

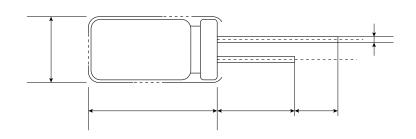
Overview Applications

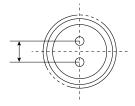
embedded microprocessor systems with fash memory.

Bene f ts

 Wide range of temperature from -25°C to +60°C and -25°C to +70°C

Part Number System


HVZ	0E	105	N	F	-LT
		represent signifcant fgures. Third digit specifes number of			



Dimensions – Millimeters

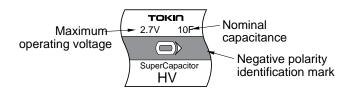
1) Standard Termination (all types except -LT)

Environmental Compliance

Table 1 – Ratings & Part Number Reference

Part Number	Maximum Operating Voltage (VDC)	Nominal Capacitance (F)	Maximum ESR at 1 kHz (mΩ)	Maximum Current at 30 Minutes (mA)	Weight (g)

Specifications


[

Specifications cont'd

lte	em	HV Type	Test Conditions (conforming to JIS C 5160-2)
		≤ 200% of initial ratings ≤ 200% of initial ratings	0 Ω 1,000+48 (+48/-0)

Marking

Packaging Quantities

Part Number	Bulk Quantity per Box

List of Plating & Sleeve Type

- a. Iron + copper base + lead-free solder plating (Sn-1Cu)
- b. SUS nickel base + copper base + refow lead-free solder plating (100% Sn, refow processed)
- c. Iron + copper base + leaf-free solder plating (100% Sn)

Series	Part Number	Plating	Sleeve

Recommended Pb-free solder : Sr/3.5Ag/0.75Cu

Sn/3.0Ag/0.5Cu

Sn/0.7Cu

Sn/2.5Ag/1.0Bi/0.5Cu

Measurement Conditions

Capacitance (Charge	System
Oapaoitailoo (0	•, • • • • • • • • • • • • • • • • • •

Capacitance is calculated from expression (9) by measuring the charge time constant (τ) of the capacitor (C). Prior to

τ: Time from start of charging until Vc becomes 0.632 Eo (V)

Rc: See table below (Ω) .

Charge Resistor Selection Guide

Measurement Conditions cont'd

Capacitance (Discharge System)

Notes on Using Supercapacitors or Electric Double-Layer Capacitors (EDLCs)

1.

Circuitry Design
1.2 Fail rate in the feld Based on feld data, the fail rate is calculated at approximately 0.006 Fit. We estimate that unreported failures are ten
Useful life of the supercapacitor will be significantly affected if used near heat emitting items (coils, power transistors
1.9 Supercapacitors ftted with pressure valves HV Series supercapacitors are ftted with pressure valves. Make an opening in the top of the pressure valve to avoid

KEMET Electronic Corporation Sales Offces

For a complete list of our global sales offces, please visit www.kemet.com/sales.

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use.

(such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or

KEMET is a registered trademark of KEMET Electronics Corporation.