. To set or clear the STCU_MBSH/L and/or the STCU_MBEH/L registers the SW has to:

• Write the key into the STCU_MBSEK register

• Set/Clear the STCU_MBSH/L or STCU_MBEH/L registers

In case of invalid access, a transfer error on the IPS or SSCM bus is asserted (It depends

on the selected bus interface) and the Key is cleared.

To unlock the set/clear operation on the STCU_MBSH/L or STCU_MBEH/L registers the Key has to be
applied again.

In case the STCU access last more cycles than the one defined into the Hard-coded WDG timeout or there
is a transfer error or the IPS or SSCM bus operation performed just after the Key has been written into
STCU_MBSEK is not a write operation into STCU_MBSH/L or STCU_MBEH/L registers, the key is
cleared.

The STCU_MBSEK register is not readable, a 0x00000000 value is always returned in case of read
operation.

The STCU_MBEH register includes the End Flag related to the execution of each MBIST. The
STCU_MBEH register is automatically updated following the completion of the MBIST run.

Table 39-15. STCU_MBEH field descriptions

Field Description

MBEx MBIST End status
0: MBIST execution is not finished.
1: MBIST execution is finished.

Offset: 0x004C Access: User write-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

W MBSEK

Reset 1 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

W MBSEK

Reset 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 1

Figure 39-16. STCU MBIST Status-End Key Register (STCU_MBSEK)

Table 39-16. STCU_MBSEK field descriptions

Field Description

MBSEK STCU_MBSH/L and STCU_MBEH/L register key
= 825A132Bh: Key for a write operation

Chapter 39 Self-Test Control Unit (STCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1343

39.5.3.13 STCU MBIST Critical FM Low Register (STCU_MBCFML)

The STCU_MBCFML register defines the MBIST fault mapping in terms of critical or non critical faults.
(See Table 39-13). The STCU_MBCFML register is automatically set following the completion of the
MBIST run.

39.5.3.14 STCU MBIST Critical FM High Register (STCU_MBCFMH)

The STCU_MBCFMH register defines the MBIST fault mapping in terms of critical or non critical faults.
(See Table 39-13). The STCU_MBCFMH register is automatically set following the completion of the
MBIST run.

Offset: 0x0050 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

M
B

C
F

M
31

M
B

C
F

M
30

M
B

C
F

M
29

M
B

C
F

M
28

M
B

C
F

M
27

M
B

C
F

M
26

M
B

C
F

M
25

M
B

C
F

M
24

M
B

C
F

M
23

M
B

C
F

M
22

M
B

C
F

M
21

M
B

C
F

M
20

M
B

C
F

M
19

M
B

C
F

M
18

M
B

C
F

M
17

M
B

C
F

M
16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

M
B

C
F

M
15

M
B

C
F

M
14

M
B

C
F

M
13

M
B

C
F

M
12

M
B

C
F

M
11

M
B

C
F

M
10

M
B

C
F

M
9

M
B

C
F

M
8

M
B

C
F

M
7

M
B

C
F

M
6

M
B

C
F

M
5

M
B

C
F

M
4

M
B

C
F

M
3

M
B

C
F

M
2

M
B

C
F

M
1

M
B

C
F

M
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 39-17. STCU MBIST Critical FM Low Register (STCU_MBCFML)

Table 39-17. STCU_MBCFML field descriptions

Field Description

MBCFMx MBIST critical fault mapping
0: This MBIST is a NCF.
1: This MBIST is a CF.

Offset: 0x0054 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0

M
B

C
F

M
39

M
B

C
F

M
38

M
B

C
F

M
37

M
B

C
F

M
36

M
B

C
F

M
35

M
B

C
F

M
34

M
B

C
F

M
33

M
B

C
F

M
32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 39-18. STCU MBIST Critical FM High Register (STCU_MBCFMH)

Chapter 39 Self-Test Control Unit (STCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

1344 Freescale Semiconductor

39.5.3.15 STCU MBIST Stay-In-Reset FM Low Register (STCU_MBSFML)

The STCU_MBSFML register defines the MBIST fault mapping in terms of the SIR condition. The
STCU_MBSFML register is automatically set following the completion of the MBIST run.

Table 39-18. STCU_MBCFMH field descriptions

Field Description

MBCFMx MBIST critical fault mapping
0: This MBIST is a NCF.
1: This MBIST is a CF.

Offset: 0x0058 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

M
B

S
F

M
31

M
B

S
F

M
30

M
B

S
F

M
29

M
B

S
F

M
28

M
B

S
F

M
27

M
B

S
F

M
26

M
B

S
F

M
25

M
B

S
F

M
24

M
B

S
F

M
23

M
B

S
F

M
22

M
B

S
F

M
21

M
B

S
F

M
20

M
B

S
F

M
19

M
B

S
F

M
18

M
B

S
F

M
17

M
B

S
F

M
16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

M
B

S
F

M
15

M
B

S
F

M
14

M
B

S
F

M
13

M
B

S
F

M
12

M
B

S
F

M
11

M
B

S
F

M
10

M
B

S
F

M
9

M
B

S
F

M
8

M
B

S
F

M
7

M
B

S
F

M
6

M
B

S
F

M
5

M
B

S
F

M
4

M
B

S
F

M
3

M
B

S
F

M
2

M
B

S
F

M
1

M
B

S
F

M
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 39-19. STCU MBIST Stay-In-Reset FM Low Register (STCU_MBSFML)

Table 39-19. STCU_MBSFML field descriptions

Field Description

MBSFMx MBIST SIR Fault Mapping
0: This MBIST is not a SIR fault.
1: This MBIST is a SIR fault.

Chapter 39 Self-Test Control Unit (STCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1345

39.5.3.16 STCU MBIST Stay-In-Reset FM High Register (STCU_MBSFMH)

The STCU_MBSFMH register defines the MBIST fault mapping in terms of the SIR condition. The
STCU_MBSFMH register is automatically set following the completion of the MBIST run.

Offset: 0x005C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0

M
B

S
F

M
39

M
B

S
F

M
38

M
B

S
F

M
37

M
B

S
F

M
36

M
B

S
F

M
35

M
B

S
F

M
34

M
B

S
F

M
33

M
B

S
F

M
32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 39-20. STCU MBIST Stay-In-Reset FM High Register (STCU_MBSFMH)

Table 39-20. STCU_MBSFMH field descriptions

Field Description

MBSFMx MBIST SIR Fault Mapping
0: This MBIST is not a SIR fault.
1: This MBIST is a SIR fault.

Chapter 39 Self-Test Control Unit (STCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

1346 Freescale Semiconductor

39.5.3.17 STCU MBIST FM Key Register (STCU_MBFMK)

The STCU_MBFMK register implements the key to access the STCU_MBCFML/H and
STCU_MBSFML/H registers.

To set/clear the STCU_MBCFML/H and/or STCU_MBSFML/H registers the SW has to:

• Write the key into the STCU_MBFMK register

• Set/Clear the STCU_MBCFML/H or STCU_MBSFML/H registers

In case of invalid access, a transfer error on the IPS or SSCM bus is asserted (It depends on the selected
bus interface) and the Key is cleared.

To unlock the set/clear operation on the STCU_MBCFML/H or STCU_MBSFML/H registers the Key has
to be applied again.

In case the STCU register access last more cycles than the one defined into the Hard-coded WDG time-out
or there is a transfer error or the IPS or SSCM bus operation performed just after the Key has been written
into STCU_MBFMK is not a write operation into the STCU_MBCFML/H or STCU_MBSFML/H
registers, the key is cleared.

The STCU_MBFMK register is not readable, a 0x00000000 value is always returned in case of read
operation.

Offset: 0x0060 Access: User write-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

W MBFMK

Reset 0 1 1 1 0 1 0 1 0 0 0 1 1 0 1 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

W MBFMK

Reset 1 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0

Figure 39-21. STCU MBIST FM Key Register (STCU_MBFMK)

Table 39-21. STCU_MBFMK field descriptions

Field Description

MBFMK STCU_MBCFML/H and STCU_MBSFML/H registers key
= 751AC490h: Key for a write operation

Chapter 39 Self-Test Control Unit (STCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1347

39.5.3.18 STCU MBIST Control Register (STCU_MB_CTRL)

The STCU_MB_CTRL registers define the control fields of each MBIST.

39.5.4 Self-Test sequence after reset trigger

This is the typical mode of using the STCU module after reset trigger event is applied to STCU. The SSCM
DCF bus is used to retrieve the STCU schedule and MBIST execution parameters stored into the NVM
memory.

The target is to cover the amount of physical defect into the System RAMs/ROMs of the System. The
suggested sequence is the following:

Offset: 0x0300 + ((k-1) × 0x4)1

1 k = 1 to 40.

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
CSM PTR

0 0
MB_TIME

W

Reset 0/12

2 Reset value of CSM and PTR for k= 1 to 39: CSM=1, PTR=k+0x10.Rest value for k=40 : CSM= 0 and PTR=0x7f

0/12 0/12 0/12 0/12 0/12 0/12 0/12 0 0 0/13

3 For Reset values , please refer Table 39-2

0/13 0/13 0/13 0/13 0/13

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 39-22. STCU MBIST Control Register (STCU_MB_CTRL)

Table 39-22. STCU_MB_CTRL field descriptions

Field Description

CSM Concurrent/sequential mode.
0 Sequential mode.
1 Concurrent mode.

PTR next MBIST pointer
PTR defines the logical pointer to the next MBIST to be scheduled.
When the NIL pointer is encountered, the self testing procedure is stopped when the current MBIST
has been completed.
10h to (10h + (k-1): pointer to MBIST and k ranges from 1 to 40
7Fh: pointer to NIL. No BIST execution.
others: invalid pointer => an error is set into the STCU_ERR register.

MB_TIME Memory BIST RUN Time
The time budget of the MBIST is evaluated applying the following relation:

In case the MBIST is not completed within the MB_TIME the STCU_ERR[WDTO] bit is set.

MBcycles MBTIME GMBISTcycles=

Chapter 39 Self-Test Control Unit (STCU)

MPC5646C Microcontroller Reference Manual, Rev. 5

1348 Freescale Semiconductor

• Program the STCU_CFG register in order to: program the core and MBIST TCK clock prescaling
factor setting the CLK_CFG bits and set the pointer to the first MBIST to be executed.

• Unlock the STCU_MBCFML/H and STCU_MBSFML/H access writing the correct key into the
STCU_MBFMK register and set into these registers the specified CF/NCF/SIR condition.

• Unlock the STCU_MBSL/H and STCU_MBEL/H registers access writing the correct key into the
STCU_MBSEK register and set into these registers respectively the Status and End Bits of the
NOT RUN MBIST.

• Program the STCU_MB_CTRL registers of each MBIST from 1 to 40 to be executed.

• Program the GMBIST granularity fields into the STCU_WDGG register.

• Program the expected CRCE value expected at the end of the off-line Self Test sequence into the
STCU_CRCE register.

• MBIST execution starts.

• After execution is completed:

— In case SIR condition is detected, the STCU keep the system in reset.

— In case CF condition is detected, System will go to safe mode

— In case NCF condition is detected, an interrupt will be generated.

Chapter 40 Cryptographic Services Engine (CSE)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1349

Chapter 40
Cryptographic Services Engine (CSE)

40.1 Introduction

40.1.1 Overview

The Cryptographic Services Engine (CSE) is a peripheral module that implements the security functions
described in the Secure Hardware Extension (SHE) Functional Specification Version 1.1. The CSE design
includes a host interface with a set of memory mapped registers that are used by the CPU to issue
commands and a system bus interface that allows the CSE to directly access system memory. Two
dedicated blocks of system Flash memory are used by the CSE for secure key storage.

40.1.2 Features

The CSE has the following features:

• Secure storage for cryptographic keys.

• AES-128 encryption and decryption.

• AES-128 CMAC authentication.

• Random number generation.

• Secure boot mode.

• System bus master interface.

40.1.3 Modes of operation

The CSE supports operation in normal and debug modes of operation. The use of the cryptographic keys
stored by the CSE is controlled based on the activation of the CPU debug port and the successful
completion of the secure boot process.

The CSE has a low power mode which disables the clock to all logic except the host interface. Register
accesses are supported in this mode but commands are not processed.

40.1.4 Block diagram

The CSE design includes a command processor, host interface, system bus interface, local memory, AES
logic and True Random Number Generator (TRNG) as shown in Figure 40-1.

Chapter 40 Cryptographic Services Engine (CSE)

MPC5646C Microcontroller Reference Manual, Rev. 5

1350 Freescale Semiconductor

Figure 40-1. CSE block diagram

40.2 External signal description
The CSE has no external interface signals.

40.3 Memory map and register definition
The CSE programming model has ten 32-bit registers. The programming model can only be accessed using
32-bit (word) accesses. References using a different size are invalid.

40.3.1 Memory map

The CSE memory map is shown in Table 40-1.

Table 40-1. CSE memory map

Base address: 0xFFF1_C000

Address offset Register Location

0x0000 CSE Control Register (CSE_CR) on page 1351

0x0004 CSE Status Register (CSE_SR) on page 1352

0x0008 CSE Interrupt Register (CSE_IR) on page 1354

0x000C CSE Error Code Register (CSE_ECR) on page 1354

0x0010–0x001C Reserved

System Bus

System Bus
Master Port

Host
Interface

Peripheral Bus
Slave Port

Interface

Command
Processor

Local
Memory

AES Logic /
TRNG

Chapter 40 Cryptographic Services Engine (CSE)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1351

40.3.2 Register descriptions

The following sections detail the individual registers within the CSE programming model.

40.3.2.1 CSE Control Register (CSE_CR)

The CSE_CR contains fields for configuring and controlling operation of the CSE.

0x0020 CSE Command Register (CSE_CMD) on page 1355

0x0024 CSE Parameter 1 Register (CSE_P1) on page 1356

0x0028 CSE Parameter 2 Register (CSE_P2) on page 1356

0x002C CSE Parameter 3 Register (CSE_P3) on page 1356

0x0030 CSE Parameter 4 Register (CSE_P4) on page 1356

0x0034 CSE Parameter 5 Register (CSE_P5) on page 1356

0x0038–0x3FFF Reserved

Offset 0x0000 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DIV

0 0 0 0

M
D

IS

SUS
0

CIE
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

1 The reset value of the CIE bit is 0 on POR, but when the platform reset is lifted and CSE execution starts, the value
of this bit is updated to 1. So, after the first read access to this bit, the value read back is 1.

Figure 40-2. CSE Control Register (CSE_CR)

Table 40-1. CSE memory map (continued)

Base address: 0xFFF1_C000

Address offset Register Location

Chapter 40 Cryptographic Services Engine (CSE)

MPC5646C Microcontroller Reference Manual, Rev. 5

1352 Freescale Semiconductor

40.3.2.2 CSE Status Register (CSE_SR)

The CSE_SR contains flags indicating the status of the CSE. Reading CSE_SR[24:31] is the same as the
SHE GET_STATUS command.

Table 40-2. CSE_CR field descriptions

Field Description

DIV TRNG Clock Divider Select. The DIV field sets the clock divide ratio for the TRNG clock. The TRNG clock
is the system clock divided by a programmable ratio:
TRNG Clk Freq = Sys Clk Freq / (2*(DIV+1))
The divide ratio must be set such that the TRNG clock frequency is between 500 kHz and 2 MHz.
0x00 = divide by 2
0x01 = divide by 4
0x02 = divide by 6
....
0xFE = divide by 510
0xFF = divide by 512

MDIS Module Disable. When the MDIS bit is set, the CSE is put into a low power mode which disables the
clock to all of the CSE logic except for the host interface. The MDIS bit should not be set during command
processing (CSE_SR[BSY]=1). The current command should be canceled and processing stopped
(CSE_SR[BSY]=0) before setting the MDIS bit.
0 = Normal mode.
1 = Low power mode.

SUS Suspend command processing. When the SUS bit is set, the CSE suspends processing of the current
command until the SUS bit is cleared. The current execution status of the command processor is
reflected by the CSE_SR[EX] flag.
0 = Enable processing of commands.
1 = Suspend command processing.

CIE Command Complete Interrupt Enable. When the CIE bit is set, an interrupt request is generated and the
CSE_IR[CIF] flag is set when command processing is completed.
0 = Command complete interrupt disabled
1 = Command complete Interrupt enabled

Offset 0x0004 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 EX IDB EDB RIN BOK BFN BIN SB BSY

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 40-3. CSE Status Register (CSE_SR)

Chapter 40 Cryptographic Services Engine (CSE)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1353

Table 40-3. CSE_SR field descriptions

Field Description

EX Execute.
0 = Command processor is idle or suspended.
1 = Command processor is executing a command.

IDB Internal Debug. The IDB bit is set by the SECURE_BOOT, INIT_CSE and DEBUG_AUTH commands
when no user keys are stored. It is cleared on reset and by the LOAD_KEY command.

0 = Internal debug functions disabled.
1 = Internal debug functions enabled.

EDB External Debug. The EDB bit is set when the CPU debug port is activated and is cleared on reset.
0 = External debugger not attached.
1 = External debugger attached.

RIN Random Number Generator Initialized. The RIN bit is set by the INIT_RNG command and is cleared on
reset and by the DEBUG_AUTH command.
0 = Random number generator not initialized.
1 = Random number generator initialized.

BOK Secure Boot OK. The BOK bit is set by the successful completion of the SECURE_BOOT command. It
is cleared by reset and by the BOOT_FAILURE command.
0 = Secure boot not completed or secure boot failure.
1 = Secure boot successful.

BFN Secure Boot Finished. The BFN bit is set by the SECURE_BOOT command when the BIN bit is set, an
error is encountered or the BOOT_MAC value does not match. It is also set by the BOOT_OK or
BOOT_FAILURE commands. It is cleared on reset.
0 = Secure boot not finished.
1 = Secure boot finished.

BIN Secure Boot Initialization. The BIN bit is set by the SECURE_BOOT command if the BOOT_MAC
memory slot is empty and is cleared on reset.
0 = Secure boot personalization not completed.
1 = Secure boot personalization completed.

SB Secure Boot. The SB bit is set by the SECURE _BOOT command if the BOOT_MAC_KEY slot is not
empty, and is cleared on reset.
0 = Secure boot not activated.
1 = Secure boot activated.

BSY Busy. The BSY bit is set when a command is issued and cleared when command processing is
completed.
0 = Command processing completed.
1 = Command processing not completed.

Chapter 40 Cryptographic Services Engine (CSE)

MPC5646C Microcontroller Reference Manual, Rev. 5

1354 Freescale Semiconductor

40.3.2.3 CSE Interrupt Register (CSE_IR)

The CSE_IR contains the command completion interrupt flag bit.

40.3.2.4 CSE Error Code Register (CSE_ECR)

The CSE_ECR contains the error code from the last completed command.

Offset 0x0008 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CIF

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

1 The reset value on POR for this bit is 0. But, when the device boots up in a mode that supports SECURE_BOOT,
the value for this bit is updated to 1 on the command completion.

Figure 40-4. CSE Interrupt Register (CSE_IR)

Table 40-4. CSE_IR field descriptions

Field Description

CIF Command Complete Interrupt Flag. The CIF flag reflects the state of the command complete interrupt
request. The CIF flag and interrupt request are cleared by writing a 1 to this bit. Writing a 0 has no effect.
0 = No interrupt request.
1 = Interrupt request due to completion of a command.

Offset 0x000C Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 EC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 40-5. CSE Error Code Register (CSE_ECR)

Chapter 40 Cryptographic Services Engine (CSE)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1355

40.3.2.5 CSE Command Register (CSE_CMD)

Commands are issued by first loading the appropriate parameter registers (CSE_Px) and then writing a
command code to the command register (CSE_CMD). Reads of the CSE_CMD register have no effect on
the operation of the CSE. See Section 40.4.2 for a description of command processing and Section 40.5
for a description of each command.

Table 40-5. CSE_ECR field descriptions

Field Description

EC Error Code from the last command completed.
0x00 = No error.
0x02 = Command sequence error.
0x03 = Key not available.
0x04 = Invalid key.
0x05 = Empty key.
0x06 = No secure boot.
0x07 = Key write protected.
0x08 = Key update error.
0x09 = Random number seed not initialized.
0x0A = Internal debug not allowed.
0x0B = Command issued while busy.
0x0C = System memory error.
0x10 = Internal memory error.
0x11 = Invalid command.
0x12 = TRNG error.
0x13 = CSE Flash block error.
0x14 = Internal command processor error.
0x15 = Length error.

Offset 0x0020 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0
CMD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 40-6. CSE Command Register (CSE_CMD)

Chapter 40 Cryptographic Services Engine (CSE)

MPC5646C Microcontroller Reference Manual, Rev. 5

1356 Freescale Semiconductor

40.3.2.6 CSE Command Parameter Registers (CSE_Px)

The five parameter registers (CSE_Px) are used to hold command parameter values. See Section 40.4.2
for a description of how to issue commands and Section 40.5 for a description of each command. The
parameter registers are read only when the CSE_SR[BSY] bit is set.

Table 40-6. CSE_CMD field descriptions

Field Description

CMD Command. See Section 40.5 for details of each command.
0x01 = ENC_ECB
0x02 = ENC_CBC
0x03 = DEC_ECB
0x04 = DEC_CBC
0x05 = GENERATE_MAC
0x06 = VERIFY_MAC
0x07 = LOAD_KEY
0x08 = LOAD_PLAIN_KEY
0x09 = EXPORT_RAM_KEY
0x0A = INIT_RNG
0x0B = EXTEND_SEED
0x0C = RND
0x0D = SECURE_BOOT
0x0E = BOOT_FAILURE
0x0F = BOOT_OK
0x10 = GET_ID
0x11 = CANCEL
0x12 = DEBUG_CHAL
0x13 = DEBUG_AUTH
0x14 = TRNG_RND
0x15 = INIT_CSE

Offset 0x0020 + 4*x Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PARM

W

Reset1

1 The reset value out of POR is 0, but when the device boots up from Flash, the registers reflect the values based on
the command execution. For details, see Table 40-23.

0 0

Figure 40-7. CSE Parameter Register (CSE_Px)

Table 40-7. CSE_Px field descriptions

Field Description

PARM Command parameter (data value or address of data value).

Chapter 40 Cryptographic Services Engine (CSE)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1357

40.4 CSE functional description
The CSE implements a comprehensive set of cryptographic functions as described in the SHE Functional
Specification including secure key storage, AES encryption, secure boot, AES CMAC authentication and
random number generation.

40.4.1 Host Interface

The host interface includes all of the CSE memory mapped registers (see Section 40.3).

The Control Register (CSE_CR) is used to set configuration options and control operation of the CSE. If
the CSE_CR[CIE] bit is set, an interrupt request is generated after the CSE finishes processing each
command. The interrupt is cleared by writing a one to the CSE_IR[CIF] bit. When the CSE_CR[SUS] bit
is set, the CSE suspends processing of the current command and does not respond to new commands
including the CANCEL command. Command processing is resumed by clearing the CSE_CR[SUS] bit.
The CSE can not respond immediately to changes in the CSE_CR[SUS] bit so the CSE_SR[EX] flag
indicates the current status of the CSE command processor. The CSE_SR[EX] flag is set when the CSE
command processor is running and is cleared when the CSE is idle or has suspended processing. The
CSE_CR[MDIS] bit puts the CSE into a low power mode. In the low power mode, registers can be
accessed but commands are not processed. Before setting the CSE_CR[MDIS] bit or entering any device
low power modes, application software should cancel any pending command and wait for the
CSE_SR[BSY] bit to be cleared.

The Status Register (CSE_SR) contains a set of nine status flags. Reading CSE_SR[24:31] is equivalent
to the SHE GET_STATUS command. The CSE_SR[BSY] bit indicates when the CSE is processing a
command. The flag is cleared when processing is completed. Polling the CSE_SR[BSY] bit is an
alternative to interrupt driven operation. The CSE_SR[SB], CSE_SR[BIN], CSE_SR[BFN] and
CSE_SR[BOK] bits reflect the secure boot status (see Section 40.4.6). The CSE_SR[RIN] bit is set when
the PRNG is initialized with a seed value generated by the TRNG. The CSE_SR[EDB] is set if an external
debugger is connected. The CSE_SR[IDB] flag is set when internal debugging has been enabled with the
DEBUG_CHAL and DEBUG_AUTH commands. The CSE_SR is a read only register and can be read at
any time.

The Error Code Register (CSE_ECR) contains the error code from the last completed command. The
CSE_ECR is set to zero if no error occurred while processing the command. The CSE_ECR is a read only
register.

40.4.2 Command Processing

CSE functions are accessed through a set of commands which are listed in Section 40.5 . Commands are
issued by first loading the appropriate parameter registers (CSE_Px) and then writing a command code to
the command register (CSE_CMD). CSE_CMD register reads have no effect on the operation of the CSE.

Command inputs and outputs that are 32 bits or less in size are stored directly in a parameter register.
Inputs and outputs that are larger than 32 bits are kept in system memory and the address of the data
(pointer) is loaded into the parameter register. All data must be aligned on a 32-bit (word) boundary. The

Chapter 40 Cryptographic Services Engine (CSE)

MPC5646C Microcontroller Reference Manual, Rev. 5

1358 Freescale Semiconductor

two least significant bits of an address are ignored. All data is stored in big-endian format with the most
significant byte of the data block stored in the lowest address. On devices with a 64-bit system bus, the
CSE will perform double word (64-bit) reads and writes to system memory if the data is aligned on a
double word boundary.

The first command issued to the CSE after reset must be either SECURE_BOOT or INIT_CSE. In some
device boot modes, system boot logic or BAM code will issue the SECURE_BOOT command which
initializes the CSE and starts the SHE secure boot protocol (see Section 40.4.6, “Secure Boot). For the
other boot modes, application software must issue the INIT_CSE command before issuing other CSE
commands. The INIT_CSE command can only be issued one time after reset and only in boot modes that
do not issue the SECURE_BOOT command. Application software cannot issue the SECURE_BOOT
command.

The CSE can only process one command at a time. Commands take a number of clock cycles to complete
so either the CSE_SR[BSY] flag, the interrupt request needs to be used to determine when the output data
is valid and the next command can be issued. Parameter registers cannot be modified while the CSE is
processing a command. Command processing can be suspended and resumed using the CSE_CR[SUS] bit
(see Section 40.4.1). If the CSE_CMD register is written while a command is being processed, processing
is aborted and an error is generated with CSE_ECR[EC] = 0x0B. The CANCEL command can be used to
abort processing of a command without generating an error. The CSE_ECR is updated and the
CSE_SR[BSY] bit is cleared upon completion of command processing (see Section 40.4.8, “Error
Handling).

40.4.3 Secure Storage

The CSE provides secure, non-volatile storage for cryptographic keys as described in the SHE Functional
Specification. The keys are stored in 15 memory slots, with one ROM slot, 13 non-volatile slots and one
RAM slot as shown in Table 40-8. The first four slots have a dedicated use, the other slots are available
for application specific keys. The BOOT_MAC slot is loaded with a MAC value used by the secure boot
process. All other slots are used for encryption or message authentication keys. The SECRET_KEY slot
is programmed with a random value during device fabrication. All CSE encryption and message
authentication commands specify a key by its Key ID.

Table 40-8. Memory Slots

Slot Name Key ID Type

SECRET_KEY 0x0 ROM

MASTER_ECU_KEY 0x1 non-volatile

BOOT_MAC_KEY 0x2 non-volatile

BOOT_MAC 0x3 non-volatile

KEY_1 0x4 non-volatile

KEY_2 0x5 non-volatile

KEY_3 0x6 non-volatile

Chapter 40 Cryptographic Services Engine (CSE)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1359

In addition to the 15 memory slots, the CSE holds a 120-bit read only unique identification number (UID)
which is programmed during device fabrication. The UID is used in the memory update procedure and is
available for application specific uses.

Each memory slot holds a 128-bit value, five security flags and a 28-bit counter. The security flags are
defined in Table 40-9. The 28-bit counter must be advanced each time a new key is loaded. The counter
value is zero for an empty memory slot.

The memory slot security flags for a specified key are checked against the associated bits in the CSE_SR
during command processing as described in the SHE specification. If the memory slot is disabled due to
security flag settings, a key not available error (EC=0x03) is returned by the command.

A key is loaded into a memory slot using the LOAD_KEY command which implements the SHE memory
update protocol. An empty key slot can only be used as the authorization key to update itself
(KeyID=AuthID). In this case, the authorization key has a value of zero.

The BOOT_PROT and DEBUG_PROT security flags are not enforced for the LOAD_KEY command
except when the RAM_KEY slot is loaded. In this case, the BOOT_PROT and DEBUG_PROT flags of
the AuthID slot are applied. Additionally, when loading the RAM_KEY slot, the counter and security flag
fields in the M2 message must be zero.

KEY_4 0x7 non-volatile

KEY_5 0x8 non-volatile

KEY_6 0x9 non-volatile

KEY_7 0xA non-volatile

KEY_8 0xB non-volatile

KEY_9 0xC non-volatile

KEY_10 0xD non-volatile

RAM_KEY 0xE RAM

Table 40-9. Memory Slot Security Flags

Flag Name Description

WRITE_PROT If set, the memory slot can not be updated.

BOOT_PROT If set, the memory slot is disabled if CSE_SR[BOK] = 0 or CSE_SR[BFN] = 0.

DEBUG_PROT If set, the memory slot is disabled if CSE_SR[EDB] = 1.

KEY_USAGE If set, the memory slot holds a MAC key, otherwise it holds an encryption key.

WILDCARD If set, the memory slot can not be updated with the wildcard UID.

Table 40-8. Memory Slots

Slot Name Key ID Type

Chapter 40 Cryptographic Services Engine (CSE)

MPC5646C Microcontroller Reference Manual, Rev. 5

1360 Freescale Semiconductor

The LOAD_PLAIN_KEY command can be used to load a key into the RAM_KEY slot. The
EXPORT_RAM_KEY command can then be used to export the key in an encrypted form compatible with
the LOAD_KEY command for storage outside the CSE. The BOOT_PROT and DEBUG_PROT security
flags of the MASTER_ECU_KEY are enforced for the EXPORT_RAM_KEY command.

Two dedicated blocks in the system Flash memory are used to implement the secure storage feature. These
blocks are not program visible and only the CSE can read, erase and program these blocks. The CSE reads
and writes to the system Flash memory via the system bus master interface during the SECURE_BOOT,
INIT_CSE, DEBUG_AUTH and LOAD_KEY commands. During execution of these commands, the
system MPU (if present) must be configured to allow the CSE access to the system Flash memory and
other bus masters must be programmed properly to avoid interfering with the CSE.

40.4.4 Encryption and Decryption

The CSE supports AES-128 encryption and decryption in ECB and CBC modes of operation. The key is
selected from one of the memory slots which must be enabled for the operation. A plaintext key can be
loaded into the RAM_KEY slot using the LOAD_PLAIN_KEY command for keys that are not stored in
a non-volatile memory slot.

40.4.5 Message Authentication

The CSE uses the AES-128 CMAC algorithm for message authentication. The key for the CMAC
operation is selected from one of the memory slots which must be enabled for the operation. A plaintext
key can be loaded into the RAM_KEY slot using the LOAD_PLAIN_KEY command for keys that are not
stored in a non-volatile memory slot. The VERIFY_MAC command supports comparison of a calculated
MAC with an input MAC value.

40.4.6 Secure Boot

The CSE implements the SHE secure boot protocol. When CSE is supported, the SSCM logic issues the
SECURE_BOOT command to the CSE which starts the secure boot process. The first step in the process
is for the CSE to download the command processor firmware and memory slot data from the CSE Flash
blocks into local memory. If the BOOT_MAC_KEY slot is empty, the CSE_SR[SB] flag is cleared and
the process is finished. Otherwise, the CSE_SR[SB] flag is set and CSE calculates the MAC over the
specified bootloader code. If the BOOT_MAC slot is empty, the calculated MAC is loaded into the
BOOT_MAC slot, the CSE_SR[BIN] and CSE_SR[BFN] flags are set and the process is finished.
Otherwise, the calculated MAC value is compared to the value in the BOOT_MAC slot. If the values
match, the CSE_SR[BOK] bit is set. Otherwise, the CSE_SR[BFN] bit is set. If the CSE_SR[BOK] flag
is set, the user boot code can issue the BOOK_OK command which sets the CSE_SR[BFN] bit. The
memory slots which have the BOOT_PROT flag set are enabled when both the CSE_SR[BFN] and
CSE_SR[BOK] flags are set.

The SECURE_BOOT command can run either before the user boot code is executed or in parallel with the
user boot code. The secure boot mode option is selected using the NVUSRO_1[CSE_RUN_MODE] user
option bit (see Section 35.2.5.28, “Nonvolatile User Options register 1(NVUSRO_1).) If the parallel mode
is used, the user boot code must suspend command processing (CSE_CR[SUS] bit set) while performing

Chapter 40 Cryptographic Services Engine (CSE)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1361

any operations (such as configuring the Flash controller) that may interfere with the CSE accessing flash
memory.

40.4.7 Random Number Generation

The CSE has both a Pseudo Random Number Generator (PRNG) and a True Random Number Generator
(TRNG). The PRNG has a 128-bit state variable and uses AES in output feedback mode to generate pseudo
random values. A key derived from the SECRET_KEY is used for the PRNG. The RND command updates
the state of the PRNG and returns the 128-bit random value. The EXTEND_SEED command can be used
to add entropy to the PRNG state. The PRNG state is initialized after each reset with the INIT_RNG
command which uses the TRNG to generate a 128-bit seed value for the PRNG. The CSE_SR[RIN] flag
is set when the PRNG is initialized.

The INIT_RNG and TRNG_RND commands use the TRNG to generate truly random values. The TRNG
hardware runs off of a slower clock derived from the system clock. The CSE_CR[DIV] field needs to be
configured for these commands such that the TRNG clock is between 500 kHz and 2 MHz. Random values
generated by the TRNG are checked with a statistical test to verify proper operation of the TRNG. If the
test fails, a TRNG error (EC=0x12) is returned. Due to the statistical nature of this test, there is a very small
probability (<10-9) that a properly operating TRNG will return an error. If an TRNG error is returned, the
command can be issued again.

40.4.8 Error Handling

When the CSE command processor encounters an error condition, it stops processing and returns an error
code as described in Table 40-10. The CSE_SR[BSY] and CSE_SR[EX] bits are cleared with interrupt
and/or DMA requests generated the same as if the command had completed successfully. In most cases,
error conditions are detected before data processing begins and no output values are written. Intermediate
or invalid output data is never written to the parameter registers or system memory. However, it is possible
for outputs to system memory to be partially written when an error occurs. The CSE does not zero out this
partially written data.

Table 40-10. Error Code Summary

Error
Code

Error Description Error Conditions

0x00 No Error 1. Command successfully executed with no errors encountered.

0x02 Command sequence error. 1. Command issued (except for CANCEL) before the SECURE_BOOT or
INIT_CSE command.
2. The DEBUG_AUTH command issued before the DEBUG_CHAL
command.
3. SECURE_BOOT or INIT_CSE command issued after an initial
SECURE_BOOT or INIT_CSE is issued.

0x03 Key not available. 1. A required key is not available due to a BOOT_PROT or DEBUG_PROT
security flag restriction (see Section 40.4.3).

Chapter 40 Cryptographic Services Engine (CSE)

MPC5646C Microcontroller Reference Manual, Rev. 5

1362 Freescale Semiconductor

0x04 Invalid key. 1. The specified key slot is not valid for the command. (see the SHE
specification).
2. The specified key slot is not available due to a KEY_USAGE security
flag restriction (see Section 40.4.3).

0x05 Empty key. 1. The specified key slot is empty.

0x06 No secure boot. 1. SECURE_BOOT issued when secure boot is disabled or the
BOOT_MAC_KEY slot is empty.
2. BOOT_FAIL or BOOT_OK issued with incorrect settings for either the
CSE_SR[SB], CSE_SR[BFN] or CSE_SR[BOK] flags.

0x07 Key write protected. 1. Attempt to load a key slot with the WRITE_PROT security flag set.
2. Attempt to enter internal debug mode (DEBUG_CHAL, DEBUG_AUTH)
with a WRITE_PROT security flag set in one or more key slots.

0x08 Key update error. The LOAD_KEY command failed due to one of the following conditions:
1. The M3 MAC value is invalid.
2. The wildcard UID is specified with the WILDCARD flag set.
3. The specified UID does not match the device UID.
4. The update counter or security flag values are not zero when loading
the RAM_KEY slot.
5. The specified update counter value is not greater than the current
counter value for the slot. (Counter value is zero for an empty slot.)

0x09 Random number seed not
initialized.

1. RND, EXTEND_SEED or DEBUG_CHAL command issued before the
INIT_RNG command.

0x0A Internal debug not allowed. 1. DEBUG_AUTH command issued with invalid MAC value.

0x0B Command issued while
busy.

1. Command issued when the CSE_SR[BSY] bit is set.

0x0C System memory error 1. A system memory error was encountered while executing the
command. (The CSE Flash block error code is generated for bus errors
encountered when accessing the CSE Flash blocks.)

0x10 Internal memory error. 1. An internal memory error was encountered while executing the
command.

0x11 Invalid command. 1. Value written to CSE_CMD register is out of range.

0x12 TRNG error. 1. One or more statistical tests run on the TRNG output failed. (see
Section 40.5.12)

0x13 CSE Flash block error. 1. Error reading, programming or erasing one of the CSE Flash blocks.
2. UID or SECRET_KEY required but not available.

0x14 Internal command
processor error.

1. An internal error condition was encountered while executing the
command.

0x15 Length error. 1. MAC length for VERIFY_MAC command is greater than 128.
2. Message length for GENERATE_MAC or VERIFY_MAC command is
greater than 0x7FFFFFFFF (4GB).

Table 40-10. Error Code Summary

Error
Code

Error Description Error Conditions

Chapter 40 Cryptographic Services Engine (CSE)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1363

40.5 CSE Commands
This section describes the set of CSE commands. Commands are issued by first loading the appropriate
parameter registers (CSE_Px) and then writing a command code to the command register (CSE_CMD) as
described in Section 40.4.2 . The first command issued to the CSE after reset must be INIT_CSE for device
boot modes that do not support secure boot. Command inputs and outputs that are 32 bits or less in size
are stored directly in a parameter register. Inputs and outputs that are larger than 32 bits are kept in system
memory and the address of the data (pointer) is loaded into the parameter register. The data direction
indication in the tables below refers to the command parameter value which may be stored in memory.

40.5.1 Encrypt ECB

The ENC_ECB command performs AES-128 encryption in ECB mode on n 128-bit blocks of data with
the parameters specified in Table 40-11.

40.5.2 Encrypt CBC

The ENC_CBC command performs AES-128 encryption on n 128-bit blocks of data in CBC mode with
the parameters specified in Table 40-12. The number of blocks parameter is a 32-bit value.

Table 40-11. ENC_ECB Command

Register Value
Data

Direction

CSE_CMD 0x01 —

CSE_P1 Key ID Input

CSE_P2 Number of blocks (n) Input

CSE_P3 First plaintext block address Input

CSE_P4 First ciphertext block address Output

Table 40-12. ENC_CBC Command

Register Value
Data

Direction

CSE_CMD 0x02 —

CSE_P1 Key ID Input

CSE_P2 IV address Input

CSE_P3 Number of blocks (n) Input

CSE_P4 First plaintext block address Input

CSE_P5 First ciphertext block address Output

Chapter 40 Cryptographic Services Engine (CSE)

MPC5646C Microcontroller Reference Manual, Rev. 5

1364 Freescale Semiconductor

40.5.3 Decrypt ECB

The DEC_ECB command performs AES-128 ECB decryption on n 128-bit blocks of data with the
parameters specified in Table 40-13.

40.5.4 Decrypt CBC

The DEC_CBC command performs AES-128 decryption in CBC mode on n 128-bit blocks of data with
the parameters specified in Table 40-14. The number of blocks parameter is a 32-bit value.

40.5.5 Generate MAC

The GENERATE_MAC command calculates the MAC of a given message with the parameters specified
in Table 40-15. The AES CMAC algorithm is used to calculate a 128-bit MAC output. The message length

Table 40-13. DEC_ECB Command

Register Value
Data

Direction

CSE_CMD 0x03 —

CSE_P1 Key ID Input

CSE_P2 Number of blocks (n) Input

CSE_P3 First ciphertext block address Input

CSE_P4 First plaintext block address Output

Table 40-14. DEC_CBC Command

Register Value
Data

Direction

CSE_CMD 0x04 —

CSE_P1 Key ID Input

CSE_P2 IV address Input

CSE_P3 Number of blocks (n) Input

CSE_P4 First ciphertext block address Input

CSE_P5 First plaintext block address Output

Chapter 40 Cryptographic Services Engine (CSE)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1365

input is a 64-bit value which specifies the length of the message in bits. A length error (EC=0x15) is
returned if the message length is greater than 0x7ffffffff (4GB).

40.5.6 Verify MAC

The VERIFY_MAC command verifies the MAC of a given message with the parameters specified in
Table 40-16. The AES CMAC algorithm is used to calculate a 128-bit MAC which is truncated according
to the MAC length parameter which specifies the number of most significant bits in the MAC to compare.
A MAC length value of zero indicates that all 128-bits are compared; a value greater than 128 returns a
length error (EC=0x15). The message length input is a 64-bit value which specifies the length of the
message in bits. A length error (EC=0x15) is returned if the message length is greater than 0x7ffffffff
(4GB). If the input MAC matches the MAC calculated over the message, the CSE_P5 register is set to zero,
otherwise it is set to one.

40.5.7 Load Key

The LOAD_KEY command updates a memory slot using parameters specified in Table 40-17 according
to the SHE memory slot update protocol (see Section 40.4.3). The 128-bit M1 message contains the UID,

Table 40-15. GENERATE_MAC Command

Register Value
Data

Direction

CSE_CMD 0x05 —

CSE_P1 Key ID Input

CSE_P2 Message length (bits) address Input

CSE_P3 Message start address Input

CSE_P4 MAC address Output

Table 40-16. VERIFY_MAC Command

Register Value
Data

Direction

CSE_CMD 0x06 —

CSE_P1 Key ID Input

CSE_P2 Message length (bits) address Input

CSE_P3 Message start address Input

CSE_P4 MAC address Input

CSE_P5 MAC length (bits) /
Verification Status

Input /
Output

Chapter 40 Cryptographic Services Engine (CSE)

MPC5646C Microcontroller Reference Manual, Rev. 5

1366 Freescale Semiconductor

Key ID and Authentication Key ID. The 256-bit M2 message contains the new security flags, counter and
the key value all encrypted using a derived key generated from the Authentication Key. The 128-bit M3
message is a MAC generated over messages M1 and M2. The 256-bit M4 message is the concatenation of
the UID, Key ID, Authorization Key ID and the encrypted counter value. The 128-bit M5 message is the
MAC calculated over message M4.

NOTE
For firmware versions up to and including 0x122:

After the CSE has executed the LOAD_KEY command the lock bits in the
Data Flash Low/Mid address space block Locking register (LML) and
secondary lock bits in the Secondary Low/mid address space block Locking
register (SLL) will be set to 1 (locked) regardless of the setting before. This
means that before application software can write to the Data Flash, the
appropriate lock and secondary lock bits must be cleared again (the lock and
secondary lock bits in the LML and SLL registers are not preserved through
a CSE LOAD_KEY operation).

For firmware versions after and including 0x123:

The lock and secondary lock bits in the LML and SLL registers are
preserved through a CSE LOAD_KEY operation.

The Firmware version is reported in register CSE_P1 after the INIT_CSE
command or in CSE_P3 after the secure boot process (SECURE_BOOT
command).

For firmware versions up to and including 0x123:

If write access is required to the Data Flash after the user keys have been
updated, an SOC reset is required if more than 30 updates have been made
since the last SOC reset, changes to BOOT_MAC and BOOT_MAC_KEY
must be counted towards this total.

For firmware versions after and including 0x124:

Table 40-17. LOAD_KEY Command

Register Value
Data

Direction

CSE_CMD 0x07 —

CSE_P1 M1 address Input

CSE_P2 M2 address Input

CSE_P3 M3 address Input

CSE_P4 M4 address Output

CSE_P5 M5 address Output

Chapter 40 Cryptographic Services Engine (CSE)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1367

If write access is required to the Data Flash after the user keys have been
updated no SOC reset is required.

40.5.8 Load Plain Key

The LOAD_PLAIN_KEY command updates the RAM key memory slot with a 128-bit plaintext key with
the parameter shown in Table 40-18.

40.5.9 Export RAM Key

The EXPORT_RAM_KEY command exports the RAM key data with the parameters in Table 40-19. Only
keys loaded with the LOAD_PLAIN_KEY command may be exported. The output messages are
compatible with the messages used for LOAD_KEY (see Section 40.5.7 for details).

40.5.10 Initialize RNG

The INIT_RNG command initializes the internal PRNG state with a seed value generated by the TRNG
and sets the CSE_SR[RIN] flag. It takes 1024 TRNG clock cycles to generate a seed value. The
CSE_CR[DIV] field must be properly configured before this command is executed (see Section 40.3.2).
There is a very small probability that this command may return a TRNG error (EC=0x12) even when the

Table 40-18. LOAD_PLAIN_KEY Command

Register Value
Data

Direction

CSE_CMD 0x08 —

CSE_P1 Key address Input

Table 40-19. EXPORT_RAM_KEY Command

Register Value
Data

Direction

CSE_CMD 0x09 —

CSE_P1 M1 address Output

CSE_P2 M2 address Output

CSE_P3 M3 address Output

CSE_P4 M4 address Output

CSE_P5 M5 address Output

Chapter 40 Cryptographic Services Engine (CSE)

MPC5646C Microcontroller Reference Manual, Rev. 5

1368 Freescale Semiconductor

TRNG is operating properly (see Section 40.4.7). The INIT_RNG command must be called after each
reset before the CMD_RND command is issued. The command has no parameters as shown Table 40-20.

40.5.11 Extend PRNG Seed

The EXTEND_SEED command extends the state of the PRNG using a 128-bit entropy input value. The
current PRNG state and the input data are compressed into a new PRNG state value. This command is
issued with the parameter shown Table 40-21.

40.5.12 Generate Random Number

The RND command generates a 128-bit random value and updates the state of the internal PRNG. The
PRNG state must be initialized after reset using the INIT_RNG command before this command can be
issued. This command is issued with the parameter shown in Table 40-22

40.5.13 Secure Boot

The SECURE_BOOT command loads the command processor firmware and memory slot data from the
CSE Flash blocks, and then it executes the SHE secure boot protocol using the parameters shown in

Table 40-20. INIT_RNG Command

Register Value
Data

Direction

CSE_CMD 0x0A —

Table 40-21. EXTEND_SEED Command

Register Value
Data

Direction

CSE_CMD 0x0B —

CSE_P1 Entropy value address Input

Table 40-22. RND Command

Register Value
Data

Direction

CSE_CMD 0x0C —

CSE_P1 Random value address Output

Chapter 40 Cryptographic Services Engine (CSE)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1369

Table 40-23 (see Section 40.4.6 for details). The bootloader size is a 32-bit value. This command is issued
during the boot processes (in some device boot modes) by the BAM or system boot logic. The CSE
firmware version is loaded into CSE_P3 register.

40.5.14 Boot Failure

The BOOT_FAILURE command sets the CSE_SR[BFN] flag and clears the CSE_SR[BOK] flag to
disable use of memory slots that have the BOOT_PROT flag set. This command is issued with no
parameters as shown in Table 40-24.

40.5.15 Boot OK

The BOOT_OK command sets the CSE_SR[BFN] flag and leaves the CSE_SR[BOK] flag set to confirm
successful completion of the secure boot processes. This enables the use of memory slots that have the
BOOT_PROT flag set if they are not disabled for some other reason. This command is issued with no
parameters as shown in Table 40-25.

Table 40-23. SECURE_BOOT Command

Register Value
Data

Direction

CSE_CMD 0x0D —

CSE_P1 Bootloader size (bytes) Input

CSE_P2 Bootloader start address Input

CSE_P3 Firmware version Output

Table 40-24. BOOT_FAILURE Command

Register Value
Data

Direction

CSE_CMD 0x0E —

Table 40-25. BOOT_OK Command

Register Value
Data

Direction

CSE_CMD 0x0F —

Chapter 40 Cryptographic Services Engine (CSE)

MPC5646C Microcontroller Reference Manual, Rev. 5

1370 Freescale Semiconductor

40.5.16 Get ID

The GET_ID command returns the UID, CSE_SR[24:31] and a 128-bit MAC calculated over the
concatenation of a 128-bit input challenge value, UID and CSE_SR[24:31]. The MASTER_ECU_KEY is
used for the MAC calculation. A value of zero is returned for the MAC if the MASTER_ECU_KEY slot
is empty. The UID output is a 128-bit value with the 8 least significant bits set to zero. This command is
issued with the parameters shown in Table 40-26.

40.5.17 Cancel

The CANCEL command aborts processing of the current command and clears the CSE_SR[BSY] flag.
This command is issued with no parameters as shown in Table 40-27.

Table 40-26. GET_ID Command

Register Value
Data

Direction

CSE_CMD 0x10 —

CSE_P1 Challenge address Input

CSE_P2 UID output address Output

CSE_P3 CSE_SR[24:31] value Output

CSE_P4 MAC address Output

Table 40-27. CANCEL Command

Register Value
Data

Direction

CSE_CMD 0x11 —

Chapter 40 Cryptographic Services Engine (CSE)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1371

40.5.18 Debug Challenge

The DEBUG_CHAL command generates a 128-bit random challenge output value that is used in
conjunction with the DEBUG_AUTH command. The PRNG state must be initialized after reset using the
INIT_RNG command before this command can be issued. This command is issued with the parameter
shown in Table 40-28.

40.5.19 Debug Authorization

The DEBUG_AUTH command erases all user keys and sets the CSE_SR[IDB] flag which enables internal
debugging if the 128-bit authorization input value is valid and no memory slots are write protected. The
authorization input is generated using the DEBUG_CHAL command output and the UID as described in
the SHE Functional Specification. If the DEBUG_CHAL command is not issued before the
DEBUG_AUTH command a command sequence error (EC=0x02) is returned. However, other commands
may be issued between the DEBUG_CHAL and DEBUG_AUTH commands. This command is issued
with the parameter shown in Table 40-29.

NOTE
For firmware versions up to and including 0x123:

If write access is required to the Data Flash after the user keys have been
erased an SOC reset is required.

For firmware versions after and including 0x124:

If write access is required to the Data Flash after the user keys have been
erased no SOC reset is required.

Table 40-28. DEBUG_CHAL Command

Register Value
Data

Direction

CSE_CMD 0x12 —

CSE_P1 Challenge address Output

Table 40-29. DEBUG_AUTH Command

Register Value
Data

Direction

CSE_CMD 0x13 —

CSE_P1 Authorization address Input

Chapter 40 Cryptographic Services Engine (CSE)

MPC5646C Microcontroller Reference Manual, Rev. 5

1372 Freescale Semiconductor

40.5.20 Generate TRNG Random Number

The TRNG_RND command generates a 128-bit random output value using the TRNG. It takes 1024
TRNG clock cycles to generate a random value. The CSE_CR[DIV] field must be properly configured
before this command is executed (see Section 40.3.2). This command takes much longer to execute than
the RND command which should normally be used to generate random values. There is a very small
probability that this command may return a TRNG error (EC=0x12) even when the TRNG is operating
properly. This command is issued with the parameter shown in Table 40-30.

40.5.21 Initialize CSE

The INIT_CSE command loads the command processor firmware and memory slot data from the CSE
Flash blocks into local memory. It does not execute the secure boot protocol. The CSE firmware version
is loaded into the CSE_P1 register as shown in Table 40-31. This command must be issued before any
other commands when using device boot modes that do not support secure boot.

Table 40-30. TRNG_RND Command

Register Value
Data

Direction

CSE_CMD 0x14 —

CSE_P1 Random value address Output

Table 40-31. INIT_CSE Command

Register Value
Data

Direction

CSE_CMD 0x15 —

CSE_P1 Firmware version Output

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1373

——— Debug ———

MPC5646C Microcontroller Reference Manual, Rev. 5

1374 Freescale Semiconductor

THE PAGE IS INTENTIONALLY LEFT BLANK

Chapter 41 JTAG Controller (JTAGC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1375

Chapter 41
JTAG Controller (JTAGC)

41.1 Introduction
Figure 41-1 is a block diagram of the JTAG Controller (JTAGC) block.

Figure 41-1. JTAG STL (IEEE 1149.1) block diagram

41.1.1 Overview

The JTAGC block provides the means to test chip functionality and connectivity while remaining
transparent to system logic when not in test mode. Testing is performed via a boundary scan technique, as
defined in the IEEE 1149.1-2001 standard. All data input to and output from the JTAGC block is
communicated in serial format.

41.1.2 Features

The JTAGC block is compliant with the IEEE 1149.1-2001 standard, and supports the following features:

• IEEE 1149.1-2001 Test Access Port (TAP) interface

— 4 pins (TDI, TMS, TCK, and TDO)

TCK

TMS

TDI

Test Access Port (TAP)

TDO

32-Bit Device Identification Register

Boundary Scan Register

.

.

Controller

1-Bit Bypass Register.

5-Bit TAP Instruction Decoder

5-Bit TAP Instruction Register

.

.

.

Chapter 41 JTAG Controller (JTAGC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1376 Freescale Semiconductor

• A 5-bit instruction register that supports several IEEE 1149.1-2001 defined instructions as well as
several public and private device-specific instructions. Refer to Table 41-2 for a list of supported
instructions.

• Sharing of the TAP with other TAP controllers via ACCESS_AUX_TAP_x instructions.

• Test data registers: a bypass register, a boundary scan register, and a device identification register.

• A TAP controller state machine that controls the operation of the data registers, instruction register
and associated circuitry.

41.1.3 Modes of Operation

The JTAGC block uses a power-on reset indication as its primary reset signals. Several IEEE 1149.1-2001
defined test modes are supported, as well as a bypass mode.

41.1.3.1 Reset

The JTAGC block is placed in reset when either power-on reset is asserted or the TMS input is held high
for enough consecutive rising edges of TCK to sequence the TAP controller state machine into the
Test-Logic-Reset state. Holding TMS high for 5 consecutive rising edges of TCK guarantees entry into the
Test-Logic-Reset state regardless of the current TAP controller state. Asserting power-on reset results in
asynchronous entry into the reset state. While in reset, the following actions occur:

• The TAP controller is forced into the Test-Logic-Reset state, thereby disabling the test logic and
allowing normal operation of the on-chip system logic to continue unhindered

• The instruction register is loaded with the IDCODE instruction

41.1.3.2 IEEE 1149.1-2001 Defined Test Modes

The JTAGC block supports several IEEE 1149.1-2001 defined test modes. A test mode is selected by
loading the appropriate instruction into the instruction register while the JTAGC is enabled. Supported test
instructions include EXTEST, HIGHZ, CLAMP, SAMPLE and SAMPLE/PRELOAD. Each instruction
defines the set of data register(s) that may operate and interact with the on-chip system logic while the
instruction is current. Only one test data register path is enabled to shift data between TDI and TDO for
each instruction.

The boundary scan register is enabled for serial access between TDI and TDO when the EXTEST,
SAMPLE or SAMPLE/PRELOAD instructions are active. The single-bit bypass register shift stage is
enabled for serial access between TDI and TDO when the HIGHZ, CLAMP or reserved instructions are
active. The functionality of each test mode is explained in more detail in Section 41.4.4, JTAGC Block
Instructions.

41.1.3.3 Bypass Mode

When no test operation is required, the BYPASS instruction can be loaded to place the JTAGC block into
bypass mode. While in bypass mode, the single-bit bypass shift register is used to provide a
minimum-length serial path to shift data between TDI and TDO.

Chapter 41 JTAG Controller (JTAGC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1377

41.2 External signal description

41.2.1 Overview

The JTAGC consists of 5 signals that connect to off chip development tools and allow access to test support
functions. The JTAGC signals are outlined in Table 41-1.

41.2.2 Detailed signal descriptions

This section describes each of the signals listed in Table 41-1 in more detail.

41.2.2.1 TCK - Test Clock Input

Test Clock Input (TCK) is an input pin used to synchronize the test logic and control register access
through the TAP.

41.2.2.2 TDI - Test Data Input

Test Data Input (TDI) is an input pin that receives serial test instructions and data. TDI is sampled on the
rising edge of TCK.

41.2.2.3 TDO - Test Data Output

Test Data Output (TDO) is an output pin that transmits serial output for test instructions and data. TDO is
three-stateable and is actively driven only in the Shift-IR and Shift-DR states of the TAP controller state
machine, which is described in Section 41.4.3, TAP Controller State Machine. The TDO output of this
block is clocked on the falling edge of TCK and sampled by the development tool on the rising edge of
TCK.

41.2.2.4 TMS - Test Mode Select

Test Mode Select (TMS) is an input pin used to sequence the IEEE 1149.1-2001 test control state machine.
TMS is sampled on the rising edge of TCK.

Table 41-1. JTAG Signal Properties

Name I/O Function Reset State Pull1

1 The pull is not implemented in this block. Pullup/pulldown devices are implemented in the pads.

TCK Input Test Clock — Down

TDI Input Test Data In — Up

TDO Output Test Data Out High Z2

2 TDO output buffer enable is negated when the JTAGC is not in the Shift-IR or Shift-DR states. A
weak pull may be implemented at the TDO pad for use when JTAGC is inactive.

-

TMS Input Test Mode Select — Up

Chapter 41 JTAG Controller (JTAGC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1378 Freescale Semiconductor

41.3 Register definition
This section provides a detailed description of the JTAGC block registers accessible through the TAP
interface, including data registers and the instruction register. Individual bit-level descriptions and reset
states of each register are included. These registers are not memory-mapped and can only be accessed
through the TAP.

41.3.1 Register Descriptions

The JTAGC block registers are described in this section.

41.3.1.1 Instruction Register

The JTAGC block uses a 5-bit instruction register as shown in Table 41-2. The instruction register allows
instructions to be loaded into the block to select the test to be performed or the test data register to be
accessed or both. Instructions are shifted in through TDI while the TAP controller is in the Shift-IR state,
and latched on the falling edge of TCK in the Update-IR state. The latched instruction value can only be
changed in the Update-IR and Test-Logic-Reset TAP controller states. Synchronous entry into the
Test-Logic-Reset state results in the IDCODE instruction being loaded on the falling edge of TCK.
Asynchronous entry into the Test-Logic-Reset state results in asynchronous loading of the IDCODE
instruction. During the Capture-IR TAP controller state, the instruction shift register is loaded with the
value 0b10101, making this value the register’s read value when the TAP controller is sequenced into the
Shift-IR state.

Figure 41-2. 5-Bit Instruction Register

41.3.1.2 Bypass Register

The bypass register is a single-bit shift register path selected for serial data transfer between TDI and TDO
when the BYPASS, CLAMP, HIGHZ or reserve instructions are active. After entry into the Capture-DR
state, the single-bit shift register is set to a logic 0. Therefore, the first bit shifted out after selecting the
bypass register is always a logic 0.

41.3.1.3 Device Identification Register

The device identification register, shown in Figure 41-3, allows the revision number, part number,
manufacturer, and design center responsible for the design of the part to be determined through the TAP.
The device identification register is selected for serial data transfer between TDI and TDO when the
IDCODE instruction is active. Entry into the Capture-DR state while the device identification register is
selected loads the IDCODE into the shift register to be shifted out on TDO in the Shift-DR state. No action
occurs in the Update-DR state. The part revision number (PRN) and part identification number (PIN) fields

4 3 2 1 0
R 1 0 1 0 1
W Instruction Code

Reset: 0 0 0 0 1

Chapter 41 JTAG Controller (JTAGC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1379

are system plugs, and the manufacturer identity code (MIC) is a constant value assigned to the
manufacturer by the JEDEC.

The shift register LSB is forced to logic 1 on the rising edge of TCK following entry into the Capture-DR
state. Therefore, the first bit to be shifted out after selecting the IDCODE register is always a logic 1. The
remaining 31 bits are forced to the value of the device identification register on the rising edge of TCK
following entry into the Capture-DR state.

Figure 41-3. Device Identification Register

PRN — Part Revision Number

Bits [31:28] contain the revision number of the part.

DC — Design Center

Bits [27:22] indicate the design center.

PIN — Part Identification Number

Bits [21:12] contain the part number of the device.

MIC — Manufacturer Identity Code

Bits [11:1] contain the reduced Joint Electron Device Engineering Council (JEDEC) ID.

Bit [0] — IDCODE Register ID

Bit [0] identifies this register as the device identification register and not the bypass register

41.3.1.4 CENSOR_CTRL Register

The CENSOR_CTRL register is a 64-bit shift register path from TDI to TDO selected when the
ENABLE_CENSOR_CTRL instruction is active. The default reset value of the CENSOR_CTRL register
is 64’b0. The CENSOR_CTRL register transfers its value to a parallel hold register on the rising edge of
TCK when the TAP controller state machine is in the Update-DR state. Once the
ENABLE_CENSOR_CTRL instruction is executed, the register value will remain valid until a JTAG reset
occurs.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R Part Revision Number Design Center Part Identification Number
W

RESET: PRN DC PIN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R Part Identification Number Manufacturer Identity Code 1
W

RESET: PIN (contd.) 0 0 0 0 0 0 0 1 1 1 0 1

= Reserved

Chapter 41 JTAG Controller (JTAGC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1380 Freescale Semiconductor

Figure 41-4. CENSOR_CTRL Register

CENSOR_CTRL - Censorship Control

The CENSOR_CTRL bits are used to control chiptop censorship functions.

41.3.1.5 Boundary Scan Register

The boundary scan register is connected between TDI and TDO when the EXTEST, SAMPLE or
SAMPLE/PRELOAD instructions are active. It is used to capture input pin data, force fixed values on
output pins, and select a logic value and direction for bidirectional pins. Each bit of the boundary scan
register represents a separate boundary scan register cell, as described in the IEEE 1149.1-2001 standard
and discussed in Section 41.4.5, Boundary Scan. The size of the boundary scan register and bit ordering is
device-dependent and can be found in the device BSDL file.

41.4 Functional Description

41.4.1 JTAGC Reset Configuration

While in reset, the TAP controller is forced into the Test-Logic-Reset state, thus disabling the test logic
and allowing normal operation of the on-chip system logic. In addition, the instruction register is loaded
with the IDCODE instruction.

41.4.2 IEEE 1149.1-2001 (JTAG) Test Access Port

The JTAGC block uses the IEEE 1149.1-2001 TAP for accessing registers. This port can be shared with
other TAP controllers on the MCU. For more detail on TAP sharing via JTAGC instructions refer to
Section 41.4.4.8, ACCESS_AUX_TAP_x Instructions.

Data is shifted between TDI and TDO though the selected register starting with the least significant bit, as
illustrated in Figure 41-5. This applies for the instruction register, test data registers, and the bypass
register.

Figure 41-5. Shifting Data Through a Register

*1

1 The size of CENSOR_CTRL is 64 bits.

... 2 1 0
R

CENSOR_CTRL
W

Reset: *2

2 The reset value of CENSOR_CTRL is 64’b0.

* * * *

Selected Register

MSB LSB

TDI TDO

Chapter 41 JTAG Controller (JTAGC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1381

41.4.3 TAP Controller State Machine

The TAP controller is a synchronous state machine that interprets the sequence of logical values on the
TMS pin. Figure 41-6 shows the machine’s states. The value shown next to each state is the value of the
TMS signal sampled on the rising edge of the TCK signal. As Figure 41-6 shows, holding TMS at logic 1
while clocking TCK through a sufficient number of rising edges also causes the state machine to enter the
Test-Logic-Reset state.

Chapter 41 JTAG Controller (JTAGC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1382 Freescale Semiconductor

Figure 41-6. IEEE 1149.1-2001 TAP Controller Finite State Machine

TEST LOGIC
RESET

RUN-TEST/IDLE SELECT-DR-SCAN SELECT-IR-SCAN

CAPTURE-DR CAPTURE-IR

SHIFT-DR SHIFT-IR

EXIT1-DR EXIT1-IR

PAUSE-DR PAUSE-IR

EXIT2-DR EXIT2-IR

UPDATE-DR UPDATE-IR

1

0

111

0 0

0 0

1 1

0 0

1 1

1 1

0 0

0 0

1 1

1 1

0 0

1 1
0 0

0

NOTE: The value shown adjacent to each state transition in this figure represents the value of TMS at the time
of a rising edge of TCK.

Chapter 41 JTAG Controller (JTAGC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1383

41.4.3.1 Selecting an IEEE 1149.1-2001 Register

Access to the JTAGC data registers is achieved by loading the instruction register with any of the JTAGC
block instructions while the JTAGC is enabled. Instructions are shifted in via the Select-IR-Scan path and
loaded in the Update-IR state. At this point, all data register access is performed via the Select-DR-Scan
path.

The Select-DR-Scan path is used to read or write the register data by shifting in the data (LSB first) during
the Shift-DR state. When reading a register, the register value is loaded into the IEEE 1149.1-2001 shifter
during the Capture-DR state. When writing a register, the value is loaded from the IEEE 1149.1-2001
shifter to the register during the Update-DR state. When reading a register, there is no requirement to shift
out the entire register contents. Shifting may be terminated once the required number of bits have been
acquired.

41.4.4 JTAGC Block Instructions

The JTAGC block implements the IEEE 1149.1-2001 defined instructions listed in Table 41-2. This
section gives an overview of each instruction; refer to the IEEE 1149.1-2001 standard for more details. All
undefined opcodes are reserved.

Table 41-2. JTAG Instructions

Instruction Code[4:0] Instruction Summary

IDCODE 00001 Selects device identification register for shift

SAMPLE/PRELOAD 00010 Selects boundary scan register for shifting, sampling, and
preloading without disturbing functional operation

SAMPLE 00011 Selects boundary scan register for shifting and sampling
without disturbing functional operation

EXTEST 00100 Selects boundary scan register while applying preloaded
values to output pins and asserting functional reset

ENABLE_CENSOR_CTRL 00111 Selects CENSOR_CTRL register

HIGHZ 01001 Selects bypass register while three-stating all output pins
and asserting functional reset

CLAMP 01100 Selects bypass register while applying preloaded values
to output pins and asserting functional reset

ACCESS_AUX_TAP_x1

1 The list of implemented tap codes are as follows:

ACCESS_AUX_TAP_TCU = 11011
ACCESS_AUX_TAP_ZO_NEXUS = 10010

ACCESS_AUX_TAP_Z4_NEXUS = 10001

ACCESS_AUX_TAP_NPC = 10000

ACCESS_AUX_TAP_Z4_Z0_CASCADE_NEXUS = 10011

10000-11110 Grants one of the auxiliary TAP controllers ownership of
the TAP as shown in the cells below. The number of
auxiliary TAP controllers sharing the port is SHARE_CNT

BYPASS 11111 Selects bypass register for data operations

Factory debug reserved 00101, 00110,
01010, 00111

Intended for factory debug only

Reserved2

2 The manufacturer reserves the right to change the decoding of reserved instruction codes in the future

All other opcodes Decoded to select bypass register

Chapter 41 JTAG Controller (JTAGC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1384 Freescale Semiconductor

41.4.4.1 IDCODE Instruction

IDCODE selects the 32-bit device identification register as the shift path between TDI and TDO. This
instruction allows interrogation of the MCU to determine its version number and other part identification
data. IDCODE is the instruction placed into the instruction register when the JTAGC block is reset.

41.4.4.2 SAMPLE/PRELOAD Instruction

The SAMPLE/PRELOAD instruction has two functions:

• First, the SAMPLE portion of the instruction obtains a sample of the system data and control
signals present at the MCU input pins and just before the boundary scan register cells at the output
pins. This sampling occurs on the rising edge of TCK in the Capture-DR state when the
SAMPLE/PRELOAD instruction is active. The sampled data is viewed by shifting it through the
boundary scan register to the TDO output during the Shift-DR state. Both the data capture and the
shift operation are transparent to system operation.

• Secondly, the PRELOAD portion of the instruction initializes the boundary scan register cells
before selecting the EXTEST or CLAMP instructions to perform boundary scan tests. This is
achieved by shifting in initialization data to the boundary scan register during the Shift-DR state.
The initialization data is transferred to the parallel outputs of the boundary scan register cells on
the falling edge of TCK in the Update-DR state. The data is applied to the external output pins by
the EXTEST or CLAMP instruction. System operation is not affected.

41.4.4.3 SAMPLE Instruction

The SAMPLE instruction obtains a sample of the system data and control signals present at the MCU input
pins and just before the boundary scan register cells at the output pins. This sampling occurs on the rising
edge of TCK in the Capture-DR state when the SAMPLE instruction is active. The sampled data is viewed
by shifting it through the boundary scan register to the TDO output during the Shift-DR state. There is no
defined action in the Update-DR state. Both the data capture and the shift operation are transparent to
system operation.

41.4.4.4 EXTEST — External Test Instruction

EXTEST selects the boundary scan register as the shift path between TDI and TDO. It allows testing of
off-chip circuitry and board-level interconnections by driving preloaded data contained in the boundary
scan register onto the system output pins. Typically, the preloaded data is loaded into the boundary scan
register using the SAMPLE/PRELOAD instruction before the selection of EXTEST. EXTEST asserts the
internal system reset for the MCU to force a predictable internal state while performing external boundary
scan operations.

41.4.4.5 ENABLE_CENSOR_CTRL Instruction

The ENABLE_CENSOR_CTRL instruction selects the CENSOR_CTRL register for connection as the
shift path between TDI and TDO.

Chapter 41 JTAG Controller (JTAGC)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1385

41.4.4.6 HIGHZ Instruction

HIGHZ selects the bypass register as the shift path between TDI and TDO. While HIGHZ is active all
output drivers are placed in an inactive drive state (e.g., high impedance). HIGHZ also asserts the internal
system reset for the MCU to force a predictable internal state.

41.4.4.7 CLAMP Instruction

CLAMP allows the state of signals driven from MCU pins to be determined from the boundary scan
register while the bypass register is selected as the serial path between TDI and TDO. CLAMP enhances
test efficiency by reducing the overall shift path to a single bit (the bypass register) while conducting an
EXTEST type of instruction through the boundary scan register. CLAMP also asserts the internal system
reset for the MCU to force a predictable internal state.

41.4.4.8 ACCESS_AUX_TAP_x Instructions

The JTAGC is configurable to allow up to fifteen other TAP controllers on the device to share the port with
it. This is done by providing ACCESS_AUX_TAP_x instructions for each of these TAP controllers. When
this instruction is loaded, control of the JTAG pins are transferred to the selected TAP controller. Any data
input via TDI and TMS is passed to the selected TAP controller, and any TDO output from the selected
TAP controller is sent back to the JTAGC to be output on the pins. The JTAGC regains control of the JTAG
port during the UPDATE-DR state if the PAUSE-DR state was entered. Auxiliary TAP controllers are held
in RUN-TEST/IDLE while they are inactive. Instructions not used to access an auxiliary TAP controller
on a device are treated like the BYPASS instruction.

41.4.4.9 BYPASS Instruction

BYPASS selects the bypass register, creating a single-bit shift register path between TDI and TDO.
BYPASS enhances test efficiency by reducing the overall shift path when no test operation of the MCU is
required. This allows more rapid movement of test data to and from other components on a board that are
required to perform test functions. While the BYPASS instruction is active the system logic operates
normally.

41.4.5 Boundary Scan

The boundary scan technique allows signals at component boundaries to be controlled and observed
through the shift-register stage associated with each pad. Each stage is part of a larger boundary scan
register cell, and cells for each pad are interconnected serially to form a shift-register chain around the
border of the design. The boundary scan register consists of this shift-register chain, and is connected
between TDI and TDO when the EXTEST, SAMPLE, or SAMPLE/PRELOAD instructions are loaded.
The shift-register chain contains a serial input and serial output, as well as clock and control signals.

41.5 Initialization/Application Information
The test logic is a static logic design, and TCK can be stopped in either a high or low state without loss of
data. However, the system clock is not synchronized to TCK internally. Any mixed operation using both
the test logic and the system functional logic requires external synchronization.

Chapter 41 JTAG Controller (JTAGC)

MPC5646C Microcontroller Reference Manual, Rev. 5

1386 Freescale Semiconductor

To initialize the JTAGC block and enable access to registers, the following sequence is required:

1. Place the JTAGC in reset through TAP controller state machine transitions controlled by TMS

2. Load the appropriate instruction for the test or action to be performed

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1387

Chapter 42
Nexus Development Interface (NDI)

42.1 Introduction
MPC5646C contains multiple Nexus clients (Nexus3+) that communicate over an auxiliary port interface
compliant to IEEE-ISTO 5001-2010 standard and a JTAG port compliant with IEEE 1149.1 standard.

Nexus3+ module provides real-time development capabilities for e200z0h and e200z4d core processor in
compliance with Class 3 of the IEEE-ISTO 5001-2010 standard, with additional Class 4 features available.

The communication with NDI is handled via the auxiliary port and the JTAG port.

• The auxiliary port comprises 16 output pins and one input pin. The output pins include one
message clock out (MCKO) pin, 12 message data out (MDO) pins, one message start/end out
(MSEO) pins, and one event out (EVTO) pin. Event in (EVTI) is the only input pin for the auxiliary
port.

• The JTAG port consists of three inputs and one output. These pins include test data input (TDI),
test data output (TDO), test mode select (TMS), and test clock input (TCK). TDI, TDO, TMS, and
TCK are compliant with the IEEE 1149.1-2001 standard and are shared with the NDI through the
test access port (TAP) interface. Ownership of the TAP is achieved by loading the appropriate
enable instruction for the desired Nexus client in the JTAG controller (JTAGC). See Section 42.4,
“Memory Map and Registers,” for the JTAGC opcodes to access the different Nexus clients.

NOTE
Nexus3+ capabilities are only supported in the 256 BGA package.

42.2 Block diagram
Figure 42-1 shows a functional block diagram of the NDI. Figure 42-2 shows an implementation block
diagram of the NDI, which shows how the individual Nexus blocks are combined to form the NDI.

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

1388 Freescale Semiconductor

Figure 42-1. NDI functional block diagram

Power-on

TCK

EVTO
MSEO
MDO[11:0]

reset

Arbiter

Divided system
clock

e200z4d
trace

information

e200z0h
trace

information

MCKO

Input
TAP

controller

Control registers
to trace blocks

TDO

TDI
TMS

EVTI
Reset
control

Message
queue

Data trace

Ownership trace

Watchpoint trace

e200z4d
snoop

Message
formatter

Program trace

Message
queue

Data trace

Ownership trace

Watchpoint trace

e200z0h
snoop

Message
formatter

Program trace

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1389

Figure 42-2. NDI Implementation block diagram

42.2.1 NDI Features

The NDI module of the MPC5646C is compliant with the IEEE-ISTO 5001-2010 standard. The following
features are implemented:

• 21-bit full duplex pin interface for high throughput, including existing four JTAG pins

TDI TCK TDO TMS

JTAG Port Controller (JTAGC)

Program, Data,
Ownership,
Watchpoint,

Trace

Nexus3+

EVTI MSEO MCKO MDO[11:0]

Nexus Port Controller

EVTO

Read/Write
Access

R/W register,
R/W data,
Halt, Step,
Continue

MMU

e200z4d

Program, Data
Ownership,
Watchpoint,

Trace

Nexus3+

Read/Write
Access

R/W register,
R/W data,
Halt, Step,
Continue

e200z0h

Cache

BufferBuffer

Reset Control

Auxiliary Port

CROSSBAR SWITCH

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

1390 Freescale Semiconductor

— Two modes are supported: full port mode (FPM) and reduced port mode (RPM). FPM
comprises 12 MDO pins. RPM comprises eight MDO pins, and can be used to increase the
number of GPIOs. Care must be taken as bandwidth will be limited.

— Auxiliary output port

– One MCKO (Message clock out) pin

– 12 MDO (Message data out) pins

– One MSEO (Message start/end out) pins

– One EVTO (Event out) pin

— Auxiliary input port uses one EVTI (Event in) pin

— JTAG port uses four pins (TDI, TDO, TMS, and TCK)

• The NPC block performs the following functions:

— Controls arbitration for ownership of the Nexus Auxiliary Output Port between e200z0h and
e200z4d Nexus

— Nexus Device Identification Register and Messaging

— Generates MCKO enable and frequency division control signals

— Controls sharing of EVTO between e200z0h and e200z4d cores.

— Generates an MCKO clock gating control signal to enable gating of MCKO when the auxiliary
output port is idle.

— Control of the device-wide debug mode

— Generates asynchronous reset signal for Nexus blocks

• Host processor (e200z4d) and secondary processor (e200z0h) development support features:

— IEEE-ISTO 5001-2010 standard class 3+ compliant.

– Program trace via Branch Trace Messaging (BTM), with the option of using Branch history
messaging to enhance message throughput.

– Data trace via data write messaging (DWM) and data read messaging (DRM). This allows
the development tool to trace reads and/or writes to selected internal memory resources.

– Ownership trace via ownership trace messaging (OTM). OTM facilitates ownership trace
by providing visibility of which process ID or operating system task is activated. An
ownership trace message is transmitted when a new process/task is activated, allowing
development tools to trace ownership flow.

– Run-time access to the on-chip memory map via the JTAG port.

– Watchpoint messaging (WPM) via the auxiliary port. This allows a watchpoint to be set,
which then sends a watchpoint message each time the watchpoint is hit. Unlike watchpoint
triggering, WPM does not stop the core or start trace.

– Registers for Program Trace, Data Trace, Ownership Trace and Watchpoint Trigger.

— Additional class 4 features

– Watchpoint trigger enable of program and/or data trace messaging. This is an extension of
WPM to allow a watchpoint to stop or start program or data trace.

– Processor overrun control

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1391

— All features controllable and configurable via JTAG port.

• Cross triggering — The capability for an EVTO (event out) signal from either the e200z4d or
e200z0h Nexus3+ to generate a debug request to the other core, thus allowing both cores to enter
debug mode within a short period of each other.

NOTE
Because MPC5646C implements multiple Nexus blocks, the configuration
of the Message Data Out pins is controlled by the NPC.

42.2.2 Modes of Operation

The NDI block is in reset when the TAP controller state machine is in the TEST-LOGIC-RESET state. The
TEST-LOGIC-RESET state is entered on the assertion of the power-on reset signal, or through state
machine transitions controlled by TMS. Ownership of the TAP is achieved by loading the appropriate
enable instruction for the desired Nexus client in the JTAG controller (JTAGC) block.

The NPC transitions out of the reset state immediately following negation of power-on reset.

42.2.2.1 Nexus Reset Mode

In Nexus reset mode, the following actions occur:

• Register values default back to their reset values.

• The message queues are marked as empty.

• The auxiliary output port pins are negated if the NDI controls the pads.

• The TDO output buffer is disabled if the NDI has control of the TAP.

• The TDI, TMS, and TCK inputs are ignored.

• The NDI block indicates to the MCU that it is not using the auxiliary output port. This indication
can be used to three-state the output pins or use them for another function.

42.2.2.2 Full-Port Mode

In the full port mode (FPM), 12 MDO pins (MDO[0..11]) pins are used to transmit Nexus messages. All
trace features are available by writing to the configuration registers via the JTAG port. FPM is entered by
asserting the MCKO_EN and FPM bits in the Port Configuration Register (PCR).

42.2.2.3 Reduced-Port Mode

In the reduced-port mode (RPM), the number of MDO pins is reduced from 12 to 8 (MDO[0..7]). All trace
features are available by writing to the configuration registers via jtag. However, the FIFO overflow errors
are more likely to occur in this mode, especially if the data trace is enabled. RPM is entered by asserting
the MCKO_EN bit and negating the FPM bit in the Port Configuration Register (PCR).

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

1392 Freescale Semiconductor

42.2.2.4 Disabled-Port Mode

In the disabled-port mode, auxiliary output pin port enable signals are negated, thereby disabling the
message transmission. Any debug feature that generates messages cannot be used. The primary features
available are class 1 features and read/write access to the registers. Class 1 features include the ability to
trigger a breakpoint event indication through EVTO.

42.2.2.5 Halt Mode

Halt mode logic is implemented in the Nexus port controller (NPC). When a request is made to enter halt
mode, the NDI block completes monitoring of any pending bus transaction, transmits all messages already
queued, and acknowledges the halt request. After the acknowledgment, the system clock input are shut off
by the clock driver on the device. While the clocks are shut off, the development tool cannot access the
NDI.

42.2.2.6 Multi mode Nexus Tap

In this mode, Nexus Debug interface of Z4 and Z0 gets connected in a daisy-chain fashion. This will allow
both the core to be stopped simultaneously.

Figure 42-3. Multi mode Nexus Tap

42.3 External Signal Description
The auxiliary and JTAG pin interfaces provide for the transmission of messages from Nexus modules to
the external development tools and for access to Nexus client registers. The auxiliary/JTAG pin definitions
are outlined in Table 42-1.

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1393

See Chapter 4, Signal Description, for detailed signal descriptions.

42.4 Memory Map and Registers
The NDI block contains no memory mapped registers. Nexus registers are accessed by the development
tool via the JTAG port using a client select and a register index. The client select is controlled by loading
the correct access instruction into the JTAG controller. After the desired client TAP is selected, OnCE
registers for that client are accessible by loading the appropriate value in the RS[0:6] field of the OnCE
command register (OCMD). Nexus is enabled, and the associated Nexus registers become accessible, by
loading the NEXUS_ENABLE instruction into the RS[0:6] field of the OCMD. When Nexus register
access is enabled, the desired Nexus register is accessible using the index shown in Table 42-2.

Table 42-1. Signal Properties

Name Port Function

EVTO Auxiliary Event Out pin

EVTI Auxiliary Event In pin

MCKO Auxiliary Message Clock Out pin (from NPC)

MDO[11:0] Auxiliary Message Data Out pins

MSEO Auxiliary Message Start/End Out pins

TCK JTAG Test Clock Input

TDI JTAG Test Data Input

TDO JTAG Test Data Output

TMS JTAG Test Mode Select Input

Table 42-2. Nexus Client JTAG Instructions

Instruction Description Opcode

NPC JTAG Instruction Opcodes

NEXUS_ENABLE Opcode for NPC Nexus Enable instruction (4-bits) 0x0

BYPASS Opcode for the NPC BYPASS instruction (4-bits) 0xF

e200z4d OnCE JTAG Instruction Opcodes

NEXUS3_ACCESS Opcode for e200z4d OnCE Nexus Enable instruction (10-bits) 0x7C

BYPASS Opcode for the e200z4OnCE BYPASS instruction (10-bits) 0x7F

NEXUS_ACCESS Opcode for e200z0h OnCE Nexus Enable instruction (10-bits) 0x7C

BYPASS Opcode for the e200z0h OnCE BYPASS instruction (10-bits) 0x7F

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

1394 Freescale Semiconductor

Table 42-3. NDI Registers

Nexus Register
Nexus
Access
Opcode

Read/
Write

Read
Address

Write
Address

NPC Registers

Device ID (DID) R 0x00 0x05

Port Configuration Register (PCR) R/W 0x7F 0x07F

e200z4d Control/Status Registers

Development Control 1 (DC1) 0x2 R/W 0x04 0x05

Development Control 2 (DC2) 0x3 R/W 0x06 0x07

Development Control 3 (DC3) 0x4 R/W 0x08 0x09

Development Control 4 (DC4) 0x5 R/W 0x0A 0x0B

Read/Write Access Control/Status (RWCS) 0x7 R/W 0x0E 0x0F

Read/Write Access Address (RWA) 0x9 R/W 0x12 0x13

Read/Write Access Data (RWD) 0xA R/W 0x14 0x15

Watchpoint Trigger (WT) 0xB R/W 0x16 0x17

Reserved 0xC R/W 0x18 0x19

Data Trace Control (DTC) 0xD R/W 0x1A 0x1B

Data Trace Start Address1 (DTSA1) 0xE R/W 0x1C 0x1D

Data Trace Start Address2 (DTSA2) 0xF R/W 0x1E 0x1F

Data Trace Start Address3 (DTSA3) 0x10 R/W 0x20 0x21

Data Trace Start Address4(DTSA4) 0x11 R/W 0x22 0x23

Data Trace End Address1 (DTEA1) 0x12 R/W 0x24 0x25

Data Trace End Address2 (DTEA2) 0x13 R/W 0x26 0x27

Data Trace End Address3 (DTEA3) 0x14 R/W 0x28 0x29

Data Trace End Address4 (DTEA4) 0x15 R/W 0x2A 0x2B

Development Status (DS) 0x30 R 0x60 -

Reserved 0x31 R/W 0x62 0x63

Overrun Control (OVCR) 0x32 R/W 0x64 0x65

Watchpoint Mask (WMSK) 0x33 R/W 0x66 0x67

Reserved 0x34 - 0x68 0x69

Program Trace Start Trigger Control (PTSTC) 0x35 R/W 0x6A 0x6B

Program Trace End Trigger Control (PTETC) 0x36 R/W 0x6C 0x6D

Data Trace Start Trigger Control (DTSTC) 0x37 R/W 0x6E 0x6F

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1395

Data Trace End Trigger Control (DTETC) 0x38 R/W 0x70 0x71

Reserved 0x39 -> 0x3F - 0x72->0x7E 0x73->7F

e200z0h Control/Status Registers

Development Control 1 (DC1) 0x2 R/W 0x04 0x05

Development Control 2 (DC2) 0x3 R/W 0x06 0x07

Development Status (DS) 0x4 R 0x08 —

Development Control 3 (DC3) 0x4 R/W 0x08 0x09

Development Control 4 (DC4) 0x5 R/W 0x0A 0x0B

Read/Write Access Control/Status (RWCS) 0x7 R/W 0x0E 0x0F

Read/Write Access Address (RWA) 0x9 R/W 0x12 0x13

Read/Write Access Data (RWD) 0xA R/W 0x14 0x15

Watchpoint Trigger (WT) 0xB R/W 0x16 0x17

Reserved 0xC R/W 0x18 0x19

Data Trace Control (DTC) 0xD R/W 0x1A 0x1B

Data Trace Start Address1 (DTSA1) 0xE R/W 0x1C 0x1D

Data Trace Start Address2 (DTSA2) 0xF R/W 0x1E 0x1F

Reserved 0x10-> 0x11 - 0x20->0x22 0x21->23

Data Trace End Address1 (DTEA1) 0x12 R/W 0x24 0x25

Data Trace End Address2 (DTEA2) 0x13 R/W 0x26 0x27

Reserved 0x14 -> 0x2F - 0x28->0x5E 0x29->5F

Development Status (DS) 0x30 R 0x60 -

Reserved 0x31 R/W 0x62 0x63

Overrun Control (OVCR) 0x32 R/W 0x64 0x65

Watchpoint Mask (WMSK) 0x33 R/W 0x66 0x67

Reserved 0x34 - 0x68 0x69

Program Trace Start Trigger Control (PTSTC) 0x35 R/W 0x6A 0x6B

Program Trace End Trigger Control (PTETC) 0x36 R/W 0x6C 0x6D

Data Trace Start Trigger Control (DTSTC) 0x37 R/W 0x6E 0x6F

Data Trace End Trigger Control (DTETC) 0x38 R/W 0x70 0x71

Reserved 0x39 -> 0x3F - 0x72->0x7E 0x73->7F

Table 42-3. NDI Registers

Nexus Register
Nexus
Access
Opcode

Read/
Write

Read
Address

Write
Address

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

1396 Freescale Semiconductor

42.4.1 NDI Functional Description

The NDI block is implemented by integrating the following blocks:

• Nexus Port Controller Block

• Nexus e200z4d Development Interface (OnCE and Nexus3+ subblocks)

• Nexus e200z0h Development Interface (OnCE and Nexus3+ subblocks)

• NPC_HNDSHK module

NOTE
The TAP controller logic, reset logic, and some miscellaneous logic are
duplicated in all these blocks.

42.4.1.1 Enabling Nexus Clients for TAP Access

Once the NDI is out of the reset state, the loading of a specific instruction in the JTAG controller (JTAGC)
block is required to grant the NDI ownership of the TAP. Each Nexus client has its own JTAGC instruction
opcode for ownership of the TAP, granting that client the means to read/write its registers. Once the JTAGC
opcode for a client has been loaded, the client is enabled by loading its NEXUS-ENABLE instruction.
Opcodes for all other instructions supported by Nexus clients can be found in the relevant sections of this
chapter.

42.4.1.2 TAP Sharing

Each of the individual Nexus blocks on the MCU implements a TAP controller for accessing its registers.
The JTAGC controls the ownership of the TAP so that the interface to all of these individual TAP
controllers appears to be a single port from outside the device. Once a Nexus client has been granted
ownership of the TAP, any data input via TDI and TMS is passed to the selected TAP controller, and any
TDO output from the selected TAP controller is sent back to the JTAGC to be output on the pins. The
JTAGC regains control of the JTAG port during the UPDATE-DR state if the PAUSE-DR state was
entered. Auxiliary TAP controllers are held in RUN-TEST/IDLE while they are inactive.

42.4.1.3 Configuring the NDI for Nexus Messaging

The NDI is placed in disabled mode upon exit of power-on reset. If message transmission via the auxiliary
port is desired, a write to the port configuration register (PCR) located in the NPC is then required to enable
the NDI and select the mode of operation. Asserting MCKO_EN in the PCR places the NDI in enabled
mode and enables MCKO. The frequency of MCKO is selected by writing the MCKO_DIV field.
Asserting the FPM bit selects full-port mode.

When writing to the PCR, the PCR LSB must be written to a logic 0. Setting the LSB of the PCR enables
factory debug mode and prevents the transmission of Nexus messages.

Table 42-4 describes the NDI configuration options.

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1397

42.4.1.4 Programmable MCKO frequency

MCKO is an output clock to the development tools used for the timing of MSEO and MDO pin functions.
MCKO is derived from the system clock, and its frequency is determined by the value of the MCKO_DIV
field in the port configuration register (PCR) located in the NPC. Possible operating frequencies include
SYS_CLK, one-half, one-quarter, and one-eighth SYS_CLK speed.

Table 42-5 shows the MCKO_DIV encodings. In this table, SYS_CLK represents the system clock
frequency.

NOTE
The Nexus Port Controller Port Configuration Register MCKO Divider bits
(NPC_PCR[MCKO_DIV]) can be set to 0b000 to select a 1X clock rate as
the Nexus Auxiliary output port frequency for the MCKO and MDO pins.
Depending on the system frequency, this may force the MCKO and MDO
pins to switch at a frequency higher than can be supported by the pins. This
maximum frequency is specified in the device electrical specification of the
Nexus MCKO and MDO pins. Insure that the maximum operating
frequency of the MDO and MCKO pins is not violated when setting the
NPC_PCR[MCKO_DIV] values.

Table 42-4. NDI Configuration Options

MCKO_EN bit of PCR FPM bit of PCR Configuration

0 X Disabled

1 1 Full-Port Mode

1 0 Reduced Port Mode

Table 42-5. MCKO_DIV Values

MCKO_DIV[2:0] MCKO Frequency

0b0001

1 The SYS_CLK setting for MCKO frequency should only
be used if this setting does not violate the maximum
operating frequency of the auxiliary port pins (60 MHz).

SYS_CLK

0b001 SYS_CLK/2

0b010 Reserved

0b011 SYS_CLK/4

0b100 Reserved

0b101 Reserved

0b110 Reserved

0b111 SYS_CLK/8

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

1398 Freescale Semiconductor

NOTE
For the mode where Z0:Z4 frequency ratio is 1:2, MCKO Divide value of 1
is not supported.

42.4.1.5 Cross Triggering Control

To enable a debug event in one core to cause a debug event in the other core at approximately the same
time, the EVTO signal from the e200z0h Nexus3+ or e200z4d Nexus3+ is connected to the other core’s
devt2 input. When enabled in each core’s Nexus1 DBCR0 register, a pulse of the devt2 signal causes a
debug event to occur. In this case, only one external EVTO signal is generated and each core controls
whether or not EVTO causes a debug event to occur.

Interconnection of debug mode control signals are shown in Figure 42-4.

Figure 42-4. Debug Mode Control Interconnections

42.5 Nexus Port Controller (NPC)
The Nexus Port Controller (NPC) is that part of the NDI that controls access and arbitration of the device’s
internal Nexus modules. The NPC contains the port configuration register (PCR) and the device
identification register (DID).

42.5.1 Introduction

Figure 42-5 is a block diagram of the Nexus Port Controller (NPC) block.

EVTI

EVTI

EVTO

devt2

e200z4d Core Complex

EVTI

devt2

EVTO

e200z0h Core Complex

EVTONPC

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1399

Figure 42-5. Nexus Port Controller Block Diagram

42.5.2 NPC features

The NPC performs the following functions:

• Controls arbitration for ownership of the Nexus Auxiliary Output Port

• Nexus Device Identification Register and Messaging

• Generates MCKO enable and frequency division control signals

• Controls sharing of EVTO

• Generates an MCKO clock gating control signal to enable gating of MCKO when the auxiliary
output port is idle

• Control of the device-wide debug mode

• Generates asynchronous reset signal for Nexus blocks based on power-on reset status

42.5.3 NPC memory map

Table 42-6 shows the NPC registers by index values. The registers are not memory-mapped and can only
be accessed via the TAP. The NPC does not implement the client select control register because the value
does not matter when accessing the registers. Note that the bypass register (refer to Section 42.5.4.1,
“Bypass Register”) and instruction register (refer to Section 42.5.4.2, “Instruction Register”) have no
index values. These registers are not accessed in the same manner as Nexus client registers.

Port
Arbiter

Message
Transmitter

MDO/MSEO
Generation

JTAG

TDI

TDO

TCK

TMS

Debug
Mode
Control

Register

TDO
Generation

Reset
Control

EVTO
Control

Control
Interface

PSTAT
MDO Mux

MDO

MSEO_B

Miscellaneous

Logic

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

1400 Freescale Semiconductor

42.5.4 NPC Register descriptions

This section consists of NPC register descriptions.

42.5.4.1 Bypass Register

The bypass register is a single-bit shift register path selected for serial data transfer between TDI and TDO
when the BYPASS instruction or any unimplemented instructions are active. After entry into the
CAPTURE-DR state, the single-bit shift register is set to a logic 0. Therefore, the first bit shifted out after
selecting the bypass register is always a logic 0.

42.5.4.2 Instruction Register

The NPC uses a 4-bit instruction register as shown in Figure 42-6. The instruction register is accessed via
the SELECT_IR_SCAN path of the tap controller state machine, and allows instructions to be loaded into
the module to enable the NPC for register access (NEXUS_ENABLE) or select the bypass register as the
shift path from TDI to TDO (BYPASS or unimplemented instructions).

As shown in Section 41.4.3, TAP Controller State Machine, instructions are shifted in through TDI while
the TAP controller is in the Shift-IR state, and latched on the falling edge of TCK in the Update-IR state.
The latched instruction value can only be changed in the Update-IR and test-logic-reset TAP controller
states. Synchronous entry into the test-logic-reset state results in synchronous loading of the BYPASS
instruction. Asynchronous entry into the test-logic-reset state results in asynchronous loading of the
BYPASS instruction. During the Capture-IR TAP controller state, the instruction register is loaded with
the value of the previously executed instruction, making this value the register’s read value when the TAP
controller is sequenced into the Shift-IR state.

42.5.4.3 Nexus Device ID Register (DID)

The NPC device identification register, shown in Figure 42-7, allows the part revision number, design
center, part identification number, and manufacturer identity code of the device to be determined through
the auxiliary output port, and serially through TDO. See Section 42.5.5.5.1, “NPC IEEE 1149.1-2001
(JTAG) TAP.” This register is read-only.

Table 42-6. NPC Memory Map

Index Register Name Register Description Size (bits)

0 DID Device ID register 32

127 PCR Port configuration register 32

3 2 1 0

R Previous Instruction Opcode

W Instruction Opcode

Reset: BYPASS Instruction Opcode (0xF)

Figure 42-6. 4-Bit Instruction Register

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1401

42.5.4.4 Port Configuration Register (PCR)

The PCR is used to select the NPC mode of operation, enable MCKO and select the MCKO frequency,
and enable or disable MCKO gating. This register should be configured as soon as the NDI is enabled.

The PCR register may be rewritten by the debug tool subsequent to the enabling of the NPC for low power
debug support. In this case, the debug tool may set and clear the LP_DBG_EN and SLEEP_SYNC bits,
but must preserve the original state of the remaining bits in the register.

NOTE
The mode (MCKO_GT) or clock division (MCKO_DIV) bits must not be
modified after MCKO has been enabled. Changing the mode or clock
division while MCKO is enabled can produce unpredictable results.

Reg Index: 0x00 Access: User read only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PRN DC PIN

W

Reset 1

1 Part Revision Number default value is 0x0 for the device’s initial mask set and changes for each mask set revision.

PRN DC PIN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PIN (continued) MIC 1

W

Reset PIN (cont’d.) 0 0 0 0 0 0 0 1 1 1 0 1

Figure 42-7. Nexus Device ID Register (DID)

Table 42-7. DID field descriptions

Field Description

PRN Part Revision Number. Contains the revision number of the part. This field changes with each revision of the device
or module.

DC Design Center. Indicates the Freescale design center. This value is 0x2B.

PIN Part Identification Number. The value is 0x249.

MIC Manufacturer Identity Code. Contains the reduced Joint Electron Device Engineering Council (JEDEC) ID for
Freescale Semiconductor, 0X0E.

bit 0 Fixed Per JTAG 1149.1. Always set to 1.

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

1402 Freescale Semiconductor

Figure 42-8. Port Configuration Register (PCR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R FPM MCK

O_GT
MCK
O_EN

MCKO_DIV EVT_
EN

0 NEXC
FG

0 0 0 ALC_NUM_
LN

0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R LP_D

BG
0 0 0 0 0 LP2_

SYN
LP1_
SYN

0 0 0 0 0 0 0 PSTA
T_ENW

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Reserved

Table 1. PCR field descriptions

Name Description

FPM Full Port Mode
The value of the FPM bit determines if the auxiliary output port uses the full MDO port or a reduced
MDO port to transmit messages.
0 = 8 MDO pins are used to transmit messages
1 = 12 MDO pins are used to transmit messages

MCKO_GT MCKO Clock Gating Control
This bit is used to enable or disable MCKO clock gating. If clock gating is enabled, the MCKO clock
is gated when the NPC is in enabled mode but not actively transmitting messages on the auxiliary
output port. When clock gating is disabled, MCKO is allowed to run even if no auxiliary output port
messages are being transmitted.
0 = MCKO gating is disabled
1 = MCKO gating is enabled

MCKO_EN MCKO Enable
This bit enables the MCKO clock to run. When enabled, the frequency of MCKO is determined by
the MCKO_DIV field. MCKO clock is driven to zero MCKO clock is enabled

MCKO_DIV MCKO Division Factor
The value of this signal determines the frequency of MCKO relative to the system clock frequency
when MCKO_EN is asserted.

EVT_EN EVTO/EVTI Enable
This bit enables the EVTO/EVTI port functions0 = EVTO/EVTI port disabled
1= EVTO/EVTI port enabled

NEXCFG Nexus Configuration Select
Generic Nexus control bit.
0 = NEXCFG cleared
1= NEXCFG set

LP_DBG_EN1 Low Power Debug Enable
This bit enables debug functionality on exit from low power modes on supported devices.
0 = Low power debug disabled
1= Low power debug enabled

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1403

42.5.5 NPC Functional Description

42.5.5.1 NPC_HNDSHK module

This module enables debug entry/exit across low power modes (Stop, Halt, standby).The NPC_HNDSHK
supports:

• Setting and clearing of the NPC PCR sync bit on low-power mode entry and exit

• Putting the core into debug mode on low-power mode exit

• Generating a falling edge on the JTAG TDO pad on low-power mode exit

On HALT0, STOP0, or STANDBY0 mode entry, the MC_ME asserts the lp_mode_entry_req input after
the clock disable process has completed and before the processor enters its halted or stopped state. The
mode transition will then not proceed until the lp_mode_entry_ack output has been asserted. The
notification to the debugger of a low-power mode entry consists of setting the low-power mode handshake
bit in the port control register (read by the debugger) via the lp_sync_in output. The debugger
acknowledges that the transition into a low-power mode may proceed by clearing the low-power mode
handshake bit in the port control register (written by the debugger), which results in the deassertion of the
lp_sync_out input.

In anticipation of the low-power mode exit notification, the TDO pad is driven to ̀ 1'.On HALT0 or STOP0
mode exit, the MC_ME asserts the lp_mode_exit_req input after ensuring that the regulator and memories
are in normal mode and before the processor exits its halted or stopped state. The mode transition will then
not proceed until the lp_mode_exit_ack output has been asserted. The MC_RGM asserts the
exit_from_standby input when executing a reset sequence due to a STANDBY0 exit. The reset sequence
will then not complete until the lp_mode_exit_ack output has been asserted. The notification to the
debugger of a low-power mode exit consists of driving the TDO pad to `0'. The debugger acknowledges

LPn_SYN1 Low Power Mode n Synchronization
These bits are used to synchronize the entry into low power modes between the device and debug
tool. Supported devices set these bits before a pending entry into low power mode. After reading
the bit as set, the debug tool then clears the bit to acknowledge to the device that it may enter the
low power mode.
0 = Low power mode entry acknowledged
1= Low power mode entry pending

PSTAT_EN Processor Status Mode Enable2

This bit enables processor status (PSTAT) mode. In PSTAT mode, all auxiliary output port MDO
pins are used to transmit processor status information, and Nexus messaging is unavailable.
0 = PSTAT mode disabled
1= PSTAT mode enabled

1 The TCK frequency must be lower than system frequency during normal operation and during low power operation.
2 PSTAT Mode is intended for factory processor debug only. The PSTAT_EN bit should be written to disable PSTAT

mode if Nexus messaging is desired. No Nexus messages are transmitted under any circumstances when PSTAT
mode is enabled.

Table 1. PCR field descriptions

Name Description

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

1404 Freescale Semiconductor

that the transition from a low-power mode can continue by setting the low-power mode sync bit in the port
control register (written by debugger), which results in the assertion of the lp_sync_out input.

NOTE
The debugger clock multiplexer may not guarantee glitch free
switching.Therefore, TCK should be disabled from when the debugger
clears the sync bit in ENTRY_CLR until the debugger senses the falling
edge of TDO in TDO_SET.

42.5.5.2 NPC Reset Configuration

The NPC is placed in disabled mode upon exit of reset. If message transmission via the auxiliary port is
desired, a write to the PCR is then required to enable the NPC and select the mode of operation. Asserting
MCKO_EN places the NPC in enabled mode and enables MCKO. The frequency of MCKO is selected by
writing the MCKO_DIV field.

42.5.5.3 Auxiliary Output Port

The auxiliary output port is shared by each of the Nexus modules on the device. The NPC communicates
with each of the individual modules and arbitrates for access to the port.

42.5.5.3.1 Output Message Protocol

The protocol for transmitting messages via the auxiliary port is accomplished with the MSEO functions.
The MSEO pin is used to signal the end of variable-length packets and the end of messages. They are not
required to indicate the end of fixed-length packets. MDO and MSEO are sampled on the rising edge of
MCKO.

Figure 42-9 illustrates the state diagram for MSEO transfers. All transitions not included in the figure are
reserved, and must not be used.

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1405

Figure 42-9. MSEO Transfers

42.5.5.3.2 Output Messages

42.5.5.4 Output Messages

In addition to sending out messages generated in other Nexus blocks, the NPC can also output the device
ID message contained in the device ID register and the port replacement output message on the MDO pins.
The device ID message can also be sent out serially through TDO.

Table 42-8 describes the device ID and port replacement output messages that the NPC can transmit on the
auxiliary port. The TCODE is the first packet transmitted.

Figure 42-10 shows the various message formats that the pin interface formatter has to encounter. Note
that for variable-length fields, the transmitted size of the field is determined from the range of the least
significant bit to the most significant non-zero-valued bit (i.e. most significant zero-valued bits are not
transmitted).

Table 42-8. NPC Output Messages

Message Name

Min.
Packet

Size
(bits)

Max
Packet

Size
(bits)

Packet
Type

Packet
Name

Packet Description

Device ID Message 6 6 fixed TCODE Value = 1

32 32 fixed ID DID register contents

MSEO = 0

MSEO = 1

MSEO = 0
Normal
Transfer

End
Packet

Start
Message

End
Message

Idle

MSEO = 0MSEO = 1
MSEO = 1

MSEO = 0MSEO = 1

MSEO = 0

MSEO = 1

MDO:
Invalid

MDO:
Invalid

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

1406 Freescale Semiconductor

The double edges in Figure 42-10 indicate the starts and ends of messages. Fields without shaded areas
between them are grouped into super-fields and can be transmitted together without end-of-packet
indications between them.

42.5.5.4.0.1 Rules of Messages

42.5.5.5 Rules of Message

• A variable-sized field within a message must end on a port boundary. (Port boundaries depend on
the number of MDO pins active with the current reset configuration.)

• A variable-sized field may start within a port boundary only when following a fixed-length field.

• Super-fields must end on a port boundary.

• When a variable-length field is sized such that it does not end on a port boundary, it is necessary
to extend and zero fill the remaining bits after the highest order bit so that it can end on a port
boundary.

• Multiple fixed-length packets may start and/or end on a single clock.

• When any packet follows a variable-length packet, it must start on a port boundary.

• The field containing the TCODE number is always transferred out first, followed by subsequent
fields of information.

• Within a field, the lowest significant bits are shifted out first. Figure 42-11 shows the transmission
sequence of a message that is made up of a TCODE followed by two fields.

Figure 42-11. Transmission Sequence of Messages

42.5.5.5.1 NPC IEEE 1149.1-2001 (JTAG) TAP

The NPC uses the IEEE1149.1-2001 TAP, which uses the state machine for accessing registers. The NPC
also implements the Nexus controller state machine as defined by the IEEE-ISTO 5001-2010 standard as
shown in Figure 42-13.

Message TCODE Field #1 Field #2 Field #3 Field #4 Field #5
Min.
Size1
(bits)

Max
Size2
(bits)

Device ID Message 1 Fixed = 32 NA NA NA NA 38 38

NOTES:

1. Minimum information size. The actual number of bits transmitted depends on the number of MDO pins

2. Maximum information size. The actual number of bits transmitted depends on the number of MDO pins

Figure 42-10. Message field sizes

TCODE (6 bits) FIELD #1 FIELD #2

1 2 3

msb lsb msb lsb msb lsb

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1407

The instructions implemented by the NPC TAP controller are listed in Table 42-2.

42.5.5.5.1.1 Enabling the NPC TAP Controller

Assertion of the power-on reset signal resets the NPC TAP controller. When not in power-on reset, the
NPC TAP controller is enabled by loading the ACCESS_AUX_TAP_NPC instruction in the JTAGC.
Loading the NEXUS-ENABLE instruction then grants access to NPC registers.

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

1408 Freescale Semiconductor

Figure 42-12. IEEE 1149.1-2001 TAP Controller State Machine

TEST LOGIC
RESET

RUN-TEST/IDLE SELECT-DR-SCAN SELECT-IR-SCAN

CAPTURE-DR CAPTURE-IR

SHIFT-DR SHIFT-IR

EXIT1-DR EXIT1-IR

PAUSE-DR PAUSE-IR

EXIT2-DR EXIT2-IR

UPDATE-DR UPDATE-IR

1

0

111

0 0

0 0

1 1

0 0

1 1

1 1

0 0

0 0

1 1

1 1

0 0

1 1
0 0

0

NOTE: The value shown adjacent to each state transition in this figure represents the value of TMS
at the time of a rising edge of TCK.

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1409

42.5.5.5.1.2 Retrieving Device IDCODE

The Nexus TAP controller does not implement the IDCODE instruction {npc_basic}. However, the device
identification message can be output by the NPC through the auxiliary output port or shifted out serially
by accessing the Nexus Device ID register through the TAP.{npc_basic} Transmission of the device
identification message on the auxiliary output port MDO pins occurs immediately after a write to the PCR,
if the NPC is enabled.{npc_basic} Transmission of the device identification message serially via TDO is
achieved by performing a read of the register contents as described in Section 42.5.5.5.1.4, “Selecting a
Nexus Client Register.{npc_basic}

42.5.5.5.1.3 Loading NEXUS-ENABLE Instruction

Access to the NPC registers is enabled by loading the NPC NEXUS-ENABLE instruction when NPC has
ownership of the TAP. This instruction is shifted in via the SELECT-IR-SCAN path and loaded in the
UPDATE-IR state. At this point, the Nexus controller state machine, shown in Figure 42-13, transitions to
the REG_SELECT state. The Nexus controller has three states: idle, register select, and data access.
Table 42-9 illustrates the IEEE 1149.1 sequence to load the NEXUS-ENABLE instruction.

Figure 42-13. NEXUS Controller State Machine

Table 42-9. Loading NEXUS-ENABLE instruction

Clock TMS IEEE 1149.1 State Nexus State Description

0 0 RUN-TEST/IDLE IDLE IEEE 1149.1-2001 TAP controller in idle state

1 1 SELECT-DR-SCAN IDLE Transitional state

2 1 SELECT-IR-SCAN IDLE Transitional state

3 0 CAPTURE-IR IDLE Internal shifter loaded with current instruction

4 0 SHIFT-IR IDLE TDO becomes active, and the IEEE 1149.1-2001
shifter is ready. Shift in all but the last bit of the
NEXUS_ENABLE instruction.

3 TCKS

12 1 EXIT1-IR IDLE Last bit of instruction shifted in

13 1 UPDATE-IR IDLE NEXUS-ENABLE loaded into instruction register

14 0 RUN-TEST/IDLE REG_SELECT Ready to be read/write Nexus registers

IDLE

NEXUS-ENABLE = 1

REG_SELECT

UPDATE-DR = 1

DATA_ACCESS

UPDATE-DR = 1
NEXUS-ENABLE = 1 &&

NEXUS-ENABLE = 0

TEST-LOGIC-RESET = 1

UPDATE-IR = 1

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

1410 Freescale Semiconductor

42.5.5.5.1.4 Selecting a Nexus Client Register

When the NEXUS-ENABLE instruction is decoded by the TAP controller, the input port allows
development tool access to all Nexus registers. Each register has a 7-bit address index.

All register access is performed via the SELECT-DR-SCAN path. The Nexus Controller defaults to the
REG_SELECT state when enabled. Accessing a register requires two passes through the
SELECT-DR-SCAN path: one pass to select the register and the second pass to read/write the register.

The first pass through the SELECT-DR-SCAN path is used to enter an 8-bit Nexus command consisting
of a read/write control bit in the LSB followed by a 7-bit register address index, as illustrated in
Figure 42-14. The read/write control bit is set to 1 for writes and 0 for reads.

The second pass through the SELECT-DR-SCAN path is used to read or write the register data by shifting
in the data (LSB first) during the SHIFT-DR state. When reading a register, the register value is loaded into
the IEEE 1149.1-2001 shifter during the CAPTURE-DR state. When writing a register, the value is loaded
from the IEEE 1149.1-2001 shifter to the register during the UPDATE-DR state. When reading a register,
there is no requirement to shift out the entire register contents. Shifting may be terminated once the
required number of bits have been acquired.

Table 42-10 illustrates a sequence which writes a 32-bit value to a register

MSB LSB

7-bit register index R/W

Figure 42-14. IEEE 1149.1 Controller Command Input

Table 42-10. Write to a 32-Bit Nexus Client Register

Clock TMS IEEE 1149.1 State Nexus State Description

0 0 RUN-TEST/IDLE REG_SELECT IEEE 1149.1-2001 TAP controller in idle state

1 1 SELECT-DR-SCAN REG_SELECT First pass through SELECT-DR-SCAN path

2 0 CAPTURE-DR REG_SELECT Internal shifter loaded with current value of
controller command input.

3 0 SHIFT-DR REG_SELECT TDO becomes active, and write bit and 6 bits of
register index shifted in.7 TCKs

12 1 EXIT1-DR REG_SELECT Last bit of register index shifted into TDI

13 1 UPDATE-DR REG_SELECT Controller decodes and selects register

14 1 SELECT-DR-SCAN DATA_ACCESS Second pass through SELECT-DR-SCAN path

15 0 CAPTURE-DR DATA_ACCESS Internal shifter loaded with current value of register

16 0 SHIFT-DR DATA_ACCESS TDO becomes active, and outputs current value of
register while new value is shifted in through TDI31 TCKs

48 1 EXIT1-DR DATA_ACCESS Last bit of current value shifted out TDO. Last bit of
new value shifted in TDI.

49 1 UPDATE-DR DATA_ACCESS Value written to register

50 0 RUN-TEST/IDLE REG_SELECT Controller returned to idle state. It could also return
to SELECT-DR-SCAN to write another register.

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1411

42.5.5.5.2 Nexus JTAG Port Sharing

Each of the individual Nexus modules on the device implements a TAP controller for accessing its
registers. Only the module whose ACCESS_AUX_TAP instruction is loaded has control of the TAP. This
allows the interface to all of these individual TAP controllers to appear to be a single port from outside the
device. Once a Nexus module has ownership of the TAP, that module acts like a single-bit shift register,
or bypass register, if no register is selected as the shift path.

42.5.5.5.3 MCKO

MCKO is an output clock to the development tools used for the timing of MSEO and MDO pin functions.
MCKO is derived from the system clock and its frequency is determined by the value of the
MCKO_DIV[2:0] field in the PCR. Possible operating frequencies include full, one-half, one-quarter, and
one-eighth SYS_CLK speed. MCKO is enabled by setting the MCKO_EN bit in the PCR.

42.5.5.5.4 EVTO Sharing

The NPC controls sharing of the EVTO output between all Nexus clients that produce an EVTO signal.
EVTO is driven for one MCKO period whenever any module drives its EVTO. The sharing mechanism is
a logical AND of all incoming EVTO signals from Nexus blocks, thereby asserting EVTO whenever any
block drives its EVTO. The order these signals are connected at the NPC input does not matter. When no
MCKO is active, such as in disabled mode, the NPC assumes an MCKO frequency of one-half system
clock speed when driving EVTO. EVTO sharing is active as long as the NPC is not in reset.

42.5.5.5.5 Nexus Reset Control

The power-on-reset signal is used as the primary reset signal for the NPC, which is also used by the NPC
to generate a single-bit reset signal for other Nexus blocks.

42.5.6 NPC Initialization/Application Information

To initialize the TAP for NPC register accesses, the following sequence is required:

1. Enable the NPC TAP controller. This is achieved by loading the ACCESS_AUX_TAP_NPC
instruction in the JTAGC.

2. Load the TAP controller with the NEXUS-ENABLE instruction.

To write control data to NPC tool-mapped registers, the following sequence is required:

1. Write the 7-bit register index and set the write bit to select the register with a pass through the
SELECT-DR-SCAN path in the TAP controller state machine.

2. Write the register value with a second pass through the SELECT-DR-SCAN path. Note that the
prior value of this register is shifted out during the write.

To read status and control data from NPC tool-mapped registers, the following sequence is required:

1. Write the 7-bit register index and clear the write bit to select register with a pass through
SELECT-DR-SCAN path in the TAP controller state machine.

2. Read the register value with a second pass through the SELECT-DR-SCAN path. Data shifted in
is ignored.

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

1412 Freescale Semiconductor

See the IEEE-ISTO 5001-2010 standard for more detail.

42.6 Nexus3+ Module
The e200z0h and e200z4d Nexus3+ module provides real-time development capabilities for the core
processors in compliance with the IEEE-ISTO Nexus 5001-2010 standard.

The module provides development support capabilities without requiring address and data pins, thus
providing visibility of internal instructions and data access.

A portion of the pin interface (the JTAG port) is also shared with the OnCE / Nexus 1 unit. The IEEE-ISTO
5001-2010 standard defines an extensible auxiliary port which is used in conjunction with the JTAG port
in core processors.

The Nexus modules are coupled to the CPU core and monitor a variety of signals including addresses, data,
control signals, status signals, etc.

42.6.1 Introduction

This section defines the auxiliary pin functions, transfer protocols, and standard development features of
the Nexus3+ module. The development features supported are Program Trace, Data Trace, Watchpoint
Messaging, Ownership Trace, Data Acquisition Messaging, and Read/Write Access via the JTAG
interface. The Nexus3+ module also supports two Class 4 features: Watchpoint Triggering, and Processor
Overrun Control.

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1413

42.6.2 Block Diagram

Figure 42-15. Nexus3 Functional Block Diagram

42.6.3 Overview

Table 42-11 contains a set of terms and definitions associated with the Nexus3 module.

Table 42-11. Terms and Definitions

IEEE-ISTO 5001
Consortium & standard for real-time embedded system design. World wide
Web documentation at http://www.ieee-isto.org/Nexus5001

Auxiliary Port
Refers to Nexus auxiliary port. Used as auxiliary port to the IEEE 1149.1
JTAG interface.

Branch Trace Messaging
(BTM)

Visibility of addresses for taken branches and exceptions, and the number
of sequential instructions executed between each taken branch.

Data Read Message (DRM) External visibility of data reads to memory-mapped resources.

Data Write Message (DWM) External visibility of data writes to memory-mapped resources.

Data Trace Messaging (DTM)
External visibility of how data flows through the embedded system. This
may include DRM and/or DWM.

Data Acquisition Messaging
(DQM)

Data Acquisition Messaging (DQM) allows code to be instrumented to
export customized information to the Nexus Auxiliary Output Port.

Message
Queues

NPC
Control and

I/O Logic

Memory Control

Control/Status
Registers

Registers

DMA Registers

DMA
(Read/Write)

Arbitration

Data
Snoop

Instruction
Snoop 12

MDO[11:0]

MSEO0

MCKO

EVTO

EVTI

TDI

TDO

TMS

TCLK

TRST

Breakpoint/
Watchpoint

Control

OnCE Debug

Nexus3 Module
Nexus1 Module (within core CPU)

C
or

e
C

P
U

 V
ir

tu
al

 B
us

S
ys

te
m

 B
us

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

1414 Freescale Semiconductor

42.6.4 Enabling Nexus3 Operation

The Nexus3 module is enabled by loading a single instruction into the JTAGC instruction register (IR),
and then loading the corresponding OnCE OCMD register with the NEXUS3_ACCESS instruction (refer
to Table 42-2). For the Nexus3 module, the OCMD value is 0b00_0111_1100. Once enabled, the module
is ready to accept control input via the JTAG pins. See Section 42.4.1.1, “Enabling Nexus Clients for TAP
Access” for more information.

Enabling the Nexus3 module automatically enables the generation of Debug Status Messages.

The Nexus module is disabled when the JTAG state machine reaches the test-logic-reset state. This state
can be reached by cycling through the state machine using the TMS pin. The Nexus module also is disabled
if a power-on-reset (POR) event occurs. If the Nexus3+ module is disabled, no trace output is provided,
and the module disables (drives inactive) auxiliary port output pins MDO[11:0], MSEO, and MCKO.
Nexus registers are not available for reads or writes.

42.6.5 TCODEs Supported

The Nexus3 pins allow for flexible transfer operations via public messages. A TCODE defines the transfer
format, the number and/or size of the packets to be transferred, and the purpose of each packet. The
IEEE-ISTO 5001-2010 standard defines a set of public messages. The Nexus3 module supports the public

JTAG Compliant Device complying to IEEE 1149.1 JTAG standard

JTAG IR & DR Sequence

JTAG Instruction Register (IR) scan to load an opcode value for selecting a
development register. The JTAG IR corresponds to the OnCE command
register (OCMD). The selected development register is then accessed via
a JTAG Data Register (DR) scan.

Nexus1
The core (OnCE) debug module. This module integrated with each Zen
processor provides all static (core halted) debug functionality. This module
is compliant with Class1 of the IEEE-ISTO 5001 standard.

Ownership Trace
Message (OTM)

Visibility of process/function that is currently executing.

Public Messages
Messages on the auxiliary pins for accomplishing common visibility and
controllability requirements

SoC
“System-on-a-Chip”. SoC signifies all of the modules on a single die. This
generally includes one or more processors with associated peripherals,
interfaces & memory modules.

Standard
The phrase “according to the standard” is used to indicate according to the
IEEE-ISTO 5001 standard.

Transfer Code (TCODE)
Message header that identifies the number and/or size of packets to be
transferred, and how to interpret each of the packets.

Watchpoint
A Data or Instruction Breakpoint or other debug event which does not
cause the processor to halt. Instead, a pin is used to signal that the
condition occurred. A Watchpoint Message may also be generated.

Table 42-11. Terms and Definitions

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1415

TCODEs seen in Table 42-12. Each message contains multiple packets transmitted in the order shown in
the table.

Table 42-12. Public TCODEs supported

Message Name

Minim
um

Field
Size
(bits)

Maxim
um

Field
Size
(bits)

Field Name
Field
Type

Packet Description

Debug Status

6 6 TCODE fixed TCODE number = 0

4 4
SRC

fixed
source processor identifier (multiple Nexus
configuration)

8 8 STATUS fixed Debug Status Register (DS[31:24])

Ownership Trace
Message

6 6 TCODE fixed TCODE number = 2

4 4
SRC

fixed
source processor identifier (multiple Nexus
configuration)

1 12 PROCESS variable Task/Process ID tag

Program Trace -
Direct Branch

Message

6 6 TCODE fixed TCODE number = 3

4 4 SRC fixed
source processor identifier (multiple Nexus
configuration)

1 8 ICNT variable
sequential instructions executed since
last taken branch

Program Trace -
Indirect Branch

Message

6 6 TCODE fixed TCODE number = 4

4 4 SRC fixed source processor identifier

1 1 MAP fixed Address Space (IS) indicator

1 8 ICNT variable
sequential instructions completed since
last predicate instruction, transmitted
instruction count, or taken change of flow

1 32 U-ADDR variable
unique part of target address for taken
branches/exceptions

Data Trace -
Data Write
Message

6 6 TCODE fixed TCODE number = 5

4 4 SRC fixed source processor identifier

1 1 MAP fixed Address Space (DS) indicator

4 4 DSZ fixed data size

1 32 U-ADDR variable unique portion of the data write address

1 32 DATA variable data write value(s)

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

1416 Freescale Semiconductor

Data Trace -
Data Read
Message

6 6 TCODE fixed TCODE number = 6

4 4 SRC fixed source processor identifier

1 1 MAP fixed Address Space (DS) indicator

4 4 DSZ fixed data size (Refer to Table 42-17)

1 32 U-ADDR variable unique portion of the data read address

1 32 DATA variable data read value(s)

Data Acquisition
Message

6 6 TCODE fixed TCODE number = 7

4 4 SRC fixed source processor identifier

8 8 DQTAG fixed
identification tag taken from
DEVENTDQTAG register field

1 32 DQDATA variable exported data taken from DDAM register

Error Message

6 6 TCODE fixed TCODE number = 8

4 4 SRC fixed source processor identifier

4 4 ETYPE fixed error type

8 8 ECODE fixed error code

Program Trace -
Direct Branch

Message w/ Sync

6 6 TCODE fixed TCODE number = 11

4 4 SRC fixed
source processor identifier (multiple Nexus
configuration)

1 8 ICNT variable
sequential instructions executed since
last taken branch

1 32 F-ADDR variable
full target address (leading zeros
truncated)

Program Trace -
Indirect Branch

Message w/ Sync

6 6 TCODE fixed TCODE number = 12

4 4 SRC fixed source processor identifier

1 1 MAP fixed Address Space (IS) indicator

1 8 ICNT variable
sequential instructions completed since
last predicate instruction, transmitted
instruction count, or taken change of flow

1 32 F-ADDR variable
full target address (leading zeros
truncated)

Table 42-12. Public TCODEs supported

Message Name

Minim
um

Field
Size
(bits)

Maxim
um

Field
Size
(bits)

Field Name
Field
Type

Packet Description

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1417

Data Trace -
Data Write
Message
w/ Sync

6 6 TCODE fixed TCODE number = 13

4 4 SRC fixed source processor identifier

1 1 MAP fixed Address Space (DS) indicator

4 4 DSZ fixed data size (Refer to Table 42-17)

1 32 F-ADDR variable
full access address (leading zeros
truncated)

1 32 DATA variable
data write value(s) (see Data Trace section
for details)

Data Trace -
Data Read
Message
w/ Sync

6 6 TCODE fixed TCODE number = 14

4 4 SRC fixed source processor identifier

1 1 MAP fixed Address Space (DS) indicator

4 4 DSZ fixed data size (Refer to Table 42-17)

1 32 F-ADDR variable
full access address (leading zeros
truncated)

1 32 DATA variable
data read value(s) (see Data Trace section
for details)

Watchpoint
Message

6 6 TCODE fixed TCODE number = 15

4 4 SRC fixed source processor identifier

1 32 WPHIT variable
Field indicating watchpoint source(s)
(leading zeros truncated)

Resource Full
Message

6 6 TCODE fixed TCODE number = 27

4 4 SRC fixed
source processor identifier (multiple Nexus
configuration)

4 4 RCODE fixed
resource code (Refer to Table 42-15) -
indicates which resource is the cause of
this message

1 32 RDATA variable
branch / predicate instruction history (see
Section)

Table 42-12. Public TCODEs supported

Message Name

Minim
um

Field
Size
(bits)

Maxim
um

Field
Size
(bits)

Field Name
Field
Type

Packet Description

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

1418 Freescale Semiconductor

Program Trace -
Indirect Branch

History Message

6 6 TCODE fixed TCODE number = 28 (see Note below)

4 4 SRC fixed source processor identifier

1 1 MAP fixed Address Space (IS) indicator

1 8 I-CNT variable
sequential instructions completed since
last predicate instruction, transmitted
instruction count, or taken change of flow

1 32 U-ADDR variable
unique part of target address for taken
branches/exceptions

1 32 HIST variable branch / predicate instruction history

Program Trace -
Indirect Branch

History Message
w/ Sync

6 6 TCODE fixed TCODE number = 29 (see Note below)

4 4 SRC fixed source processor identifier

1 1 MAP fixed Address Space (IS) indicator

1 8 I-CNT variable
sequential instructions completed since
last predicate instruction, transmitted
instruction count, or taken change of flow

1 32 F-ADDR variable
full target address (leading zero (0)
truncated)

1 32 HIST variable branch / predicate instruction history

Program Trace -
Program

Correlation
Message

6 6 TCODE fixed TCODE number = 33

4 4 SRC fixed source processor identifier

4 4 EVCODE fixed
event correlated w/ program flow (Refer to
Table 42-16)

2 2 CDF fixed

fields of information in CDATA. 01 - one
field (CDATA1),
10 - two fields (CDATA1 + CDATA2), 11 -
three fields
(CDATA1 + CDATA2 + CDATA3)

1 8 I-CNT variable
sequential instructions completed since
last predicate instruction, transmitted
instruction count, or taken change of flow

1 32 CDATA1 variable
correlation data field 1 - [branch / predicate
instruction

0 32 CDATA2 variable
correlation data field 2- PID/IS info or TLB
info (F-ADDR_V for virtual address or
tlbivax EA)

0 32 CDATA3 variable
correlation data field 3 - TLB info -ADDR_P
for physical address

Table 42-12. Public TCODEs supported

Message Name

Minim
um

Field
Size
(bits)

Maxim
um

Field
Size
(bits)

Field Name
Field
Type

Packet Description

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1419

NOTE
Program Trace can be implemented using either Branch History/Predicate
Instruction Messages, or traditional Direct/Indirect Branch Messages. The
user can select between the two types of Program Trace. If the Branch
History method is selected, the shaded TCODES above will not be
messaged out.

Table 42-13 shows the error code encodings used when reporting an error via the Nexus3 Error Message.

Table 42-14 shows the error type encodings used when reporting an error via the Nexus3 Error Message.

Table 42-13. Error Code Encoding (TCODE = 8)

Error Code Description

xxxxxxx1 Watchpoint Trace Message(s) Lost

xxxxxx1x Data Trace Message(s) Lost

xxxxx1xx Program Trace Message(s) Lost

xxxx1xxx Ownership Trace Message(s) Lost

xxx1xxxx Status Message(s) Lost (Debug Status messages, etc.)

xx1xxxxx Data Acquisition Message(s) Lost

x1xxxxxx Reserved

1xxxxxxx Reserved

Table 42-14. Error Type Encoding (TCODE = 8)

Error Type Description

0000 Message Queue Overrun caused one or more messages to be lost

0001
Contention with higher priority messages caused one or more messages to
be lost

0010 Reserved

0011 Read/write access error

0100 Reserved

0101 Invalid access opcode (Nexus Register unimplemented)

0110 - 1111 Reserved

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

1420 Freescale Semiconductor

Table 42-15 shows the encodings used for resource codes for certain messages.

Table 42-16 shows the event code encodings used for certain messages.

Table 42-15. RCODE values (TCODE = 27)

Resource Code Description

0000 Program Trace Instruction counter reached 255 and was reset.

0001
Program Trace, Branch / Predicate Instruction History full. This type of packet is
terminated by a stop bit set to 1 after the last history bit.

Table 42-16. Event Code Encoding (TCODE = 33)

Event Code Description

0000 Entry into Debug Mode

0001 Entry into Low Power Mode (CPU only)

0010-0011 Reserved for future functionality

0100 Disabling Program Trace

0101-1001 Reserved for future functionality

1010 Branch and link occurrence (direct branch
function call)1

1 Only used for Program Trace - History Mode

1011 New Address Translation established in
the TLB

1100 Address Translation entries invalidated
in the TLB

1101 Reserved for future functionality

1110 End of BookE tracing (trace disable or
entry into a VLE page from a non-VLE
page)

1111 End of VLE tracing (trace disabled or
entry into a non-VLE page from a VLE
page)

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1421

Table 42-17 shows the data trace size encodings used for certain messages.

42.6.6 Memory Map

This section describes the Nexus3 programmer’s model. Nexus3 registers are accessed using the
JTAG/OnCE port in compliance with IEEE 1149.1. See Section 42.6.8, “Register Access via JTAG /
OnCE” for details on Nexus3 register access.

Table 42-18 details the register map for the Nexus3 module.

Table 42-17. Data Trace Size Encodings (TCODE = 5,6,13,14)

DTM Size Encoding Transfer Size

0000 0 - no data

0001 Byte

0010 Halfword (2 bytes)

0011 Reserved

0100 Word (4 bytes)

0100-1111 Reserved

Table 42-18. Nexus3 Registers

Nexus Register
Nexus
Access
Opcode

Read/
Write

Read
Address

Write Address

Client Select Control (CSC)1 0x1 R 0x02 -

Port Configuration Register (PCR)1 PCR_INDEX2 R/W - -

Development Control 1 (DC1) 0x2 R/W 0x04 0x05

Development Control 2 (DC2) 0x3 R/W 0x06 0x07

Development Control 3 (DC3) 0x4 R/W 0x08 0x09

Development Control 4 (DC4) 0x5 R/W 0x0A 0x0B

Read/Write Access Control/Status (RWCS) 0x7 R/W 0x0E 0x0F

Read/Write Access Address (RWA) 0x9 R/W 0x12 0x13

Read/Write Access Data (RWD) 0xA R/W 0x14 0x15

Watchpoint Trigger (WT) 0xB R/W 0x16 0x17

Reserved 0xC R/W 0x18 0x19

Data Trace Control (DTC) 0xD R/W 0x1A 0x1B

Data Trace Start Address1 (DTSA1) 0xE R/W 0x1C 0x1D

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

1422 Freescale Semiconductor

42.6.7 Register Definition

42.6.7.1 Development Control Register 1 (DC1)

The development control registers are used to control the basic development features of the Nexus module.
Figure 42-16 shows DC1 and Table 42-19 describes the register’s fields.

Data Trace Start Address2 (DTSA2) 0xF R/W 0x1E 0x1F

Reserved 0x10-> 0x11 - 0x20->0x22 0x21->23

Data Trace End Address1 (DTEA1) 0x12 R/W 0x24 0x25

Data Trace End Address2 (DTEA2) 0x13 R/W 0x26 0x27

Reserved 0x14 -> 0x2F - 0x28->0x5E 0x29->5F

Development Status (DS) 0x30 R 0x60 -

Reserved 0x31 R/W 0x62 0x63

Overrun Control (OVCR) 0x32 R/W 0x64 0x65

Watchpoint Mask (WMSK) 0x33 R/W 0x66 0x67

Reserved 0x34 - 0x68 0x69

Program Trace Start Trigger Control (PTSTC) 0x35 R/W 0x6A 0x6B

Program Trace End Trigger Control (PTETC) 0x36 R/W 0x6C 0x6D

Data Trace Start Trigger Control (DTSTC) 0x37 R/W 0x6E 0x6F

Data Trace End Trigger Control (DTETC) 0x38 R/W 0x70 0x71

Reserved 0x39 -> 0x3F - 0x72->0x7E 0x73->7F

1 The CSC and PCR registers are shown in this table as part of the Nexus programmer’s model.

2 The “PCR_INDEX” is a parameter determined by the SoC.

Table 42-18. Nexus3 Registers

Nexus Register
Nexus
Access
Opcode

Read/
Write

Read
Address

Write Address

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1423

Nexus Reg: 0x02 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
OPC MCK_DIV

0 PTM 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 POTD TSEN EOC EIC 0 0
TM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 42-16. Development Control Register 1 (DC1)

Table 42-19. DC1 Field Descriptions

Field Description

OPC Output Port Mode Control.
0 Reduced-port mode configuration (8 MDO pins).
1 Full-port mode configuration (12 MDO pins).

MCK_DIV MCK_DIV - MCKO Clock Divide Ratio (see note below)
00 - nex_mcko is 1x processor clock freq.
01 - nex_mcko is 1/2x processor clock freq.
10 - nex_mcko is 1/4x processor clock freq.
11 - nex_mcko is 1/8x processor clock freq.

PTM Program Trace Method.
0 Program trace uses traditional branch messages.
1 Program trace uses branch history messages.

POTD Periodic Ownership Trace Disable
0 Periodic Ownership Trace message events are enabled
1 Periodic Ownership Trace message events are disabled

TSEN Timestamp Enable - (not implemented, write to 00)
00 Timestamp is disabled

EOC EVTO Control.
00 EVTO upon occurrence of watchpoints (configured in DC2).
01 EVTO upon entry into debug mode.
1X Reserved.

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

1424 Freescale Semiconductor

NOTE
The Output Port Mode Control bit (OPC) and MCKO Clock Divide Ratio
bits (MCK_DIV) MUST ONLY be modified during system reset or debug
mode to insure correct output port and output clock functionality. It is also
recommended that all other bits of the DC1 also only be modified in one of
these two modes.

42.6.7.2 Development Control Register 2 (DC2)

DC2 is shown in Figure 42-17 and its fields are described in Table 42-20.

EIC EVTI Control.
00 EVTI is used for synchronization (program trace/ data trace).
01 EVTI is used for debug request.
1X Reserved.

TM Trace Mode1. Any or all of the TM bits may set, enabling one or more traces.
000000 All Trace Disabled
XXXXX1 Ownership Trace enabled
XXXX1X Data Trace enabled
XXX1XX Program Trace enabled
XX1XXX Watchpoint Trace enabled
X1XXXX Reserved
1XXXXX Data Acquisition Trace enabled

1 This field may be updated by hardware in response to watchpoint triggering. Writes to this field take precedence over hardware
updates in the event of a collision.

Nexus Reg: 0x3 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0
WEVTO[2]C WEVTO[1]C WEVTO[0]C

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
EWC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 42-17. Development Control Register 2 (DC2)

Table 42-19. DC1 Field Descriptions (continued)

Field Description

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1425

Table 42-20. DC2 Field Descriptions

Field Description

WEVTO[2]C WEVTO[2]C- Watchpoint Event Out 2 Configuration
0000 No Watchpoints #0—14 trigger
0001 Watchpoint #0 triggers
0010 Watchpoint #1 triggers
0011 Watchpoint #2 triggers
0100 Watchpoint #3 triggers
0101 Watchpoint #4 triggers
0110 Watchpoint #5 triggers
0111 Watchpoint #6 triggers
1000 Watchpoint #7 triggers
1001 Watchpoint #8 triggers
1010 Watchpoint #9 triggers
1011 Watchpoint #10 triggers
1100 Watchpoint #11 triggers
1101 Watchpoint #12 triggers
1110 Watchpoint #13 triggers
1111 Watchpoint #14 triggers

WEVTO[1]C WEVTO[1]C- Watchpoint Event Out 1 Configuration
0000 No Watchpoints #0—14 trigger
0001 Watchpoint #0 triggers
0010 Watchpoint #1 triggers
0011 Watchpoint #2 triggers
0100 Watchpoint #3 triggers
0101 Watchpoint #4 triggers
0110 Watchpoint #5 triggers
0111 Watchpoint #6 triggers
1000 Watchpoint #7 triggers
1001 Watchpoint #8 triggers
1010 Watchpoint #9 triggers
1011 Watchpoint #10 triggers
1100 Watchpoint #11 triggers
1101 Watchpoint #12 triggers
1110 Watchpoint #13 triggers
1111 Watchpoint #14 triggers

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

1426 Freescale Semiconductor

The EOC bits in DC1 must be programmed to trigger EVTO on watchpoint
occurrence for the EWC bits to have any effect.

WEVTO[0]C WEVTO[0]C- Watchpoint Event Out 0 Configuration
0000 No Watchpoints #0—14 trigger
0001 Watchpoint #0 triggers
0010 Watchpoint #1 triggers
0011 Watchpoint #2 triggers
0100 Watchpoint #3 triggers
0101 Watchpoint #4 triggers
0110 Watchpoint #5 triggers
0111 Watchpoint #6 triggers
1000 Watchpoint #7 triggers
1001 Watchpoint #8 triggers
1010 Watchpoint #9 triggers
1011 Watchpoint #10 triggers
1100 Watchpoint #11 triggers
1101 Watchpoint #12 triggers
1110 Watchpoint #13 triggers
1111 Watchpoint #14 triggers

EWC EVTO Watchpoint Configuration. Any or all of the bits in EWC may be set to configure the EVTO watchpoint.
0000000000000000 No Watchpoints
XXXXXXXXXXXXXXX1 Watchpoint
XXXXXXXXXXXXXX1X Watchpoint
XXXXXXXXXXXXX1XX Watchpoint
XXXXXXXXXXXX1XXX Watchpoint
XXXXXXXXXXX1XXXX Watchpoint
XXXXXXXXXX1XXXXX Watchpoint
XXXXXXXXX1XXXXXX Watchpoint
XXXXXXXX1XXXXXXX Watchpoint
XXXXXXX1XXXXXXXX Watchpoint
XXXXXX1XXXXXXXXX Watchpoint
XXXXX1XXXXXXXXXX Watchpoint
XXXX1XXXXXXXXXXX Watchpoint
XXX1XXXXXXXXXXXX Watchpoint
XX1XXXXXXXXXXXXX Watchpoint
X1XXXXXXXXXXXXXX Watchpoint
1XXXXXXXXXXXXXXX Watchpoint

Table 42-20. DC2 Field Descriptions (continued)

Field Description

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1427

42.6.7.3 Development Control Register 3 (DC3)

DC3 is shown in Figure 42-18. Its fields are described in Table 42-21.

Nexus Reg: 0x4 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0
WEVTO[2]C WEVTO[1]C WEVTO[0]C

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 EWC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 42-18. Development Control Register 3 (DC3)

Table 42-21. DC3 Field Descriptions

Field Description

WEVTO[2]C WEVTO[2]C- Watchpoint Event Out 2 Configuration

000 No Watchpoints #0—14 trigger
0001 Watchpoint #15 triggers
0010 Watchpoint #16 triggers
0011 Watchpoint #17 triggers
0100 Watchpoint #18 triggers
0101 Watchpoint #19 triggers
0110 Watchpoint #20 triggers
0111 Watchpoint #21 triggers
1000–1111 = Reserved

WEVTO[1]C WEVTO[1]C- Watchpoint Event Out 1 Configuration

WEVTO[0]C WEVTO[0]C- Watchpoint Event Out 0 Configuration

EWC EVTO Watchpoint Configuration.

000000 No Watchpoints #16-#21 trigger
XXXXX1 Watchpoint #16 triggers
XXXX1X Watchpoint #17 triggers
XXX1XX Watchpoint #18 triggers
XX1XXX Watchpoint #19 triggers
X1XXXX Watchpoint #20 triggers
1XXXXX Watchpoint #21 triggers

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

1428 Freescale Semiconductor

42.6.7.4 Development Control Register 4 (DC4)

DC4 is shown in Figure 42-19. Its fields are described in Table 42-20.

42.6.7.5 Development Status Register (DS)

The development status register is used to report system debug status. When debug mode is entered or
exited, or a core-defined low-power mode is entered, a debug status message is transmitted with
DS[31:24]. The external tool can read this register at any time. The DS register is shown in Figure 42-20
and its fields are described in Table 42-23.

Nexus Reg: 0x4 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
EVCDM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 42-19. Development Control Register 4 (DC4)

Table 42-22. DC4 Field Descriptions

Field Description

EVCDM Event Code (EVCODE) Mask1

0000000000000000 - No EVCODEs masked for Program Correlation Messages
XXXXXXXXXXXXXXX1 - EVCODE #0 is masked for Program Correlation Messages
XXXXXXXXXXXXXX1X - EVCODE #1 is masked for Program Correlation Messages
XXXXXXXXXXXXX1XX - EVCODE #2 is masked for Program Correlation Messages
XXXXXXXXXXXX1XXX - EVCODE #3 is masked for Program Correlation Messages
XXXXXXXXXXX1XXXX - EVCODE #4 is masked for Program Correlation Messages
XXXXXXXXXX1XXXXX - EVCODE #5 is masked for Program Correlation Messages
XXXXXXXXX1XXXXXX - EVCODE #6 is masked for Program Correlation Messages
XXXXXXXX1XXXXXXX - EVCODE #7 is masked for Program Correlation Messages
XXXXXXX1XXXXXXXX - EVCODE #8 is masked for Program Correlation Messages
XXXXXX1XXXXXXXXX - EVCODE #9 is masked for Program Correlation Messages
XXXXX1XXXXXXXXXX - EVCODE #10 is masked for Program Correlation Messages
XXXX1XXXXXXXXXXX - EVCODE #11 is masked for Program Correlation Messages
XXX1XXXXXXXXXXXX - EVCODE #12 is masked for Program Correlation Messages
XX1XXXXXXXXXXXXX - EVCODE #13 is masked for Program Correlation Messages
X1XXXXXXXXXXXXXX - EVCODE #14 is masked for Program Correlation Messages
1XXXXXXXXXXXXXXX - EVCODE #15 is masked for Program Correlation Messages

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1429

42.6.7.6 Read/Write Access Control/Status (RWCS)

The read write access control/status register provides control for read/write access. Read/write access
provides DMA-like access to memory-mapped resources on the system bus while the processor is halted
or during runtime. The RWCS register is shown in Figure 42-21 and its fields are described in Table 42-24.
The RWCS register also provides read/write access status information as shown in Table 42-25.

Nexus Reg: 0x4 Access: User read only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R DBG LPS LPC 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 42-20. Development Status Register (DS)

Table 42-23. DS Field Descriptions

Field Description

DBG CPU Debug Mode Status.
0 CPU not in debug mode.
1 CPU in debug mode.

LPS LPS Cores System Low Power Mode Status

LPC CPU Low-Power Mode Status.
00 Normal (run) mode.
01 CPU in halted state.
10 CPU in stopped state.
11 Reserved.

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

1430 Freescale Semiconductor

Table 42-25 details the status bit encodings.

Nexus Reg: 0x7 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
AC RW SZ MAP PR

0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CNT ERR DV

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 42-21. Read/Write Access Control/Status Register (RWCS)

Table 42-24. RWCS Field Description

Field Description

AC Access Control.
0 End access.
1 Start access.

RW Read/Write Select.
0 Read access.
1 Write access.

SZ Word Size.
000 8-bit (byte.)
001 16-bit (halfword).
010 32-bit (word).
011 64-bit (doubleword—only in burst mode).
100–111 Reserved (default to word).

MAP MAP Select.
000 Primary memory map.
001–111 Reserved.

PR 00 Reserved (default to highest access priority)
01 Reserved (default to highest access priority)
10 Reserved (default to highest access priority)
11 Highest access priority

CNT Access Control Count. Number of accesses of word size SZ.

ERR Read/Write Access Error. See Table 42-25.

DV Read/Write Access Data Valid. See Table 42-25.

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1431

42.6.7.7 Read/Write Access Address (RWA)

The read/write access address register provides the system bus address to be accessed when initiating a
read or a write access.

42.6.7.8 Read/Write Access Data (RWD)

The read/write access data register provides the data to/from system bus memory-mapped locations when
initiating a read or a write access.

Table 42-26 shows the proper placement of data into the RWD. The “X” in the RWD column indicate byte
lanes with valid data.

Table 42-25. Read/Write Access Status Bit Encoding

Read Action Write Action ERR DV

Read access has not completed Write access completed without error 0 0

Read access error has occurred Write access error has occurred 1 0

Read access completed without error Write access has not completed 0 1

Not allowed Not allowed 1 1

Nexus Reg: 0x9 Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Read/Write Address

W

Reset 0

Figure 42-22. Read/Write Access Address Register (RWA)

Nexus Reg: 0xA Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Read/Write Data

W

Reset 0

Figure 42-23. Read/Write Access Data Register (RWD)

Table 42-26. RWD Data Placement for Transfers

Transfer Size and byte offset RWA[2:0 RWCS[SZ]
RWD

31:24 23:16 15:8 7:0

Byte xxx 000 — — — X

Half Word xx0 001 — — X X

Word x00 010 X X X X

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

1432 Freescale Semiconductor

Table 42-27 shows the mapping of RWD bytes to byte lanes of the AHB read and write data buses.

42.6.7.9 Watchpoint Trigger Register (WT, PTSTC, PTETC, DTSTC, DTETC)

The Watchpoint Trigger Registers allows the watchpoints defined within the Nexus1 logic to trigger
actions. These watchpoints can control Program and/or Data Trace enable and disable. The control bits can
be used to produce a related “window” for triggering Trace Messages.Watchpoint trigger register WT is
used to control triggering by a single selected watchpoint. The Program Trace Start Trigger Control
(PTSTC), Program Trace End Trigger Control (PTETC), Data Trace Start Trigger Control (DTSTC), and
Data Trace End Trigger Control (DTETC) are used for extended trigger controls for the respective

Double Word (for burst access only) 000 011

first RWD pass (low order data) X X X X

second RWD pass (high order data) X X X X

Table 42-27. RWD data placement for Transfers

Transfer Size and
byte offset

RWA[2:0]
RWD

31:24 23:16 15:8 7:0

Byte @000 000 — — — AHB[7:0]

Byte @001 001 — — — AHB[15:8]

Byte @010 010 — — — AHB[23:16]

Byte @011 011 — — — AHB[31:24]

Byte @100 100 — — — AHB[39:32]

Byte @101 101 — — — AHB[[47:40]

Byte @110 110 — — — AHB[55:48]

Byte @111 111 — — — AHB[63:56]

Half@000 000 — — AHB[15:8] AHB[7:0]

Half@010 010 — — AHB[31:24] AHB[23:16]

Half@100 100 — — AHB[[47:40] AHB[39:32]

Half@110 110 — — AHB[63:56] AHB[55:48]

Word@000 000 AHB[31:24] AHB[23:16] AHB[15:8] AHB[7:0]

Word@100 100 AHB[63:56] AHB[55:48] AHB[[47:40] AHB[39:32]

Doubleword@000 000

first RWD pass AHB[31:24] AHB[23:16] AHB[15:8] AHB[7:0]

second RWD pass AHB[63:56] AHB[55:48] AHB[[47:40] AHB[39:32]

Table 42-26. RWD Data Placement for Transfers

Transfer Size and byte offset RWA[2:0 RWCS[SZ]
RWD

31:24 23:16 15:8 7:0

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1433

function. If multiple watchpoints are desired for triggering, or a watchpoint beyond watchpoint #13 is
required, then one or more of the extended watchpoint trigger registers may be used.

A field encoding of 4’b1111 in one of the WT register fields that enables the corresponding extended
trigger register. For all other WT field encodings, the corresponding extended trigger register is disabled
and the contents are ignored. When a start trigger is detected, the designated trace features become
enabled, and the corresponding enable bits of the DC1 register are set. When a stop trigger is detected, the
designated trace features become disabled, and the corresponding enable bits of the DC1 register are
cleared. If the same trigger condition is used for both start and stop triggering, then the designated trace
features will toggle between being enabled and disabled at each occurrence of the trigger condition.
Similarly, if start and stop triggers for a trace feature occur simultaneously, then the designated trace
feature will toggle between enabled and disabled depending on the enable state at the time of the trigger
events. For example, if tracing is enabled, and a start and stop trigger occur simultaneously, then tracing
will be disabled.

The WT register is shown in Figure 42-24 and its fields are described in Table 42-28.

Nexus Reg: 0xB Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PTS PTE DTS DTE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 42-24. Watchpoint Trigger Register (WT)

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

1434 Freescale Semiconductor

NOTE
The WT bits can control program/data trace only if the TM bits in the
development control register 1 (DC1) have not already been set to enable
program and data trace, respectively.

For extended Program Trace start trigger control, the PTSTC register is used.

Table 42-28. WT Field Descriptions

Field Description

PTS Program Trace Start Control.
0000 Trigger disabled
0001 Use Watchpoint #0
0010 Use Watchpoint #1
..
..
..
1110 Use Watchpoint #13
1111 Use control settings in the PTSTC register

PTE Program Trace End Control.
0000 Trigger disabled
0001 Use Watchpoint #0
0010 Use Watchpoint #1
..
..
..
1110 Use Watchpoint #13
1111 Use control settings in the PTETC register

DTS Data Trace Start Control.
0000 Trigger disabled
0001 Use Watchpoint #0
0010 Use Watchpoint #1
..
..
..
1110 Use Watchpoint #13
1111 Use control settings in the DTSTC register

DTE Data Trace End Control.
0000 Trigger disabled
0001 Use Watchpoint #0
0010 Use Watchpoint #1
..
..
..
1110 Use Watchpoint #13
1111 Use control settings in the DTETC register

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1435

For extended Program Trace end trigger control, the PTETC register is used.

Nexus Reg: 0x35 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0
PTST

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PTST

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 42-25. Program Trace Start Trigger Control (PTSTC) Register

Table 42-29. Program Trace Start Trigger Control Register Fields

Field Description

PTST PTST – Program Trace Start Trigger Control
0000000000000000000000 - Trigger disabled
XXXXXXXXXXXXXXXXXXXXX1 - Use Watchpoint #0
XXXXXXXXXXXXXXXXXXXX1X - Use Watchpoint #1
XXXXXXXXXXXXXXXXXXX1XX - Use Watchpoint #2
XXXXXXXXXXXXXXXXXX1XXX - Use Watchpoint #3
XXXXXXXXXXXXXXXXX1XXXX - Use Watchpoint #4
XXXXXXXXXXXXXXXX1XXXXX - Use Watchpoint #5
XXXXXXXXXXXXXXX1XXXXXX - Use Watchpoint #6
XXXXXXXXXXXXXX1XXXXXXX - Use Watchpoint #7
XXXXXXXXXXXXX1XXXXXXXX - Use Watchpoint #8
XXXXXXXXXXXX1XXXXXXXXX - Use Watchpoint #9
XXXXXXXXXXX1XXXXXXXXXX - Use Watchpoint #10
XXXXXXXXXX1XXXXXXXXXXX - Use Watchpoint #11
XXXXXXXXX1XXXXXXXXXXXX - Use Watchpoint #12
XXXXXXXX1XXXXXXXXXXXXX - Use Watchpoint #13
XXXXXXX1XXXXXXXXXXXXXX - Use Watchpoint #14
XXXXXX1XXXXXXXXXXXXXXX - Use Watchpoint #15
XXXXX1XXXXXXXXXXXXXXXX - Use Watchpoint #16
XXXX1XXXXXXXXXXXXXXXXX - Use Watchpoint #17
XXX1XXXXXXXXXXXXXXXXXX - Use Watchpoint #18
XX1XXXXXXXXXXXXXXXXXXX - Use Watchpoint #19
X1XXXXXXXXXXXXXXXXXXXX - Use Watchpoint #20
1XXXXXXXXXXXXXXXXXXXXX - Use Watchpoint #21

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

1436 Freescale Semiconductor

For extended Data Trace start trigger control, the DTSTC register is used.

Nexus Reg: 0x36 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0
PTET

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PTET

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 42-26. Program Trace End Trigger Control (PTETC) Register

Table 42-30. Program Trace End Trigger Control Register Fields

Field Description

PTET PTET – Program Trace End Trigger Control
0000000000000000000000 - Trigger disabled
XXXXXXXXXXXXXXXXXXXXX1 - Use Watchpoint #0
XXXXXXXXXXXXXXXXXXXX1X - Use Watchpoint #1
XXXXXXXXXXXXXXXXXXX1XX - Use Watchpoint #2
XXXXXXXXXXXXXXXXXX1XXX - Use Watchpoint #3
XXXXXXXXXXXXXXXXX1XXXX - Use Watchpoint #4
XXXXXXXXXXXXXXXX1XXXXX - Use Watchpoint #5
XXXXXXXXXXXXXXX1XXXXXX - Use Watchpoint #6
XXXXXXXXXXXXXX1XXXXXXX - Use Watchpoint #7
XXXXXXXXXXXXX1XXXXXXXX - Use Watchpoint #8
XXXXXXXXXXXX1XXXXXXXXX - Use Watchpoint #9
XXXXXXXXXXX1XXXXXXXXXX - Use Watchpoint #10
XXXXXXXXXX1XXXXXXXXXXX - Use Watchpoint #11
XXXXXXXXX1XXXXXXXXXXXX - Use Watchpoint #12
XXXXXXXX1XXXXXXXXXXXXX - Use Watchpoint #13
XXXXXXX1XXXXXXXXXXXXXX - Use Watchpoint #14
XXXXXX1XXXXXXXXXXXXXXX - Use Watchpoint #15
XXXXX1XXXXXXXXXXXXXXXX - Use Watchpoint #16
XXXX1XXXXXXXXXXXXXXXXX - Use Watchpoint #17
XXX1XXXXXXXXXXXXXXXXXX - Use Watchpoint #18
XX1XXXXXXXXXXXXXXXXXXX - Use Watchpoint #19
X1XXXXXXXXXXXXXXXXXXXX - Use Watchpoint #20
1XXXXXXXXXXXXXXXXXXXXX - Use Watchpoint #21

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1437

For extended Data Trace end trigger control, the DTETC register is used.

Nexus Reg: 0x37 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0
DTST

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DTST

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 42-27. Data Trace Start Trigger Control (DTSTC) Register

Table 42-31. Data Trace Start Trigger Control Register Fields

Field Description

DTST DTST - Data Trace Start Trigger Control
0000000000000000000000 - Trigger disabled
XXXXXXXXXXXXXXXXXXXXX1 - Use Watchpoint #0
XXXXXXXXXXXXXXXXXXXX1X - Use Watchpoint #1
XXXXXXXXXXXXXXXXXXX1XX - Use Watchpoint #2
XXXXXXXXXXXXXXXXXX1XXX - Use Watchpoint #3
XXXXXXXXXXXXXXXXX1XXXX - Use Watchpoint #4
XXXXXXXXXXXXXXXX1XXXXX - Use Watchpoint #5
XXXXXXXXXXXXXXX1XXXXXX - Use Watchpoint #6
XXXXXXXXXXXXXX1XXXXXXX - Use Watchpoint #7
XXXXXXXXXXXXX1XXXXXXXX - Use Watchpoint #8
XXXXXXXXXXXX1XXXXXXXXX - Use Watchpoint #9
XXXXXXXXXXX1XXXXXXXXXX - Use Watchpoint #10
XXXXXXXXXX1XXXXXXXXXXX - Use Watchpoint #11
XXXXXXXXX1XXXXXXXXXXXX - Use Watchpoint #12
XXXXXXXX1XXXXXXXXXXXXX - Use Watchpoint #13
XXXXXXX1XXXXXXXXXXXXXX - Use Watchpoint #14
XXXXXX1XXXXXXXXXXXXXXX - Use Watchpoint #15
XXXXX1XXXXXXXXXXXXXXXX - Use Watchpoint #16
XXXX1XXXXXXXXXXXXXXXXX - Use Watchpoint #17
XXX1XXXXXXXXXXXXXXXXXX - Use Watchpoint #18
XX1XXXXXXXXXXXXXXXXXXX - Use Watchpoint #19
X1XXXXXXXXXXXXXXXXXXXX - Use Watchpoint #20
1XXXXXXXXXXXXXXXXXXXXX - Use Watchpoint #21

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

1438 Freescale Semiconductor

42.6.7.10 Nexus Watchpoint Mask Register (WMSK)

The Nexus Watchpoint Mask register controls which watchpoint events are enabled to produce Watchpoint
Trace Messages (DC1[TM] must also be programmed to generate Watchpoint Trace Messages).

For extended Data Trace end trigger control, the DTETC register is used.

Nexus Reg: 0x38 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0
DTET

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DTET

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 42-28. Data Trace End Trigger Control (DTETC) Register

Table 42-32. Data Trace End Trigger Control Register Fields

Field Description

DTET DTET – Data Trace End Trigger Control
0000000000000000000000 - Trigger disabled
XXXXXXXXXXXXXXXXXXXXX1 - Use Watchpoint #0
XXXXXXXXXXXXXXXXXXXX1X - Use Watchpoint #1
XXXXXXXXXXXXXXXXXXX1XX - Use Watchpoint #2
XXXXXXXXXXXXXXXXXX1XXX - Use Watchpoint #3
XXXXXXXXXXXXXXXXX1XXXX - Use Watchpoint #4
XXXXXXXXXXXXXXXX1XXXXX - Use Watchpoint #5
XXXXXXXXXXXXXXX1XXXXXX - Use Watchpoint #6
XXXXXXXXXXXXXX1XXXXXXX - Use Watchpoint #7
XXXXXXXXXXXXX1XXXXXXXX - Use Watchpoint #8
XXXXXXXXXXXX1XXXXXXXXX - Use Watchpoint #9
XXXXXXXXXXX1XXXXXXXXXX - Use Watchpoint #10
XXXXXXXXXX1XXXXXXXXXXX - Use Watchpoint #11
XXXXXXXXX1XXXXXXXXXXXX - Use Watchpoint #12
XXXXXXXX1XXXXXXXXXXXXX - Use Watchpoint #13
XXXXXXX1XXXXXXXXXXXXXX - Use Watchpoint #14
XXXXXX1XXXXXXXXXXXXXXX - Use Watchpoint #15
XXXXX1XXXXXXXXXXXXXXXX - Use Watchpoint #16
XXXX1XXXXXXXXXXXXXXXXX - Use Watchpoint #17
XXX1XXXXXXXXXXXXXXXXXX - Use Watchpoint #18
XX1XXXXXXXXXXXXXXXXXXX - Use Watchpoint #19
X1XXXXXXXXXXXXXXXXXXXX - Use Watchpoint #20
1XXXXXXXXXXXXXXXXXXXXX - Use Watchpoint #21

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1439

42.6.7.11 Overrun Control Register (OVCR)

Nexus Overrun Control register controls the Nexus behavior as the internal message queues fill up.
Response options include suppressing selected message types, or stalling processor instruction execution.
The OVCR register is shown in Figure 42-30 and its fields are described in Table 42-34.

Nexus Reg: 0x33 Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0
WEM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
WEM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 42-29. Watchpoint Mask Register

Table 42-33. Watchpoint Mask Register Fields

Field Description

WEM WEM - Watchpoint Enable for Messaging
0000000000000000000000 - No Watchpoints enabled for Watchpoint Trace Messaging
XXXXXXXXXXXXXXXXXXXXX1 - Watchpoint #0 enabled for WTM
XXXXXXXXXXXXXXXXXXXX1X - Watchpoint #1 enabled for WTM
XXXXXXXXXXXXXXXXXXX1XX - Watchpoint #2 enabled for WTM
XXXXXXXXXXXXXXXXXX1XXX - Watchpoint #3 enabled for WTM
XXXXXXXXXXXXXXXXX1XXXX - Watchpoint #4 enabled for WTM
XXXXXXXXXXXXXXXX1XXXXX - Watchpoint #5 enabled for WTM
XXXXXXXXXXXXXXX1XXXXXX - Watchpoint #6 enabled for WTM
XXXXXXXXXXXXXX1XXXXXXX - Watchpoint #7 enabled for WTM
XXXXXXXXXXXXX1XXXXXXXX - Watchpoint #8 enabled for WTM
XXXXXXXXXXXX1XXXXXXXXX - Watchpoint #9 enabled for WTM
XXXXXXXXXXX1XXXXXXXXXX - Watchpoint #10 enabled for WTM
XXXXXXXXXX1XXXXXXXXXXX - Watchpoint #11 enabled for WTM
XXXXXXXXX1XXXXXXXXXXXX - Watchpoint #12 enabled for WTM
XXXXXXXX1XXXXXXXXXXXXX - Watchpoint #13 enabled for WTM
XXXXXXX1XXXXXXXXXXXXXX - Watchpoint #14 enabled for WTM
XXXXXX1XXXXXXXXXXXXXXX - Watchpoint #15 enabled for WTM
XXXXX1XXXXXXXXXXXXXXXX - Watchpoint #16 enabled for WTM
XXXX1XXXXXXXXXXXXXXXXX - Watchpoint #17 enabled for WTM
XXX1XXXXXXXXXXXXXXXXXX - Watchpoint #18 enabled for WTM
XX1XXXXXXXXXXXXXXXXXXX - Watchpoint #19 enabled for WTM
X1XXXXXXXXXXXXXXXXXXXX - Watchpoint #20 enabled for WTM
1XXXXXXXXXXXXXXXXXXXXX - Watchpoint #21 enabled for WTM

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

1440 Freescale Semiconductor

42.6.7.12 Data Trace Control Register (DTC)

The data trace control register controls whether DTM messages are restricted to reads, writes, or both for
a user programmable address range. Two data trace channels are controlled by the DTC for the Nexus3
module. Each channel can also be programmed to trace data accesses or instruction accesses.

Nexus Reg: 0x4 Access: User read only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 SPTHOLD 0 0 0 0 0 0 SPEN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 STTHOLD 0 0 0 0 0 0 0 0 0 0 0 STE
N

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 42-30. Overrun Control Register (OVCR)

Table 42-34. Overrun Control Register Fields

Field Description

SPTHOLD Suppression Threshold
00 Suppression threshold is when message queues are 1/4 full
01 Suppression threshold is when message queues are 1/2 full
10 Suppression threshold is when message queues are 3/4 full
11 Reserved

SPEN Suppression Enable
000000 Suppression is disabled
xxxxx1 Ownership Trace message suppression is enabled
xxxx1x Data Trace message suppression is enabled
xxx1xx Program Trace message suppression is enabled
xx1xxx Watchpoint Trace message suppression is enabled
x1xxxx Reserved
1xxxxx Data Acquisition message suppression is enabled

STTHOLD Stall Threshold
00 Stall threshold is when message queues are 1/4 full
01 Stall threshold is when message queues are 1/2 full
10 Stall threshold is when message queues are 3/4 full
11 Reserved

STEN Stall Enable
0 Stalling is disabled
1 Stalling is enabled

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1441

Table 42-35 details the data trace control register fields.

Nexus Reg: 0xD Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
RWT1 RWT2 RWT3 RWT4

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0
RC1 RC2 RC3 RC4 DI

0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 42-31. Data Trace Control Register (DTC)

Table 42-35. DTC Field Description

Field Description

31–30
RWT1

Read/write trace 1.
00 No trace enabled.
x1 Enable data read trace.
1x Enable data write trace.

29–28
RWT2

Read/write trace 2.
00 No trace enabled.
x1 Enable data read trace.
1x Enable data write trace.

27–26
RWT3

Read/write trace 3.
00 No trace enabled.
x1 Enable data read trace.
1x Enable data write trace.

25–24
RWT4

Read/write trace 4.
00 No trace enabled.
x1 Enable data read trace.
1x Enable data write trace.

7
RC1

Range control 1.
0 Condition trace on address within range.
1 Condition trace on address outside of range.

6
RC2

Range control 2.
0 Condition trace on address within range.
1 Condition trace on address outside of range.

5
RC3

Range control 2.
0 Condition trace on address within range.
1 Condition trace on address outside of range.

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

1442 Freescale Semiconductor

42.6.7.13 Data Trace Start Address Registers (DTSA1—DTSA2)

The data trace start address registers define the start addresses for each trace channel.

42.6.7.14 Data Trace End Address Registers (DTEA1—DTEA2)

The data trace end address registers define the end addresses for each trace channel.

Table 42-36 illustrates the range that selected for data trace for various cases of DTSA being less than,
greater than, or equal to DTEA.

4
RC4

Range control 2.
0 Condition trace on address within range.
1 Condition trace on address outside of range.

3
DI

Data access/instruction access trace 1.
0 Condition trace on data accesses.
1 Condition trace on instruction accesses.

Nexus Reg: (0xE DTSA1
0XF DTSA2
0x10 DTSA3
0x11 DTSA4)

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Data Trace Start Address

W

Reset 0

Figure 42-32. Data Trace Start Address Register 1– 4 (DTSA1–DTSA4)

Nexus Reg: (0x12 DTEA1
0x13 DTEA2
0x14 DTEA3
0x15 DTEA1

Access: User read/write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Data Trace End Address

W

Reset 0

Figure 42-33. Data Trace End Address Register 1 – 4 (DTEA1–DTEA4)

Table 42-36. Data Trace—Address Range Options

Programmed Values Range Control Bit Value Range Selected

DTSA < DTEA 0 DTSA  DTEA

DTSA < DTEA 1  DTSA DTEA 

Table 42-35. DTC Field Description (continued)

Field Description

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1443

NOTE
DTSA must be less than DTEA in order to guarantee correct data write/read
traces. Data trace ranges are inclusive of the DTSA and DTEA addresses for
Range Control settings indicating “within range”, and are exclusive of the
DTSA and DTEA addresses for Range Control settings indicating “outside
of range.”

42.6.8 Register Access via JTAG / OnCE

Access to Nexus3 register resources is enabled by loading a single instruction (ACCESS_AUX_TAP_Z0)
into the JTAG Instruction Register (IR) (OnCE OCMD register), and then loading the corresponding
OnCE OCMD register with the NEXUS3_ACCESS instruction (refer to Table 42-2). Access to Nexus3+
register resources is enabled by loading a single instruction (ACCESS_AUX_TAP_Z4) into the JTAGC
instruction register (IR), and then loading the corresponding OnCE OCMD register with the
NEXUS3_ACCESS instruction (refer to Table 42-2). For the Nexus3 module, the OCMD value is
0b00_0111_1100.

Reading/writing of a Nexus register requires two passes through the data-scan (DR) path of the JTAG state
machine

1. The first pass through the DR selects the Nexus register to be accessed by providing an index, and
the direction (read/write). This is achieved by loading an 8-bit value into the JTAG data register
(DR). This register has the following format:

2. The second pass through the DR then shifts the data in or out of the JTAG port, LSB first.

a) During a read access, data is latched from the selected Nexus register when the JTAG state
machine passes through the CAPTURE-DR state.

b) During a write access, data is latched into the selected Nexus register when the JTAG state
machine passes through the UPDATE-DR state.

DTSA > DTEA N/A Invalid range—no trace

DTSA = DTEA N/A Invalid range—no trace

Nexus Register Index: Selected from values in Table 42-18

Read/Write (R/W) 0 Read
1 Write

Table 42-36. Data Trace—Address Range Options (continued)

Programmed Values Range Control Bit Value Range Selected

Nexus Register Index

(7 bits) (1 bit)

R/W

RESET Value: 0x00

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

1444 Freescale Semiconductor

– Data trace via data write messaging (DWM) and data read messaging (DRM). This allows
the development tool to trace reads and/or writes to selected internal memory resources.

— Data Trace, Processor overrun control

42.7 Debug Implementation
This section describes the practical implementation of the debug port, its management, and the
multiplexing strategy of its pads. It is required on MPC5646C to support the Class 3+(2010) debug
features on the e200Z4d and minimum Class3(2010) on the e200Z0h.

42.8 Debug Capabilities
MPC5646C supports the Class 3 and Class 3+ debug features listed in Table 42-37

These debug capabilities are available at room temperature (25° C) and high temperature (125° C) when
the MPC5646C is at maximum speed.

The JTAG and Nexus port will work both at 3.3V and 5V , according to the device power supply.

Based on the following assumptions:

• Average message length: 20 bits

• 1 jump every 10 instructions

Table 42-37. Nexus3 Debug Requirements

Feature Class 1 Class 2 Class 3 Class 4

Static debug X X X X

Set breakpoints/watchpoints X X X X

Watchpoint messaging X X X X

Ownership trace — X X X

Program trace (BTM) — X X X

Port replacement — optional optional optional

Data trace (write only) — — X X

Dynamic memory read/write — — X X

Data trace (read/write) — — optional optional

Data acquisition — — optional optional

Overrun Control — — — X

Memory substitution — — — X

Complex triggering — — — X

External memory substitution — — — optional

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1445

• MCKO capable of supporting 1/2 the system clock frequency (64 MHz maximum)

• MDO pins operate at half of the system clock speed

It is required to have 12 dedicated medium MDO pins. The N3/N3+ auxiliary port is bonded out only in
the the BGA 256 package.

Boundary scan test is supported.

42.9 Debug Port
The debug port is composed of a total number of 25 pads. For Nexus3+ pin description, see Chapter 4,
Signal Description.

The reset and ready pins that are often present as extensions to the JTAG port are not implemented.

42.9.1 Nexus3+ Auxiliary Port

The N3(+) port provides real-time development class 3+ capabilities in compliance with the IEEE-ISTO
5001-2010 standard. This development support is supplied without requiring external address and data
pins for internal visibility.

By default, after power-on reset, N3(+) circuitry (controller) and the dedicated pad are disabled to avoid
power consumption. It can only be enabled via a certain sequence given by the debugger. As soon as the
N3(+) port is enabled, the Nexus pads are enabled.

NOTE
• Nexus pads are configured on the lowest power mode on non-emulation

packages.

• A full port (12MDOs) and reduced port mode (8MDOs) shall be
supported and controlled via the Port Configuration Register (PCR)
register.

Chapter 42 Nexus Development Interface (NDI)

MPC5646C Microcontroller Reference Manual, Rev. 5

1446 Freescale Semiconductor

Appendix A Revision History

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1447

Appendix A
Revision History
This appendix describes corrections to the MPC5646C Microcontroller Reference Manual. For
convenience, the corrections are grouped by revision.

A.1 Changes between revisions 4 and 5

Table A-1. Changes between revisions 4 and 5

Chapter Description

Clock Description In Figure 6-1., “MPC5646C system clock generation”:
 • Added a footnote
 • Updated the clock configuration for FMPLL.

Clock Generation Module
(CGM)

Updated register description section of Section 7.4.1.1, “e200z0h Core Clock Divider
Configuration Register (CGM_Z0_DCR), Section 7.4.1.2, “FEC Clock Divider
Configuration Register (CGM_FEC_DCR), Section 7.4.1.3, “Flash Clock Divider
Configuration Register (CGM_Flash_DCR), Section 7.4.1.7, “System Clock Divider 0
Configuration Register (CGM_SC_DC0), Section 7.4.1.8, “System Clock Divider 1
Configuration Register (CGM_SC_DC1), and Section 7.4.1.9, “System Clock Divider 2
Configuration Register (CGM_SC_DC2).

Mode Entry Module
(MC_ME)

Added a footnote for STOP mode in “Table 8-1 (MC_ME mode descriptions)” table.

Reset Generation Module
(MC_RGM)

Added a note in Section 9.3.1.5, Functional Event Alternate Request Register
(RGM_FEAR).

Voltage Regulators and
Power Supplies

Updated the bit description of 5V_LVD_MASK bit in VREG_CTL field descriptions table.

Enhanced Direct Memory
Access Channel

Multiplexer (DMA_MUX)

In DMA_MUX memory map table, changed the last entry from 0x31 to 0x1F.

System Integration Unit
Lite

In Peripheral input pin selection table, PADSEL13 field’s functional / peripheral entry
E1UC[3] / eMIOS 0 changed to E0UC[3] / eMIOS 0.

LIN Controller
(LINFlexD)

Added a note in Section 26.10, Memory map and register description.
Added a figurenote in Figure 26-72 (Programming consideration: response timeout1).
Added footnote for DRIE and DTIE bits of LINIER register in Table 26-15 (LINIER field

descriptions).
Updated IOT bit of LINTCSR register in Table 26-20 (LINTCSR field descriptions).

FlexRay Communication
Controller

Updated the title of Figure 29-161 (Transmit Data Available) figure.

Flash Memory Added new rows and removed the NVUSRO_1 entry from Shadow sector structure table.

Appendix A Revision History

MPC5646C Microcontroller Reference Manual, Rev. 5

1448 Freescale Semiconductor

A.2 Changes between revisions 3 and 4

NOTE
This revision history uses clickable cross-references for ease of navigation.
The numbers and titles in each cross-reference are relative to the latest
published release.

A.3 Changes between revisions 2 and 3

Table A-2. Changes between revisions 3 and 4

Chapter Description

Throughout Deleted Preliminary Footer

Voltage Regulators and
Power Supplies

Updated the reset value of VREG_PDMODE register to 0x0001_0000

Enhanced Direct
Memory Access

Added Section 17.5.2, “eDMA performance

System Integration Unit
Lite

Updated eMIOS to DSPI mapping in Section 24.5.3.17, “Parallel Input Select Register
(PISR0—PISR15)

Analog-to-Digital
Converter

Updated sentence in Section 32.4.3, “ADC sampling and conversion timing clarifying that
it is only for 10-bit

Flash Memory Updated the field description of PAD3V5V[0] and PAD3V5V[1] in Nonvolatile User Options
register

Moved CSE_RUN_MODE field to bit 31 of NVUSRO_1 register

Timers Updated the reset value of MDIS and MDI_RTI field in field description in Section 31.4.5.2,
PIT_RTI Module Control Register (PITMCR) from 0 to 1

Self-Test Control Unit Updated the reset values of the registers .
Updated the reset values in Table 39-2,STCU registers configuration after the boot

sequence phase 1

Table A-3. Changes between revisions 2 and 3

Chapter Description

Throughout Editorial change.
Changed “LINFlex” to “LINFlexD”.

Introduction Updated the dedicated number of channels for 12-bit ADC in family comparison table.
Changed “Two MSEO (Message start/end out) pins" with "One MSEO (Message start/end

out) pin" in Section 2.4.29, Nexus Development Interface (NDI)
Updated Section 2.4.20, Serial communication interface (LINFlexD)

Signal Description Revised the pinout information for the 176-pin QFP.
Deleted “Remove MSEO1 port pin line” in Table 4-4, Nexus 3+ pin descriptions
Replace MSEO[1:0] with MSEO in Note 8 in Table 14, Functional port pin descriptions and

Table 4-3, Functional port pin descriptions.
Updated the entries for PL[11] and PL[9] in Table 14, Functional port pin descriptions and

Table 4-3, Functional port pin descriptions.

Appendix A Revision History

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1449

Microcontroller Boot Updated the Figure 5-2, Boot sector structure and Section 5.1.1, “Flash memory boot.

Clock Description Added Note after CMU_MDR register.
Added Note in Section 6.8.4.1, Crystal clock monitor:

Note: Functional FXOSC monitoring can only be guaranteed when the FXOSC
frequency is greater than (FIRC / 2RCDIV) + 0.5 MHz.

Added Note in Section 6.8.4.2, FMPLL clock monitor:
Note: Functional FMPLL monitoring can only be guaranteed when the FMPLL frequency
is greater than (FIRC / 4) + 0.5 MHz.

Clock Generation
Module

In the CGM_AC0_SC[SELCTL] field description, updated the auxiliary clocks for 0x0 and
0x1.

Updated Section 7.5.2.2, Auxiliary Clock Dividers
Updated the Figure 7-16, MC_CGM Auxiliary Clock 1 Generation Overview

Mode Entry Module Added the clock sources in Section 8.4.3.6, Clock Sources (Main Voltage Regulator
Independent) Switch-On and in Section 8.4.3.9, Clock Sources (Main Voltage Regulator
Dependent) Switch-On.

Reset Generation
Module

Made the necessary changes in NOTE after RGM_DES field description.
Added Note in Section 9.3.1.7, “STANDBY Reset Sequence Register (RGM_STDBY).
Updated BOOT_FROM_BKP_RAM field description in Table 9-9, STANDBY Reset

Sequence Register (RGM_STDBY) field descriptions.

Wakeup Unit Changed ‘WKUP’ to ‘WKPU’ all over the chapter to maintain consistency.
Added CAN1RX in Port input function column of Table 12-1, Wakeup vector mapping.

Real Time Clock /
Autonomous Periodic

Interrupt

Added a note in APIVAL field in Table 13-3, RTCC register field descriptions

CAN Sampler Updated “16 MHz fast internal RC oscillator” to “Divided 16 MHz fast internal RC oscillator”
in Section 14.4, Functional description.

Enhanced Direct
Memory Access

Updated the Section 17.6.8, “Dynamic programming and its subsections.

Interrupt Controller Updated the access mode of all the registers to supervisor mode only.

Crossbar Switch Updated the name of column from ‘Logical Number’ to ‘XBAR port number’ and its content
in the Table 20-2, XBAR memory map.

Memory Protection
Unit

Updated Section 21.1.1, “Overview making it compliant to MPU block diagram.
Added note after Figure 21-1, MPU block diagram.
Updated the EMN field of MPU_EDRn register.
Updated footnote of Figure 21-7, MPU Region Descriptor, Word 2 Register

(MPU_RGDn.Word2)

System Integration Unit
Lite

Updated field description of MAXCNTx in Section 24.5.3.15, Interrupt Filter Maximum
Counter Registers (IFMC0–IFMC23).

Inter-Integrated Circuit
Bus Controller Module

Updated the Section 25.6.1.5, Generation of STOP.

Table A-3. Changes between revisions 2 and 3 (continued)

Chapter Description

Appendix A Revision History

MPC5646C Microcontroller Reference Manual, Rev. 5

1450 Freescale Semiconductor

LIN Controller Added Section 26.7.1.5, Overrun in Master Mode
Replaced “setting” with “resetting” in Section 26.12.1.1, LIN timeout mode
Replaced “resetting” with “setting” in Section 26.12.1.2, Output compare mode
Updated Section 26.7.1.5, Overrun and Section 26.7.2.7, Overrun
Added a Note after Section 26.10.2, LIN interrupt enable register (LINIER)
Deleted IFER[FACT] configuration table
Updated the field description of FACT in Table 281 (IFER field descriptions)

FlexCAN Updated the table title from “CAN Standard Compliant Bit Time Segment Settings" to
“Bosch CAN 2.0B standard compliant bit time segment settings”.

Modified the Note in Section 27.5.8.4, Protocol timing.
Removed Abort Feature from MCR register. Changed the 19 bit of MCR to value ‘0’.
Added a Note in RTR field description of Table 306, Message Buffer Structure field

description.
Reworded BCC field description in Section 27.4.4.1, Module Configuration Register

(MCR).
Deleted text “For MCUs supporting individual masks per MB” from Section 27.4.4.4, Rx

Global Mask (RXGMASK), Section 27.4.4.5, Rx 14 Mask (RX14MASK) and
Section 27.4.4.6, Rx 15 Mask (RX15MASK).

Deleted “individual Rx mask Per Message buffer" note in the Section 27.4.4.13, Rx
Individual Mask Registers (RXIMR0–RXIMR63).

Deleted "Matching Process" section (within Section 27.5, Functional description).
Deleted Abort Feature from the chapter.
Removed the Note after Section 27.2.2, FlexCAN module features.
Removed the Note in CLK_SRC field from Section 27.4.4.2, Control Register (CTRL).
Removed the Note in Section 27.5.8.4, Protocol timing that states about clock selection

may not be available if the MCU doesn't have a PLL.
Deleted WAK_MSK and WAK_SRC fields in MCR register and all instances that refer to

wake up interrupt in other sections of this chapter.

Fast Ethernet
Controller

Updated the fields names in Figure 30-6,Receive Descriptor Active Register (RDAR) and
Figure 30-7, Transmit Descriptor Active Register (TDAR)

Timers Added Note regarding Input frequency limitation related to IPM mode in
Section 31.3.4.1.1.5, Input Period Measurement (IPM) mode.

Analog to Digital
Converter

 Updated the Presampling Voltage from Vss_HV_ADC1 to VDD_HV_ADC1 when 01 is selected
as PREVAL value in Table 32-53, Presampling voltage selection based on PREVALx
fields.

Added a footnote in Figure 32-1, Implementation of ADC_0 and ADC_1.
Added footnote in Section 32.1.1, Device-specific pin configuration features.
Updated the field description of DSD in DSDR to “DSD x1/frequency of ADC clock.
Added footnote to Table 32-1, ADC channel mapping.
Added the description of Wait State of ADC.STATUS field as note in Table 32-6, Main

Status Register (MSR) field descriptions.
Updated Section 32.4.1.3, “Normal conversion operating modes
Added Note in Section 32.4.1.5, “Abort conversion
Updated Section 32.4.4.2, “CTU in trigger mode.
Added footnote to EOCTU, JEOC and EOC fields of Table 32-7, Interrupt Status Register

(ISR) field descriptions
Changed the write bits of ISR, WTISR_ADC_0, WTISR_ADC_1, AWORR0 (ADC_ 0 and

ADC_1), AWORR1- ADC_0, AWORR1- ADC_1, and AWORR2- ADC_1 to w1c.
Added Note in Section 32.4.4.2, CTU in trigger mode

Table A-3. Changes between revisions 2 and 3 (continued)

Chapter Description

Appendix A Revision History

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1451

NOTE
This revision history uses clickable cross-references for ease of navigation.
The numbers and titles in each cross-reference are relative to the latest
published release.

Cross Triggering Unit Updated the description of CLR_FLAG in CTU Event configuration register.
Added the NOTE at the end Section 33.4.1, Event Configuration Registers

(CTU_EVTCFGRx) (x = 0...63)

Flash Memory Updated the heading of section from ‘Data flash memory memory’ to ‘Data flash memory
Added Note in PFCR0 register.
Updated Table 35-34, Programming NVUSRO_1 and STCU fault grading parameters.
Updated the B1_RWSC field of PFCR1.
Removed WWSC field from PFCR0 and PFCR1.
Added Section 35.2.6, STCU programming using Flash.

Error Correction Status
Module

Updated the field description of RAM_WS in Table 715 (MUDCR field descriptions)

Self-Test Control Unit Updated the address offset of STCU MBIST Control Register to 0x0300 + ((k-1) × 0x4).
Updated Section 39.5.4, Self-Test sequence after reset trigger.

Cryptographic Services
Engine

Added Note after the Table 40-17, LOAD_KEY Command in Section 40.5.7, “Load Key.
Added Note in Section 40.5.19, “Debug Authorization.

JTAG Controller Added the list of TAP codes in Table 41-2, JTAG Instructions.

Nexus Development
Interface

Added another Note in Section 42.4.1.4, Programmable MCKO frequency stating about
MCKO_DIV value when Z0:Z4 frequency ratio is 1:2.

Removed “System clock locked status indication via MDO[0] following power-on reset”
feature from Section 42.5.2, NPC features.

Added Section 42.2.2.6, Multi mode Nexus Tap with figure.
Added missing section NPC_HNDSHK module.
Removed DDR_EN field from Port Configuration Register.
Change "2 message start/end out (MSEO) pins" with "1 message start/end out (MSEO)
pin" in Section 42.1, Introduction.
Replace MSEO[1:0] with MSEO in Figure 42-1,NDI functional block diagram.
Replace MSEO[1:0] with MSEO in Figure 42-2, NDI Implementation block diagram.
Replace "Two MSEO (Message start/end out) pins" with "One MSEO (Message start/end
out) pin" in Section 42.2.1, NDI Features.
Replace MSEO[1:0] with MSEO in Table 42-1, Signal Properties.
Replace "The MSEO pins are used" with "The MSEO pin is used" in Section 42.5.5.3.1,
Output Message Protocol.
Remove MSEO1 in Figure 42-15, Nexus3 Functional Block Diagram.
Replace MSEO[1:0] with MSEO in Section 42.6.4, Enabling Nexus3 Operation.
Remove NOTE "No single MSEO mode with be implemented, only dual mode" in

Section 42.9.1, Nexus3+ Auxiliary Port.
Updated Figure 42-9, MSEO Transfers. (replaced 2-bit transfer by 1-bit transfer).
Deleted NPC_HNDSHK module section as it was repeated.

Table A-3. Changes between revisions 2 and 3 (continued)

Chapter Description

Appendix A Revision History

MPC5646C Microcontroller Reference Manual, Rev. 5

1452 Freescale Semiconductor

A.4 Changes between revisions 2 and 2.1

A.5 Changes between revisions 1 and 2

Table A-4. Changes between revisions 2 and 2.1

Chapter Description

Power Control Unit Editorial change.

Nexus Development
Interface

Editorial change.

Table A-5. Changes between revisions 1 and 2

Chapter Description

Throughout Editorial changes and improvements (including reformatting of memory maps, register
figures, and field descriptions to a consistent format).

Rearranged the chapter order.

Preface Added this chapter.

Introduction Changed the chapter title (was “Overview”, is “Introduction”).
Renamed “Introduction” to “The MPC5646C microcontroller family”.
Renamed “Feature summary” to “Feature details”.
Moved the “Memory map” section to its own separate chapter.
Deleted the duplicate device-comparison tables.
In the device-comparison table, added the text “There is a configurable e200z0 system

clock divider for this purpose.” to footnote 3.
In the block diagram, changed PIT to PIT_RTI.
In the “Feature summary” section:
 • Changed “TLB” to “translation lookaside buffer (TLB)”.
 • Revised the “System clocks and clock generation” section.
 • Revised the SIUL section.
 • Revised the “On-chip SRAM” section.
 • Changed PIT to PIT_RTI.
 • Revised the DSPI section.
 • In the LINFlexD section, changed “Up to 10” to “10”.
 • In the LINFlexD section, changed “Configurable Break duration of up to 36 bit times” to

“Configurable break duration of up to 50 bit times”.
 • In the FlexCAN section, changed “Up to 6” to “6”.
 • Revised the PIT_RTI section.
 • In the STM section, deleted “Instantiated in the same CPU clock domain”.
 • Revised the RTC/API section.
 • In the NDI section, changed “bandwidth will be limited” to “bandwidth will be limited in

RPM”.
 • In the “System clocks and clock generation” section, changed “Programmable output

clock divider of system clock” to “Programmable divider for output clock”.
 • In the XBAR section, deleted “32-bit internal address bus for e200z0h, 64-bit internal

data bus for e200z4d”.
 • Revised the “Flash memory” section.
Added the “How to use the MPC5646C documents” and “Using the MPC5646C” sections.

Memory Map Added this chapter (content previously contained in the Overview chapter).
Changed “Test Sector Data Flash Array 0” to “Data flash memory array 0 test sector”.

Appendix A Revision History

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1453

Signal Description Changed WKUP to WKPU to match the block abbreviation.
Changed ANS to ADC0_S or ADC1_S (as appropriate).
Revised the footnotes in the “Functional port pin descriptions” table.
In the “System pin descriptions” table, added a footnote to the A pads regarding not using

IBE.
For ports PB[12–15], changed ANX to ADC0_X.
Revised the presentation of the ADC functions on the following ports:
 • PB[4–7]
 • PD[0–11]
In the “System pin descriptions” table, swapped the function description for EXTAL and

XTAL.
In the “Functional port pin descriptions” table, changed “ALT” to “AF”.
For port PA[0], added CAN1RX.
In the “Functional port pin descriptions” table, added a footnote about multiple inputs to the

“I/O direction” column.

Safety Migrated the chapter contents to the “Register Protection” chapter.

Microcontroller Boot Added this chapter.

Table A-5. Changes between revisions 1 and 2 (continued)

Chapter Description

Appendix A Revision History

MPC5646C Microcontroller Reference Manual, Rev. 5

1454 Freescale Semiconductor

Clock Description In the FXOSC_CTL figure, added footnotes to clarify the access to the OSCBYP and
I_OSC fields.

Deleted the “CMU register map” section.
Added notes for clarifying field access to the following registers
 • FXOSC_CTL
 • SXOSC_CTL
 • CMU_CSR
Added the following text above the peripheral clock divider setup table: “Dynamic switching

of the clock dividers for the peripherals takes effect immediately and affects the external
functions.”.

In the FIRC “Functional description” section, changed “provided by
RC_CTL[FIRC_STDBY] bit” to “provided by RC_CTL[FIRCON_STDBY] bit”.

In the SXOSC_CTL[OSCON] field description, changed “powerdown control” to “enable”.
In the SIRC “Functional description” section, revised the information of SIRC output

frequency trimming.
In the FIRC “Functional description” section, revised the information of FIRC output

frequency trimming.
Revised the reset values in the FMPLL CR.
Revised the SIRC_CTL[SIRCTRIM] field description.
Revised the FIRC_CTL[FIRCTRIM] field description.
Changed STANDBY0 to STANDBY.
In the FMPLL features, changed “SSCG” to “frequency modulation”.
In the FMPLL functional description, added the “FMPLL lookup table” table.
In the CMU introduction, changed “towards the mode” to “towards the MC_ME”.
In the CMU introduction, deleted the “CMU block diagram” figure.
In the FMPLL CR[S_LOCK] field description, changed the note (was “S_LOCK =1 signals

coarse lock. The system clock should not be changed to PLL output for at least 200 ms
after S_LOCK is set.”, is “SLOCK=1 indicates that the FMPLL has achieved coarse lock.
Fine lock is achieved 200 s after the FMPLL is enabled.”).

In the CMU Introduction section, changed “clock management unit” to MC_CGM.
In the FMPLL section, deleted the duplicate “FMPLL memory map” table.
In the “Clock gating” section, added a note about altering the e200z0 clock divider.
In the “Crystal clock monitor” section, added a note about the function of the XOSC monitor.
In the “FMPLL clock monitor” section, added a note about the function of the FMPLL

monitor.

Clock Generation
Module

Revised the reset values of the CGM_SC_DCn registers to show that the DEn fields reset
to 1and the DIVn fields reset to 0.

In the CGM_AC1_SC section, deleted “undivided: (unused)”.
Replaced “Z0” with “e200z0h”.
Revised the note in the CGM_Z0_DCR section.
Revised the CGM_FEC_DCR section.
Revised the CGM_FLASH_DCR section.
Revised the CGM_AC0_SC[SELCTL] field description.
Revised the “MC_CGM Auxiliary Clock 0 Generation Overview” figure.
In the “MC_CGM Auxiliary Clock 1 Generation Overview” figure, deleted TCK.
Changed the CGM_OCDS_SC[SELCTL] reset value (was 0b0001, is 0b0000).
Changed the CGM_AC1_DC0 reset value (was 0b0000_0001, is 0b1000_0000).
In the CGM_AC1_SC[SELCTL] field description, added a note about disabling the FlexRay

module.

Table A-5. Changes between revisions 1 and 2 (continued)

Chapter Description

Appendix A Revision History

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1455

Mode Entry Module Changed WARNING to CAUTION.
Changed the ME_HALT0_MC[CFLAON] reset value (was 0b10, is 0b11).
Revised the ME_GS field descriptions.
In the ME_STOP0_MC register figure, changed the FMPLLON, FXOSCON, FIRCON, and

SYSCLK fields to be read/write (were read-only).
In the ME_PS1 register, changed field name S_I2C_DMA to S_I2C.
Revised the ME_PSn[S_<periph>] field description.
Revised the Overview section.
Revised the Features section.
Revised the “Modes of operation” section.
Changed HALT0 to HALT.
Changed STOP0 to STOP.
Changed STANDBY0 to STANDBY.
In the “Register description” section, deleted “The bytes are ordered according to big

endian”.
Revised the text description of the ME_MCTL register.
Revised the ME_ME section.
In the ME_IS[I_IMODE] field description, added information about the events that can

cause invalid mode interrupts.
Changed “FIRC (16 MHz internal RC oscillator)” to “FIRC”.
In the ME_RESET_MC section, changed “configures system behavior during RESET

mode” to “details the mode configuration during reset”.
Extensive revisions throughout the “Functional description” section and subsections.
In the ME_GS[S_FMPLL] field description, added a note about coarse and fine lock.
Changed the ME_HALT_MC[MVRON] field to read-only (was read/write).
In the “Mode Configuration Registers (ME_<mode>_MC) field descriptions” table, added a

note to the MVRON field about clearing it in STOP or HALT modes.
In the “Mode Configuration Registers (ME_<mode>_MC) field descriptions” table, added a

note to the DFLAON field describing the dependence on CFLAON.
In the ME_<mode>_MC[DFLAON] field description, added a note about configuring reset

sources as long resets.
Added the “Peripheral control registers by peripheral” table.
In the “STANDBY Mode” section, added a note about enabling the WKPU clock.

Reset Generation
Module

In the RGM_STDBY[BOOT_FROM_BKP_RAM] field description, added “(when using the
e200z4d core from RAM in STANDBY0 ensure that VLE code is used, as described in
this section)” to the description of value 1.

Revised the RGM_DERD section to indicate that the register is always read-only.
Changed WARNING to CAUTION.
Changed “Z0” to “e200z0h”.
Changed “Z4” to “e200z4d”.
Revised the “Reset Sources” section.
Renamed the RGM_STDBY register (was “STANDBY0 Reset Sequence”, is “STANDBY

Reset Sequence”.
Revised the RGM_FEAR[AR_CMU_OLR] field description.
In the “IDLE Phase” section, changed “control of the system to the platform” to “control of

the chip to the core”.
Revised the “Boot Mode Capturing” section.
Revised the RGM_FES[F_CMU_FHL] field description.
Changed STANDBY0 to STANDBY.
Revised the RGM_FES[F_CORE] field description.
Changed “core reset” to “debug control core reset”.

Table A-5. Changes between revisions 1 and 2 (continued)

Chapter Description

Appendix A Revision History

MPC5646C Microcontroller Reference Manual, Rev. 5

1456 Freescale Semiconductor

Power Control Unit Revised the PCU_PCONF2..3 section.
Added the “DRUN, SAFE, TEST, RUN0..3, HALT0, and STOP0 Mode Transition” section.
In the “STANDBY0 Mode Transition” section, changed “STANDBY0 offers...” to “STANDBY

offers...”.
Revised the Overview section.
Changed HALT0 to HALT.
Changed STOP0 to STOP.
Changed STANDBY0 to STANDBY.
Revised the “RAM configurations in modes” table.
In the “STANDBY Mode Transition” section, added “Prior to standby entry, PCTL for WKPU

should be disabled”.

Voltage Regulators and
Power Supplies

Changed STANDBY0 to STANDBY.
Revised the last sentence in the “High power regulator (HPREG)” section.
Revised the “Memory map” section.

Wakeup Unit Changed the last source for interrupt vector 3 (was PJ11, is PJ13).
In the Overview section:
 • Deleted EIRQn.
 • Replaced the list of wakeup lines with a table.
 • Added the note “In HALT mode and in STOP mode where the system clock is still

enabled, an external interrupt (EIRQ) or any peripheral interrupt can be used to wake the
device up”.

Revised the reset value of NCR.
Moved the note in the “External signal description” section to the Overview section, and

deleted the “External signal description” section.
In the note in the “Memory map” section, changed “If supported and enabled by the SoC”

to “If SSCM_ERROR[RAE] is enabled”.
In the WIFER section, deleted “The number of wakeups ... 1 and 18”.
In the “WKPU memory map” table, added the module base address.
Revised the NCR section.

Real Time Clock /
Autonomous Periodic

Interrupt

Changed the reset state of bit 0 of RTC Status Register from a 1 to a 0.
Change the reset state of bit 0 of RTC Count Register for a 1 to a 0..
Added notes in FEATURES list to clarify clock sources and their divider chains.
Corrected bit ordering issues in RTC/API Clock diagram.
Deleted section Device-specific information.
Deleted referenced to _input isolation” in section on Modes of Operation.
Updated operation of RTC counter in Debug Mode.
Changed the reset state of the CNT EN bit in the RTCC register to a logic 0.
Updated operation of FRZEN bit and APIVAL bit in RTCC register field descriptions.
Changed all Reserved bits in RTC Status Register and RTC Counter Register to a logic 0.
Updated descriptions in RTC functional description for clarity.
In the “Functional mode” section, changed “bus interface is disabled” to “bus interface is

disabled and no configuration changes are permitted”.
In the “RTC functional description” section, deleted “The RTCC[RTCVAL] field may only be

updated when the RTCC[CNTEN] bit is cleared to disable the counter”.
In the “RTC/API memory map” table, added the module base address.

CAN Sampler Deleted the duplicate register map.
In the “CAN Sampler memory map” table, added the module base address.
In the “Internal multiplexer correspondence” table, revised the entries in the “Rx selected”

column.

Table A-5. Changes between revisions 1 and 2 (continued)

Chapter Description

Appendix A Revision History

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1457

Enhanced Direct
Memory Access

In the “TCDn field descriptions”, revised the INT_HALF description.
In the EDMA_CR section, added the GRP1PRI field.
In the “eDMA memory map” table, added the module base address.

eDMA Channel
Multiplexer

Changed PIT to PIT_RTI.
Changed the chapter title (was “DMA Channel Multiplexer”, is “eDMA Channel Multiplexer”)

and changed “DMA” to “eDMA” as appropriate to match the title.
Revised the chapter to show that periodic triggering mode is available for channel-0 to

channel-3 (not for channel 1-4).
In the CHCONFIG register figure, revised the bit order (was 7..0, is 0..7) to match

Power Architecture convention.
In the “DMA channel mapping” table, changed the entries for DMA_MUX channels 19–22

(were EMIOS1..., are EMIOS0...).
In the “DMA_MUX memory map” table, added the module base address.

Interrupt Controller Changed the chapter title (was “Interrupts and Interrupt Controller”, is “Interrupt
Controller”).

Revised the INTC_IACKR_PRCn sections to illustrate the registers’ dependence on
INTC_MCR[VTES] more clearly.

In the INTC_EOIR_PRC1 figure, changed the offset (was 0x0018, is 0x001C).
Changed WKUP to WKPU.
Changed PIT to PIT_RTI.
In the “INTC memory map” table, added the module base address.

Crossbar Switch Changed the chapter title (was “Multi-Layer AHB Crossbar Switch”, is “Crossbar Switch).
In the “Master/slave mappings” table, changed “Nexus3” to “Nexus3+”.
Deleted content for Alternate Master Priority Registers.
Deleted content for Alternate Slave General Purpose Control Registers.
In the “XBAR block diagram” figure, changed “Cold” to “Code”.
Added content to the “Priority elevation” section.
In the Overview section, changed “up to eight simultaneous connections” to “up to 5

simultaneous connections”.
In the “XBAR block diagram” figure, added master and slave numbers.
In the “Limitations” section, deleted the paragraph about port compliance.
In the MPR figure, added reset values.
Deleted the “XBAR Master Port Block Diagram” figure.
Deleted the “XBAR Slave Port Block Diagram” figure.
Revised the “Features” section.
In the Overview section, deleted “generic multi-layer AHB”.
Revised the “General operation” section.
Revised the “Register summary” section.
Revised the MPRn section.
Revised the SGPCRn section.
Revised the MGPCRn section.
Revised the “Coherency” section.
Revised the “Fixed priority operation” section.
In the “Priority assignment” section, changed “(MPR or AMPR)” to “(MPR)”.
Deleted the “Context switching” section.
In the “XBAR memory map” table, added the module base address.

Table A-5. Changes between revisions 1 and 2 (continued)

Chapter Description

Appendix A Revision History

MPC5646C Microcontroller Reference Manual, Rev. 5

1458 Freescale Semiconductor

Memory Protection
Unit

In the MPU_CESR[SPERR] field description, changed:
 • SPERR[0] to SPERR[7]
 • SPERR[1] to SPERR[6]
 • SPERR[2] to SPERR[5]
 • SPERR[3] to SPERR[4]
 • SPERR4] to SPERR[3]
In the Features section, changed the entry for access control definitions.
In the “Memory map and register description” section, changed “up to 3 AHB slave ports”

to “up to 5 AHB slave ports”.
In the “MPU memory map” table, added the module base address.

Semaphores Changed “Z0” to “e200z0h”.
Changed “Z4” to “e200z4d”.
Deleted the note in the Features section.
In the “Semaphores memory map” table, added the module base address.

Performance
Optimization

Added this chapter.

System Integration Unit
Lite

Added the “PISR / ISPx muxing configuration” table.
Added the steps to select IPSx Mux.
Changed “WARNING” to “CAUTION”.
Revised the PCRx[WPE] and PCRx[WPS] field descriptions.
Updated SUIL memory map to reflect byte addressing.
Corrected IRE in IRER Register to EIRE.
In the “PCR bit implementation by pad type” table, created a standalone entry for pad type

S (with the SRC field reserved).
Deleted the MIDR1[CSP] field (is reserved).
In the “Peripheral input pin selection” table, added an entry for PSMI0_3 > PADSEL0 >

0x500 (101, PCR[0]).
Rewrote the entire PISR section.
Revised the “MIDR2 field descriptions” table to show how to calculate total flash memory

size.
In the PSMI section, revised the introductory text.
In the “Peripheral input pin selection” table, revised the entry for PSMI48_51 > PADSEL50

> 001 (was PCR[48], is PCR[148]).
In the “SIUL memory map” table, added the module base address.

Table A-5. Changes between revisions 1 and 2 (continued)

Chapter Description

Appendix A Revision History

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1459

Inter-Integrated Circuit
Bus Controller Module

Added a note below Memory Map that I2C registers are accessible in the Supervisor mode.
Added DMA Application Information.
In the IBCR section, changed “MS/SL” to “MSSL” and “Tx/Rx” to “TXRX” to ensure

compliance with field name convention.
In the IBSR figure, changed the IBAL and IBIF fields to w1c.
In the IBIC[BIIE] field description, added a note about when this bit can be set.
In the “Interrupt description” section, changed “(TCF bit set - To be checked)” to “(a Byte

Transfer interrupt occurs whenever the TCF bit changes from 0 to 1, that is, Transfer
Under Progress to Transfer Complete state)”.

Revised the last paragraph of the Overview section.
In the IBCR[MDIS] field description, added “Status register bits (IBSR) are not valid when

module is disabled”.
In the IBSR[RXAK] field description, added “This bit is valid only after transfer is complete”.
In the “Interrupt description” section, revised the entry for “Byte transfer condition”.
In the “Initialization sequence” section, changed IBCR[IBDIS] to IBCR[MDIS].
Revised the “Post-transfer software response” section.
Added the “Transmit/receive sequence” section.
In the “Generation of STOP” section, in the code sample, changed “bit 1” to “bit 5”.
In the “I2C memory map” table, added the module base address.

Table A-5. Changes between revisions 1 and 2 (continued)

Chapter Description

Appendix A Revision History

MPC5646C Microcontroller Reference Manual, Rev. 5

1460 Freescale Semiconductor

LIN Controller
(LINFlexD)

In the register figures:
 • Added “Access: User read/write” to all register figures.
 • Updated instances of “These fields are writable only in Initialization mode.” to “These

fields are writable only in Initialization mode (LINCR1[INIT] = 1).”.
In the LINESR figure, changed the footnote “If LINTCSR[LTOM] is set, these fields are

read-only.“ to read “If LINTCSR[LTOM] = 1, these fields are read-only.“
In the LINTOCR figure, added the footnote “The HTO field can only be written in slave

mode, LINCR1[MME] = 1“.
Added missing content to the IFMI and IFMR register figures.
In the “Filter submodes” section, changed “eight IFCR registers” to “16 IFCRs” and “eight

identifiers” to “16 identifiers”.
In the “9-bit data frame” section, changed “The 8-bit UART data frame” to “The 9-bit UART

data frame” and “sum of the 7 data bits” to “sum of the 8 data bits”.
Added missing content to the LINTCSR and BIDR register figures.
Revised the IFER section.
Added content to the “8-bit timeout counter” section.
Added the “Error calculation for programmed baud rates” table.
In the LINCR1[MME] field description, changed “Master and Slave mode enable” to “Slave

mode enable”.
In the “LIN mode features” section, changed “with as clock source” to “with FIRC as clock

source”.
Revised the “Memory map and register description” section to show the differences in

register availability on the various LINFlexD modules on this chip.
In the LINCR1[BF] field description, changed “this bit is reserved” to “this bit is reserved and

always reads 1”.
In the DMATXE register, changed bits 16–30 to reserved.
In the GCR[SR] field description, added “This field should be cleared by software to perform

further operations (the field is not cleared by hardware)”.
Changed “kbps” to “Kbit/s”.
In the “TCD chain memory map (master node, TX mode)” figure, changed the second

instance of “Extended Frame (n+2)” to “Extended Frame (n+3)”.
In the “TCD chain memory map (master node, RX mode)” figure, changed the second

instance of “Extended Frame (n+1)” to “Extended Frame (n+2)”.
In the “TCD chain memory map (slave node, TX mode)” figure, changed the second

instance of “Extended Frame (n+1)” to “Extended Frame (n+2)”.
In the “TCD chain memory map (slave node, RX mode)” figure, changed the second

instance of “Extended Frame (n+1)” to “Extended Frame (n+2)”.

FlexCAN Changed the chapter title (was “FlexCAN module”, is “FlexCAN”).
Added a note in the description of CLK_SRC bit of the Control Register (CTRL) description.
Deleted references to Stop mode (not supported on this chip).
In the CTRL field descriptions, added “0” and “1” to indicate what the bit values of 0 and 1

mean, respectively.
In the “Modes of operation” section, revised the description of Module Disable mode.
Revised the “Module Disable mode” section.
In the “FlexCAN memory map” table:
 • Revised the addresses for RXIMR0–63.
 • Added the module base addresses.

Table A-5. Changes between revisions 1 and 2 (continued)

Chapter Description

Appendix A Revision History

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1461

Deserial Serial
Peripheral Interface

In the “DSPI configuration” table, changed “No of CS supported” for DSPI 5 (was 2, is 3).
Deleted references to DSPI_HCR.
In the DSPI_CTAR section, deleted “The number of CTAR registers is parameterized in the

RTL and can be from two to six registers.”.
In the DSPI_CTARn[LSBFE] field description, deleted “When operating in TSB

configuration, this bit should be set to be compliant to MSC specification.”.
In the “Continuous selection format” section, added a note about filling the TX FIFO.
In the “Continuous serial communications clock” section, revised the rules.
In the DSPI_TCR, renamed the register field (was SPI_TCNT, is TCNT).
In the DSPI_RSER, removed underscores from field names.
In the DSPI_DSICR, changed FMSZ[4] to FMSZ4.
Deleted references to “SoC specific” content.
In the memory map table, added the module base addresses.

FlexRay
Communication

Controller

In the “Channel assignment description” table, changed the entries for CHA=1 / CHB=1 /
dynamic segment (are “reserved; functionality not guaranteed”).

In the FR_MCR[CLKSEL] field description, added a note about disabling the FlexRay
module before changing clock sources.

In the “FlexRay memory map” table, added the module base address.

Fast Ethernet
Controller

Added the ECR figure.
In the “FEC register map” table, added the module base address.

Timers Added this chapter (incorporates content from STM, eMIOS, and PIT_RTI chapters).

Analog-to-Digital
Converter

Changed PIT to PIT_RTI.
Added separate Channel Watchdog Select Registers for all ADC0 and ADC1 channels.
Added the “ADC channel mapping” table.
In the “Device-specific implementation” section, added the “ADC_0 mux control signal

availability” table.
In the following sections, changed “32 to 60 (standard channels)” to “32 to 63 (standard

channels)” and added ADC_0/ADC_1 designations:
 • CEOCFR
 • CIMR
 • DMAR
 • Threshold Register
 • PSR
 • CTR
 • NCMR
 • JCMR
 • Data registers
 • CWSELR
 • AWORR
Revised the CDR figure for ADC_1.
Added meaningful descriptions to the CTR[INPCMP] field description.
In the NCMR section, added a note about internal channel priority.
Revised the “ADC_0 mux control signal availability” table.
In the Introduction section, added a note about configuring GPIOs.

Cross Triggering Unit Removed remaining references to CTU_CSR (not implemented on this chip).
In the “CTU memory map” table, changed the end address of the reserved space (was

0x002C, is 0x002F).
Changed PIT to PIT_RTI.
In the “CTU memory map” table, added the module base address.

Table A-5. Changes between revisions 1 and 2 (continued)

Chapter Description

Appendix A Revision History

MPC5646C Microcontroller Reference Manual, Rev. 5

1462 Freescale Semiconductor

Flash Memory Updated CF and DF feature list to clarify RWW operation
Shadow sector structure table: Removed NVSRC.
Corrected address offsets of many CF registers.
Corrected Flash multi module sectorization table.
Deleted the duplicate register maps.
Deleted references to “optimized” memory.
Revised the NVUSRO definition to show that the WATCHDOG_EN bit is bit 0 (not 31), the

PAD_3V5V bits are bits 2–3 (not 29–28), and the STCU_EN bit is bit 21 (not 10).
Revised the code flash memory MCR field descriptions.
Revised the code flash memory LML field descriptions.
Revised the Platform Flash Controller Introduction, Overview, and Features sections.
Revised the Platform Flash Controller “External Signal Descriptions” section.
In the “Memory map and register description” section, in the code examples, changed

“_bfen” to “_bfe”.
Revised the PFCR0 section.
Revised the PFCR1 section.
Changed “Bank 0 and 2 Page Read Buffers and Prefetch Operation” to “Code flash memory

bank 0 and 2 page read buffers and prefetch operation”.
Changed “Buffer Allocation” to “Code flash memory buffer allocation”.
In the NVPWD1 section, added a note about reading the RCHW.
In the NVUSRO[PAD3V5V[0]] field description, changed VDD_HV_A to VDD_HV_B.
In the NVUSRO[PAD3V5V[1]] field description, changed VDD_HV_B to VDD_HV_A.
In the PFCR1[B1_RWSC] field description, deleted “The integrator ... results”.
In the code flash memory MCR section, added content about Stall/Abort-While-Write.
Deleted references to “SoC specification”.
In the PFCR0[B02_RWWC] field description, changed the entry for 0-- (is “This state should

be avoided”).
In the PFCR1[B1_RWWC] field description, added an entry for 0--.
Changed “Nonvolatile System Censorship Information (NVSCI)” to “Nonvolatile System

Censorship Control (NVSCC)”.
In the NVUSRO figure, changed bit 2 from PAD_3V5V[1] to PAD_3V5V[0] and bit 3 from

PAD_3V5V[0] to PAD_3V5V[1].
In the PFCR0[B02_RWWC] field description, added “Setting to this state can cause

unpredictable operation” to the description for 0--.
In the PFCR1 section, added a note about not updating these registers directly.

Static RAM In the Introduction section, changed “retain 8 KB, 64 KB, or 96 KB” to “retain 8 KB, 40 KB,
64 KB, or 96 KB”.

Register Protection Added this chapter.

Software Watchdog
Timer

In the Features section, added “The SWT is clocked by the SIRC”.
In the “SWT memory map” table, added the module base address.

Table A-5. Changes between revisions 1 and 2 (continued)

Chapter Description

Appendix A Revision History

MPC5646C Microcontroller Reference Manual, Rev. 5

Freescale Semiconductor 1463

Error Correction Status
Module

Removed XBAR_ARB bit from the MUDCR register.
In the register descriptions, revised the names as needed to match the names in the

memory map.
In the PREMR section, added text on where to find bus master IDs.
Aligned register names in the descriptions and the memory map.
Deleted the second paragraph in the Introduction section.
Deleted the last bullet (about spp_ips_reg_protection) in the Features section.
In the PREAT field descriptions, changed “AMBA-AHB” to “XBAR”.
Renamed the “Spp_ips_reg_protection” section to “Register protection” and revised the

section.
Renamed IOPMC to IMC.
Revised the Introduction section.
Revised the Features section.
Revised the “ECC registers” section.
In the “ECSM memory map” table, fixed the reserved entry at 0x0C (ends at 0x1E, not

0x1F).
Revised the EEGR[ERRBIT] field description.
In the “ECSM memory map” table, added the module base address.

Self-Test Control Unit In the “STCU main features” section, added “The STCU cannot be started by software.”
In the “STCU register map” table, added the module base address.
Deleted the STCU_RUN register and the associated reference in the “Self-Test sequence

after reset trigger” section.

Cryptographic Services
Engine

In the “CSE memory map” table, added the module base address.

JTAG Controller Removed references to JCOMP.
Revised the “JTAG STL (IEEE 1149.1) block diagram” figure.

Nexus Development
Interface

Added the “NPC_HNDSHK module” section.
Changed “Z4d” to “e200z4d” and “Z0h” to “e200z0h” in NDI Functional Block Diagram.
In the PCR[NEXCFG] field description, deleted “Function is SoC specific”.
Changed STANDBY0 to STANDBY.
Changed HALT0 to HALT.
Changed STOP0 to STOP.
Deleted references to the emulation package.
In the DID[PIN] field description, changed 0x248 to 0x249.
In the “PCR field descriptions” table, added a footnote to LP_DBG_EN and LPn_SYN about

TCK frequency requirements.

Boot Assist Module Deleted this chapter (relevant content is now represented by the “Microcontroller Boot”
chapter).

Enhanced Modular IO
Subsystem

Deleted this chapter (relevant content is now represented by the “Timers” chapter).

Periodic Interrupt Timer
with Real-Time

Interrupt

Deleted this chapter (relevant content is now represented by the “Timers” chapter).

System Status and
Configuration Module

Deleted this chapter (relevant content is now represented by the “Microcontroller Boot”
chapter).

Table A-5. Changes between revisions 1 and 2 (continued)

Chapter Description

Appendix A Revision History

MPC5646C Microcontroller Reference Manual, Rev. 5

1464 Freescale Semiconductor

Appendix: Registers
Under Protection

Deleted this appendix (relevant content is now represented by the “Register Protection”
chapter).

Appendix: Revision
History

Added this appendix.

Table A-5. Changes between revisions 1 and 2 (continued)

Chapter Description

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd. Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. The described product contains a PowerPC processor
core. The PowerPC name is a trademark of IBM Corp. and used under license.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2009-2012. All rights reserved.

MPC5646CRM
Rev. 5
11/2013

	Chapter 1 Preface
	1.1 Overview
	1.2 Audience
	1.3 Guide to this reference manual
	1.4 Register description conventions
	1.5 References
	1.6 How to use the MPC5646C documents
	1.6.1 The MPC5646C document set
	1.6.2 Reference manual content

	1.7 Using the MPC5646C
	1.7.1 Hardware design
	1.7.2 Input/output pins
	1.7.3 Software design
	1.7.4 Other features

	Chapter 2 Introduction
	2.1 The MPC5646C microcontroller family
	2.2 MPC5646C device comparison
	2.3 Device block diagram
	2.4 Feature summary
	2.4.1 High-performance e200z4d core processor
	2.4.2 e200z0h core processor
	2.4.3 Memory Built-In Self Test (MBIST)
	2.4.4 Enhanced Direct Memory Access Controller (eDMA)
	2.4.5 Error Correction Status Module (ECSM)
	2.4.6 Crossbar Switch (XBAR)
	2.4.7 Memory Protection Unit (MPU)
	2.4.8 Interrupt Controller (INTC)
	2.4.9 System clocks and clock generation
	2.4.10 System Integration Unit Lite (SIUL)
	2.4.11 Software Watchdog Timer (SWT)
	2.4.12 Flash memory
	2.4.13 On-chip SRAM
	2.4.14 Boot Assist Module (BAM)
	2.4.15 System Status and Configuration Module (SSCM)
	2.4.16 Enhanced Modular Input Output System (eMIOS)
	2.4.17 Analog-to-Digital Converter (ADC)
	2.4.18 Cross Triggering Unit (CTU)
	2.4.19 Deserial Serial Peripheral Interface (DSPI)
	2.4.20 Serial communication interface (LINFlexD)
	2.4.21 Controller Area Network (FlexCAN)
	2.4.22 Fast Ethernet Controller (FEC)
	2.4.23 Cryptographic Services Engine (CSE)
	2.4.24 Dual-Channel FlexRay Controller
	2.4.25 Inter-IC Communications (I2C) module
	2.4.26 Periodic Interrupt Timer with Real-Time Interrupt (PIT_RTI)
	2.4.27 System Timer Module (STM)
	2.4.28 Real Time Counter/ Autonomous Periodic Interrupt (RTC/API)
	2.4.29 Nexus Development Interface (NDI)
	2.4.30 JTAG controller (JTAGC)
	2.4.31 On-chip voltage regulator (VREG)

	Chapter 3 Memory Map
	Chapter 4 Signal Description
	4.1 Package pinouts
	4.2 Pad configuration during reset phases
	4.3 Pad configuration during standby mode exit
	4.4 Voltage supply pins
	4.5 Pad types
	4.6 System pins
	4.7 Functional ports
	4.8 Nexus 3+ pins

	Chapter 5 Microcontroller Boot
	5.1 Boot mechanism
	5.1.1 Flash memory boot
	5.1.1.1 Static mode
	5.1.1.2 Alternate boot sectors

	5.1.2 Serial boot mode
	5.1.3 Censorship
	5.1.3.1 Censorship password registers (NVPWD0 and NVPWD1)
	5.1.3.2 Nonvolatile System Censorship Control registers (NVSCC0 and NVSCC1)
	5.1.3.3 Censorship configuration

	5.2 Boot Assist Module (BAM)
	5.2.1 BAM software flow
	5.2.1.1 BAM resources
	5.2.1.2 Download and execute the new code
	5.2.1.3 Censorship mode detection and serial password validation
	5.2.1.3.1 Censorship disabled (private or public passwords):
	5.2.1.3.2 Censorship enabled (private password)

	5.2.1.4 Download start address, VLE bit and code size
	5.2.1.5 Download data
	5.2.1.6 Execute code

	5.2.2 LINFlexD (RS232) boot
	5.2.2.1 Configuration
	5.2.2.2 Protocol

	5.2.3 FlexCAN boot
	5.2.3.1 Configuration
	5.2.3.2 Protocol

	5.3 System Status and Configuration Module (SSCM)
	5.3.1 Introduction
	5.3.2 Features
	5.3.3 Modes of operation
	5.3.4 Memory map and register description
	5.3.4.1 System Status Register (SSCM_STATUS)
	5.3.4.2 System Memory Configuration Register (SSCM_MEMCONFIG)
	5.3.4.3 Error Configuration (SSCM_ERROR)
	5.3.4.4 Debug Status Port Register (SSCM_DEBUGPORT)
	5.3.4.5 Password comparison Registers
	5.3.4.6 DPM Boot Register (SSCM_DPMBOOT)
	5.3.4.7 DPM Boot Key Register (SSCM_DPMKEY)
	5.3.4.8 User Option Status Register (SSCM_UOPS)
	5.3.4.9 Processor Start Address Register (SSCM_PSA)
	5.3.4.10 Code Length Register (SSCM_CLEN)

	--- Clocks and power ---
	Chapter 6 Clock Description
	6.1 Clock architecture
	6.2 Clock gating
	6.3 Fast external crystal oscillator (FXOSC) digital interface
	6.3.1 Main features
	6.3.2 Functional description
	6.3.3 Register description

	6.4 Slow external crystal oscillator (SXOSC) digital interface
	6.4.1 Introduction
	6.4.2 Main features
	6.4.3 Functional description
	6.4.4 Register description

	6.5 Slow internal RC oscillator (SIRC) digital interface
	6.5.1 Introduction
	6.5.2 Functional description
	6.5.3 Register description

	6.6 Fast internal RC oscillator (FIRC) digital interface
	6.6.1 Introduction
	6.6.2 Functional description
	6.6.3 Register description

	6.7 Frequency-modulated phase-locked loop (FMPLL)
	6.7.1 Introduction
	6.7.2 Overview
	6.7.3 Features
	6.7.4 Memory map
	6.7.5 Register description
	6.7.5.1 Control Register (CR)
	6.7.5.2 Modulation Register (MR)

	6.7.6 Functional description
	6.7.6.1 Normal mode
	6.7.6.2 Progressive clock switching
	6.7.6.3 Normal mode with frequency modulation
	6.7.6.4 Powerdown mode

	6.7.7 Recommendations

	6.8 Clock monitor unit (CMU)
	6.8.1 Introduction
	6.8.2 Main features
	6.8.3 Block diagram
	6.8.4 Functional description
	6.8.4.1 Crystal clock monitor
	6.8.4.2 FMPLL clock monitor
	6.8.4.3 Frequency meter

	6.8.5 Memory map and register description
	6.8.5.1 Control Status Register (CMU_CSR)
	6.8.5.2 Frequency Display Register (CMU_FDR)
	6.8.5.3 High Frequency Reference Register FMPLL (CMU_HFREFR)
	6.8.5.4 Low Frequency Reference Register FMPLL (CMU_LFREFR)
	6.8.5.5 Interrupt Status Register (CMU_ISR)
	6.8.5.6 Measurement Duration Register (CMU_MDR)

	Chapter 7 Clock Generation Module (MC_CGM)
	7.1 Introduction
	7.2 Features
	7.3 External signal description
	7.4 Memory Map and Register Definition
	7.4.1 Register descriptions
	7.4.1.1 e200z0h Core Clock Divider Configuration Register (CGM_Z0_DCR)
	7.4.1.2 FEC Clock Divider Configuration Register (CGM_FEC_DCR)
	7.4.1.3 Flash Clock Divider Configuration Register (CGM_Flash_DCR)
	7.4.1.4 Output Clock Enable Register (CGM_OC_EN)
	7.4.1.5 Output Clock Division Select Register (CGM_OCDS_SC)
	7.4.1.6 System Clock Select Status Register (CGM_SC_SS)
	7.4.1.7 System Clock Divider 0 Configuration Register (CGM_SC_DC0)
	7.4.1.8 System Clock Divider 1 Configuration Register (CGM_SC_DC1)
	7.4.1.9 System Clock Divider 2 Configuration Register (CGM_SC_DC2)
	7.4.1.10 Auxiliary Clock 0 Select Control Register (CGM_AC0_SC)
	7.4.1.11 Auxiliary Clock 1 Select Control Register (CGM_AC1_SC)
	7.4.1.12 Auxiliary Clock 1 Divider 0 Configuration Register (CGM_AC1_DC0)

	7.5 Functional description
	7.5.1 System clock generation
	7.5.1.1 System clock source selection
	7.5.1.2 System clock disable
	7.5.1.3 System clock dividers

	7.5.2 Auxiliary clock generation
	7.5.2.1 Auxiliary Clock Source Selection
	7.5.2.2 Auxiliary Clock Dividers

	7.5.3 Dividers functional description
	7.5.4 Output Clock Multiplexing
	7.5.5 Output Clock Division Selection

	Chapter 8 Mode Entry Module (MC_ME)
	8.1 Introduction
	8.1.1 Overview
	8.1.2 Features
	8.1.3 Modes of operation

	8.2 External signal description
	8.3 Memory map and register definition
	8.3.1 Memory map
	8.3.2 Register description
	8.3.2.1 Global Status Register (ME_GS)
	8.3.2.2 Mode Control Register (ME_MCTL)
	8.3.2.3 Mode Enable Register (ME_ME)
	8.3.2.4 Interrupt Status Register (ME_IS)
	8.3.2.5 Interrupt Mask Register (ME_IM)
	8.3.2.6 Invalid Mode Transition Status Register (ME_IMTS)
	8.3.2.7 Debug Mode Transition Status Register (ME_DMTS)
	8.3.2.8 RESET Mode Configuration Register (ME_RESET_MC)
	8.3.2.9 TEST Mode Configuration Register (ME_TEST_MC)
	8.3.2.10 SAFE Mode Configuration Register (ME_SAFE_MC)
	8.3.2.11 DRUN Mode Configuration Register (ME_DRUN_MC)
	8.3.2.12 RUN0…3 Mode Configuration Registers (ME_RUN0…3_MC)
	8.3.2.13 HALT Mode Configuration Register (ME_HALT_MC)
	8.3.2.14 STOP Mode Configuration Register (ME_STOP_MC)
	8.3.2.15 STANDBY Mode Configuration Register (ME_STANDBY_MC)
	8.3.2.16 Peripheral Status Register 0 (ME_PS0)
	8.3.2.17 Peripheral Status Register 1 (ME_PS1)
	8.3.2.18 Peripheral Status Register 2 (ME_PS2)
	8.3.2.19 Peripheral Status Register 3 (ME_PS3)
	8.3.2.20 Run Peripheral Configuration Registers (ME_RUN_PC0…7)
	8.3.2.21 Low-Power Peripheral Configuration Registers (ME_LP_PC0…7)
	8.3.2.22 Peripheral Control Registers (ME_PCTLn)

	8.4 Functional description
	8.4.1 Mode transition request
	8.4.2 Mode details
	8.4.2.1 RESET mode
	8.4.2.2 DRUN mode
	8.4.2.3 SAFE mode
	8.4.2.4 TEST mode
	8.4.2.5 RUN0…3 modes
	8.4.2.6 HALT mode
	8.4.2.7 STOP mode
	8.4.2.8 STANDBY mode

	8.4.3 Mode transition process
	8.4.3.1 Target mode request
	8.4.3.2 Target mode configuration loading
	8.4.3.3 Peripheral clocks disable
	8.4.3.4 Processor low-power mode entry
	8.4.3.5 Processor and System Memory Clock Disable
	8.4.3.6 Clock Sources (Main Voltage Regulator Independent) Switch-On
	8.4.3.7 Main Voltage Regulator Switch-On
	8.4.3.8 Flash memory modules switch-on
	8.4.3.9 Clock Sources (Main Voltage Regulator Dependent) Switch-On
	8.4.3.10 Pad Outputs-On
	8.4.3.11 Peripheral clocks enable
	8.4.3.12 Processor and Memory Clock Enable
	8.4.3.13 Processor low-power mode exit
	8.4.3.14 System clock switching
	8.4.3.15 Power Domain #2…3 Switch-Off
	8.4.3.16 Pad Switch-Off
	8.4.3.17 Clock Sources Switch-Off
	8.4.3.18 Flash Switch-Off
	8.4.3.19 Main Voltage Regulator Switch-Off
	8.4.3.20 Current mode update

	8.4.4 Protection of mode configuration registers
	8.4.5 Mode transition interrupts
	8.4.5.1 Invalid mode configuration interrupt
	8.4.5.2 Invalid mode transition interrupt
	8.4.5.3 SAFE mode transition interrupt
	8.4.5.4 Mode transition complete interrupt

	8.4.6 Peripheral clock gating
	8.4.7 Application example

	Chapter 9 Reset Generation Module (MC_RGM)
	9.1 Introduction
	9.1.1 Overview
	9.1.2 Features
	9.1.3 Reset sources

	9.2 External signal description
	9.3 Memory map and register definition
	9.3.1 Register descriptions
	9.3.1.1 Functional Event Status Register (RGM_FES)
	9.3.1.2 Destructive Event Status Register (RGM_DES)
	9.3.1.3 Functional Event Reset Disable Register (RGM_FERD)
	9.3.1.4 Destructive Event Reset Disable Register (RGM_DERD)
	9.3.1.5 Functional Event Alternate Request Register (RGM_FEAR)
	9.3.1.6 Functional Event Short Sequence Register (RGM_FESS)
	9.3.1.7 STANDBY Reset Sequence Register (RGM_STDBY)
	9.3.1.8 Functional Bidirectional Reset Enable Register (RGM_FBRE)

	9.4 Functional description
	9.4.1 Reset state machine
	9.4.1.1 PHASE0 phase
	9.4.1.2 PHASE1 phase
	9.4.1.3 PHASE2 phase
	9.4.1.4 PHASE3 phase
	9.4.1.5 IDLE phase

	9.4.2 Destructive Resets
	9.4.3 External Reset
	9.4.4 Functional Resets
	9.4.5 STANDBY entry sequence
	9.4.6 Alternate event generation
	9.4.7 Boot mode capturing

	Chapter 10 Power Control Unit (MC_PCU)
	10.1 Introduction
	10.1.1 Overview
	10.1.2 Features

	10.2 External Signal Description
	10.3 Memory Map and Register Definition
	10.3.1 Memory Map
	10.3.2 Register descriptions
	10.3.2.1 Power Domain #0 Configuration Register (PCU_PCONF0)
	10.3.2.2 Power Domain #1 Configuration Register (PCU_PCONF1)
	10.3.2.3 Power Domain #2…3 Configuration Registers (PCU_PCONF2…3)
	10.3.2.4 Power Domain Status Register (PCU_PSTAT)

	10.4 Functional description
	10.4.1 General
	10.4.2 Reset / Power-On Reset
	10.4.3 MC_PCU configuration
	10.4.4 Mode transitions
	10.4.4.1 DRUN, SAFE, TEST, RUN0…3, HALT, and STOP mode transition
	10.4.4.2 STANDBY Mode transition
	10.4.4.3 Power Saving for Memories During STANDBY Mode

	10.5 Initialization information
	10.6 Application information
	10.6.1 STANDBY mode considerations

	Chapter 11 Voltage Regulators and Power Supplies
	11.1 Voltage regulators
	11.1.1 High power regulator (HPREG)
	11.1.2 Low power regulator (LPREG)
	11.1.3 LVDs and POR
	11.1.4 VREG digital interface
	11.1.4.1 Features

	11.1.5 Memory map
	11.1.6 Register description
	11.1.6.1 Voltage Regulator Control Register (VREG_CTL)
	11.1.6.2 Voltage Regulator (VREG_PDMODE)

	11.2 Power supply strategy
	11.3 Power domain organization

	Chapter 12 Wakeup Unit (WKPU)
	12.1 Overview
	12.2 Features
	12.3 Memory map and register description
	12.3.1 Memory map
	12.3.2 Register description
	12.3.2.1 NMI Status Flag Register (NSR)
	12.3.2.2 NMI Configuration Register (NCR)
	12.3.2.3 Wakeup/Interrupt Status Flag Register (WISR)
	12.3.2.4 Interrupt Request Enable Register (IRER)
	12.3.2.5 Wakeup Request Enable Register (WRER)
	12.3.2.6 Wakeup/Interrupt Rising-Edge Event Enable Register (WIREER)
	12.3.2.7 Wakeup/Interrupt Falling-Edge Event Enable Register (WIFEER)
	12.3.2.8 Wakeup/Interrupt Filter Enable Register (WIFER)
	12.3.2.9 Wakeup/Interrupt Pullup Enable Register (WIPUER)

	12.4 Functional description
	12.4.1 General
	12.4.2 Non-maskable interrupts
	12.4.2.1 NMI management

	12.4.3 External wakeups/interrupts
	12.4.3.1 External interrupt management

	12.4.4 On-chip wakeups
	12.4.4.1 On-chip wakeup management

	Chapter 13 Real Time Clock / Autonomous Periodic Interrupt (RTC/API)
	13.1 Overview
	13.2 Features
	13.3 Modes of operation
	13.3.1 Functional mode
	13.3.2 Debug mode

	13.4 Register descriptions
	13.4.1 RTC Supervisor Control Register (RTCSUPV)
	13.4.2 RTC Control Register (RTCC)
	13.4.3 RTC Status Register (RTCS)
	13.4.4 RTC Counter Register (RTCCNT)

	13.5 RTC functional description
	13.6 API functional description

	Chapter 14 CAN Sampler
	14.1 Introduction
	14.2 Main features
	14.3 Memory map and register description
	14.3.1 Control Register (CR)
	14.3.2 CAN Sampler Sample Registers 0-11

	14.4 Functional description
	14.4.1 Enabling/disabling the CAN sampler
	14.4.2 Selecting the Rx port
	14.4.3 Baudrate generation

	--- Core platform modules ---
	Chapter 15 e200z0h Core
	15.1 Overview
	15.2 Features
	15.2.1 Microarchitecture summary
	15.2.1.1 Block diagram
	15.2.1.2 Instruction unit features
	15.2.1.3 Integer unit features
	15.2.1.4 Load/Store unit features
	15.2.1.5 e200z0h System Bus features
	15.2.1.6 Nexus3+ features

	15.3 Core registers and programmer’s model
	15.3.1 Unimplemented SPRs and read-only SPRs

	15.4 Instruction summary

	Chapter 16 e200z4d Core
	16.1 Features
	16.1.1 Execution Unit Features
	16.1.1.1 Instruction Unit Features
	16.1.1.2 Integer unit features
	16.1.1.3 Load/Store unit features

	16.1.2 L1 Cache features
	16.1.3 Memory management unit features
	16.1.4 External core complex interface features
	16.1.5 Nexus 3+ features

	16.2 Programming model
	16.2.1 Register set
	16.2.2 Instruction set
	16.2.3 Interrupts and Exception Handling

	16.3 Microarchitecture summary
	16.4 Availability of detailed documentation

	Chapter 17 Enhanced Direct Memory Access (eDMA)
	17.1 Introduction
	17.2 General features
	17.3 Device-specific features
	17.4 Memory map/register definition
	17.4.1 Register descriptions
	17.4.1.1 DMA Control Register (EDMA_CR)
	17.4.1.2 DMA Error Status (EDMA_ESR)
	17.4.1.3 DMA Enable Request (EDMA_ERQRL)
	17.4.1.4 DMA Enable Error Interrupt (EDMA_EEIRL)
	17.4.1.5 DMA Set Enable Request (EDMA_SERQR)
	17.4.1.6 DMA Clear Enable Request (EDMA_CERQR)
	17.4.1.7 DMA Set Enable Error Interrupt (EDMA_SEEIR)
	17.4.1.8 DMA Clear Enable Error Interrupt (EDMA_CEEIR)
	17.4.1.9 DMA Clear Interrupt Request (EDMA_CIRQR)
	17.4.1.10 DMA Clear Error (EDMA_CER)
	17.4.1.11 DMA Set START Bit (EDMA_SSBR)
	17.4.1.12 DMA Clear DONE Status (EDMA_CDSBR)
	17.4.1.13 DMA Interrupt Request (EDMA_IRQRL)
	17.4.1.14 DMA Error (EDMA_ERL)
	17.4.1.15 DMA Hardware Request Status (EDMA_HRSL)
	17.4.1.16 DMA Channel n Priority (EDMA_CPRn)
	17.4.1.17 Transfer Control Descriptor (TCD)

	17.5 Functional description
	17.5.1 eDMA Basic data flow
	17.5.2 eDMA performance

	17.6 Initialization / Application Information
	17.6.1 eDMA Initialization
	17.6.2 DMA programming errors
	17.6.3 DMA request assignments
	17.6.4 DMA Arbitration Mode Considerations
	17.6.4.1 Fixed-Group Arbitration, Fixed-Channel Arbitration
	17.6.4.2 Round-Robin Group Arbitration, Fixed-Channel Arbitration
	17.6.4.3 Round-Robin Group Arbitration, Round-Robin Channel Arbitration
	17.6.4.4 Fixed-Group Arbitration, Round-Robin Channel Arbitration

	17.6.5 DMA transfer
	17.6.5.1 Single request
	17.6.5.2 Multiple requests
	17.6.5.3 Modulo feature

	17.6.6 TCD status
	17.6.6.1 Minor Loop Complete
	17.6.6.2 Active channel TCD Reads
	17.6.6.3 Preemption status

	17.6.7 Channel linking
	17.6.8 Dynamic programming
	17.6.8.1 Dynamic channel linking
	17.6.8.2 Dynamic scatter/gather
	17.6.8.2.1 Method 1 (channel not using major loop channel linking)
	17.6.8.2.2 Method 2 (channel using major loop linking)

	Chapter 18 eDMA Channel Multiplexer (DMA_MUX)
	18.1 Introduction
	18.2 Features
	18.2.1 Modes of operation

	18.3 External signal description
	18.3.1 Overview

	18.4 Memory map and register definition
	18.4.1 Register descriptions
	18.4.1.1 Channel Configuration Registers

	18.4.2 DMA_MUX inputs
	18.4.2.1 DMA_MUX peripheral sources
	18.4.2.2 DMA_MUX periodic trigger inputs

	18.5 Functional description
	18.5.1 DMA Channels with periodic triggering capability
	18.5.2 DMA Channels with no triggering capability
	18.5.3 "Always Enabled" DMA Sources

	18.6 Initialization/Application Information
	18.6.1 Reset
	18.6.2 Enabling and Configuring Sources

	Chapter 19 Interrupt Controller (INTC)
	19.1 Introduction
	19.2 Features
	19.3 Block diagram
	19.4 Modes of operation
	19.4.1 Software Vector mode
	19.4.2 Hardware Vector mode

	19.5 Memory map and register description
	19.5.1 Memory map
	19.5.2 Register description
	19.5.2.1 INTC Module Configuration Register (INTC_MCR)
	19.5.2.2 INTC Current Priority Register for Processor 0 (e200z4d) (INTC_CPR_PRC0)
	19.5.2.3 INTC Current Priority Register for Processor 1 (e200z0h) (INTC_CPR_PRC1)
	19.5.2.4 INTC Interrupt Acknowledge Register for Processor 0 (e200z4d) (INTC_IACKR_PRC0)
	19.5.2.5 INTC Interrupt Acknowledge Register for Processor 1 (e200z0h) (INTC_IACKR_PRC1)
	19.5.2.6 INTC End of Interrupt Register for Processor 0 (e200z4d) (INTC_EOIR_PRC0)
	19.5.2.7 INTC End of Interrupt Register for processor 1 (e200z0h) (INTC_EOIR_PRC1)
	19.5.2.8 INTC Software Set/Clear Interrupt Registers (INTC_SSCIR0_3-INTC_SSCIR4_7)
	19.5.2.9 INTC Priority Select Registers (INTC_PSR0_3-INTC_PSR276-278)

	19.6 Functional description
	19.7 SIUL external interrupts
	19.8 Wakeup line interrupts
	19.9 Non-maskable interrupt (NMI)
	19.9.1 Interrupt Request sources
	19.9.1.1 Peripheral Interrupt requests
	19.9.1.2 Software configurable interrupt requests
	19.9.1.3 Unique Vector for each interrupt request source

	19.9.2 Priority management
	19.9.2.1 Current priority and preemption
	19.9.2.1.1 Priority Arbitrator Subblock
	19.9.2.1.2 Request Selector Subblock
	19.9.2.1.3 Vector Encoder Subblock
	19.9.2.1.4 Priority Comparator Subblock

	19.9.2.2 Last-In First-Out (LIFO)

	19.9.3 Handshaking with processor
	19.9.3.1 Software Vector Mode Handshaking
	19.9.3.1.1 Acknowledging Interrupt Request to Processor
	19.9.3.1.2 End of Interrupt Exception Handler

	19.9.3.2 Hardware Vector mode handshaking

	19.10 Initialization/Application Information
	19.10.1 Initialization flow
	19.10.2 Interrupt exception handler
	19.10.2.1 Software vector mode
	19.10.2.2 Hardware vector mode

	19.10.3 ISR, RTOS, and Task hierarchy
	19.10.4 Priority Ceiling protocol
	19.10.4.1 Elevating priority
	19.10.4.2 Ensuring Coherency
	19.10.4.2.1 Interrupt with Blocked Priority
	19.10.4.2.2 Raised Priority Preserved

	19.10.5 Selecting Priorities According to Request Rates and Deadlines
	19.10.6 Software configurable Interrupt Requests
	19.10.6.1 Scheduling a Lower Priority Portion of an ISR
	19.10.6.2 Scheduling an ISR on Another Processor

	19.10.7 Lowering Priority Within an ISR
	19.10.8 Negating an Interrupt Request Outside of its ISR
	19.10.8.1 Negating an Interrupt Request as a Side Effect of an ISR
	19.10.8.2 Negating Multiple Interrupt Requests in One ISR
	19.10.8.3 Proper Setting of Interrupt Request Priority

	19.10.9 Examining LIFO contents

	Chapter 20 Crossbar Switch (XBAR)
	20.1 Features
	20.2 Introduction
	20.2.1 Overview
	20.2.2 Features
	20.2.3 Limitations
	20.2.4 General operation

	20.3 XBAR registers
	20.3.1 Register summary
	20.3.2 XBAR register descriptions
	20.3.2.1 Master Priority Registers (MPRn)
	20.3.2.2 Slave General Purpose Control Registers (SGPCRn)
	20.3.2.3 Master General Purpose Control Registers (MGPCRn)

	20.3.3 Coherency

	20.4 Function
	20.4.1 Arbitration
	20.4.1.1 Arbitration During Undefined Length Bursts
	20.4.1.2 Fixed priority operation
	20.4.1.3 Round-Robin Priority Operation

	20.4.2 Priority assignment
	20.4.2.1 Priority elevation

	20.4.3 Master Port Functionality
	20.4.3.1 General
	20.4.3.2 Master Port Decoders
	20.4.3.3 Master Port Capture Unit
	20.4.3.4 Master Port Registers
	20.4.3.5 Master Port State Machine
	20.4.3.5.1 Master Port State Machine States
	20.4.3.5.2 Master Port State Machine Slave Swapping

	20.4.4 Slave Port Functionality
	20.4.4.1 General
	20.4.4.2 Slave Port Muxes
	20.4.4.3 Slave Port Registers
	20.4.4.4 Slave Port State Machine
	20.4.4.4.1 Slave Port State Machine States
	20.4.4.4.2 Slave Port State Machine Arbitration
	20.4.4.4.3 Slave Port State Machine Master Handoff
	20.4.4.4.4 Slave Port State Machine Parking
	20.4.4.4.5 Slave Port State Machine Halt Mode

	20.5 Initialization/Application Information
	20.6 Interface
	20.6.1 Overview
	20.6.2 Master Ports
	20.6.2.1 Ignored Accesses
	20.6.2.2 Terminated Accesses
	20.6.2.3 Taken Accesses
	20.6.2.4 Stalled Accesses
	20.6.2.5 Error Response Terminated Accesses

	20.6.3 Slave Ports

	Chapter 21 Memory protection unit (MPU)
	21.1 Introduction
	21.1.1 Overview
	21.1.2 Features
	21.1.3 Modes of operation
	21.1.4 External signal description

	21.2 Memory map and register description
	21.2.1 Memory map
	21.2.2 Register description
	21.2.2.1 MPU Control/Error Status Register (MPU_CESR)
	21.2.2.2 MPU Error Address Register, Slave Port n (MPU_EARn)
	21.2.2.3 MPU Error Detail Register, Slave Port n (MPU_EDRn)
	21.2.2.4 MPU Region Descriptor n (MPU_RGDn)
	21.2.2.4.1 MPU Region Descriptor n, Word 0 (MPU_RGDn.Word0)
	21.2.2.4.2 MPU Region Descriptor n, Word 1 (MPU_RGDn.Word1)
	21.2.2.4.3 MPU Region Descriptor n, Word 2 (MPU_RGDn.Word2)
	21.2.2.4.4 MPU Region Descriptor n, Word 3 (MPU_RGDn.Word3)

	21.2.2.5 MPU Region Descriptor Alternate Access Control n (MPU_RGDAACn)

	21.3 Functional description
	21.3.1 Access evaluation macro
	21.3.1.1 Access evaluation - Hit determination
	21.3.1.2 Access evaluation - Privilege violation determination

	21.3.2 Putting it all together and AHB error terminations

	21.4 Initialization information
	21.5 Application information

	Chapter 22 Semaphores
	22.1 Introduction
	22.1.1 Block diagram
	22.1.2 Features
	22.1.3 Modes of operation

	22.2 Signal description
	22.3 Memory map and registers
	22.3.1 Module memory map
	22.3.2 Register descriptions
	22.3.2.1 Semaphores Gate n Register (SEMA4_GATEn)
	22.3.2.2 Semaphores Processor n IRQ Notification Enable (SEMA4_CP{0,1}INE)
	22.3.2.3 Semaphores Processor n IRQ Notification (SEMA4_CP{0,1}NTF)
	22.3.2.4 Semaphores (Secure) Reset Gate n (SEMA4_RSTGT)
	22.3.2.5 Semaphores (Secure) Reset IRQ Notification (SEMA4_RSTNTF)

	22.4 Functional description
	22.4.1 Semaphore usage

	22.5 Initialization information
	22.6 Application information
	22.7 DMA requests
	22.8 Interrupt requests

	Chapter 23 Performance Optimization
	23.1 Introduction
	23.2 Features
	23.3 Configuring hardware features
	23.3.1 Branch target buffer (BTB)
	23.3.1.1 Description
	23.3.1.2 Recommended configuration

	23.3.2 Frequency-modulated PLL
	23.3.2.1 Description
	23.3.2.2 Recommended configuration

	23.3.3 Flash memory bus interface unit
	23.3.3.1 Description
	23.3.3.2 Recommended configuration

	23.3.4 Crossbar switch
	23.3.4.1 Description
	23.3.4.2 Recommended configuration

	23.3.5 Cache
	23.3.5.1 Description
	23.3.5.2 Recommended configuration

	23.3.6 e200z4d Memory Management Unit (MMU)
	23.3.6.1 Description
	23.3.6.1.1 Recommended configuration

	23.4 Application software
	23.4.1 Compiler optimizations
	23.4.2 e200z4d Signal Processing Extension
	23.4.3 Hardware single precision floating point
	23.4.4 Variable Length Encoding (VLE)

	23.5 Peripherals and general application guidelines
	23.6 Performance optimization checklist
	23.6.1 Hardware configuration
	23.6.2 Software configuration
	23.6.3 Peripherals and general application guidelines

	Chapter 24 System Integration Unit Lite (SIUL)
	24.1 Introduction
	24.2 Overview
	24.3 Features
	24.4 External signal description
	24.4.1 Detailed signal descriptions
	24.4.1.1 General-purpose I/O pins (GPIO[0:198])
	24.4.1.2 External interrupt request input pins (EIRQ[0:23])

	24.5 Memory map and register description
	24.5.1 SIUL memory map
	24.5.2 Register protection
	24.5.3 Register description
	24.5.3.1 MCU ID Register #1 (MIDR1)
	24.5.3.2 MCU ID Register #2 (MIDR2)
	24.5.3.3 Interrupt Status Flag Register (ISR)
	24.5.3.4 Interrupt Request Enable Register (IRER)
	24.5.3.5 Interrupt Rising-Edge Event Enable Register (IREER)
	24.5.3.6 Interrupt Falling-Edge Event Enable Register (IFEER)
	24.5.3.7 Interrupt Filter Enable Register (IFER)
	24.5.3.8 Pad Configuration Registers (PCR0-PCR198)
	24.5.3.9 Pad Selection for Multiplexed Inputs Registers (PSMI0_3-PSMI64_67)
	24.5.3.10 GPIO Pad Data Output Registers (GPDO0_3-GPDO196_199)
	24.5.3.11 GPIO Pad Data Input Registers (GPDI0_3-GPDI196_199)
	24.5.3.12 Parallel GPIO Pad Data Out Registers (PGPDO0 - PGPDO6)
	24.5.3.13 Parallel GPIO Pad Data In Register (PGPDI0 - PGPDI6)
	24.5.3.14 Masked Parallel GPIO Pad Data Out Register (MPGPDO0-MPGPDO12)
	24.5.3.15 Interrupt Filter Maximum Counter Registers (IFMC0-IFMC23)
	24.5.3.16 Interrupt Filter Clock Prescaler Register (IFCPR)
	24.5.3.17 Parallel Input Select Register (PISR0-PISR15)
	24.5.3.18 DSPI Input Select Register (DISR)

	24.6 Functional description
	24.6.1 Pad control
	24.6.2 General purpose input and output pads (GPIO)
	24.6.3 External interrupts

	24.7 Pin muxing

	--- Communication modules ---
	Chapter 25 Inter-Integrated Circuit Bus Controller Module (I2C)
	25.1 Introduction
	25.1.1 Overview
	25.1.2 Features
	25.1.3 Block diagram

	25.2 External signal description
	25.2.1 SCL
	25.2.2 SDA

	25.3 Memory map and register description
	25.3.1 Module memory map
	25.3.2 I2C Bus Address Register (IBAD)
	25.3.3 I2C Bus Frequency Divider Register (IBFD)
	25.3.4 I2C Bus Control Register (IBCR)
	25.3.5 I2C Bus Status Register (IBSR)
	25.3.6 I2C Bus Data I/O Register (IBDR)
	25.3.7 I2C Bus Interrupt Config Register (IBIC)

	25.4 DMA Interface
	25.5 Functional description
	25.5.1 I-Bus protocol
	25.5.1.1 START signal
	25.5.1.2 Slave address transmission
	25.5.1.3 Data transfer
	25.5.1.4 STOP signal
	25.5.1.5 Repeated START signal
	25.5.1.6 Arbitration procedure
	25.5.1.7 Clock synchronization
	25.5.1.8 Handshaking
	25.5.1.9 Clock stretching

	25.5.2 Interrupts
	25.5.2.1 General
	25.5.2.2 Interrupt description

	25.6 Initialization/application information
	25.6.1 I2C programming examples
	25.6.1.1 Initialization sequence
	25.6.1.2 Generation of START
	25.6.1.3 Post-transfer software response
	25.6.1.4 Transmit/receive sequence
	25.6.1.5 Generation of STOP
	25.6.1.6 Generation of repeated START
	25.6.1.7 Slave mode
	25.6.1.8 Arbitration lost

	25.6.2 DMA application information
	25.6.2.1 DMA mode, master transmit
	25.6.2.2 DMA mode, master RX
	25.6.2.3 Exiting DMA mode, system requirement considerations
	25.6.2.3.1 Fast vs. slow reaction

	Chapter 26 LIN Controller (LINFlexD)
	26.1 Introduction
	26.2 Main features
	26.2.1 LIN mode features
	26.2.2 UART mode features

	26.3 The LIN protocol
	26.3.1 Dominant and recessive logic levels
	26.3.2 LIN frames
	26.3.3 LIN header
	26.3.3.1 Break field
	26.3.3.2 Sync

	26.3.4 Response
	26.3.4.1 Data field
	26.3.4.2 Identifier
	26.3.4.3 Checksum

	26.4 LINFlexD and software intervention
	26.5 Summary of operating modes
	26.6 Controller-level operating modes
	26.6.1 Initialization mode
	26.6.2 Normal mode
	26.6.3 Sleep (low-power) mode

	26.7 LIN modes
	26.7.1 Master mode
	26.7.1.1 LIN header transmission
	26.7.1.2 Data transmission (transceiver as publisher)
	26.7.1.3 Data reception (transceiver as subscriber)
	26.7.1.4 Error detection and handling
	26.7.1.5 Overrun

	26.7.2 Slave mode
	26.7.2.1 Data transmission (transceiver as publisher)
	26.7.2.2 Data reception (transceiver as subscriber)
	26.7.2.3 Data discard
	26.7.2.4 Error detection and handling
	26.7.2.5 Valid header
	26.7.2.6 Valid message
	26.7.2.7 Overrun

	26.7.3 Slave mode with identifier filtering
	26.7.3.1 Filter submodes
	26.7.3.2 Identifier filter submode configuration

	26.7.4 Slave mode with automatic resynchronization
	26.7.4.1 Automatic resynchronization method
	26.7.4.2 Deviation error on the sync field

	26.8 Test modes
	26.8.1 Loop Back mode
	26.8.2 Self Test mode

	26.9 UART mode
	26.9.1 Data frame structure
	26.9.1.1 8-bit data frame
	26.9.1.2 9-bit data frame
	26.9.1.3 16-bit data frame
	26.9.1.4 17-bit data frame

	26.9.2 Buffer
	26.9.3 UART transmitter
	26.9.4 UART receiver

	26.10 Memory map and register description
	26.10.1 LIN control register 1 (LINCR1)
	26.10.2 LIN interrupt enable register (LINIER)
	26.10.3 LIN status register (LINSR)
	26.10.4 LIN error status register (LINESR)
	26.10.5 UART mode control register (UARTCR)
	26.10.6 UART mode status register (UARTSR)
	26.10.7 LIN timeout control status register (LINTCSR)
	26.10.8 LIN output compare register (LINOCR)
	26.10.9 LIN timeout control register (LINTOCR)
	26.10.10 LIN fractional baud rate register (LINFBRR)
	26.10.11 LIN integer baud rate register (LINIBRR)
	26.10.12 LIN checksum field register (LINCFR)
	26.10.13 LIN control register 2 (LINCR2)
	26.10.14 Buffer identifier register (BIDR)
	26.10.15 Buffer data register least significant (BDRL)
	26.10.16 Buffer data register most significant (BDRM)
	26.10.17 Identifier filter enable register (IFER)
	26.10.18 Identifier filter match index (IFMI)
	26.10.19 Identifier filter mode register (IFMR)
	26.10.20 Identifier filter control registers (IFCR0-IFCR15)
	26.10.21 Global control register (GCR)
	26.10.22 UART preset timeout register (UARTPTO)
	26.10.23 UART current timeout register (UARTCTO)
	26.10.24 DMA Tx enable register (DMATXE)
	26.10.25 DMA Rx enable register (DMARXE)

	26.11 DMA interface
	26.11.1 Master node, TX mode
	26.11.2 Master node, RX mode
	26.11.3 Slave node, TX mode
	26.11.4 Slave node, RX mode
	26.11.5 UART node, TX mode
	26.11.6 UART node, RX mode
	26.11.7 Use cases and limitations

	26.12 Functional description
	26.12.1 8-bit timeout counter
	26.12.1.1 LIN timeout mode
	26.12.1.1.1 LIN Master mode
	26.12.1.1.2 LIN Slave mode

	26.12.1.2 Output compare mode

	26.12.2 Interrupts
	26.12.3 Fractional baud rate generation

	26.13 Programming considerations
	26.13.1 Master node
	26.13.2 Slave node
	26.13.3 Extended frames
	26.13.4 Timeout
	26.13.5 UART mode

	Chapter 27 FlexCAN
	27.1 Information specific to this device
	27.1.1 Device-specific features

	27.2 Introduction
	27.2.1 Overview
	27.2.2 FlexCAN module features
	27.2.3 Modes of operation

	27.3 External signal description
	27.3.1 Overview
	27.3.2 Signal descriptions
	27.3.2.1 CAN Rx
	27.3.2.2 CAN Tx

	27.4 Memory map/register definition
	27.4.1 FlexCAN memory mapping
	27.4.2 Message Buffer Structure
	27.4.3 Rx FIFO structure
	27.4.4 Register descriptions
	27.4.4.1 Module Configuration Register (MCR)
	27.4.4.2 Control Register (CTRL)
	27.4.4.3 Free Running Timer (TIMER)
	27.4.4.4 Rx Global Mask (RXGMASK)
	27.4.4.5 Rx 14 Mask (RX14MASK)
	27.4.4.6 Rx 15 Mask (RX15MASK)
	27.4.4.7 Error Counter Register (ECR)
	27.4.4.8 Error and Status Register (ESR)
	27.4.4.9 Interrupt Masks 2 Register (IMASK2)
	27.4.4.10 Interrupt Masks 1 Register (IMASK1)
	27.4.4.11 Interrupt Flags 2 Register (IFLAG2)
	27.4.4.12 Interrupt Flags 1 Register (IFLAG1)
	27.4.4.13 Rx Individual Mask Registers (RXIMR0-RXIMR63)

	27.5 Functional description
	27.5.1 Overview
	27.5.2 Local Priority Transmission
	27.5.3 Transmit process
	27.5.4 Arbitration process
	27.5.5 Receive process
	27.5.6 Data coherence
	27.5.6.1 Message Buffer Deactivation
	27.5.6.2 Message Buffer Lock Mechanism

	27.5.7 Rx FIFO
	27.5.8 CAN Protocol Related Features
	27.5.8.1 Remote Frames
	27.5.8.2 Overload Frames
	27.5.8.3 Time Stamp
	27.5.8.4 Protocol timing
	27.5.8.5 Arbitration and Matching Timing

	27.5.9 Modes of operation details
	27.5.9.1 Freeze mode
	27.5.9.2 Module Disable mode

	27.5.10 Interrupts
	27.5.11 Bus interface

	27.6 Initialization/application information
	27.6.1 FlexCAN initialization sequence
	27.6.2 FlexCAN Addressing and RAM size configurations

	Chapter 28 Deserial Serial Peripheral Interface (DSPI)
	28.1 Introduction
	28.1.1 Features
	28.1.2 DSPI configurations
	28.1.2.1 SPI configuration
	28.1.2.2 DSI configuration
	28.1.2.3 CSI configuration

	28.1.3 Modes of operation
	28.1.3.1 Master Mode
	28.1.3.2 Slave Mode
	28.1.3.3 Module Disable Mode
	28.1.3.4 External Stop Mode
	28.1.3.5 Debug Mode

	28.2 External signal description
	28.2.1 Overview
	28.2.2 Detailed signal description
	28.2.2.1 Peripheral Chip Select / Slave Select (CS0_x)
	28.2.2.2 Peripheral Chip Selects 1-3 (CS1:3_x)
	28.2.2.3 Peripheral Chip Select 4 (CS4_x)
	28.2.2.4 Peripheral Chip Select 5 / Peripheral Chip Select Strobe (CS5_x)
	28.2.2.5 Serial Input (SIN)
	28.2.2.6 Serial Output (SOUT)
	28.2.2.7 Serial Clock (SCK)

	28.3 Memory map and register definition
	28.3.1 Memory map
	28.3.2 Register descriptions
	28.3.2.1 DSPI Module Configuration Register (DSPI_MCR)
	28.3.2.2 DSPI Transfer Count Register (DSPI_TCR)
	28.3.2.3 DSPI Clock and Transfer Attributes Registers 0-5 (DSPI_CTAR0-DSPI_CTAR5)
	28.3.2.4 DSPI Status Register (DSPI_SR)
	28.3.2.5 DSPI DMA/Interrupt Request Select and Enable Register (DSPI_RSER)
	28.3.2.6 DSPI PUSH TX FIFO Register (DSPI_PUSHR)
	28.3.2.7 DSPI POP RX FIFO Register (DSPI_POPR)
	28.3.2.8 DSPI Transmit FIFO Registers 0-3 (DSPI_TXFR0-DSPI_TXFR3)
	28.3.2.9 DSPI Receive FIFO Registers 0-3 (DSPI_RXFR0-DSPI_RXFR3)
	28.3.2.10 DSPI DSI Configuration Register (DSPI_DSICR)
	28.3.2.11 DSPI DSI Serialization Data Register (DSPI_SDR)
	28.3.2.12 DSPI DSI Alternate Serialization Data Register (DSPI_ASDR)
	28.3.2.13 DSPI DSI Transmit Comparison Register (DSPI_COMPR)
	28.3.2.14 DSPI DSI Deserialization Data Register (DSPI_DDR)
	28.3.2.15 DSPI DSI Configuration Register 1 (DSPI_DSICR1)
	28.3.2.16 DSPI DSI Serialization Source Select Register (DSPI_SSR)
	28.3.2.17 DSPI DSI Deserialized Data Interrupt Mask Register (DSPI_DIMR)
	28.3.2.18 DSPI DSI Deserialized Data Polarity Interrupt Register (DSPI_DPIR)

	28.4 Functional Description
	28.4.1 Start and Stop of DSPI Transfers
	28.4.2 Serial Peripheral Interface (SPI) Configuration
	28.4.2.1 Master Mode
	28.4.2.2 Slave Mode
	28.4.2.3 FIFO Disable Operation
	28.4.2.4 Transmit First In First Out (TX FIFO) Buffering Mechanism
	28.4.2.4.1 Filling the TX FIFO
	28.4.2.4.2 Draining the TX FIFO

	28.4.2.5 Receive First In First Out (RX FIFO) Buffering Mechanism
	28.4.2.5.1 Filling the RX FIFO
	28.4.2.5.2 Draining the RX FIFO

	28.4.3 Deserial Serial Interface (DSI) Configuration
	28.4.3.1 DSI Master Mode
	28.4.3.2 Slave Mode
	28.4.3.3 DSI Serialization
	28.4.3.4 DSI Deserialization
	28.4.3.5 DSI Transfer Initiation Control
	28.4.3.5.1 Continuous Control
	28.4.3.5.2 Change In Data Control
	28.4.3.5.3 Triggered Control
	28.4.3.5.4 Triggered or Change In Data Control

	28.4.3.6 Multiple Transfer Operation (MTO)
	28.4.3.6.1 Parallel Chaining
	28.4.3.6.2 Serial Chaining

	28.4.4 Combined Serial Interface (CSI) Configuration
	28.4.4.1 CSI Serialization

	28.4.5 DSPI Baud Rate and Clock Delay Generation
	28.4.5.1 Baud Rate Generator
	28.4.5.2 CS to SCK delay (tCSC)
	28.4.5.3 After SCK Delay (tASC)
	28.4.5.4 Delay after Transfer (tDT)
	28.4.5.5 Peripheral Chip Select Strobe Enable (CS5_x)

	28.4.6 Transfer Formats
	28.4.6.1 Classic SPI Transfer Format (CPHA = 0)
	28.4.6.2 Classic SPI Transfer Format (CPHA = 1)
	28.4.6.3 Modified SPI/DSI Transfer Format (MTFE = 1, CPHA = 0)
	28.4.6.4 Modified SPI/DSI Transfer Format (MTFE = 1, CPHA = 1)
	28.4.6.5 Continuous Selection Format

	28.4.7 Continuous Serial Communications Clock
	28.4.8 Slave Mode Operation Constraints
	28.4.9 Timed Serial Bus (TSB)
	28.4.9.1 MSC Dual Receiver Support with PCS Switch Over

	28.4.10 Parity Generation and Check.
	28.4.10.1 Parity for SPI Frames
	28.4.10.2 Parity for DSI Frames

	28.4.11 Interrupts/DMA Requests
	28.4.11.1 End of Queue Interrupt Request
	28.4.11.2 Transmit FIFO Fill Interrupt or DMA Request
	28.4.11.3 Transfer Complete Interrupt Request
	28.4.11.4 Transmit FIFO Underflow Interrupt Request
	28.4.11.5 Receive FIFO Drain Interrupt or DMA Request
	28.4.11.6 Receive FIFO Overflow Interrupt Request
	28.4.11.7 SPI Frame Parity Error Interrupt Request
	28.4.11.8 DSI Frame Parity Error Interrupt Request

	28.4.12 Power Saving Features
	28.4.12.1 Stop Mode (External Stop Mode)
	28.4.12.2 Module Disable Mode

	28.5 Initialization/Application Information
	28.5.1 How to Manage DSPI Queues
	28.5.2 Switching Master and Slave Mode
	28.5.3 Baud Rate Settings
	28.5.4 Delay Settings
	28.5.5 Calculation of FIFO Pointer Addresses
	28.5.5.1 Address Calculation for the First-in Entry and Last-in Entry in the TX FIFO
	28.5.5.2 Address Calculation for the First-in Entry and Last-in Entry in the RX FIFO

	Chapter 29 FlexRay Communication Controller (FLEXRAY)
	29.1 Introduction
	29.1.1 Reference
	29.1.2 Glossary
	29.1.3 Color Coding
	29.1.4 Overview
	29.1.5 Features
	29.1.6 Modes of Operation
	29.1.6.1 Disabled Mode
	29.1.6.1.1 Leave Disabled Mode

	29.1.6.2 Normal Mode
	29.1.6.2.1 Enter Normal Mode

	29.2 External Signal Description
	29.2.1 Detailed Signal Descriptions
	29.2.1.1 FR_A_RX - Receive Data Channel A
	29.2.1.2 FR_A_TX - Transmit Data Channel A
	29.2.1.3 FR_A_TX_EN - Transmit Enable Channel A
	29.2.1.4 FR_B_RX - Receive Data Channel B
	29.2.1.5 FR_B_TX - Transmit Data Channel B
	29.2.1.6 FR_B_TX_EN - Transmit Enable Channel B
	29.2.1.7 FR_DBG[3], FR_DBG[2], FR_DBG[1], FR_DBG[0] - Strobe Signals

	29.3 Controller Host Interface Clocking
	29.4 Protocol Engine Clocking
	29.4.1 Oscillator Clocking
	29.4.2 PLL Clocking

	29.5 Memory Map and Register Description
	29.5.1 Memory Map
	29.5.2 Register Descriptions
	29.5.2.1 Register Reset
	29.5.2.2 Register Write Access
	29.5.2.2.1 Register Write Access Restriction
	29.5.2.2.2 Register Write Access Requirements
	29.5.2.2.3 Internal Register Access

	29.5.2.3 Module Version Register (FR_MVR)
	29.5.2.4 Module Configuration Register (FR_MCR)
	29.5.2.5 System Memory Base Address Register (FR_SYMBADR)
	29.5.2.6 Strobe Signal Control Register (FR_STBSCR)
	29.5.2.7 Message Buffer Data Size Register (FR_MBDSR)
	29.5.2.8 Message Buffer Segment Size and Utilization Register (FR_MBSSUTR)
	29.5.2.9 PE DRAM Access Register (FR_PEDRAR)
	29.5.2.10 PE DRAM Data Register (FR_PEDRDR)
	29.5.2.11 Protocol Operation Control Register (FR_POCR)
	29.5.2.12 Global Interrupt Flag and Enable Register (FR_GIFER)
	29.5.2.13 Protocol Interrupt Flag Register 0 (FR_PIFR0)
	29.5.2.14 Protocol Interrupt Flag Register 1 (FR_PIFR1)
	29.5.2.15 Protocol Interrupt Enable Register 0 (FR_PIER0)
	29.5.2.16 Protocol Interrupt Enable Register 1 (FR_PIER1)
	29.5.2.17 CHI Error Flag Register (FR_CHIERFR)
	29.5.2.18 Message Buffer Interrupt Vector Register (FR_MBIVEC)
	29.5.2.19 Channel A Status Error Counter Register (FR_CASERCR)
	29.5.2.20 Channel B Status Error Counter Register (FR_CBSERCR)
	29.5.2.21 Protocol Status Register 0 (FR_PSR0)
	29.5.2.22 Protocol Status Register 1 (FR_PSR1)
	29.5.2.23 Protocol Status Register 2 (FR_PSR2)
	29.5.2.24 Protocol Status Register 3 (FR_PSR3)
	29.5.2.25 Macrotick Counter Register (FR_MTCTR)
	29.5.2.26 Cycle Counter Register (FR_CYCTR)
	29.5.2.27 Slot Counter Channel A Register (FR_SLTCTAR)
	29.5.2.28 Slot Counter Channel B Register (FR_SLTCTBR)
	29.5.2.29 Rate Correction Value Register (FR_RTCORVR)
	29.5.2.30 Offset Correction Value Register (FR_OFCORVR)
	29.5.2.31 Combined Interrupt Flag Register (FR_CIFR)
	29.5.2.32 System Memory Access Time-Out Register (FR_SYMATOR)
	29.5.2.33 Sync Frame Counter Register (FR_SFCNTR)
	29.5.2.34 Sync Frame Table Offset Register (FR_SFTOR)
	29.5.2.35 Sync Frame Table Configuration, Control, Status Register (FR_SFTCCSR)
	29.5.2.36 Sync Frame ID Rejection Filter Register (FR_SFIDRFR)
	29.5.2.37 Sync Frame ID Acceptance Filter Value Register (FR_SFIDAFVR)
	29.5.2.38 Sync Frame ID Acceptance Filter Mask Register (FR_SFIDAFMR)
	29.5.2.39 Network Management Vector Registers (FR_NMVR0-FR_NMVR5)
	29.5.2.40 Network Management Vector Length Register (FR_NMVLR)
	29.5.2.41 Timer Configuration and Control Register (FR_TICCR)
	29.5.2.42 Timer 1 Cycle Set Register (FR_TI1CYSR)
	29.5.2.43 Timer 1 Macrotick Offset Register (FR_TI1MTOR)
	29.5.2.44 Timer 2 Configuration Register 0 (FR_TI2CR0)
	29.5.2.45 Timer 2 Configuration Register 1 (FR_TI2CR1)
	29.5.2.46 Slot Status Selection Register (FR_SSSR)
	29.5.2.47 Slot Status Counter Condition Register (FR_SSCCR)
	29.5.2.48 Slot Status Registers (FR_SSR0-FR_SSR7)
	29.5.2.49 Slot Status Counter Registers (FR_SSCR0-FR_SSCR3)
	29.5.2.50 MTS A Configuration Register (FR_MTSACFR)
	29.5.2.51 MTS B Configuration Register (MTSBCFR)
	29.5.2.52 Receive Shadow Buffer Index Register (FR_RSBIR)
	29.5.2.53 Receive FIFO Start Data Offset Register (FR_RFSDOR)
	29.5.2.54 Receive FIFO System Memory Base Address Register (FR_RFSYMBADR)
	29.5.2.55 Receive FIFO Periodic Timer Register (FR_RFPTR)
	29.5.2.56 Receive FIFO Watermark and Selection Register (FR_RFWMSR)
	29.5.2.57 Receive FIFO Start Index Register (FR_RFSIR)
	29.5.2.58 Receive FIFO Depth and Size Register (RFDSR)
	29.5.2.59 Receive FIFO A Read Index Register (FR_RFARIR)
	29.5.2.60 Receive FIFO B Read Index Register (FR_RFBRIR)
	29.5.2.61 Receive FIFO Fill Level and POP Count Register (FR_RFFLPCR)
	29.5.2.62 Receive FIFO Message ID Acceptance Filter Value Register (FR_RFMIDAFVR)
	29.5.2.63 Receive FIFO Message ID Acceptance Filter Mask Register (FR_RFMIDAFMR)
	29.5.2.64 Receive FIFO Frame ID Rejection Filter Value Register (FR_RFFIDRFVR)
	29.5.2.65 Receive FIFO Frame ID Rejection Filter Mask Register (FR_RFFIDRFMR)
	29.5.2.66 Receive FIFO Range Filter Configuration Register (FR_RFRFCFR)
	29.5.2.67 Receive FIFO Range Filter Control Register (FR_RFRFCTR)
	29.5.2.68 Last Dynamic Transmit Slot Channel A Register (FR_LDTXSLAR)
	29.5.2.69 Last Dynamic Transmit Slot Channel B Register (FR_LDTXSLBR)
	29.5.2.70 Protocol Configuration Registers
	29.5.2.70.1 Protocol Configuration Register 0 (FR_PCR0)
	29.5.2.70.2 Protocol Configuration Register 1 (FR_PCR1)
	29.5.2.70.3 Protocol Configuration Register 2 (FR_PCR2)
	29.5.2.70.4 Protocol Configuration Register 3 (FR_PCR3)
	29.5.2.70.5 Protocol Configuration Register 4 (FR_PCR4)
	29.5.2.70.6 Protocol Configuration Register 5 (FR_PCR5)
	29.5.2.70.7 Protocol Configuration Register 6 (FR_PCR6)
	29.5.2.70.8 Protocol Configuration Register 7 (FR_PCR7)
	29.5.2.70.9 Protocol Configuration Register 8 (FR_PCR8)
	29.5.2.70.10 Protocol Configuration Register 9 (FR_PCR9)
	29.5.2.70.11 Protocol Configuration Register 10 (FR_PCR10)
	29.5.2.70.12 Protocol Configuration Register 11 (FR_PCR11)
	29.5.2.70.13 Protocol Configuration Register 12 (FR_PCR12)
	29.5.2.70.14 Protocol Configuration Register 13 (FR_PCR13)
	29.5.2.70.15 Protocol Configuration Register 14 (FR_PCR14)
	29.5.2.70.16 Protocol Configuration Register 15 (FR_PCR15)
	29.5.2.70.17 Protocol Configuration Register 16 (FR_PCR16)
	29.5.2.70.18 Protocol Configuration Register 17 (FR_PCR17)
	29.5.2.70.19 Protocol Configuration Register 18 (FR_PCR18)
	29.5.2.70.20 Protocol Configuration Register 19 (FR_PCR19)
	29.5.2.70.21 Protocol Configuration Register 20 (FR_PCR20)
	29.5.2.70.22 Protocol Configuration Register 21 (FR_PCR21)
	29.5.2.70.23 Protocol Configuration Register 22 (FR_PCR22)
	29.5.2.70.24 Protocol Configuration Register 23 (FR_PCR23)
	29.5.2.70.25 Protocol Configuration Register 24 (FR_PCR24)
	29.5.2.70.26 Protocol Configuration Register 25 (FR_PCR25)
	29.5.2.70.27 Protocol Configuration Register 26 (FR_PCR26)
	29.5.2.70.28 Protocol Configuration Register 27 (FR_PCR27)
	29.5.2.70.29 Protocol Configuration Register 28 (FR_PCR28)
	29.5.2.70.30 Protocol Configuration Register 29 (FR_PCR29)
	29.5.2.70.31 Protocol Configuration Register 30 (FR_PCR30)

	29.5.2.71 ECC Error Interrupt Flag and Enable Register (FR_EEIFER)
	29.5.2.72 ECC Error Report and Injection Control Register (FR_EERICR)
	29.5.2.73 ECC Error Report Address Register (FR_EERAR)
	29.5.2.74 ECC Error Report Data Register (FR_EERDR)
	29.5.2.75 ECC Error Report Code Register (FR_EERCR)
	29.5.2.76 ECC Error Injection Address Register (FR_EEIAR)
	29.5.2.77 ECC Error Injection Data Register (FR_EEIDR)
	29.5.2.78 ECC Error Injection Code Register (FR_EEICR)
	29.5.2.79 Message Buffer Configuration, Control, Status Registers (FR_MBCCSRn)
	29.5.2.80 Message Buffer Cycle Counter Filter Registers (FR_MBCCFRn)
	29.5.2.81 Message Buffer Frame ID Registers (FR_MBFIDRn)
	29.5.2.82 Message Buffer Index Registers (FR_MBIDXRn)
	29.5.2.83 Message Buffer Data Field Offset Registers (FR_MBDORn)
	29.5.2.84 LRAM ECC Error Test Registers (FR_LEETRn)

	29.6 Functional Description
	29.6.1 Message Buffer Concept
	29.6.2 Physical Message Buffer
	29.6.2.1 Message Buffer Header Field
	29.6.2.1.1 Frame Header
	29.6.2.1.2 Slot Status

	29.6.2.2 Message Buffer Data Field

	29.6.3 Message Buffer Types
	29.6.3.1 Individual Message Buffers
	29.6.3.1.1 Individual Message Buffer Segments

	29.6.3.2 Receive Shadow Buffers
	29.6.3.3 Receive FIFO
	29.6.3.4 Message Buffer Configuration and Control Data
	29.6.3.4.1 Individual Message Buffer Configuration Data
	29.6.3.4.1.1 Common Configuration Data
	29.6.3.4.1.2 Specific Configuration Data

	29.6.3.5 Individual Message Buffer Control Data
	29.6.3.6 Receive Shadow Buffer Configuration Data
	29.6.3.7 Receive FIFO Control and Configuration Data
	29.6.3.7.1 Receive FIFO Configuration Data
	29.6.3.7.2 Receive FIFO Control Data
	29.6.3.7.3 Receive FIFO Status Data

	29.6.4 Flexray Memory Area Layout
	29.6.4.1 Flexray Memory Area Layout (FR_MCR[FAM] = 0)
	29.6.4.2 FlexRay Memory Area Layout (FR_MCR[FAM] = 1)
	29.6.4.3 Message Buffer Header Area (FR_MCR[FAM] = 0)
	29.6.4.4 Message Buffer Header Area (FR_MCR[FAM] = 1)
	29.6.4.5 FIFO Message Buffer Header Area (FR_MCR[FAM] = 1)
	29.6.4.6 Message Buffer Data Area
	29.6.4.7 Sync Frame Table Area

	29.6.5 Physical Message Buffer Description
	29.6.5.1 Message Buffer Protection and Data Consistency
	29.6.5.2 Message Buffer Header Field Description
	29.6.5.2.1 Frame Header Description
	29.6.5.2.1.1 Frame Header Content
	29.6.5.2.1.2 Frame Header Access
	29.6.5.2.1.3 Frame Header Checks

	29.6.5.2.2 Slot Status Description
	29.6.5.2.2.1 Receive Message Buffer and Receive FIFO Slot Status Description
	29.6.5.2.2.2 Transmit Message Buffer Slot Status Description

	29.6.5.3 Message Buffer Data Field Description
	29.6.5.3.1 Message Buffer Data Field Read Access
	29.6.5.3.2 Message Buffer Data Field Write Access

	29.6.6 Individual Message Buffer Functional Description
	29.6.6.1 Individual Message Buffer Configuration
	29.6.6.1.1 Common Configuration Data
	29.6.6.1.2 Specific Configuration Data

	29.6.6.2 Transmit Message Buffers
	29.6.6.2.1 Access Regions
	29.6.6.2.2 Message Buffer States
	29.6.6.2.3 Message Buffer Transitions
	29.6.6.2.3.1 Application Transitions
	29.6.6.2.3.2 Module Transitions
	29.6.6.2.3.3 Transition Priorities

	29.6.6.2.4 Transmit Message Setup
	29.6.6.2.5 Message Transmission
	29.6.6.2.6 Null Frame Transmission
	29.6.6.2.7 Message Buffer Status Update
	29.6.6.2.7.1 Message Buffer Status Update after Complete Message Transmission
	29.6.6.2.7.2 Message Buffer Status Update after Incomplete Message Transmission
	29.6.6.2.7.3 Message Buffer Status Update after Null Frame Transmission

	29.6.6.3 Receive Message Buffers
	29.6.6.3.1 Message Buffer Transitions
	29.6.6.3.1.1 Application Transitions
	29.6.6.3.1.2 Module Transitions
	29.6.6.3.1.3 Transition Priorities

	29.6.6.3.2 Message Reception
	29.6.6.3.3 Message Buffer Update
	29.6.6.3.4 Received Message Access
	29.6.6.3.5 Receive Shadow Buffers Concept

	29.6.7 Individual Message Buffer Search
	29.6.7.1 Message Buffer Cycle Counter Filtering
	29.6.7.2 Message Buffer Channel Assignment Consistency
	29.6.7.3 Node Related Slot Multiplexing
	29.6.7.4 Message Buffer Search Error
	29.6.7.4.1 Message Buffer Search Start while Running
	29.6.7.4.2 Illegal Message Buffer Index Found

	29.6.8 Individual Message Buffer Reconfiguration
	29.6.8.1 Reconfiguration Schemes
	29.6.8.1.1 Basic Type Not Changed (RC1)
	29.6.8.1.2 Buffer Type Not Changed (RC2)

	29.6.9 Receive FIFOs
	29.6.9.1 Overview
	29.6.9.2 FIFO Configuration
	29.6.9.2.1 Single System Memory Base Address Mode
	29.6.9.2.2 Dual System Memory Base Address Mode

	29.6.9.3 FIFO Periodic Timer
	29.6.9.4 FIFO Reception
	29.6.9.5 FIFO Almost-Full Interrupt Generation
	29.6.9.6 FIFO Overflow Error Generation
	29.6.9.7 FIFO Message Access
	29.6.9.8 FIFO Update
	29.6.9.8.1 FIFO Interrupt Flag Update

	29.6.9.9 FIFO Filtering
	29.6.9.9.1 RX FIFO Frame ID Value-Mask Rejection Filter
	29.6.9.9.2 RX FIFO Frame ID Range Rejection Filter
	29.6.9.9.3 RX FIFO Frame ID Range Acceptance filter
	29.6.9.9.4 RX FIFO Message ID Acceptance Filter

	29.6.10 Channel Device Modes
	29.6.10.1 Dual Channel Device Mode
	29.6.10.2 Single Channel Device Mode

	29.6.11 External Clock Synchronization
	29.6.12 Sync Frame ID and Sync Frame Deviation Tables
	29.6.12.1 Sync Frame ID Table Content
	29.6.12.2 Sync Frame Deviation Table Content
	29.6.12.3 Sync Frame ID and Sync Frame Deviation Table Setup
	29.6.12.4 Sync Frame ID and Sync Frame Deviation Table Generation
	29.6.12.5 Sync Frame Table Access
	29.6.12.5.1 Sync Frame Table Locking and Unlocking

	29.6.13 MTS Generation
	29.6.14 Key Slot Transmission
	29.6.14.1 Key Slot Assignment
	29.6.14.2 Key Slot Transmission in POC:startup
	29.6.14.3 Key Slot Transmission in POC:normal active

	29.6.15 Sync Frame Filtering
	29.6.15.1 Sync Frame Acceptance Filtering
	29.6.15.2 Sync Frame Rejection Filtering

	29.6.16 Strobe Signal Support
	29.6.16.1 Strobe Signal Assignment
	29.6.16.2 Strobe Signal Timing

	29.6.17 Timer Support
	29.6.17.1 Absolute Timer T1
	29.6.17.2 Absolute / Relative Timer T2
	29.6.17.2.1 Absolute Timer T2
	29.6.17.2.2 Relative Timer T2

	29.6.18 Slot Status Monitoring
	29.6.18.1 Channel Status Error Counter Registers
	29.6.18.2 Protocol Status Registers
	29.6.18.3 Slot Status Registers
	29.6.18.4 Slot Status Counter Registers
	29.6.18.5 Message Buffer Slot Status Field

	29.6.19 System Bus Access
	29.6.19.1 System Bus Access Failure Types
	29.6.19.1.1 System Bus Illegal Address Access
	29.6.19.1.2 System Bus Access Timeout

	29.6.19.2 System Bus Access Failure Response
	29.6.19.2.1 Continue after System Bus Access Failure
	29.6.19.2.2 Freeze after System Bus Access Failure

	29.6.20 Interrupt Support
	29.6.20.1 Individual Interrupt Sources
	29.6.20.1.1 Message Buffer Interrupts
	29.6.20.1.2 FIFO Interrupts
	29.6.20.1.3 Wakeup Interrupt
	29.6.20.1.4 Protocol Interrupts
	29.6.20.1.5 CHI Interrupts

	29.6.20.2 Combined Interrupt Sources
	29.6.20.2.1 Receive Message Buffer Interrupt
	29.6.20.2.2 Transmit Message Buffer Interrupt
	29.6.20.2.3 Protocol Interrupt
	29.6.20.2.4 CHI Interrupt
	29.6.20.2.5 Module Interrupt

	29.6.21 Lower Bit Rate Support
	29.6.22 PE Data Memory (PE DRAM)
	29.6.22.1 PE DRAM Read Access
	29.6.22.2 PE DRAM Write Access
	29.6.22.3 PE DRAM Write Access Limitations

	29.6.23 CHI Lookup-Table Memory (CHI LRAM)
	29.6.23.1 CHI LRAM Read and Write Access

	29.6.24 Memory Content Error Detection
	29.6.24.1 Memory Error Types
	29.6.24.2 Memory Error Reporting
	29.6.24.2.1 PE DRAM Checkbits
	29.6.24.2.2 PE DRAM Syndrome
	29.6.24.2.3 CHI LRAM Checkbits
	29.6.24.2.4 CHI LRAM Syndrome

	29.6.24.3 Memory Error Response
	29.6.24.3.1 CHI LRAM Error Response after CC Read
	29.6.24.3.2 CHI LRAM Error Response after Application Read
	29.6.24.3.3 PE DRAM Error Response after CC Read
	29.6.24.3.4 PE DRAM Error Response after Application Read in POC:default config state
	29.6.24.3.5 PE DRAM Error Response after Application Read out of POC:default config

	29.6.25 Memory Error Injection
	29.6.25.1 CHI LRAM Error Injection
	29.6.25.2 PE DRAM Error Injection

	29.7 Application Information
	29.7.1 Module Configuration
	29.7.1.1 Configure System Memory Access Time-Out Register (FR_SYMATOR)
	29.7.1.1.1 System Bus Wait State Constraints

	29.7.1.2 Configure Data Field Offsets

	29.7.2 Initialization Sequence
	29.7.2.1 Module Initialization
	29.7.2.2 Protocol Initialization
	29.7.2.3 CHI LRAM Initialization
	29.7.2.4 PE DRAM Initialization

	29.7.3 Memory Error Injection out of POC:default config
	29.7.3.1 CHI LRAM Error Injection out of POC:default config
	29.7.3.2 PE DRAM Error Injection out of POC:default config

	29.7.4 Shut Down Sequence
	29.7.5 Number of Usable Message Buffers
	29.7.6 Protocol Control Command Execution
	29.7.7 Message Buffer Search on Simple Message Buffer Configuration
	29.7.7.1 Simple Message Buffer Configuration
	29.7.7.2 Behavior in static segment
	29.7.7.3 Behavior in dynamic segment
	29.7.7.3.1 Transmit Data Not Available
	29.7.7.3.2 Transmit Data Available

	Chapter 30 Fast Ethernet Controller (FEC)
	30.1 Overview
	30.1.1 Features

	30.2 Modes of Operation
	30.2.1 Full and Half Duplex Operation
	30.2.2 Interface Options
	30.2.2.1 10 Mbit/s and 100 Mbit/s MII Interface
	30.2.2.2 10 Mbit/s 7-Wire Interface Operation

	30.2.3 Address Recognition Options
	30.2.4 Internal Loopback

	30.3 FEC Top-Level Functional Diagram
	30.4 Functional Description
	30.4.1 Initialization Sequence
	30.4.1.1 Hardware Controlled Initialization

	30.4.2 User Initialization (Prior to Asserting ECR[ETHER_EN])
	30.4.3 Microcontroller Initialization
	30.4.4 User Initialization (After Asserting ECR[ETHER_EN])
	30.4.5 Network Interface Options
	30.4.6 FEC Frame Transmission
	30.4.7 FEC Frame Reception
	30.4.8 Ethernet Address Recognition
	30.4.9 Hash Algorithm
	30.4.10 Full Duplex Flow Control
	30.4.11 Inter-Packet Gap (IPG) Time
	30.4.12 Collision Handling
	30.4.13 Internal and External Loopback
	30.4.14 Ethernet Error-Handling Procedure
	30.4.14.1 Transmission Errors
	30.4.14.1.1 Transmitter Underrun
	30.4.14.1.2 Retransmission Attempts Limit Expired
	30.4.14.1.3 Late Collision
	30.4.14.1.4 Heartbeat

	30.4.14.2 Reception Errors
	30.4.14.2.1 Overrun Error
	30.4.14.2.2 Non-Octet Error (Dribbling Bits)
	30.4.14.2.3 CRC Error
	30.4.14.2.4 Frame Length Violation
	30.4.14.2.5 Truncation

	30.5 Programming Model
	30.5.1 Top Level Module Memory Map
	30.5.2 Register map
	30.5.3 MIB Block Counters Memory Map
	30.5.4 Registers
	30.5.4.1 Ethernet Interrupt Event Register (EIR)
	30.5.4.2 Interrupt Mask Register (EIMR)
	30.5.4.3 Receive Descriptor Active Register (RDAR)
	30.5.4.4 Transmit Descriptor Active Register (TDAR)
	30.5.4.5 Ethernet Control Register (ECR)
	30.5.4.6 MII Management Frame Register (MMFR)
	30.5.4.7 MII Speed Control Register (MSCR)
	30.5.4.8 MIB Control Register (MIBC)
	30.5.4.9 Receive Control Register (RCR)
	30.5.4.10 Transmit Control Register (TCR)
	30.5.4.11 Physical Address Lower Register (PALR)
	30.5.4.12 Physical Address Upper Register (PAUR)
	30.5.4.13 Opcode/Pause Duration Register (OPD)
	30.5.4.14 Descriptor Individual Upper Address Register (IAUR)
	30.5.4.15 Descriptor Individual Lower Address Register (IALR)
	30.5.4.16 Descriptor Group Upper Address (GAUR)
	30.5.4.17 Descriptor Group Lower Address (GALR)
	30.5.4.18 FIFO Transmit FIFO Watermark Register (TFWR)
	30.5.4.19 FIFO Receive Bound Register (FRBR)
	30.5.4.20 FIFO Receive Start Register (FRSR)
	30.5.4.21 Receive Descriptor Ring Start Register (ERDSR)
	30.5.4.22 Transmit Buffer Descriptor Ring Start (ETSDR)
	30.5.4.23 Receive Buffer Size Register (EMRBR)

	30.6 Buffer Descriptors
	30.6.1 Driver/DMA Operation with Buffer Descriptors
	30.6.1.1 Driver/DMA Operation with Transmit BDs
	30.6.1.2 Driver/DMA Operation with Receive BDs

	30.6.2 Ethernet Receive Buffer Descriptor (RxBD)
	30.6.3 Ethernet Transmit Buffer Descriptor (TxBD)

	--- Timers ---
	Chapter 31 Timers
	31.1 Technical overview
	31.1.1 Overview of the STM
	31.1.2 Overview of the eMIOS
	31.1.3 Overview of the PIT_RTI

	31.2 System Timer Module (STM)
	31.2.1 Introduction
	31.2.1.1 Overview
	31.2.1.2 Features
	31.2.1.3 Modes of operation

	31.2.2 External signal description
	31.2.3 Memory map and register definition
	31.2.3.1 Memory map
	31.2.3.2 Register descriptions
	31.2.3.2.1 STM Control Register (STM_CR)
	31.2.3.2.2 STM Count Register (STM_CNT)
	31.2.3.2.3 STM Channel Control Register (STM_CCRn)
	31.2.3.2.4 STM Channel Interrupt Register (STM_CIRn)
	31.2.3.2.5 STM Channel Compare Register (STM_CMPn)

	31.2.4 Functional description

	31.3 Enhanced Modular IO Subsystem (eMIOS)
	31.3.1 Introduction
	31.3.1.1 Overview of the eMIOS module
	31.3.1.2 Features of the eMIOS module
	31.3.1.3 Modes of operation
	31.3.1.4 Channel implementation
	31.3.1.4.1 Channel mode selection

	31.3.2 External signal description
	31.3.3 Memory map and register description
	31.3.3.1 Memory maps
	31.3.3.1.1 Unified Channel memory map

	31.3.3.2 Register description
	31.3.3.2.1 eMIOS Module Configuration Register (EMIOSMCR)
	31.3.3.2.2 eMIOS Global FLAG (EMIOSGFLAG) Register
	31.3.3.2.3 eMIOS Output Update Disable (EMIOSOUDIS) Register
	31.3.3.2.4 eMIOS Disable Channel (EMIOSUCDIS) Register
	31.3.3.2.5 eMIOS UC A Register (EMIOSA[n])
	31.3.3.2.6 eMIOS UC B Register (EMIOSB[n])
	31.3.3.2.7 eMIOS UC Counter Register (EMIOSCNT[n])
	31.3.3.2.8 eMIOS UC Control Register (EMIOSC[n])
	31.3.3.2.9 eMIOS UC Status Register (EMIOSS[n])
	31.3.3.2.10 eMIOS UC Alternate A Register (EMIOSALTA[n])

	31.3.4 Functional description
	31.3.4.1 Unified Channel (UC)
	31.3.4.1.1 UC modes of operation
	31.3.4.1.1.1 General purpose Input/Output (GPIO) mode
	31.3.4.1.1.2 Single Action Input Capture (SAIC) mode
	31.3.4.1.1.3 Single Action Output Compare (SAOC) mode
	31.3.4.1.1.4 Input Pulse Width Measurement (IPWM) Mode
	31.3.4.1.1.5 Input Period Measurement (IPM) mode
	31.3.4.1.1.6 Double Action Output Compare (DAOC) mode
	31.3.4.1.1.7 Modulus Counter (MC) mode
	31.3.4.1.1.8 Modulus Counter Buffered (MCB) mode
	31.3.4.1.1.9 Output Pulse Width and Frequency Modulation Buffered (OPWFMB) mode
	31.3.4.1.1.10 Center Aligned Output PWM Buffered with Dead-Time (OPWMCB) mode
	31.3.4.1.1.11 Output Pulse Width Modulation Buffered (OPWMB) Mode
	31.3.4.1.1.12 Output Pulse Width Modulation with Trigger (OPWMT) mode

	31.3.4.1.2 Input Programmable Filter (IPF)
	31.3.4.1.3 Clock Prescaler (CP)
	31.3.4.1.4 Effect of Freeze on the Unified Channel

	31.3.4.2 IP Bus Interface Unit (BIU)
	31.3.4.2.1 Effect of Freeze on the BIU

	31.3.4.3 Global Clock Prescaler Submodule (GCP)
	31.3.4.3.1 Effect of Freeze on the GCP

	31.3.5 Initialization/Application information
	31.3.5.1 Considerations
	31.3.5.2 Application information
	31.3.5.2.1 Time base generation
	31.3.5.2.2 Coherent accesses
	31.3.5.2.3 Channel/Modes initialization

	31.4 Periodic Interrupt Timer with Real-Time Interrupt (PIT_RTI)
	31.4.1 Introduction
	31.4.2 Features
	31.4.3 Modes of operation
	31.4.4 Signal description
	31.4.5 Memory map and register description
	31.4.5.1 Memory map
	31.4.5.2 PIT_RTI Module Control Register (PITMCR)
	31.4.5.3 Timer Load Value Register (LDVAL)
	31.4.5.4 Current Timer Value Register (CVAL)
	31.4.5.5 Timer Control Register (TCTRL)
	31.4.5.6 Timer Flag Register (TFLG)

	31.4.6 Functional description
	31.4.6.1 General
	31.4.6.1.1 Timers
	31.4.6.1.2 Debug mode

	31.4.6.2 Interrupts

	31.4.7 Initialization and application information
	31.4.7.1 Example configuration

	--- ADC system ---
	Chapter 32 Analog-to-Digital Converter (ADC)
	32.1 Overview
	32.1.1 Device-specific pin configuration features
	32.1.2 Device-specific implementation

	32.2 Introduction
	32.3 Register descriptions
	32.3.1 Introduction
	32.3.2 Control logic registers
	32.3.2.1 Main Configuration Register (MCR)
	32.3.2.2 Main Status Register (MSR)

	32.3.3 Interrupt registers
	32.3.3.1 Interrupt Status Register (ISR)
	32.3.3.2 Channel Pending Registers (CEOCFR[0..2])
	32.3.3.3 Interrupt Mask Register (IMR)
	32.3.3.4 Channel Interrupt Mask Register (CIMR[0..2])
	32.3.3.5 Watchdog Threshold Interrupt Status Register (WTISR)
	32.3.3.6 Watchdog Threshold Interrupt Mask Register (WTIMR)

	32.3.4 DMA registers
	32.3.4.1 DMA Enable Register (DMAE)
	32.3.4.2 DMA Channel Select Register (DMAR[0..2])

	32.3.5 Threshold Register
	32.3.6 Presampling registers
	32.3.6.1 Presampling Control Register (PSCR)
	32.3.6.2 Presampling Register (PSR[0..2])
	32.3.6.3 Conversion timing register

	32.3.7 Mask registers
	32.3.7.1 Introduction
	32.3.7.2 Normal Conversion Mask Registers (NCMR[0..2])
	32.3.7.3 Injected Conversion Mask Registers (JCMR[0..2])

	32.3.8 Delay registers
	32.3.8.1 Decode Signals Delay Register (DSDR)
	32.3.8.2 Power-down Exit Delay Register (PDEDR)

	32.3.9 Data registers
	32.3.9.1 Introduction
	32.3.9.2 Channel Data Register (CDR[0..95])
	32.3.9.3 Channel Watchdog Select Register (CWSELR[0..11])
	32.3.9.4 Channel Watchdog Enable Register (CWENRx, x = [0..2])
	32.3.9.5 Analog Watchdog Out of Range Register (AWORRx, x = [0..2])

	32.4 Functional description
	32.4.1 Analog channel conversion
	32.4.1.1 Normal conversion
	32.4.1.2 Start of normal conversion
	32.4.1.3 Normal conversion operating modes
	32.4.1.4 Injected channel conversion
	32.4.1.5 Abort conversion

	32.4.2 Analog clock generator and conversion timings
	32.4.3 ADC sampling and conversion timing
	32.4.3.1 ADC_0 sampling and conversion timing
	32.4.3.2 ADC_1 sampling and conversion timing

	32.4.4 ADC CTU (Cross Triggering Unit)
	32.4.4.1 Overview
	32.4.4.2 CTU in trigger mode

	32.4.5 Presampling
	32.4.5.1 Introduction
	32.4.5.2 Presampling channel enable signals

	32.4.6 Programmable analog watchdog
	32.4.6.1 Introduction

	32.4.7 DMA functionality
	32.4.8 Interrupts
	32.4.9 External decode signals delay
	32.4.10 Power-down mode
	32.4.11 Auto-clock-off mode

	Chapter 33 Cross Triggering Unit (CTU)
	33.1 Introduction
	33.2 Main features
	33.3 Block diagram
	33.4 Memory map and register descriptions
	33.4.1 Event Configuration Registers (CTU_EVTCFGRx) (x = 0...63)

	33.5 Functional description
	33.5.1 Channel value

	--- Memory ---
	Chapter 34 Static RAM (SRAM)
	34.1 Introduction
	34.2 SRAM operating mode
	34.3 Register memory map
	34.4 SRAM ECC mechanism
	34.4.1 Access timing
	34.4.2 Reset effects on SRAM accesses

	34.5 Functional description
	34.6 Initialization and application information

	--- Integrity ---
	Chapter 35 Flash Memory
	35.1 Introduction
	35.2 Code flash memory
	35.2.1 Introduction
	35.2.2 Main features
	35.2.3 Block diagram
	35.2.4 Functional description
	35.2.4.1 Module structure
	35.2.4.2 Flash memory module sectorization
	35.2.4.2.1 TestFlash block
	35.2.4.2.2 Shadow block

	35.2.4.3 User mode operation
	35.2.4.4 Reset
	35.2.4.5 Power-down mode
	35.2.4.6 Low power mode

	35.2.5 Register description
	35.2.5.1 Module Configuration Register (MCR)
	35.2.5.2 Low/Mid address space block Locking register (LML)
	35.2.5.3 Nonvolatile Low/Mid address space block Locking register (LML)
	35.2.5.4 High address space Block Locking register (HBL)
	35.2.5.5 Nonvolatile High address space Block Locking register (NVHBL)
	35.2.5.6 Secondary Low/mid address space block Locking register (SLL)
	35.2.5.7 Nonvolatile Secondary Low/mid address space block Locking register (SLL)
	35.2.5.8 Low/Mid address space block Select register (LMS)
	35.2.5.9 High address space Block Select register (HBS)
	35.2.5.10 Address Register (ADR)
	35.2.5.11 Bus Interface Unit 0 register (BIU0)
	35.2.5.12 Bus Interface Unit 1 register (BIU1)
	35.2.5.13 Bus Interface Unit 2 register (BIU2)
	35.2.5.14 Bus Interface Unit 3 register (BIU3)
	35.2.5.15 User Test 0 register (UT0)
	35.2.5.16 User Test 1 register (UT1)
	35.2.5.17 User Test 2 register (UT2)
	35.2.5.18 User Multiple Input Signature Register 0 (UMISR0)
	35.2.5.19 User Multiple Input Signature Register 1 (UMISR1)
	35.2.5.20 User Multiple Input Signature Register 2 (UMISR2)
	35.2.5.21 User Multiple Input Signature Register 3 (UMISR3)
	35.2.5.22 User Multiple Input Signature Register 4 (UMISR4)
	35.2.5.23 Nonvolatile private censorship PassWord 0 register (NVPWD0)
	35.2.5.24 Nonvolatile private censorship PassWord 1 register (NVPWD1)
	35.2.5.25 Nonvolatile System Censoring Information 0 register (NVSCC0)
	35.2.5.26 Nonvolatile System Censoring Information 1 register (NVSCC1)
	35.2.5.27 Nonvolatile User Options register (NVUSRO)
	35.2.5.28 Nonvolatile User Options register 1(NVUSRO_1)
	35.2.5.29 Programming NVUSRO_1 and STCU fault grading parameters

	35.2.6 STCU programming using Flash
	35.2.7 Programming considerations
	35.2.7.1 Modify operation
	35.2.7.1.1 Double word program
	35.2.7.1.2 Sector erase
	35.2.7.1.3 User Test mode
	35.2.7.1.3.1 Array integrity self check
	35.2.7.1.3.2 Margin read
	35.2.7.1.3.3 ECC logic check

	35.2.7.2 Error correction code
	35.2.7.2.1 ECC algorithms

	35.2.7.3 EEprom emulation
	35.2.7.4 Eprom Emulation
	35.2.7.4.1 All ‘1’s No Error

	35.2.7.5 Protection strategy
	35.2.7.5.1 Modify protection
	35.2.7.5.2 Censored mode

	35.3 Data flash memory
	35.3.1 Introduction
	35.3.2 Main features
	35.3.3 Block diagram
	35.3.4 Functional description
	35.3.4.1 Module structure
	35.3.4.2 Data flash memory module sectorization
	35.3.4.2.1 Test flash memory Block

	35.3.5 User mode operation
	35.3.5.1 Reset
	35.3.5.2 Power-down mode
	35.3.5.3 Slave Mode

	35.3.6 Register description
	35.3.6.1 Module Configuration Register (MCR)
	35.3.6.2 Low/Mid address space block Locking register (LML)
	35.3.6.2.1 Nonvolatile Low/Mid address space block Locking register (NVLML)

	35.3.6.3 Secondary Low/mid address space block Locking register (SLL)
	35.3.6.3.1 Nonvolatile Secondary Low/mid address space block Locking register (NVSLL)

	35.3.6.4 Low/Mid address space block Select register (LMS)
	35.3.6.5 Address Register (ADR)
	35.3.6.6 User Test 0 register (UT0)
	35.3.6.7 User Test 1 register (UT1)
	35.3.6.8 User Multiple Input Signature Register 0 (UMISR0)
	35.3.6.9 User Multiple Input Signature Register 1 (UMISR1)

	35.3.7 Programming considerations
	35.3.7.1 Modify operation
	35.3.7.2 Word program
	35.3.7.3 Sector erase
	35.3.7.3.1 Erase suspend/resume

	35.3.7.4 User Test Mode
	35.3.7.4.1 Array integrity self check
	35.3.7.4.2 Margin read
	35.3.7.4.3 ECC logic check

	35.3.8 Error correction code
	35.3.8.1 ECC algorithms
	35.3.8.2 ECC Algorithms Features

	35.3.9 Protection strategy
	35.3.9.1 Modify protection

	35.4 Platform Flash Controller
	35.4.1 Introduction
	35.4.1.1 Overview
	35.4.1.2 Features
	35.4.1.3 Modes of Operation

	35.4.2 External Signal Descriptions
	35.4.3 Memory map and register description
	35.4.3.1 Platform Flash Configuration Register 0 (PFCR0)
	35.4.3.2 Platform Flash Configuration Register 1 (PFCR1)
	35.4.3.3 Platform Flash Access Protection Register (PFAPR)

	35.4.4 Functional Description
	35.4.4.1 Basic Interface Protocol
	35.4.4.2 Access Protections
	35.4.4.3 Read Cycles - Buffer Miss
	35.4.4.4 Read Cycles - Buffer Hit
	35.4.4.5 Write Cycles
	35.4.4.6 Error Termination
	35.4.4.7 Access Pipelining
	35.4.4.8 Flash Error Response Operation
	35.4.4.9 Code flash memory bank 0 and 2 page read buffers and prefetch operation
	35.4.4.9.1 Inst/Data Prefetch Triggering
	35.4.4.9.2 Per-Master Prefetch Triggering
	35.4.4.9.3 Code flash memory buffer allocation

	35.4.4.10 Buffer Invalidation
	35.4.4.11 Bank1 Temporary Holding Registers
	35.4.4.12 Input Port Arbitration
	35.4.4.13 Read-While-Write Functionality
	35.4.4.14 Wait-State Emulation
	35.4.4.15 Timing Diagrams

	Chapter 36 Register Protection
	36.1 Introduction
	36.1.1 Overview
	36.1.2 Features
	36.1.3 Modes of operation

	36.2 External signal description
	36.3 Memory map and register description
	36.3.1 Memory map
	36.3.2 Register description
	36.3.2.1 Module register address space (MR0-6143)
	36.3.2.2 Module Register and Set Soft Lock Bit (LMR0-6143)
	36.3.2.3 Soft Lock Bit Register (SLBR0-1535)
	36.3.2.4 Global Configuration Register (GCR)

	36.4 Functional description
	36.4.1 General
	36.4.2 Change lock settings
	36.4.2.1 Change lock settings directly via area #4
	36.4.2.2 Enable locking via mirror module space (area #3)
	36.4.2.3 Write protection for locking bits

	36.4.3 Access errors

	36.5 Reset
	36.6 Protected registers

	Chapter 37 Software Watchdog Timer (SWT)
	37.1 Introduction
	37.2 Features
	37.3 Modes of operation
	37.4 External signal description
	37.5 Memory map and register definition
	37.5.1 Memory map
	37.5.2 Register descriptions
	37.5.2.1 SWT Control Register (SWT_CR)
	37.5.2.2 SWT Interrupt Register (SWT_IR)
	37.5.2.3 SWT Time-Out Register (SWT_TO)
	37.5.2.4 SWT Window Register (SWT_WN)
	37.5.2.5 SWT Service Register (SWT_SR)
	37.5.2.6 SWT Counter Output Register (SWT_CO)
	37.5.2.7 SWT Service Key Register (SWT_SK)

	37.6 Functional Description

	Chapter 38 Error Correction Status Module (ECSM)
	38.1 Introduction
	38.2 Overview
	38.3 Features
	38.4 Memory map and register description
	38.4.1 Memory map
	38.4.2 Register description
	38.4.2.1 Processor Core Type Register (PCT)
	38.4.2.2 SoC-Defined Platform Revision Register (REV)
	38.4.2.3 IPS On-Platform Module Configuration Register (IMC)
	38.4.2.4 Miscellaneous Interrupt Register (MIR)
	38.4.2.5 Miscellaneous User-Defined Control Register (MUDCR)
	38.4.2.6 ECC registers
	38.4.2.6.1 ECC Configuration Register (ECR)
	38.4.2.6.2 ECC Status Register (ESR)
	38.4.2.6.3 ECC Error Generation Register (EEGR)
	38.4.2.6.4 Platform Flash ECC Address Register (PFEAR)
	38.4.2.6.5 Platform Flash ECC Master Number Register (PFEMR)
	38.4.2.6.6 Platform Flash ECC Attributes Register (PFEAT)
	38.4.2.6.7 Platform Flash ECC Data Register (PFEDR)
	38.4.2.6.8 Platform RAM ECC Address Register (PREAR)
	38.4.2.6.9 Platform RAM ECC Syndrome Register (PRESR)
	38.4.2.6.10 Platform RAM ECC Master Number Register (PREMR)
	38.4.2.6.11 Platform RAM ECC Attributes Register (PREAT)
	38.4.2.6.12 Platform RAM ECC Data Register (PREDR)

	38.4.3 Register protection

	Chapter 39 Self-Test Control Unit (STCU)
	39.1 Introduction
	39.1.1 Acronyms, abbreviations, and terms

	39.2 STCU main features
	39.3 Block diagram and components
	39.4 The Safety Integrity Subsystem
	39.4.1 Default setup after the boot sequence phase 1
	39.4.2 Changing the default fault grading
	39.4.3 Integrity SW operations
	39.4.3.1 IReported errors
	39.4.3.2 No reported errors

	39.5 Memory map and register definition
	39.5.1 Memory map
	39.5.2 Register conventions
	39.5.3 Detailed register descriptions
	39.5.3.1 STCU SK Code Register (STCU_SKC)
	39.5.3.2 STCU Configuration Register (STCU_CFG)
	39.5.3.3 STCU Watchdog Register Granularity (STCU_WDGG)
	39.5.3.4 STCU CRC Expected Status Register (STCU_CRCE)
	39.5.3.5 STCU CRC Read Status Register (STCU_CRCR)
	39.5.3.6 STCU Error Register (STCU_ERR)
	39.5.3.7 STCU Error Key Register (STCU_ERRK)
	39.5.3.8 STCU MBIST Status Low Register (STCU_MBSL)
	39.5.3.9 STCU MBIST Status High Register (STCU_MBSH)
	39.5.3.10 STCU MBIST End Flag Low Register (STCU_MBEL)
	39.5.3.11 STCU MBIST End Flag High Register (STCU_MBEH)
	39.5.3.12 STCU MBIST Status-End Key Register (STCU_MBSEK)
	39.5.3.13 STCU MBIST Critical FM Low Register (STCU_MBCFML)
	39.5.3.14 STCU MBIST Critical FM High Register (STCU_MBCFMH)
	39.5.3.15 STCU MBIST Stay-In-Reset FM Low Register (STCU_MBSFML)
	39.5.3.16 STCU MBIST Stay-In-Reset FM High Register (STCU_MBSFMH)
	39.5.3.17 STCU MBIST FM Key Register (STCU_MBFMK)
	39.5.3.18 STCU MBIST Control Register (STCU_MB_CTRL)

	39.5.4 Self-Test sequence after reset trigger

	Chapter 40 Cryptographic Services Engine (CSE)
	40.1 Introduction
	40.1.1 Overview
	40.1.2 Features
	40.1.3 Modes of operation
	40.1.4 Block diagram

	40.2 External signal description
	40.3 Memory map and register definition
	40.3.1 Memory map
	40.3.2 Register descriptions
	40.3.2.1 CSE Control Register (CSE_CR)
	40.3.2.2 CSE Status Register (CSE_SR)
	40.3.2.3 CSE Interrupt Register (CSE_IR)
	40.3.2.4 CSE Error Code Register (CSE_ECR)
	40.3.2.5 CSE Command Register (CSE_CMD)
	40.3.2.6 CSE Command Parameter Registers (CSE_Px)

	40.4 CSE functional description
	40.4.1 Host Interface
	40.4.2 Command Processing
	40.4.3 Secure Storage
	40.4.4 Encryption and Decryption
	40.4.5 Message Authentication
	40.4.6 Secure Boot
	40.4.7 Random Number Generation
	40.4.8 Error Handling

	40.5 CSE Commands
	40.5.1 Encrypt ECB
	40.5.2 Encrypt CBC
	40.5.3 Decrypt ECB
	40.5.4 Decrypt CBC
	40.5.5 Generate MAC
	40.5.6 Verify MAC
	40.5.7 Load Key
	40.5.8 Load Plain Key
	40.5.9 Export RAM Key
	40.5.10 Initialize RNG
	40.5.11 Extend PRNG Seed
	40.5.12 Generate Random Number
	40.5.13 Secure Boot
	40.5.14 Boot Failure
	40.5.15 Boot OK
	40.5.16 Get ID
	40.5.17 Cancel
	40.5.18 Debug Challenge
	40.5.19 Debug Authorization
	40.5.20 Generate TRNG Random Number
	40.5.21 Initialize CSE

	--- Debug ---
	Chapter 41 JTAG Controller (JTAGC)
	41.1 Introduction
	41.1.1 Overview
	41.1.2 Features
	41.1.3 Modes of Operation
	41.1.3.1 Reset
	41.1.3.2 IEEE 1149.1-2001 Defined Test Modes
	41.1.3.3 Bypass Mode

	41.2 External signal description
	41.2.1 Overview
	41.2.2 Detailed signal descriptions
	41.2.2.1 TCK - Test Clock Input
	41.2.2.2 TDI - Test Data Input
	41.2.2.3 TDO - Test Data Output
	41.2.2.4 TMS - Test Mode Select

	41.3 Register definition
	41.3.1 Register Descriptions
	41.3.1.1 Instruction Register
	41.3.1.2 Bypass Register
	41.3.1.3 Device Identification Register
	41.3.1.4 CENSOR_CTRL Register
	41.3.1.5 Boundary Scan Register

	41.4 Functional Description
	41.4.1 JTAGC Reset Configuration
	41.4.2 IEEE 1149.1-2001 (JTAG) Test Access Port
	41.4.3 TAP Controller State Machine
	41.4.3.1 Selecting an IEEE 1149.1-2001 Register

	41.4.4 JTAGC Block Instructions
	41.4.4.1 IDCODE Instruction
	41.4.4.2 SAMPLE/PRELOAD Instruction
	41.4.4.3 SAMPLE Instruction
	41.4.4.4 EXTEST - External Test Instruction
	41.4.4.5 ENABLE_CENSOR_CTRL Instruction
	41.4.4.6 HIGHZ Instruction
	41.4.4.7 CLAMP Instruction
	41.4.4.8 ACCESS_AUX_TAP_x Instructions
	41.4.4.9 BYPASS Instruction

	41.4.5 Boundary Scan

	41.5 Initialization/Application Information

	Chapter 42 Nexus Development Interface (NDI)
	42.1 Introduction
	42.2 Block diagram
	42.2.1 NDI Features
	42.2.2 Modes of Operation
	42.2.2.1 Nexus Reset Mode
	42.2.2.2 Full-Port Mode
	42.2.2.3 Reduced-Port Mode
	42.2.2.4 Disabled-Port Mode
	42.2.2.5 Halt Mode
	42.2.2.6 Multi mode Nexus Tap

	42.3 External Signal Description
	42.4 Memory Map and Registers
	42.4.1 NDI Functional Description
	42.4.1.1 Enabling Nexus Clients for TAP Access
	42.4.1.2 TAP Sharing
	42.4.1.3 Configuring the NDI for Nexus Messaging
	42.4.1.4 Programmable MCKO frequency
	42.4.1.5 Cross Triggering Control

	42.5 Nexus Port Controller (NPC)
	42.5.1 Introduction
	42.5.2 NPC features
	42.5.3 NPC memory map
	42.5.4 NPC Register descriptions
	42.5.4.1 Bypass Register
	42.5.4.2 Instruction Register
	42.5.4.3 Nexus Device ID Register (DID)
	42.5.4.4 Port Configuration Register (PCR)

	42.5.5 NPC Functional Description
	42.5.5.1 NPC_HNDSHK module
	42.5.5.2 NPC Reset Configuration
	42.5.5.3 Auxiliary Output Port
	42.5.5.3.1 Output Message Protocol
	42.5.5.3.2 Output Messages

	42.5.5.4 Output Messages
	42.5.5.4.0.1 Rules of Messages

	42.5.5.5 Rules of Message
	42.5.5.5.1 NPC IEEE 1149.1-2001 (JTAG) TAP
	42.5.5.5.1.1 Enabling the NPC TAP Controller
	42.5.5.5.1.2 Retrieving Device IDCODE
	42.5.5.5.1.3 Loading NEXUS-ENABLE Instruction
	42.5.5.5.1.4 Selecting a Nexus Client Register

	42.5.5.5.2 Nexus JTAG Port Sharing
	42.5.5.5.3 MCKO
	42.5.5.5.4 EVTO Sharing
	42.5.5.5.5 Nexus Reset Control

	42.5.6 NPC Initialization/Application Information

	42.6 Nexus3+ Module
	42.6.1 Introduction
	42.6.2 Block Diagram
	42.6.3 Overview
	42.6.4 Enabling Nexus3 Operation
	42.6.5 TCODEs Supported
	42.6.6 Memory Map
	42.6.7 Register Definition
	42.6.7.1 Development Control Register 1 (DC1)
	42.6.7.2 Development Control Register 2 (DC2)
	42.6.7.3 Development Control Register 3 (DC3)
	42.6.7.4 Development Control Register 4 (DC4)
	42.6.7.5 Development Status Register (DS)
	42.6.7.6 Read/Write Access Control/Status (RWCS)
	42.6.7.7 Read/Write Access Address (RWA)
	42.6.7.8 Read/Write Access Data (RWD)
	42.6.7.9 Watchpoint Trigger Register (WT, PTSTC, PTETC, DTSTC, DTETC)
	42.6.7.10 Nexus Watchpoint Mask Register (WMSK)
	42.6.7.11 Overrun Control Register (OVCR)
	42.6.7.12 Data Trace Control Register (DTC)
	42.6.7.13 Data Trace Start Address Registers (DTSA1-DTSA2)
	42.6.7.14 Data Trace End Address Registers (DTEA1-DTEA2)

	42.6.8 Register Access via JTAG / OnCE

	42.7 Debug Implementation
	42.8 Debug Capabilities
	42.9 Debug Port
	42.9.1 Nexus3+ Auxiliary Port

	Appendix A Revision History
	A.1 Changes between revisions 4 and 5
	A.2 Changes between revisions 3 and 4
	A.3 Changes between revisions 2 and 3
	A.4 Changes between revisions 2 and 2.1
	A.5 Changes between revisions 1 and 2

